
Mapping a Parallel Complex-Object DBMS to
Operating System Processes

Michael Gesmann
Department of Computer Science - University of Kaiserslautern

E-Mail: gesmann@informatik.uni-kl.de

Abstract. So far, parallelism in complex-object and object-oriented DBMS has not been
investigated in depth because descriptive and set-oriented query languages did not exist
for these systems. However, with standardization of OQL by ODMG or SQL3 by ANSI,
systems implementing these languages are ready to exploit parallel query processing
strategies. In this paper, we explain differences between parallel query processing in
relational and complex-object DBMS. Furthermore, we present a client/server-based
system architecture that allows for fine-grained parallelism within query processing in
complex-object DBMS. We investigate various strategies for mapping this architecture
to processes of the underlying operating system. Finally, some measurements show the
impact of these mapping strategies on query response times.

1 Introduction
One of the most important challenges in relational DBMS query processing is the
exploitation of parallelism which promises efficient handling of huge and ever growing
amounts of data. Simultaneously, the demand of new applications for enhanced model-
ing capabilities and more expressive query languages led to object-oriented DBMS
(OODBMS). However, until now, the exploitation of parallelism within OODBMS has
been almost completely ignored. This is primarily due to the fact that set-oriented
descriptive query languages were missing, which allow database systems to choose and
optimize among various query processing strategies. Contrarily, application programs
were responsible for the selection and construction of complex objects.
But, nowadays, standardization committees develop descriptive and set-oriented query
languages equipped with high expressive power (OQL [1], SQL3 [2, 3]). Therefore, it
seems to be a promising idea to adapt the well-known and very effective parallel pro-
cessing strategies from relational DBMS to OODBMS in order to reduce query response
times. However, query processing in complex-object DBMS and OODBMS shows the
following entirely different characteristics:
• In OODBMS, direct representation of relationships between objects via references al-

lows for (parallel) traversal of complex structures. The corresponding traversal algo-
rithms are sometimes much more efficient than relational join operations embodying
the only method to materialize relationships between tupels in relations [4, 5].

• Complex objects often incorporate highly meshed network structures; they may share
components (atoms) among separate complex objects (molecules) [6] and may be even
dynamically definable.

• In relational DBMS, data distribution across multiple sites (declustering) is one of the
most important prerequisites to achieve data parallelism in query processing. Appar-
ently, it is much more difficult in complex-object DBMS because every distribution
strategy can only support some dedicated complex-object structures. Even worse, dy-
namically defined structures may not be preplanned at all.

in : Proc. Euro-Par‘96 - Parallel Processing, Workshop: Parallel and Distributed Datbase Systems, Lyon, Aug.
1996, LNCS 1124, Springer-Verlag, pp. 852-861.

• Finally, due to the enhanced semantics in OO data models and query languages, OO
query processing requires comparatively more cpu-resources than relational query
processing[6, 7]. These resources are mainly required for retrieval or manipulation
of composite data types; obviously, they are also needed by more sophisticated que-
ry operators like recursion. Furthermore, due to structural overlap, when molecules
are assembled from atoms, these atoms may appear in multiple roles in a single mol-
ecule or in different molecules. Therefore, query processing facilities have to sepa-
rate atoms’ data and molecules’ structure information (composition relationships).
This means, attribute values of a single atom, appearing in various roles in (a single
or in multiple) resulting molecules should be represented only once without any rep-
lication. At the same time, since (data) atoms in different roles can comprise multi-
ple references, this structure information has to be represented separately.

