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Abstract

The relational model of data incorporates fundamental assertions for entity integrity and referential in-

tegrity. Recently, these so-called relational invariants were more precisely specified by the new SQL2

standard. Accordingly, they have to be guaranteed by a relational DBMS to its users and, therefore, all

issues of semantics and implementation became very important. The specification of referential integrity

embodies quite a number of complications including the MATCH clause and a collection of referential ac-

tions. In particular, MATCH PARTIAL turns out to be hard to understand and, if applied, difficult and ex-

pensive to maintain.

In this paper, we identify the functional requirements for preserving referential integrity. At a level free of

implementational considerations, the number and kinds of searches necessary for referential integrity

maintenance are derived. Based on these findings, our investigation is focussed on the question of how

the functional requirements can be supported by implementation concepts in an efficient way. We deter-

mine the search cost for referential integrity maintenance (in terms of page references) for various pos-

sible access path structures. Our main result is that a combined access path structure is the most ap-

propriate for checking the regular MATCH option whereas MATCH PARTIAL requires very expensive

and complicated check procedures. If it cannot be avoided at all, the best support is achieved by a com-

bination of multiple B*-trees.

In: The VLDB Journal, Vol. 5, No. 3, 1996, pp. 196-214.
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1 Introduction

In his “historical” paper about the relational model of data [Co70], E. F. Codd informally introduced entity

integrity and referential integrity as the “relational invariants” to be automatically guaranteed for each re-

lation by a relational DBMS (system-enforced integrity). In the meantime, several attempts have been

made to formalize these important data model properties thereby setting the semantics of these integrity

assertions more precisely [Sh90]. Now, more than 20 years later, the new SQL2 standard [Sh90, SQL92]

defines these relational invariants for the relational model in a uniform way, with the goal of making them

mandatory for all relational DBMS.

At the level of DB schema design, the new standard provides powerful concepts for specifying key con-

ditions as well as referential integrity conditions. Besides the primary key condition (PRIMARY KEY), key

uniqueness can be maintained for multiple candidate keys using the UNIQUE option. Matching values

of primary key and foreign keys are guaranteed by the FOREIGN KEY concept which may be endowed

with different matching semantics by the MATCH clause. However, this clause is responsible for quite a

number of complications which may burden the design. Furthermore, the specification of different refer-

ential actions provides some automatic means to maintain the referential integrity for the case that some

update operation violates the matching conditions of keys related via referential integrity.

The implementation of these rich and powerful concepts may drastically influence the DBMS perfor-

mance. Therefore, it seems to be an urgent task to investigate the system behavior at the operational

level. For this purpose, the various aspects of system overhead caused by the services for maintaining

the relational invariants have to be studied in detail. A prime contributor is the run-time overhead result-

ing from the various searches to locate tuples or keys to be checked or compared. Moreover, update

costs involving tuples and access path data have to be considered, e.g., for referential actions. Further-

more, additional costs may result from locking, logging, and related services.

Our goal is to study the usefulness of various access path types for referential integrity support. We be-

lieve that this question should be investigated at a suitable level of abstraction in order to achieve a suf-

ficient selectivity between different possible access path types and, at the same time, to avoid low-level

modeling that may only provide a kind of artificial accuracy. Thus, we don’t want to step into the intrica-

cies of multi-user operation and of detailed access path and operation modeling. We focus our investi-

gation on the estimation of search overhead and the use of different kinds of access paths (in terms of

page references). Obviously, searching embodies the lion’s share of the operational costs. For this rea-

son, these costs may be considered as indicative for the entire checking costs.

For the performance analysis of the relational invariants, checking the existence of a key is a very im-

portant and frequent operation. Locating the key or the tuple often implies a search in a large data set.

Since sequential scans cannot be tolerated for apparent reasons, we assume that a suitable index exists

for every key to be specified by the options UNIQUE, PRIMARY KEY, and FOREIGN KEY. Checking

the entity integrity and the UNIQUE option is conceptually very simple; for each of the specified keys, an
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index access has to be performed for insert and update operations to check the uniqueness of the relat-

ed key values. Therefore, we only focus on the performance aspects of referential integrity, especially

the influence of the MATCH clause.

The remainder of the paper is organized as follows. Sect. 2 discusses the concepts of referential integrity

as specified in the SQL2 standard. In this framework, in Sect. 3 we outline the functions to be performed

whenever a relation is modified and we identify the number and kind of searches required to accomplish

this task. Sect. 4 investigates the suitability of various access path structures when used for these

searches. Furthermore, we derive the search costs in terms of logical page references and compare the

performance behavior of the chosen access path candidates. Finally, Sect. 5 contains our conclusions

and proposals for future work.

2 The Concepts of Referential Integrity

In this section, we analyze the possibilities of the new SQL2 standard [SQL92] in the area of referential

integrity. For this reason, we present a short outline of referential integrity and then introduce the syn-

tactical clauses for referential integrity in SQL2.

2.1 Referential Integrity

The concepts of referential integrity, originally defined by Codd [Co70] and influenced by Date [Da81,

Da90], are included in the new SQL2 standard which was accepted by ANSI and ISO in 1992. To recall:

Referential integrity is an integrity constraint between a set F = {f1,..., fn} of attributes (called foreign key)

of a relation C (called child) and a set K = {k1,..., km} of attributes of a relation P (called parent). The struc-

tural constraints on a database schema S implied by a referential integrity constraint are:

• n = m

• For each i, the domain of fi is the same as the domain of ki

• K is the primary key of P.

A referential integrity constraint implies the following constraint on the instances of S:

For every tuple tC of C, there exists a tuple tP in P with tC|F = tP|K
1.

An exception to this general rule are null values to express unknown or inapplicable values. If some at-

tribute of F in tC has such a null value as its value, no counterpart for tC|F is needed in P (other constraints

than referential integrity may be violated, e.g. constraints regulating the applicability of null values).

Some modifications of these semantics are discussed later in this section.

1. t|X denotes the projection of t onto the attributes in X, if t is a tuple of relation R and X a set

of attributes of R. This is extended in a canonical way to R|X.
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Since a referential integrity constraint is a static constraint, it may be violated by user operations. There

are six basic update operations involving one of the relations P or C. “Insert into P” and “Delete from C”

do not lead to a violation of the referential integrity whereas the remaining four operations potentially do.

We briefly review each of these operations.

Delete from P

A tuple deleted from P may have some children referencing this tuple. After the deletion, these children

no longer have a parent anymore; hence, this operation may violate the referential integrity.

Update attribute ki of P

At this stage of discussion, an update can be viewed as a deletion of the tuple with the old value and an

insertion of the tuple with the new value.

Insert into C

If all attribute values of the attributes fi of the inserted tuple are different from the null value, referential

integrity requires the existence of a matching tuple in P. If this tuple does not exist, referential integrity

is violated.

Update attribute fj of C

Similar to the update of P mentioned above, at this level of discussion we can view an update by a de-

letion and an insertion.

2.2 Referential Integrity in SQL2

In this section, we introduce the syntax of SQL2 for referential integrity and include a short discussion of

the various options for referential actions.

In the SQL2 standard, referential integrity constraints are defined when tables are created or altered. For

this purpose, a subclause of the create table or the alter table statement referring to the child

table C is used. The complete subclause is as follows:

FOREIGN KEY (<referencing columns>)
REFERENCES <table name> (<referenced columns>)
[MATCH {FULL | PARTIAL}]
[ON UPDATE {CASCADE | SET NULL | SET DEFAULT | NO ACTION}]
[ON DELETE {CASCADE | SET NULL | SET DEFAULT | NO ACTION}]

The <referencing columns> are the attribute names of the foreign key F in C. The <referenced

columns> denote the attributes of the primary key K of the parent table <table name>. Instead of the

primary key of a table P as the referenced group of attributes, SQL2 allows so-called candidate keys to

be referenced. Codd has introduced the term “candidate key” as a group of attributes of a relation that

allows each tuple of the relation to be uniquely identified by these attributes, i.e., the primary key is one

of the candidate keys. But opposed to the primary key, the value of a candidate key may be partly un-

defined (null values). The implications of this extension will be discussed in Sect. 3.3.