Due to these fundamental differences, OODBMS require new concepts when applying
parallelism in query processing [8]. Concentrating on complex-object structures in this
paper, we examine an implementation architecture for a parallel complex-object DBMS
which supports fine-grained parallelism at various system layers. After having
described the overall client/server-based architecture, we concentrate on the mapping of
this architecture to the operating system services, i.e. processes.
[9] recently described how to parallelize OO7 benchmark’s complex traversal opera-
tions. In contrast to our approach, their implementation encapsulates parallel strategies
in methods belonging to objects. They did not try to integrate exploitation of parallelism
in a more general query processing framework. Similarly, [10] explored OO traversals.
In contrast to [9], their implementation is based on a vertical partitioning of object data
and storing these data in relations. They concentrated on main memory processing and a
declarative interface for path traversals which allows for system embedded traversal
execution outside of application code in methods. [11] investigates parallel query pro-
cessing algorithms. In contrast to our work, they also rely on vertical data partitioning
and obtain their results from simulations. Issues about system architecture are not dis-
cussed in their work. Finally, [12] investigates parallel query execution when mapping
object-oriented data to a relational DBMS and executing the same or different opera-
tions on various relations in parallel in a parallel relational DBMS.
In the next section, we describe our PRIMA system as far as needed for the following
discussions and measurements. In Sect. 3, we describe how parallelism can be achieved
and exploited in query processing within the system. Sect. 4 presents our measurements
based on the OO7-Benchmark. The paper concludes with the most important results.

2 The PRIMA System
In this section, we give a concise overview of the PRIMA system for the subsequent dis-
cussion about issues of parallelism. For more detailed descriptions see [13, 14].
Data Model
First of all, we outline the relevant characteristics of the MAD model (cf. Fig. 2.1).
Well-known concepts of the relational model help us to explain similarities and differ-
ences, when mapping entity and relationship types of the real word using the concepts of
the data model:
Relations are namedatom types and tupels are now calledatoms, which represent enti-
ties of the real world. Atoms consist ofattributes of various data types, are uniquely
identifiable, and belong to their corresponding atom type. Atom identification is
achieved by a specialidentifier type which is implemented by system-supplied surro-
gates. Values of this type are calledidentifiers.

All relevant relationship types between entity types are explicitly specified in the DB
schema and represented in the DB. These relationship types, simply calledreference
types, are represented in an explicit and symmetrical way. As a result, the DB schema
can be expressed by undirected graphs (network-like) of atom types. Atoms are con-
nected to each other byreferences according to the reference types specified in the DB
schema. As an important consequence, the DB can be viewed as an undirected network
of atoms. References are implemented by lists of identifiers belonging to atoms of
exactly one type, namely the referenced atom type.
Based on the atom network, complex objects, so calledmolecules, are dynamically
definable. The SQL-like, set oriented, and descriptive query language MQL (molecule
query language) is used to define their structure, namedmolecule type. An example of
simple structural overlap of (simple) molecules is illustrated in Fig. 2.1 by the four
resulting molecules characterized by the root atoms e0, e1, e2, and e3. Sharing of sub-
component types (subcomponents) and cyclic references can lead to meshed and recur-
sive molecule types (molecules).
System Architecture
Like other systems, e.g. DASDBS [7], our system is implemented as a DBMS kernel
architecture (cf. Fig. 2.2). This kernel system which implements an application-inde-
pendent complex-object interface is responsible for all tasks of data and meta-data man-
agement, for mapping these structures to storage devices, as well as for transaction con-
trol. The data system implements operations on molecule sets offered at the interface of
the kernel. These operations are internally transformed to operations on atoms. The
access system transforms these operations on atoms to operations on blocks of the avail-
able storage structures. The storage system is responsible for buffer and file manage-
ment. For parallel data access, it provides data distribution to multiple disks.

Every layer is divided into a client/
server architecture consisting of
multiple services each implement-
ing a dedicated functionality. In Fig.
2.2, this is indicated for the Storage
System. Interfaces for every service
expose set orientation in order to
enable parallel processing.

3 Parallelism
Based on a functional decomposition, a client/server model defines the framework for
database processing in PRIMA. Now, we introduce the notions as used in this paper and
present basic concepts used to achieve parallelism in query processing.
A client requests some specific functionality, calledservice, from a server process
which implements this service. To achieve real parallelism, multiple server processes

atom network:real world:

MQL-Query:
SELECT ALL
FROM Edge-Point;

molecule-type: resulting molecules:
Edge

Point

e0 e1 e2 e3

p0 p1 p2 p3 p4

atom-type network:

Figure 2.1:

eid : e0
length : 1
fref : f0
pref: p0, p1

Identifier

References

p0

p1 p2

p3

p4

f0
e0

e1

e2 e3

f0

e0 e2 e3

p0 p1 p2 p3 p4

Face
Edge

Point
e1

Illustration of MAD model concepts

atom

Meta-data
Transaction

Management

Data System

Manage-

Application

Synchronization

Storage System
Consistency

Kernel Interface

Figure 2.2: Architecture of the PRIMA system

Access System
Buffer Manager

File System
ment

must exist at a time executing concurrent requests simultaneously. A set of server pro-
cesses implementing a service is calledserver. The execution of a service in a process is
called task. Server tasks which need some other services in order to calculate their
results have to invoke furtherclient tasks.
When considering parallel query processing in DBMS a couple of parameters determine
the system’s performance, e.g. the underlying hardware, the runtime system offering
parallel processing primitives, the algorithms used for specific operations, and, finally,
mapping of services to operating system primitives. In the sequel, we will discuss these
issues as far as necessary for the subject of this paper.
From thehardware’s point of view, our runtime system especially supports shared-
memory multiprocessor systems which enable very efficient communication and load
distribution between clients and servers. Due to the already mentioned structural over-
lap of complex objects, we do not consider complex-object distribution in shared noth-
ing systems.
From theruntime system’s point of view task invocations are performed asynchro-
nously in order to enable multiple independent server-task invocations and parallel exe-
cution of a client task with its server tasks. Furthermore, in order to allow pipelining
between multiple stages of client-task/server-task relationships, a server task can return
partial results to its client task. An efficient implementation of a runtime system [14]
enables processing of fine-grained parallel tasks in multiple processes.
Considering theoperating system primitives, parallelism appears only, if multiple pro-
cesses execute tasks simultaneously. In the following, we illustrate the possibilities pro-
vided in PRIMA for mapping tasks and services to processes [15] (cf. Fig. 3.1).

We have chosen a multi-tasking approach,
i.e., a single process can execute multiple
tasks. In order to exploit waiting situations
when executing a task, e.g. when waiting
for results of server tasks, the client task
voluntarily breaks its execution. Thereaf-
ter, the server process can continue with
another task waiting for its execution. This

implementation has two strong advantages over an alternative single-tasking implemen-
tation. First, it saves a lot of administration overhead (context switches, scheduling) in
the operating system because OS administration is limited to a small and fixed number
of processes. This enables higher degrees of parallelism by fine-grained parallel tasks.
Second, this realization makes it possible to implement our own DBMS specific task-
scheduling strategies which can exploit task semantics.
As described so far, every service can be mapped to a separate unique server process
(single-service/single-process). However, to enable parallel execution of requests to the
same service we allow a static replication of server processes (single-service/multi-pro-
cess). In such an implementation, tasks computing a specific service may be started or
continued in any available process of this server. Obviously, common data structures to
be located in shared memory are required and access to these data structures has to be
synchronized carefully. Finally, w.r.t. mapping of services to processes, we can com-
bine multiple (closely cooperating) services within a single program (multi-service/
multi-process) which avoids unnecessary context switches when invoking a task in
another server. It particularly enables integration of all services into a single program,
which then may run in multiple processes.
The presented process structures offer highest flexibility when mapping services to pro-
cesses. Allocating services in processes and installing processes in a running system is