The semantics expressible through the subclause MATCH {FULL | PARTIAL} specifies the interpre-
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tation of null values in the foreign key of a tuple tC. In Sect. 3.2, we explain the special semantics achiev-

able with this subclause.

The subclauses ON UPDATE ... and ON DELETE ... allow special treatments when referential in-

tegrity is violated by a user operation as discussed in the previous section. Given a DB state which fulfills

referential integrity, only four out of the six operations may violate it. According to the SQL2 standard,

the two operations “Insert into C” and “Update fi of C” on a child are forbidden (backed out) if these would

result in DB states where referential integrity is not fulfilled. Therefore, only the two operations (“Delete

from P” and “Update ki of P”) on a parent relation are handled in a special way:

• ON UPDATE. If a key attribute referenced in a referential integrity constraint is updated in a tuple tP,

then the following actions are carried out depending on the specification in the schema:

- CASCADE. The new values in the key are propagated to the referencing children.

- SET NULL. The resp. foreign key attributes in referencing tuples tC are set to the null value.

- SET DEFAULT. The corresponding foreign key attributes in referencing tuples tC are set to a de-

fault value (definable for each attribute in the schema).

- NO ACTION. The referential action is delayed on relation C. Referential integrity remains violated

and if no other operation takes place to correct the mismatch of the corresponding tuples tC, the

complete work of the transaction will finally be backed out. This happens either at the end of the

statement (if the integrity checking is not deferred) or at transaction commit (if the integrity check-

ing is deferred). A discussion of deferred integrity checking is beyond the scope of this paper.

• ON DELETE. If a tuple tP is deleted, then the following actions are carried out depending on the spec-

ification in the schema:

- CASCADE. The referencing children are also deleted.

- SET NULL. The foreign key attributes of the children are set to the null value.

- SET DEFAULT. The foreign key attributes of the children are set to the given default value.

- NO ACTION. Nothing is done. Referential integrity remains violated and if no other operation takes

place to correct this, the complete work of the transaction will be backed out.

There is another important referential action not introduced in the SQL2 standard, but in nearly all papers

dealing with referential integrity: RESTRICT (or RESTRICTED depending on the author). The semantics

of this referential action is to forbid any change (update or delete) of a parent tuple tP as long as there

are referencing child tuples tC. Although this action is not in the SQL2 standard (but scheduled for SQL3

[SQL3]) we will include it in our discussion.

A problem of the referential integrity constraints as specified in SQL2 results from the possibility of inter-

ference when performing multiple referential actions on one tuple. That is, a straightforward implemen-

tation may lead to an indeterminism in the result of a user operation, i.e., an operation in single-user
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mode may cause different database states if the triggered referential actions are executed in different

sequences on the same database state. The SQL2 standard prevents such indeterminism through the

specification of a complex test carried out during the execution of the referential actions. A detailed dis-

cussion of this approach may be found in [Ma90, Re93]; it is beyond the scope of this presentation.

3 Functional Requirements

Since we want to support efficient integrity checking, a critical question is: “Which access patterns have

to be supported?”. In order to answer this question, we concentrate on the searches required for observ-

ing a referential integrity constraint. In principle, there will be no new operations; however, in contrast to

traditional relational query processing where only complex queries result in complex evaluations, now

such complex evaluations may be forced by simple queries.

3.1 Overhead of regular Referential Integrity

First we analyze the referential integrity in the simplest setting. Therefore, we introduce the following re-

strictions on the definition of referential integrity constraints in SQL2:

• The attributes of a foreign key are either not allowed to be null or foreign keys having null values for

some attributes are not taken into account when checking referential integrity, i.e., special treatment

of null values is not considered. This is expressible by the MATCH clause (see Sect. 3.2).

• The referenced group of attributes is the primary key of the referenced relation. Therefore, null values

are excluded.

We now discuss the operations that may raise problems with referential integrity. As already said, this

discussion is to determine the functional requirements to be met by a system for supporting referential

integrity. Thus, we focus on the different query types which should be supported to achieve efficient con-

straint checking. As mentioned earlier, efficient checking of referential integrity requires some access

paths to avoid (multiple) sequential scans on the relations. On the other hand, these access paths have

to be maintained whenever the underlying relations are modified. Therefore, the search requirements for

integrity checking are made up of two parts:

• The costs of locating the tuples or keys which allow the required check.

• The old and the new locations of the tuples or keys in the access path have to be selected, if update

operations are necessary. In our scenario, maintenance always follows the constraint checking di-

rectly. Therefore, we assume that the old location of the keys is already known. Thus, the search

costs for maintenance consist of the overhead to determine the new location of the keys in the access

path if required1 (e.g., if ON DELETE SET DEFAULT is specified).

1. Deferred checking or unusual cases of NO ACTION do not allow such an approximation.
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In the following, we consider the test whether or not the parent key is unique as an integral part of refer-

ential integrity checking. Therefore, we include the necessary checks and maintenance actions into our

requirements.

Insert into P

During the insertion of a tuple t into P, it must be checked whether or not the primary key of t is unique

within P. To decide this question, a query may be issued to select all tuples with the same primary key

as t. If the result of this query is not empty, then another tuple with the same primary key exists and hence

t must not be inserted. We denote the type of the mentioned query as (P, E)P to express that it is a Point

query (in the space of the keys) which tests the Existence of one key. The P in the subscript denotes

that the query is evaluated on the parent relation.

Delete from P

To delete a tuple tP from the relation P, it is located and checked whether or not there are any related

child tuples tC. To locate tP via an access path we need a query of type (P, T)P (Point query with one

resulting Tuple). The query types needed to test and maintain the children depend on the option speci-

fied in the schema:

• CASCADE. To access all children of tP, a Point query is issued in the foreign key space which results

in a Set (there may be more than one child) of tuples tC. We will denote this query type by (P, S)C.

Together we obtain the abstract costs of (P, T)P + (P, S)C.

• RESTRICT. To test whether or not to perform the operation (Delete from P), the evidence of at least

one child is sufficient. Therefore, the query type is (P, E)C. Hence, the complete operation results in

cost (P, T)P + (P, E)C.

• SET NULL. As for CASCADE the children are selected through a query of type (P, S)C. In contrast to

that case we have to update the children location in the access path because their foreign key is

changed ((P, S)C). Therefore the costs are (P, T)P + 2·(P, S)C.

• SET DEFAULT. Compared to the SET NULL option, an additional query is necessary if the default

values differ from the null value. In this case, the related children get a new fully defined foreign key;

thus, it has to be tested whether or not the new (default) parent exists. This leads to another (P, E)P

query and to the entire overhead of: (P, T)P + (P, E)P + 2·(P, S)C.

• NO ACTION. This option is difficult to evaluate in general because of the following:

- If some attributes of F serve as foreign key attributes in more than one referential integrity

constraint simultaneously or if the integrity checking is deferred, other operations (initiated by the

user or through other referential integrity constraints) may resolve the conflict introduced by the

deletion of tP. Hence, opposed to the other options (CASCADE, SET NULL, SET DEFAULT and

RESTRICT) which guarantee referential integrity after the appropriate action is carried out, this
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option will require an explicit integrity checking at some time in the future. The type of these

queries is (P, E)P
1.

- In all other cases, this option is identical to RESTRICT and therefore the query type is (P, E)C.

The above discussion shows that an efficient evaluation of query type (P, S) is necessary for integrity

checking. Sometimes an optimization by a (P, E) query is possible, but for simplicity reasons we do not

elaborate on this in the subsequent sections and use the worst case (SET DEFAULT) which is made up

of one (P, T)P, one (P, E)P and two (P, S)C queries.

Update attribute ki of P

The overhead of checking the referential integrity in this case consists of four parts (in the worst case):

Firstly, the parent and all related children have to be located which requires (P, T)P + (P, S)C. Secondly,

the new value of K has to be checked for uniqueness. This is achieved through a query of type (P, E)P

(as in the insert case). The third part may be needed if SET DEFAULT is specified, because the children

change their parent (now it is the “default” parent) and the existence of this parent has to be checked

with another (P, E)P query. Last not least, the foreign key of the children is changed and therefore the

underlying access path is updated leading to a (P, S)C query. Thus, the worst case consists of (P, T)P,

2·(P, E)P and 2·(P, S)C, which is also the sum of a delete and an insert.

Insert into C

If a tuple tC is inserted into the relation C, a check is required whether there is a matching parent tuple

tP or not. The insertion fails if no parent exists. The checking overhead consists of a query of the type (P,

E)P. Furthermore, the access path of the foreign key has to be maintained. Hence, we have to locate the

insertion point of the new child requiring a query of type (P, T)C.

Delete from C

The tuple to be deleted from the set of children has to be located in the access path. This requires a

query of the type (P, T)C.

Update attribute fj of C

If an attribute of the foreign key is updated, the existence of a parent tuple for the new foreign key value

must be checked. This is a query of type (P, E)P. The maintenance of the access path requires two que-

ries of the type (P, T)C to “move” the child from the old to the new location.

In this section, we have analyzed the query types of regular referential integrity constraints. Up to now,

we did not mention multi-attribute foreign keys explicitly because (with the preconditions about null val-

1. At this point in time, the database may have gone through multiple changes and without any

internal bookkeeping about referential integrity it may be better to check it on a relation basis,

i.e., check for all tuples in C whether there is a tuple in P with matching primary key.
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ues stated at the beginning of this section) such foreign keys can be simulated by one super-attribute

composed of the single attributes (subsequently called compound attribute). In the following, we will an-

alyze the semantics of null values in connection with MATCH PARTIAL.

3.2 Overhead of the MATCH PARTIAL clause

The definition of the MATCH predicate serves as the basis of the semantics of the MATCH PARTIAL sub-

clause for referential integrity.

The MATCH Predicate

The MATCH predicate tests a tuple t against a set of tuples M: a group of attributes of t is compared tuple-

by-tuple with a related group of attributes in set M (the attribute domains have to be pairwise compara-

ble). The definition of this predicate allows the optional specification of PARTIAL or FULL. Given t|<f1,...,fn>

MATCH[{FULL | PARTIAL}] M|<k1,..., kn> and a tuple m of M, the result of this comparison is as follows:

• No option specified

- If some attribute fi of t has the value null, then MATCH results in TRUE.

- If no attribute fi of t has the value null and t.fi = m.ki (1 ≤ i ≤ n), then MATCH results in TRUE.

- Otherwise MATCH results in FALSE (for this tuple m).

• FULL is specified

- If all values fi are null, then MATCH results in TRUE.

- If no value fi is null and fi = ki (1 ≤ i ≤ n), then MATCH results in TRUE.

- Otherwise MATCH results in FALSE (for this tuple <k1,..., kn>).

• PARTIAL is specified

- If all values fi are null, then MATCH results in TRUE.

- If fi = ki holds for all defined values fi, then MATCH results in TRUE.

- Otherwise MATCH results in FALSE (for this tuple <k1,..., kn>).

Without any option or the option FULL specified, a null value in one attribute fi determines the result of

the whole evaluation of the MATCH predicate. If PARTIAL is specified, null values in fi are treated as

don’t-care values. There is no symmetric concept of treating null values in ki
1.

The MATCH PARTIAL clause

The semantics of the MATCH clause in the definition of a referential integrity constraint is according to

the above definitions:

1. Note that the semantics of the three options are identical if n =1.
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• The predicate (tC.f1,..., tC.fn) MATCH (SELECT K FROM P) has to be true for each tuple

of C if no MATCH clause is specified.

• The predicate (tC.f1,..., tC.fn) MATCH FULL (SELECT K FROM P) has to be true for each

tuple of C if MATCH FULL is specified.

• The predicate (tC.f1,..., tC.fn) MATCH PARTIAL (SELECT K FROM P) has to be true for

each tuple of C if MATCH PARTIAL is specified.

The cases with no MATCH clause or MATCH FULL are covered by the discussion in the previous section.

We now analyze the implications of MATCH PARTIAL.

The main implication of MATCH PARTIAL is that a child tuple may have more than one matching parent.

Given a foreign key F consisting of three attributes (we will denote null values with ‘∅’), the foreign key

of a tuple tC|F = (x, ∅, z) will match primary keys like (x, y1, z), (x, y2, z) and so on. This implies that the

referential actions must be refined if such a ‘parent’ is changed or deleted. To do so the SQL2 standard

distinguishes between unique and non-unique matching parents. A tuple tP is the unique matching par-

ent for a tuple tC if tP is the only tuple in P with a primary key matching the foreign key of tC. If tP has a

matching primary key but it is not the unique matching parent then tP is a non-unique matching parent.

Example: Let P = {<x1, y, z,...>, <x2, y, z,...>} and C = {<..., x1, y, z,...>, <..., ∅, y, z,...>}. <x1, y, z,...> is

the unique matching parent for <..., x1, y, z,...> and a non-unique matching parent for <..., ∅, y, z,...>.

If a parent tuple tP is deleted or updated, the referential actions are executed only for children tC having

tP as their unique matching parent.

Given that ON DELETE CASCADE is defined in the example above, a deletion of <x1, y, z,...> results in

a deletion of <..., x1, y, z,...> but not of <..., ∅, y, z,...>.

During the execution of a query in a tuple-at-a-time manner, a non-unique matching parent may become

the unique matching parent (e.g. <x2, y, z,...> for <..., ∅, y, z,...> if <x1, y, z,...> is deleted). If this (now)

unique matching parent is deleted or updated, the referential actions have to be performed. Therefore

even in a single-user operation, the unique matching parent has to be evaluated dynamically. Let us now

consider the different operations possibly violating referential integrity and the resulting query types if

MATCH PARTIAL is specified. For simplicity of discussion, we concentrate on differences of the test for

the match predicate and do not repeat the terms which do not change.

Delete from P

If a tuple tP is deleted from the relation P, referential actions are only applied to child tuples tC having tP

as their unique matching parent. Given a primary key of tuple tP to be deleted, how can we locate the

children tC satisfying tC|F MATCH PARTIAL tP|K? Since there is no MATCH predicate directly available in

standard relational DBMS, we will substitute such a predicate by a number of simple predicates. A simple

predicate directly supported in all DBMS is (attribute = value) and the conjunction of such terms. To find

all children related via MATCH PARTIAL to tP, we have to check all possible combinations of null values
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(with at least one defined value) in the foreign key of C; for the construction of these MATCH PARTIAL

keys, the defined values are derived from the primary key of tP. We will call these MATCH PARTIAL for-

eign keys F-templates. They are constructed by replacing all possible combinations of primary key val-

ues by null values. The F-template consisting of nulls only is not relevant to referential integrity.

Example: Given a tuple tP with primary key K consisting of three attributes <x, y, z,...>, the matching for-

eign keys have the form <..., x, y, z,...>, <..., ∅, y, z,...>, <..., x, ∅, z,...>, <..., x, y, ∅,...>, <..., ∅, ∅, z,...>,

<..., ∅, y, ∅,...>, <..., x, ∅, ∅,...>.

Apparently, for a primary key of length n we obtain 2n - 1 F-templates.

If the null value is represented like any other value, the overhead to select the children with matching

foreign keys is a union of 2n - 1 queries of type (P, S)C. To test whether or not referential integrity (with

MATCH PARTIAL semantics) is violated, requires the check whether tP is the unique matching parent of

one of the matching children tC. Two cases have to be distinguished:

• The foreign key of tC has defined values only. Because the primary key too has defined values only,

tP is the unique matching parent and the specified referential actions are executed on tC.

• Some attribute values in the foreign key of tC are null. To decide whether or not referential integrity is

violated, requires the location of at least one matching parent of tC different from tP. For example, in

our three-attribute foreign key, we may have tC|F = <x, ∅, z>. The query to locate the number of match-

ing parents of tC will look like

SELECT COUNT(*)
FROM P
WHERE P.k1 = x AND P.k3 = z,

which is a partial match query. We assume that tP is already deleted and hence denote the type of

this query with (PMu, E)P where u denotes the number of unknown attributes1 (i.e., for the above query

we have (PM1, E)P).