Data SystemData SystemService 1

Service 2

Service 3

Service 1

Service 2

Service 3
Service 2
Service 3

single-service
single-process

single-service
multi-process

multi-service
multi-process

Figure 3.1: Service-Process-Mapping

Data SystemData SystemService 1

called configuring the system, the resulting constellation is calledconfiguration.
In contrast to other systems, e.g. DBS3 [16], we do not exploit light-weight processes
(tasks, threads) of modern operating systems for two reasons. First, current implemen-
tations do not allow for easy integration of our own DBMS specific scheduling strate-
gies. Second, there were no efficient implementations available on a SEQUENT when
starting the PRIMA implementation. In comparison to implementation architectures of
other parallel relational systems, e.g. VOLCANO [17] or XPRS [18], we enable finer
granules of parallelism. Whereas these systems parallelize query execution plans on the
level of algebra operators we dynamically determine degrees of parallelism at initializa-
tion time of tasks on every level of our architecture. This means, in our system exploi-
tation of parallelism is not visible on the algebra level and invisible to other operators
and we do not introduce special operators. For a more detailed discussion see [8].

4 Measurements
In order to report on the benefits and potential gains of parallelism within an application
environment, we set up the PRIMA system with special measurement tools and an
appropriate workload to be executed on a SEQUENT Symmetry (S27). With a number
of selected measurements, we want to explore the effect of various configurations on
query response times. The OO7-Benchmark, shortly described in the next subsection
served as a guideline to design a standard workload used in our measurements.

4.1 OO7-Benchmark

Because OO7 is completely described in multiple publications, we will just give an out-
line; for the benchmark’s definition we refer to the literature, e.g. [19, 20]. OO7 models
a synthetical complex-object hierarchy of design objects (cf. Fig. 4.1) which is assumed
to be typical for CAD databases. The database stores modules which are composed of
complex assemblies. Complex assemblies are aggregates composed of other complex
assemblies or of basic assemblies. Basic assemblies consist of composite parts which
contain atomic parts. Atomic parts are connected to each other in a predefined way. The
operations to be executed in OO7 are adjusted to OODBMS, i.e. they primarily evaluate
pointer-swizzling behavior and navigation through object structures. Furthermore, oper-
ations only cover very limited query facilities, i.e. simple path expressions.

When implementing this benchmark on PRIMA, we had to adapt the benchmark’s
schema to the MAD model and the operations to MQL [21] (cf. Fig. 4.2). Top-level
classes, which are not subclasses of other classes, attributes, and types can be mapped to
atom types, attributes, and types of MAD, respectively. Simple references in OO7,
implementing part-subpart relationships, can be expressed by reference types between
corresponding atom types. Class - subclass relationships can be modeled explicitly in

Module

AtomicPartCompositePart

BaseAssembly

ComplexAssembly

Assembly

DesignObject

Figure 4.1:

is_a

is_a

connection
root_ap

consists_of_cp

sub_assembliesroot_-
assembly

Relevant Parts of the OO7-Schema

AtomicPart

CompositePart

BaseAssemblyComplexAssembly

Module

Connection

to_connection
to_atomic_part

to_root_atomic_part

to_root_assembly

to_sub_assembly

Figure 4.2: OO7-Schema of MAD

MAD because OO7 contains only inheritance of attributes but not inherited values,
methods, consistency constraints, etc. As a consequence, we can model all subclasses as
individual atom types which comprise all inherited attributes.
After the schema transformation, we had to analyze the OO7 operations. Due to space
limitations, we concentrate on the following benchmark operations:
Q5:A query which returns the numbers of those basic assemblies which consist of

younger composite parts (in the benchmark this is called Single-Level Make),
T1: Traversal of the whole complex-object hierarchy (Raw Traversal), and
T6: Traversal of the complex-object hierarchy from modules to their atomic parts, but

without traversing the connections between atomic parts (Sparse Traversal).
Our MQL queries for Q5, T1, and T6 are listed in the Appendix. Mapping Q5 to MQL is
straight-forward and simple. Because the resulting molecules are very small the Data
System has to accomplish only small amount of work. Translating traversal operations
to queries is a bit more difficult because such statements include definition of complex
recursive molecules. Due to processing of these recursions, query execution will con-
sume substantial cpu-resources. Since the query for T1 is much more complicated than
the query for T6, we measured query response times for T6 only.
In order to compare query response times to performance of pure traversals which do
not construct complex objects, we additionally implemented T1 and T6 on top of our
Access System. However, we provide two traversal algorithms, which are expected to
show different performance behavior due to varying I/O-requirements and task admin-
istration overhead:
• depth-first (dft) corresponds to the specified depth-first traversal-algorithm in the

benchmark, i.e., it follows references for every atom immediately in a depth-first or-
der. This implementation does not allow for much parallelism and because of the huge
number of invoked tasks, it induces a lot of administration overhead.