As shown above, a primary key of length n may have 2n - 1 matching F-templates. Because the fully

defined template is handled separately, we obtain 2n-2 partial match queries. This set of partial match

queries can be partitioned along the number of unknown values. Given a key of length n, each 1≤u<n

yields  templates with u undefined values and therefore  partial match queries of type

(PMu, E)P. This represents the worst case, because a specific partial match query has to be evaluated

only if some children exhibit the corresponding template.

Putting both results together leads to a set of queries:

Given a primary key of length n, for each referential integrity constraint referencing this primary key with

MATCH PARTIAL, we need 2n-1 queries of the type (P, S)C and (in the worst case) for each u, 1 ≤ u < n,

1. Note that (PM0, E) = (P, E)

n
u 

  n
u 

 
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a set of  queries of type (PMu, E)P. So, we can conclude

as the number and the types of queries necessary to select all children having the specified parent as

the unique matching parent. This set of children is subject to the referential actions.

As mentioned before, some of these queries may be optimized if the referential action RESTRICT is

specified. In this case, the first unique matching child encountered causes the rollback of the operation.

As far as referential action is concerned, the SET DEFAULT option represents the worst case: The ex-

istence of a “default” parent (all attributes of the foreign key are set to the default values of these at-

tributes) has to be checked. Because null values are allowed as default values, this is a (PMu, E)P query.

In addition, the “default” location in the access path of the children has to be selected resulting in a

(P, S)C query.

Update attribute ki of P

Things get even worse when looking at the update of an attribute in the primary key K of P. One minor

additional query concerns the check whether or not the new key is unique in P ((P, E)P). As in the case

of delete, the tuple tP has to be selected and all unique matching children have to be computed. Here,

the SET DEFAULT option is particularly complicated. In contrast to the delete case, where the SET DE-

FAULT option causes all children to get the same default foreign key and hence the same “default” par-

ent, in the update case for each template only the defined attributes of the foreign keys are set to the

default values. Hence, a different partial match query may be necessary for each template to check

whether an appropriate “default” parent exists. In case it does not exist, the complete operation is abort-

ed. Due to this fact, the templates with the largest number of defined attributes should be checked first,

because it suffices to guaranteed that one other parent exists and hence, if a parent exists for a template

with m defined attributes f1,..., fm, this parent is at least matching parent for all templates composed of

f1,..., fm. This observation yields that at most  additional partial match queries have to

be evaluated. Finally the foreign key of the children has to be changed. In difference to the delete case

above ((PMu, E)P + (P, S)C), summarizing the maintenance costs of the children yields

 queries (each F-template has to be checked and updated).

Example: Given a tuple tP with primary key K consisting of three attributes <x, y, z,...>, let tP be the

unique matching parent of the F-templates <..., x, y, z,...>, <..., ∅, y, z,...> and <..., x, ∅, z,...>. Further-

more, let us assume the default values f1 = a, f2= b, f3 = c. If the primary key changes from <x, y, z> to

<g, h, i> then <..., x, y, z,...> is changed to <..., a, b, c,...>, <..., ∅, y, z,...> is changed to <..., ∅, b, c,...>

n
u 

  2n 1–( ) P S( , )C⋅ n
u 

  PMu E( , )P⋅
u 1=

n 1–

∑ 
 
 

+

n
n
2
--- 

  PMu E( , )P

n
n
2
--- 

  PMu E( , )P
 
 
 

2n 1–〈 〉+ P S( , )C⋅
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and <..., x, ∅, z,...> is changed to <..., a, ∅, c,...>. If <..., a, b, c,...> can be tested successfully for another

parent, this parent is also an at least matching parent of <..., ∅, b, c,...> and <..., a, ∅, c,...>.

Insert into C

If a tuple tC is inserted into the relation C, it has to be checked whether or not there is a matching parent

tuple tP. The checking query is of type (PMu, E)P where u is the number of unknown attributes.

Update attribute fj of C

If an attribute of the foreign key is updated it has to be tested whether a parent tuple for the new foreign

key value exists. The overhead is the same as in the insert case: a query of type (PMu, E)P.

In this section, we have shown the implications of treating null values as don’t-care terms while dealing

with referential integrity. The main result besides the number of queries to be answered is that the que-

ries themselves grow more complex. Without this don’t-care semantics of null values, only exact match

queries (type (P, S), (P, T) or (P, E)) can occur which keeps checking relatively simple. However, inter-

preting null values as special don’t-care values changes this behavior drastically.

3.3 Overhead of Candidate Keys

So far, we have considered null values in the foreign key only. In this section, we briefly discuss the im-

plications of null values in the referenced group of attributes K. The relational data model provides the

concept of candidate keys to handle unique “identifiers” with null values: While for each tuple tP its pri-

mary key has to be defined (no null values) and to be unique, a candidate key is a set of attributes that

has to be unique only if it is fully defined. The SQL2 standard allows such candidate keys to be named

as the referenced columns in the definition of a referential integrity constraint. We discuss the implica-

tions of this possibility in the following paragraph.

In the SQL2 standard, fully defined candidate keys are equivalent to primary keys (to be precise, in SQL2

a primary key is a candidate key with nulls not allowed!). But what about partially defined candidate keys

being referenced in a referential integrity constraint? If the constraint does not specify any MATCH clause

then a child tuple does not reference a tuple tP of P with a partially defined candidate key because only

fully defined foreign keys are considered for referential integrity. The same is true for MATCH FULL,

where again a child tuple does not reference such a tuple because either the foreign key of the child is

fully defined (referencing a fully defined candidate key) or it is completely null. Finally, if MATCH PAR-

TIAL is specified, some child tC may have a tuple tP of P with partially defined candidate key as a match-

ing or even the unique matching parent and, therefore, may be accessed if tP is updated or deleted.

Hence, only if MATCH PARTIAL is specified, candidate keys are of interest in the scope of this paper.

We are interested in the query types to be supported for efficient referential integrity checking. Due to

the (asymmetric) definition of the MATCH predicate (if defined symmetrically, it would be more like a uni-

fication than a matching) all matching foreign keys for a partially defined candidate key are null at least

in those attributes where the referenced attribute is null, as well. The other attributes (not null in the for-
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eign key) are handled the same way as before. Therefore, there is no change in the query types, only

the number of queries may decrease.

Example:  Given a candidate key of length n and a tuple having v undefined attributes, then the n-v at-

tributes form the new “key” and the formulas above apply for this number. In the worst case, this yields

up to  queries for selecting the unique matching children.

Because handling of candidate keys does not embody new aspects, in the following we will assume that

the referenced attributes in a referential integrity constraint constitute the primary key of the referenced

relation.

3.4 Summary

So far, the purpose of our discussion was to introduce the specification of referential integrity in SQL2

and to deduce from this specification the functional requirements for query processing in order to main-

tain referential integrity. Based on the referential action SET DEFAULT, the following table summarizes

the types and the number of queries needed to select the tuples for checking and enforcing referential

integrity (through referential actions).

Table 1 shows the query requirements of SET DEFAULT which represents the most complex case

among the referential actions. Since we don’t know which of the referential actions are preferred in real

world applications, we summarize the differences concerning RESTRICT case as the most simple refer-

ential  action in Table 2. The corresponding figures can be derived from Table 1 by removing the terms

no MATCH clause or
MATCH FULL MATCH PARTIAL

Insert into
P

(P, E)P (P, E)P

Delete
from P

(P, T)P + (P, E)P + 2 · (P, S)C

Table 1: Summary of the query requirements for supporting referential integrity (SET DEFAULT)

2n v– 1–( ) P S( , )C⋅ n
u 

  PMu E( , )P⋅
u v=

n 1–

∑ 
 
 

+

P T( , )P 2n 1–( ) P S( , )C⋅ n
u 

  PMu E( , )P⋅
u l=

n 1–

∑ 
 
 

+
 
 
 
 

+ +

PMu E( , )P P S( , )C+

        

= 2n - 2 queries
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which represent the update of the children and by changing the search for all children ((P, S)C) into a

lookup of one child given a specific foreign key ((P, E)C).

4 Access Path Support for Referential Integrity Checking

So far, the discussion of the update and maintenance operations in the parent and child relations has

revealed the typical search operations necessary to locate the tuples involved in checking key unique-

ness and referential integrity. Insertion of a new parent requires one or more UNIQUE conditions to be

checked (for primary key and each candidate key). When a parent is deleted or its primary key is updat-

ed, the set of related children has to be located via their foreign key to perform the specified referential

actions which themselves may demand primary or foreign key access. Insertion of a new child tuple re-

quires the examination of multiple key conditions (primary, candidate, and foreign keys). Furthermore,

the modification of a foreign key in a child tuple implies the checking of whether or not a parent exists

Update
attribute
ki of P

(P, T)P + 2 · (P, E)P +
2 · (P, S)C)

Insert into
C

(P, E)P + (P, T)C (PM u, E)P + (P, T)C

Delete
from C

(P, T)C (P, T)C

Update
attribute
fj of C

(P, E)P + 2 · (P, T)C (PMu, E)P + 2 · (P, T)C

no MATCH clause or
MATCH FULL MATCH PARTIAL

Delete
from P

(P, T)P + (P, E)C

Update
attribute

kiof P

(P, T)P + (P, E)P +
(P, E)C

Table 2: Summary of the query requirements for supporting referential integrity (RESTRICT)

no MATCH clause or
MATCH FULL MATCH PARTIAL

Table 1: Summary of the query requirements for supporting referential integrity (SET DEFAULT)
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with a primary key value equal to the new foreign key value. (Subsequently, we do not consider candi-

date keys; their search and maintenance cost may be estimated from the primary key).

In all these situations, the absence of appropriate access paths would enforce the use of sometimes mul-

tiple sequential scans to perform uniqueness tests, existence tests, or the search of the parent and child

tuples related by the referential integrity constraint. Parallelism does not seem a panacea to cope with

these sequential scans. For large relations, only massive parallel architectures would provide the re-

quired speed-up; such an approach, however, introduces severe I/O and partitioning costs. As a conse-

quence, the response time degradation caused by searches in sufficiently large relations is not tolerable

for most applications. Therefore, DBMSs must allocate index structures for all types of keys to efficiently

maintain all relational invariants. In our case, we only focus on the keys K and F and the referential in-

tegrity defined between them to derive the operational search cost of referential integrity maintenance.

Hence, suitable access paths for (P, T), (P, S) and (P, E) as well as for (PMu, E) have to be provided to

determine the uniqueness of a primary key and the matching predicates of the primary key and the for-

eign key, thereby speeding up the search process. On the other hand, these access paths cause addi-

tional overhead whenever an operation modifies the set of existing K- or F-key values (shown as addi-

tional terms in the requirements analyses). To allow the comparison of search costs we introduce the

number of logical page references (or page references for short) CR needed to traverse the access path

data in order to perform the requested task. Since CR is independent of the run-time environment, it

should facilitate a comparison of using different access paths. We assume that the cost measure CR for

all access-path-related searches needed for an update operation is indicative for the overall costs includ-

ing the access-path-related update and logging as well as the required locking of the search paths to

guarantee repeatability of reads (consistency level 3 [Gr78]). Including these additional costs would re-

quire a much more detailed modelling of access paths, operations, and multi-user environment [Mo90].

Since we wish to determine only the order of the overhead related to referential integrity and to compare

the usefulness of different access paths, our simplification seems to be justified.

As shown in Sect. 3, certain search operations ((P, T), (P, S) and (P, E)) on attributes K and F may be

anticipated very often. As a consequence, index structures for relations P and C, denoted by IP(K) or

IC(F), have to be available supporting the following operations:

- direct search for a key value in the index structure for checking the UNIQUE option, for finding the

record address, and for the insertion/deletion of entries.

- successive access to all keys having the same value or belonging to a given key range.

- direct search for a foreign key and the corresponding primary key or for a primary key and the

related set of foreign key values.
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4.1 Support for the Regular MATCH Options

Because of their frequency, these search operations are very important for the overall performance of a

DBMS and for this reason, they have to be supported sufficiently well. Let us first focus on the case

where n=1 for K and F. Then, a standard candidate for implementing an index structure is the B*-tree.

B*-tree

The structure of a B*-tree [Co79] representing for example an index for attribute DNO in relation DEPT

is illustrated by Fig. 1. The corresponding leaf page illustrates the format of a UNIQUE index. In addition,

the leaf-page format of a NONUNIQUE index containing TID-lists is shown. Since the key values and

the related TIDs or TID-lists are allocated in a key-sorted sequence to the leaf pages and since these

pages are linked together with NEXT and PRIOR pointers, successive access to all key values or to a

given key range is performed efficiently.

According to its definition, a page (except the root) of a B*-tree has at least k > 0 and at most 2k key/

TID-pairs called index entries. Hence, the height is delimited by the following formulas:

(4.1)  and (4.2)

where N>0 is the number of indexed tuples.

The access costs to locate a key in the B*-tree are CR = h page references. The expensive fraction of

the overall cost is the number of physical I/O operations CI/O required to perform the tree traversal. De-

pending on the locality of reference on such B*-trees, the size of the database buffer, the replacement

algorithm etc. CI/O may be less than CR, because some pages in the path to be traversed in the B*-tree

may be already residing in the buffer thereby saving physical I/Os to the disk.

K25 K75

K8 K13 K25 K35 K75 K90 K99

K40 TID1 K51 TID2 K55 TID3 K56 TID4 K75 TID5 . . .

�≤

Fig. 1: IDEPT(DNO) as a B*-tree

K51 2 TID1 TIDk K55 n TID1 TID2 . . . TIDn K56 1 TIDm . . .

UNIQUE

NONUNIQUE

h 1 log 2k 1+( )
N
2k
------ 

 +≥ h 2 log k 1+( )
N
2k
------ 

 +≤
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According to Table 1, searches for referential integrity maintenance are dependent on the type of oper-

ation. If both index structures IP(K) and IC(F) are implemented by separate B*-trees, the specific opera-

tions may be sketched as follows. “Insert into P” and “Delete from C” are very simple, as far as our check-

ing task is concerned. Accessing IP(K) and IC(F) for checking the uniqueness of the K-key value and for

removal of the F-key value needs a tree traversal of hK and hF page references, respectively. “Delete

from P” with the referential action SET DEFAULT (worst case) requires a traversal of IP(K) to locate the

primary key to be deleted and two traversals to the location of the foreign key and the DEFAULT key in

IC(F). If a DEFAULT key does not exist in IC(F), it will be inserted. Furthermore, IP(K) will be accessed to

make sure that a DEFAULT key is in P. Hence, the corresponding number of page references may sum

up to CR = 2hK + 2hF. Furthermore, “Insert into C” causes the insertion of an F-key value and a check

whether or not the related K-key value is present. Hence, CR = hK + hF. Eventually, both update opera-

tions in P and C may be composed of delete and insert operations, as far as tree traversal is concerned.

To enable a simple comparison, a synopsis of all cost formulas is contained in Table 3.

Combined access path

Since the keys K and F are defined on the same domain, it is possible to implement both index structures

by a common B*-tree called combined access path structure (CAPS for short) in [Hä78]. Because of the

given operational characteristics, it seems to be advantageous to combine the index structures IP(K) and

IC(F) to reduce I/O. The non-leaf pages of the B*-tree contain a unified reference structure for both in-

dexes. In the leaf pages, the entries for IP(K) and IC(F) are combined according to the following format

(here showing a UNIQUE and a NONUNIQUE option). In this example, K and F map to domain D with

value Di:

As compared to a single-index B*-tree for IP(K) and hK, the height hKF of the resulting B*-tree is typically

not changed because the horizontal growth is dominant in B*-tree structures. Only in rare cases, an in-

crement of the height by one of has to be anticipated (hKF ≤ hK+1, see Fig. 4). Since subsequent access

to corresponding key values of K and F uses the same tree traversal, locality of reference is further im-

proved. As a consequence, the CAPS offers salient features for checking referential integrity as well as

a substantial cost reduction as compared to separate B*-trees.