• set-oriented (st) corresponds to a breadth-first traversal-algorithm. However, in con-
trast to dft, it always requests as much atoms as possible from the access system. This
means, a single task reads all atoms on a layer in the benchmark’s hierarchy, where
module is layer 0, all referenced complex assemblies form layer 1, and so on. Due to
these set-oriented requests, this approach does not provoke that much overhead than
our dft implementation. Furthermore, it promises optimal performance if the DBMS
buffer cannot store all requested pages because it causes less page I/O than dft, because
set-oriented processing prevents unnecessary multiple reads of the same page [22].

4.2 Environment

For our measurements, we use a SEQUENT Symmetry (S27) which is a closely coupled
multiprocessor system (8 processors, 6MHz Intel 80386), running DYNIX V3.0.18, and
offering shared memory for communication and task management. Every processor has
a cache of 64 kbytes. Processors and shared memory are connected by a 64-bit system
bus with a channel bandwidth of 80 MB/second. Data has been allocated on a single disk
(Fujitsu M2382K, about 25 ms avg. response time, 3 MB/second transfer rate).
All measurements described are executed in a conventional environment, i.e., neither
the hardware environment nor the operating system have been modified. Of course, the
machines are used exclusively during measurements. Queries and traversals are exe-
cuted on a small database which covers about 5.7 MB (4MB data, 1.7 MB address map-
ping information) for those parts which are relevant in this context. The DBMS buffer
comprises 0.8 MB. The employed PRIMA DBMS kernel consists of 14 services [8]
which can be divided into the followingserver groups (compare to Fig. 2.2):

- data-system services (compiler, optimizer, query execution),
- access-system services (distribution, address information, basic storage, btree),
- storage-system services (buffer management, file management),
- transaction-management services (synchronization, logging&recovery, consistency-

management, transaction management), and
- meta-data management service.

4.3 Configurations

By the measurements we want to compare the performance of the already described load
w.r.t. different configurations differing in the degree of achievable inter- and intra-ser-
vice parallelism. The configurations vary in the way of coupling services and groups of
services within programs as well as in the number of processes running these programs.
The considered configurations are:
• {1, 3}-services:We start measurements with configurations where every process in-

corporates a single service. This means, every process has to manage only tasks which
are directed to the incorporated service. In order to allow for intra-service parallelism
we need multiple processes executing the same service. Therefore,3-services refers to
configurations in which every service runs in 3 processes.

• {1, 3}-groups: Major drawbacks of the previously described configurations are the
vast number of processes and context switches which are inherently necessary when
executing tasks in different services. In order to avoid these problems, we considered
further configurations integrating all services which belong to the same server group
into individual programs. The termn-groups denotes configurations, where each of
these programs runs in n processes. Hence, 1-groups enables inter-service parallelism
between services in different groups, but not inter-service parallelism between servic-
es in the same group and no intra-service parallelism at all. With n=3, we allow inter-
service parallelism because tasks of services allocated in the same program can be ex-
ecuted simultaneously in different processes. Moreover, for the same reason, we can
achieve intra-service parallelism of degree 3.

• {1, 5, 7, 10}-system: In order to further reduce the number of context switches, we fi-
nally integrated all services into a single program. This approach enables highest pos-
sible flexibility in load balancing since every process can serve every request. Howev-
er, at the same time, it induces more task administration overhead than the previously
described configurations, because every process has to manage tasks for all services.
Running this program n times leads to the configuration calledn-system. With n=1,
there is no parallelism at all, with n>1, we enable inter- as well as intra-service paral-
lelism. For n<8, we assume to have one processor available for every process all the
time. Note, one processor is required for operating system processes and for our client
process. For n>8, there are more processes than processors, and, therefore, processes
may be interrupted due to operating system scheduling.