Both indexes IP(K) and IC(F) supporting (P, T)P and (P, S)C are mapped to a single B*-tree using their

domain values. Since in various situations the same tree traversal can be used to locate the F-key and

... Di 1 n TID0 TID1 TID2 TIDn... ...

length info. TID-list for F in C

TID for K in P

Fig. 2: Leaf-page format for a CAPS
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K-Key values, several page references can be saved. For example, “Delete from P” with the referential

action SET DEFAULT now requires only CR ≤ 2hKF page references to locate the key to be deleted and

the DEFAULT key in the CAPS. The cost figures for the remaining operations may be derived in a similar

way. They are summarized in Table 3.

The idea sketched in Fig. 2 may be used to support more pairs of referential relationships; it can be ap-

plied to the situation where m relations with j candidate and foreign keys (m ≤ j) defined on the same

domain have to be indexed. Such structures are called generalized access paths in [Hä78]. For example,

the format of the leaf page is illustrated in the following for m = j = 4:

Of course, the benefit of such access paths for checking referential integrity is increasing with the num-

ber j of the keys involved.

Join index

A similar structure to the combined access path was proposed in [Va87] as a so-called join index, which

primarily aims at the optimization of the 2-way join. It is defined for two relations P and C as follows:

JI = {(TIDP, TIDC)  f(p.A, c.B) is TRUE, p ∈ P, c ∈ C}.

f denotes an arbitary join predicate. Apparently, JI may serve to embody materialized Θ-joins by surro-

gates or TIDs. If an equi-join is used and the primary and foreign keys K and F are chosen for A and B,

then the parent and child TIDs with matching K- and F-key values are stored together by a join index. At

first sight, this information could be useful to support referential integrity checking. However, this purpose

is complicated since a join index does not use key values but only TIDs. Moreover, the direct represen-

tation of the join index JI as a binary table does not provide access support (other than sequential) for

TIDP as well as for TIDC.

In our evaluation context, we assume that a join index is specified for an equi-join combining primary key

of P and foreign key of C in a (1:n)-manner. Furthermore, symmetric and fast access is needed to per-

form efficient operations on the joined view. Hence, the logical JI table has to be implemented as two

clustered index structures [Va87], i.e., sorted according to TIDP and TIDC. As a consequence, we obtain

the indexes IPC (TIDP) and ICP(TIDC) with heights hPC and hCP, respectively.

As illustrated by Fig. 3a, these index structures do not permit access by primary or foreign key values.

To use these structures for referential integrity maintenance and for other kinds of search requests, ad-

ditional index structures are necessary to map the key values to their related TIDs. Fig. 3b shows IP(K)

... Di 1 TID TID TID ...

length info.

3 1 2 TID TID TID TID

TID-list for R2 TID-list for R4

TID for R1 TID for R3
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and IC(F) which are identical to the indexes used in the pure B*-tree approach. Looking at Fig. 3, it be-

comes immediately obvious that the join index does not speed-up the access behavior to check referen-

tial integrity constraints since IPC(TIDP) and ICP(TIDC) are redundant as far as referential integrity is con-

cerned.

To compare this solution with the pure B*-tree and the CAPS, we have listed the search costs for the

update operations on P and C in terms of page references in Table 3. In this case, the evaluation of (P,

T)P and (P, S)C has to be mapped to the four B*-trees of Fig. 3. In our discussion, we only sketch some

operation and leave the cost modeling of the remaining operations to the reader. Our cost formulas are

listed in Table 3.

The worst effect on search costs has “Delete from P” with the referential action SET DEFAULT. In a first

step, the location of the K-key value, e.g. P1, to be deleted has to be identified in IP(K) delivering TIDP1

which is, in turn, used to search (TIDC1,..., TIDCm) via IPC(TIDP). So far, we have accomplished hK + hPC

page references. Note the tuples tC1 are not deleted but allocated to a parent tPdef incorporating the DE-

FAULT key. For this reason, we have to assure the existence of that key via IP(K) (hK) and to move the

set of (TIDC1,..., TIDCm) to the corresponding entry TIDDEF of tPdef in IPC(TIDP) (hPC).

In IC(F), the location of the matching foreign key value (C1) and the location of the DEFAULT value have

to be found in order to delete the key entry and to move the corresponding list of TIDs. Hence, we addi-

tionally obtain 2hF page references. Finally, we have to copy the TIDDEF to m entries in ICP(TIDC) which

requires m · hCP page references in the worst case.

TIDC1 TIDP1. . . . . . TIDCm TIDP1. . . . . .

ICP(TIDC)

TIDP1 TIDC1. . . . . .

IPC(TIDP)

TIDCm . . .

a) representation of JI by two clustered indexes

• • •

C1 TIDC1. . . . . .

IP(K)

TIDCmP1 TIDP1. . . . . .

IC(F)

b) representation of the key value mapping to TIDs

Fig. 3: Mapping of a join index to a set of B*-trees



21

Comparison of access path structures

Table 3 compares the search costs for referential integrity maintenance when different index implemen-

tations are used. Apparently, the join index is not appropriate at all. This structure guarantees fast and

symmetric access clustered by surrogate values to the entire joined relations. These access character-

istics, however, have to be maintained when both base relations are modified. As a consequence, up-

date operations referring to elements involved in referential integrity checking automatically lead to a

modification of the materialized join structure. The indirection of key to TID incorporates an additional

penalty for this structure.

As already discussed, the CAPS not only supports two indexes on one B*-tree, it further accomplishes

the joining and checking of the related K-key and F-key values for free. In addition to the CR values

shown, due to the much better locality of reference the “real performance” measured in physical I/Os is

even superior for the CAPS as compared to the B*-tree. The values given in Table 3 are derived for the

referential action SET DEFAULT. The support of the RESTRICT option does not change the cost formu-

las dramatically for the B*-tree and CAPS solutions, e.g., “Delete from P” yields hK + hF resp. hKF.

A problem complicating the interpretation of Table 3 are the various cost parameters. To relate the var-

ious heights, let us consider the critical factors which determine the height of a B*-tree, namely the num-

ber of tuples to be indexed (N) and the number of index entries (TID/key-pairs) per page. The latter is

dependent on the page size itself and the average length of an entry (e). Obviously, e critically deter-

mines the fan-out of the tree. With a TID-length of 5 bytes, 4 bytes as the page pointer and 1 byte as an

offset, we can access 232 pages and 256 tuples within a page which are reasonable numbers. In con-

trast, the sizes of the keys may vary over a considerable range, e.g. an employee number needs 4 bytes,

whereas a name may require 40 bytes or more. To improve fan-out in such cases, key compression may

be used successfully, i.e., as reported in [NMR79, Wa73], front and rear compression resulted in an av-

erage length for compressed keys of 1.78 bytes (+ 2 bytes of organizational data) having originally 20-

byte keys.

2 B*-trees CAPS Join index

Insert into P hK hKF hK

Delete from P 2 · hK + 2 · hF 2 · hKF 2 · (hK + hF) + 2 · hPC + m · hCP

Update attribute ki of P 3 · hK + 2 · hF 3 · hKF 3 · hK + 2 · hPC + 2 · hF + m · hCP

Insert into C hK + hF hKF hK + hCP + hF + hPC

Delete from C hF hKF hK + hCP + hPC

Update attribute fi of C hK + 2 · hF 2 · hKF 2 · hK + 2 · hCP + hK + 2 · hPC

Table 3: Summary of the results (page references) for MATCH FULL and missing MATCH clause
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In order to derive stable estimations for the various heights, we attempt to express the sensitivity of

height changes depending on N and e. The range in which a given value of h occurs is delimited by the

two situations where each node of the B*-tree has a minimum resp. maximum number of index entries,

i.e., k (except for the root) resp. 2k entries. These delimiting conditions are characterized by hNmin and

hNmax. As indicated by the formulas 4.1 and 4.2, these values are determined by Nmin resp. Nmax and k

which, in turn, is given by the page size p and the average entry length e, i.e., for a given p, hNmin and

hNmax are functions in N and e. Fig. 4 illustrates the isolines for various values of hNmin and hNmax within

practical ranges for N and e given a page size of 4K bytes. For example, the area between the isolines

of hNmin = 3 and hNmax = 3 is further divided into 3 subareas by hNmax = 2 and hNmin = 4. Area 1 represents

(N/e)-pairs with h = 3 or better whereas h = 3 results from all (N/e)-pairs in area 2. Finally, (N/e)-pairs in

area 3 may obtain heights of 3 or 4.