Of course, it is conceivable to define further configurations, however, the presented
ones cover all relevant and interesting aspects to be investigated here, i.e., possible intra-
as well as inter-service parallelism and operating system overhead.

4.4 Results

Table 1 summarizes the results of our measurements. It shows response times for depth-
first raw traversal (dft(T1)), set-oriented raw traversal (st(T1)), set-oriented sparse tra-
versal (st(T6)), sparse-traversal query (T6-Q) and single-level make query (Q5) within
the different configurations, explained in Sect. 4.3. All numbers indicate response times
in seconds.

In dft(T1), 1-system yields the best
response times. This was expected
because every request is per-
formed sequentially by dft and,
therefore, every atom is read by an
individual request (task). Accord-
ingly, this atom-oriented proce-
dure naturally does not allow for
any remarkable parallelism in the
system. Due to the sequential and
atom-oriented nature of the algo-
rithm, further decomposition of
the retrieval requests is useless.
For example, when processing sin-
gle steps of the retrieval within

multiple services using separate processes (1-groups, 1-services) causes additional con-
text switches and inter-process communication (of course via shared memory). This
automatically leads to increased response times. Furthermore, since there are hardly any
concurrent tasks to be executed in parallel, configurations implementing a single service
in multiple processes (3-services, 3-groups, 3-,7-, 10-system) obviously cannot yield
decreased response times. On the contrary, these configurations require more adminis-
tration overhead for synchronization of central data structures and task scheduling and,
therefore, cause worse results.
Independent from aspects of parallelism, st(T1) leads to considerably improved
response times because of the following dependencies: First, since set-oriented requests
prevent multiple reads of the same page, they provoke less I/O (dft: 82386 page requests
causing 36193 page I/Os, st: 20411/19979). Second, the number of requests reduces
drastically from over 40000 atom requests to about 40 requests for sets of atoms. As a
consequence, the number of internal tasks decreases because the latter are set-oriented,
too. This ends in drastically reduced task administration overhead. At the same time,
set-oriented requests allow for more parallelism in internal processing. Even if our data
actually is stored on a single disk, we divide atom requests asking for multiple atoms
into 7 tasks (number of available processors) each processing distinct atom sets or, in the
case of base scans, each reading distinct pages. This means, at the disk level every I/O is
synchronized, but buffer management, address calculation and atom projection can be
performed in parallel. In this improved environment, our 1-system configuration yields
bad results in comparison to other configurations because it does not enable any paral-
lelism. Contrarily, inter-service parallelism achieves substantial performance improve-
ments. Due to sequential I/O intra-service parallelism attains only comparatively small
improvements. In both set-oriented traversals our 7-system configuration achieves best
response times. The extremely bad results for the 10-system configuration are caused by
operating system (OS) process scheduling and by our implementation of busy waiting
locks on central data structures. Short-term busy waiting locks are very efficient, if the
OS does not interrupt processes. With 10-system, however, we always have a lot of
tasks to be executed which keep all processes busy. Therefore, the OS has to interrupt
running processes holding some locks. As a consequence, other processes requesting
such a lock cannot be continued until the interrupted process will be resumed. At the
same time, the waiting process does voluntarily give up the processor.
A comparison of query response times for T6-Q and Q5 between 1-system and 1-ser-
vices again proves that inter-service parallelism and pipelining can yield considerable

dft (T1) st (T1) st (T6) T6-Q Q5

1-services 3748 578 15.4 12743

3-services3958 ! 501 13.7 155 59

1-groups 3403 590 15.8 134 46

3-groups 3944 494 13.6 121 46

1-system 2944 944 18.1 192 ! 72 !