We assume a minimum index entry length e of 9 bytes which results from a TID-length of 5 bytes and

the use of key compression [Wa73]. As shown in Fig. 4, for e = 9 a difference of two orders of magnitude

in N may yield B*-trees of the same height h, or in an increase to h + 1, at the most. For example, when

the parent and the child relations contain 106 resp. up to 108 tuples, hK = hF (=3) or hF = hK + 1 (=4). The

same observation is true for other practical values of e. Note, the use of TID-lists for multiple references

of the same key value saves additional space in the leaf pages of a B*-tree, especially for larger values

of e, thus keeping h constant for even larger ranges of N. Furthermore, increasing the page size (e. g.

Fig. 4: Relating N, e and h of a B*-tree
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to p = 8K) will dramatically increase the fan-out thereby making the height of a B*-tree much more insen-

sitive to the growth of N. These considerations justify the following approximation:

• For symbolic manipulations of the cost formulas, we assume hF = hK = hKF = hCP = hPC  or hF = hKF =

hCP = hPC = hK + 1. As a result of this approximation, we get cost formulas depending on one

parameter h. The variance of the height is denoted by [+1].

• To achieve indicative numbers we will use h = 3, assuming a scenario as depicted in Fig. 4.

Apparently, Table 4 clearly illustrates the advantages of the CAPS solution: cost-effective access and

insensitivity to growth of the underlying relation. For these reasons, it is the superior alternative to sup-

port the regular MATCH option.

So far, we have discussed access path solutions for operations requiring only point queries (P, T) and

(P, S). Although the examples were shown for n = 1, B*-trees and CAPSs allow simple extensions to

larger n. In these cases, the n values of a key are encoded as a compound- key value [BCE77] such that

the point queries can be supported easily. As a result, the relative cost figures remain stable whereas

the heights of the various trees may change slightly (see Fig. 4).

4.2 Support of the MATCH PARTIAL option

Maintenance of the referential integrity becomes much more complicated when the MATCH PARTIAL

option is used, since then partial match queries in addition to point queries are required.

Two types of operation are discussed in some detail to cover the requirements of access path support:

“Insert into C” and “Delete from P”. For the remaining operations, the analysis of search costs for refer-

ential integrity maintenance is left to the reader. Update of C is just the combination of the delete and

insert operations, whereas update of P is much more complicated because of the non-symmetrical se-

2 B*-trees CAPS Join index

Insert into P h
3

h [+ 1]
3 -- 4

h
3

Delete from P 4 · h [+ 2]
12 -- 14

2 · h [+ 2]
6 -- 9

h · (6 + m) [+ m + 4]
(18 + 3·m) -- (22 + 4·m)

Update attribute ki of P 5 · h [+ 2]
15 -- 17

3 · h [+ 3]
9 --12

h · (7 + m) [+ m + 4]
(21 + 3·m) -- (25 + 4·m)

Insert into C 2 · h [+1]
6 -- 7

h [+ 1]
3 -- 4

4 · h [+ 3]
12 -- 15

Delete from C h [+1]
3 -- 4

h [+ 1]
3 -- 4

3 · h [+ 2]
9 -- 11

Update attribute fi of C 3 · h [+ 2]
9 -- 11

2 · h [+ 2]
6 -- 8

7 · h [+ 4]
21 -- 25

Table 4: Summary of the approximated results
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mantics of the referential actions (see Sect. 3.2).

We assume that K and F consist of n attributes (n > 1) and that u attributes in F (u < n) may be undefined;

K is a primary key and all its attributes have defined values1. Furthermore we concentrate the discussion

on the costs for the support of MATCH PARTIAL with the option RESTRICT, i.e., the costs for selecting

the parent tP and those children with tP as their unique matching parent (thereby disregarding further up-

date overhead provoked by other referential actions which may even double the cost in case of SET DE-

FAULT). For this reason, we often refer to partially defined foreign keys, e. g. <x, ∅, z>, using

- a point query to determine whether a corresponding tuple exists in C, and

- a partial match query to check whether matching parents exist in P; these are found by applying

the related search key <x, −, z> where ‘−’ denotes the don’t-care value.

General aspects of the evaluation

Before we enter the discussion of access support for the MATCH PARTIAL option, we will recall the most

important steps of our reference operations in a more abstract way.

Insert into C

To check referential integrity when inserting a tuple tC is simple as long as the F-key value is fully defined

(e.g., <x, y, z>) or fully undefined (e.g., <∅, ∅, ∅>). The former case is handled by a point query to the

P relation, whereas the latter case does not need a check. All other templates of the F-key are more

difficult and imply a partial match query to identify matching parents. As soon as the first matching parent

is found, the check condition is satisfied and the tuple tC can be inserted.

Delete from P

The deletion operation locates the parent tuple tP with primary key <x, y, z>. If it exists, it is deleted which

may cause a violation of the PARTIAL MATCH semantics of referencing tuples in C. All unique matching

children of tP have to be determined in C to apply the specified referential actions.

Obviously, all children with foreign key <x, y, z> match uniquely. In addition to this ‘full match’ relation-

ship, tuples with partially matching foreign keys may be affected by the deletion of tP. A child tuple may

have more than one parent tuple and vice versa (n:m) which introduces substantial complications. All

children having F-keys partially defined w.r.t. <x, y, z> may match either tP uniquely or match multiple

parents. Hence, in order to decide whether referential actions have to be applied, we have to inspect

whether besides tP some other parent exists. For this reason, all partially defined F-keys have to be in-

vestigated. Roughly, two different approaches are conceivable. A straight-forward method would pro-

ceed as follows: In a first step, the potentially affected tuples in C are determined by 2n - 1 point queries

using all possible templates for the F-key. Each successful query requires a check for a matching parent.

1. We will use n=3 for illustration purposes.
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This can be decided directly for the fully defined F-key whereas other templates have to be transformed

to search keys for partial match (by replacing ‘∅’ by ‘−’) to check for matching parents in P. In a second

step, m1 (0 ≤ m1 ≤ 2n - 2) partial match queries are evaluated in P (a single hit suffice). All unsuccessful

queries indicate the templates and, in turn, the tuples in C for which referential actions have to be ap-

plied.

Apparently, this procedure is very expensive requiring 2n - 1 point queries and in the worst case 2n - 2

partial match queries. Moreover, since multiple tuples in P may match a given template, it may happen

that matching tuples in P exist for all templates. In this case, further referential actions are avoided. To

exploit such anticipated situations, we propose the following inverse check procedure: All applicable

2n - 2 templates are generated from <x, y, z>, transformed to resp. search keys, and executed as partial

match queries on P. Each of the m2 (0 ≤ m2 ≤ 2n - 2) unsuccessful queries requires a point query to C to

determine whether tuples exist for the corresponding templates. In addition, C has to be accessed for

the fully defined F-key. Hence, 1 up to 2n - 1 point queries to C may result.

In both approaches, the evaluation of up to 2n - 2 partial match queries in P is a key factor of the overall

costs. Their sequential evaluation would introduce a considerable share of redundant processing, since

some queries are not independent from each other. For n = 3, assume the queries

q1: x, y, −

q2: x, −, z

q3: x, −, −

Then, q1 and q2 are special cases of q3, or with other words, if we evaluate q3, we can use the derived

set of keys to check whether q1 and q2 can be satisfied. Hence, we only have to determine the key sets

qualified by all partial match queries having u = n-1 don’t-care values. Note, that these are only n queries;

however, they are the most expensive among the qi (i ≤ 2n - 2), because they show the least selectivity.

If we buffer the resulting key lists, we can answer the 2n - 2 partial match queries by processing only the

n queries having a single key component defined. Of course, this search optimization has to be adjusted

to the characteristics of the access paths used.

The inverse check procedure has to evaluate all possible partial match queries, since all templates are

generated disregarding the actual tuples in C. However, the search optimization will save a lot of effort.