3-system 3494 466 13.1 142 51

7-system 3566 425 10.6 128 49

10-system 3581 1845! 27.9! 151 61
Table 1: Measurement results

performance improvements. Here, 1-system results in maximum response times
whereas configurations which enable more exploitation of inter-service parallelism
return better results. Results obtained with 3-services and 3-groups demonstrate that
query execution apparently only marginally benefits from intra-service parallelism.
Since Q5 and T6-Q require construction of a lot of (partial) molecules which could be
done in parallel, this observation was surprising and will require some more detailed
investigations in the future. Finally, compared to 1-services with 3-services response
times increase due to the vast number of processes and context switches.
Summarizing, there is actually no optimal configuration for every load. As expected,
our 1-system configuration optimally supports sequential processing. Set-oriented
requests with high demands for I/O require data parallelism with various tasks retrieving
pages from a couple of disks. Contrarily, within construction of molecules, pipelining
can improve response times significantly. Therefore, system decomposition into multi-
ple dedicated server processes yielded optimal performance for the current system
implementation. Finally, the 7-system configuration leads to at least almost optimal
results despite some additional administration overhead. Configurations where the num-
ber of processes exceeds the number of available processors (e.g. 10-system) can lead to
drastic performance deteriorations. Therefore, we conclude that an the 7-system config-
uration is a very attractive candidate for a standard configuration supporting mixed
workload consisting of various concurrent applications.

5 Summary
In this paper, we presented a client/server-based implementation architecture for a par-
allel complex-object DBMS which enables pipelining and independent parallelism
between as well as within system services. In particular, we concentrated on various
possibilities for mapping services to processes and evaluated these strategies by mea-
surements. The measurements yielded some remarkable observations deserving further
examinations. First of all, set-oriented traversal operations (st) additionally can benefit
from I/O-parallelism when data is distributed across multiple disks. Therefore, we will
integrate this feature in a next step. Second, pertaining queries, we observed perfor-
mance improvements by pipelining between different services/layers. Third, the evalu-
ation of a complex query containing a recursion operator showed the utmost importance
of carefully implementing and considering parallel processing within single operators.
In these cases, pipelining does not achieve optimal usage of processor resources and,
therefore, does not result in optimal response times. Fourth, those configurations which
comprise all services in every process, turned out to achieve nearly optimal response
times in almost all operations considered despite their inherent administration overhead.
Then, however, the number of processes must not exceed the number of available pro-
cessors. Finally, compared with these results, it turned out that careful design of algo-
rithms and system architecture is more important to achieve performance improvements
than system configuration. Consequently, we will look for generally applicable strate-
gies for intra-operator parallelism on complex objects especially considering the prob-
lem of overlapping structures.

References
[1] Bancilhon F., Ferran G.: The ODMG Standard for Object Databases, Proc. DASFAA ‘95, April 1995,

pp. 273-283
[2] Pistor P.: Object-Orientation in SQL3: State and Tendency, (in German) Informatik Spektrum,

Springer Verlag, Vol. 16, No. 2, 1993, pp. 89-94
[3] Chamberlain D., Mattos N., Cheng J., DeMichiel L.: Extending relational database technology for

new applications, IBM Systems Journal, Vol. 33, No. 2, 1994, pp. 264-279

[4] Lieuwen D.F., DeWitt D.J., Mehta M.: Pointer-based Join Techniques for Object-Oriented Databases,
Technical Report tr1099, University of Wisconsin, 1992

[5] Shekita E.J., Carey M.J.: A Performance Evaluation of Pointer-Based Joins, Proc. ACM SIGMOD
Conf., June 1990, pp. 300-311

[6] Härder, T. et al.: PRIMA - A DBMS Prototype Supporting Engineering Applications, Proc. 13th
VLDB Conf., 1987, pp. 433-442

[7] Schek, H.J., et al.: The DASDBS Project: Objectives, Experiences, and Future Prospects, IEEE Trans.
on Knowledge and Data Engineering, Vol. 2, No. 1, 1990, pp. 25-43

[8] Gesmann, M.: Parallel Query Execution in Hierarchically Layered Dataflow-Driven Complex Object
DBMS, Research Report, University of Kaiserslautern, 1996

[9] DeWitt, D.J., et al.: Parallelizing OODBMS traversals: a performance evaluation, The VLDB Journal,
Vol. 5, No. 3, 1996, pp. 3-18

[10]Boncz, P.A., Kwakkel, F., Kersten, M.L.: High Performance support for OO traversals in Monet,
CWI University of Amsterdam

[11]Thakore, A.K., Su, St.: Performance Analysis of Parallel Object-Oriented Query Processing Algo-
rithms, Distributed and Parallel Databases, Vol. 1, No. 2, 1994, pp. 59-100

[12]Rys, M., Norrie, M.C., Schek, H.-J.: Intra-Transaction Parallelism in the Mapping of an Object Model
to a Relational Multi-Processor System, appears in Proc. VLDB ‘96

[13]Mitschang B.: A Molecule-Atom-Datamodel for Enhanced Applications, (in German), Informatik-
Fachberichte 195, Springer Verlag, 1988

[14]Gesmann, M.: Performance Evaluation of the Remote Cooperation System in PRIMA, Proc. 3rd Int.
Conf. on Parallel and Distributed Systems, 1994, pp. 257-260

[15]Gesmann, M., Grasnickel, A., Schöning, H.: A Remote Cooperation System Supporting
Interoperability in Heterogeneous Environments, Int. Workshop RIDE-IMS, 1993, pp. 152-160

[16]Bergsten, B., Couprie, M., Valduriez, P.: Prototyping DBS3, a Shared-Memory Parallel Database
System, Int. Conf on Parallel and Distributed Information System, 1991, pp. 226-234

[17]Graefe, G.: Volcano, an Extensible and Parallel Query Evaluation System, IEEE Trans. on Knowl-
edge and Data Engineering, Vol. 6, No. 1, 1994, pp. 120-135

[18]Hong, W., Stonebraker, M.: Optimization of Parallel Query Execution Plans in XPRS, Int. Conf on
Parallel and Distributed Information System, 1991, pp. 218-225

[19]Carey M.J. et al.: A Status Report on the OO7 Benchmarking Effort, Proc. OOPSLA, 1994, pp. 414-
426

[20]Carey M.J., DeWitt D.J., Naughton J.F: The OO7 Benchmark, Proc. ACM SIGMOD Conf., 1993, pp.
12-21

[21]Heck, A.: OO7 Benchmark on PRIMA, (in German), diploma thesis, University of Kaiserslautern,
1996

[22]Gesmann, M.: Fine-Grained Parallel Navigational Access in a Complex-Object DBMS, submitted to
Int. Conf. on Parallel and Distributed Information Systems (PDIS) ‘96

Appendix
• Query Q5: Single-Level Make

SELECT BaseAssembly FROM BaseAssembly-CompositePart
WHERE CompositePart.buildDate > BaseAssembly.buildDate;
(* this statement returns BaseAssemblies and not only their number *)

• Traversal T1: Raw Traversal Speed (Query, not contained in our measurements)
SELECTModule (count_atomic_parts := COUNT(X.AtomicPart(ALL_REC).ID))
FROM Module.to_root_assembly-ComplexAssembly-BaseAssembly-CompositePart.

to_root_atomic_part- X:= (SELECT ALL
FROM AtomicPart.to_connection-Connection
RECURSIVE Connection.to_atomic_part-AtomicPart)

RECURSIVE ComplexAssembly.to_sub_assembly-ComplexAssembly;

• Traversal T6: Sparse Traversal Speed (Query)
SELECTModule (count_atomic_parts := COUNT(AtomicPart(ALL_REC).ID))
FROM Module.to_root_assembly-ComplexAssembly-BaseAssembly-

CompositePart.to_root_atomicPart-AtomicPart
RECURSIVE ComplexAssembly.to_sub_assembly-ComplexAssembly;