On the other hand, the straight-forward procedure has to perform 2n - 1 point queries. Fig. 5 shows the

different evaluation paths of the procedures. The question which procedure is superior depends on the

relation between following cost functions:

1. The straight-forward method (➀)results in (2n - 1) · (P, S)C + m1 · (PMu, E)P, where m1 represents the

number of templates found in C which have to be checked for parents.
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2. The alternative method yields (➁) (2n - 2) · (PMu, E)P + (m2+1) · (P, S)C, where m2 represents the

number of templates for which no parents were found in P and, therefore, possibly existing children

have to be located to carry out the referential action.

In the worst case, m1 = m2 = 2n -2 and hence, ➀ and ➁ are equally expensive. An exact analysis is

hardly possible since data distribution and usage of null values within the foreign keys have to be known.

In real applications, we expect very small numbers for m1 and m2. Due to space limitations, we restrict

ourselves on the further inspection of ➁ and use m = m2 within the cost formulas.

Use of compound-key B*-trees

Two compound-key B*-trees are used to implement IP(K) and IC(F). In both trees, the n attribute values

belonging to a key are concatenated and encoded as a single field [BCE77]. Note, since null values are

treated as special values, keys (e.g. <x, ∅, z>) can be represented as regular values in the B*-tree.

Hence, F-keys with null values are stored in an encoded form, too. Key comparison is achieved by spe-

cial encoding procedures.

The most difficult action in the “Insert into C” operation is the partial match search in P. How can we per-

form such a search, if search keys like <x, −, z> or <−, y, −> are given? In such cases, a search on all

fully defined K-key values of IP(K) has to be accomplished to determine matching parents according to

the MATCH PARTIAL semantics.

Note that scanning all compound keys cannot be avoided, since entering the B*-tree using partially de-

fined search keys is hardly possible. A specialized search procedure based on some kind of prefix com-

parison could be designed only for the case where the first search key components are defined. There-

fore in other cases, a reasonable search procedure would be a leaf page scan on IP(K) starting from the

leftmost leaf to the rightmost leaf. Each encoded K-key is compared with the search key until a valid sub-

stitution is found for the partial match predicate. Hence, the access overhead is limited to CR = hK + NKleaf

- 1 (NKleaf = # of leaf pages). Furthermore, the insertion point in IC(F) has to be located (hF).

“Delete from P” comprises the deletion of tP and the corresponding children having fully matching foreign

keys. Locating the deletion point in IP(K) requires hK page references. According to the inverse check

Fig. 5: Evaluation alternatives for MATCH PARTIAL support

parent relation

child relation

parent relation

child relation

(2n - 2) · (PMu, E)P

(m2 + 1)· (P, S)C(2n - 1) · (P, S)C

m1 · (PMu, E)P

➀
➀ ➁

➁
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procedure, 2n - 2 partial match queries have to be evaluated on P. With the compound-key B*-tree for

IP(K), each partial match query can be effectively executed by a leaf page scan. Each scan can be fin-

ished as soon as a valid substitution of the F-key is found in the K-key. Hence, the worst case overhead

of page references is

CR = (2n - 2) · (hK + NKleaf - 1).

As indicated above, the number of queries can be reduced to n when the list of qualifying K-keys can be

cached in main memory for further tests. Moreover, it should be possible to design an optimized search

and check procedure performing a single leaf page scan which searches for all n keys thereby limiting

the worst case overhead of page references to

CR = (hK + NKleaf - 1).

Depending on the outcome of these tests, an inspection of C is necessary to find out whether certain F-

keys (templates) exist or not. Hence, m + 1 point queries to C have to be taken into account. Using IC(F)

for their evaluation, the sum of page references is CR = (m + 1)· hF.

Obviously, the compound-key solution could be implemented by a CAPS with the concatenated key val-

ues representing an artificial domain. Although the height of the resulting B*-tree is similar to hF, the num-

ber of leaf pages may be much more than doubled as compared to NKleaf due to the added foreign key

entries of relation C. Since NKleaf is already a very large factor, most operations would deteriorate dras-

tically (see Table 5). Thus, the solution based on a CAPS is not favorable for such a use of compound

keys.

Use of simple-key B*-trees

Apparently, compound-key B*-trees are inappropriate for partial match search. To explore a better solu-

tion we propose an opposite approach by representing the n attributes of K (or F) by n single-key B*-

trees for all ki of K and fi of F. Since all attributes may be accessed separately or in combination, a much

greater flexibility for query processing may be achieved. However, referential integrity checking seems

to become more complicated. Since the reference information is distributed across multiple B*-trees, the

basic checking mechanism is to fetch the qualifying TID-lists for ki or fi values and to merge them in order

to identify the TIDs of the parents or children.

Insertion of a tuple tC has to determine the existence of a matching tuple tP. As explained in Sect. 3.2,

this task can be accomplished by finding at least one tuple tP whose key is a valid substitution for the

newly inserted F-key of the tuple tC. Assume n-u (0 ≤ u < n) attributes fi have a defined value (e.g., f =

<x, ∅, z>). Then, all defined values (excluding null) are used for the search in the B*-trees for the corre-

sponding attributes ki. Each of these (n-u) TID-lists (e.g., L(k1 = x)) with length lki, 1 ≤ i ≤ n-u is brought

to main memory for an existence test of some tuple tP (for simplicity let the first n-u attributes of the for-

eign key be those with defined values). If the intersection L(k1 = x) ∩ ... ∩ L(kn-u = z) is not empty, a tuple
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tP exists whose key K coincides in the defined values with the F-key values. Since the remaining K-key

values are defined and since any key value is a valid substitution for a null value, the identified K-key

values, in turn, satisfy the integrity constraint. Obviously, the number of page references is

, where e is the length of a TID and p is the page size.

In the following, we approximate hki, lki resp. hfi, lfi by the corresponding average values for the heights

and list lengths, i.e., . Furthermore, locating the n insertion points for

the foreign key of tC requires n single-key B*-tree traversals and the manipulation of the resulting lists

which sums up to . Hence, the entire overhead is

 page references.

Deletion of a tuple tP is more complicated. After the n deletion points in the B*-trees of the K-key are

located causing  pages referenced to propagate the deletion of tP, in a next step, 2n

- 2 partial match queries are to be evaluated in P. Therefore, the following test is carried out for each

search key: Let u be the number of don’t-care values and (for simplicity) ki, 1 ≤ i ≤ n-u, the defined at-

tributes, e.g., the search key has the form <x,..., z, −,..., −>. If the intersection of the already selected lists

L(k1 = x) ∩ ... ∩ L(kn-u = z) is not empty, then there is at least one matching parent. For our evaluation,

we anticipate m queries having empty intersections. Consequently, for the related templates and in ad-

dition for the fully matching foreign key, we have to check whether or not any children exist. This step

requires m+1 point queries on C which can be executed by subsequently accessing each B*-tree1 to

fetch the TID-lists and carry out the intersection, e.g., L(f1 = x) ∩ L(f2 = ∅) ∩ ... ∩ L(fn = z). This approach

would result in  page references. A closer inspection of the TID-

lists used to perform the tests shows that at most 2 · n TID-lists are involved in all (possibly 2n - 1) queries

on C (a defined value and the null value for each fi). Hence, keeping the TID-lists in a working buffer

limits the cost to  page references in the worst case. Thus, the support

of MATCH PARTIAL with the option RESTRICT for the “Delete from P” operation costs

1. The null value is considered as a special value, that is, null is used as a key value in all B*-
trees of the F-key.
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.

Up to now we have not elaborated these check procedures regarding the sizes of B*-trees occurring in

practical applications. A dependency analysis between the number of tuples N and the number of key

attributes n shows a major problem of the sketched approach: Given a parent table with 106 tuples and

10 children per parent (resulting in about 107 child tuples) with a primary/foreign key made up out of three

attributes with independent and uniform value distribution, we obtain 100 different values per attribute,

i.e., the B*-trees only have 100 entries. This small number of entries has a significant impact on the par-

tial match results of queries with only one attribute: In the parent relation, such a query results in 104

tuples and in the child relation up to 105 tuples, i.e., the TID-lists in the leaf pages of the corresponding

B*-trees are very long1. If we assume that we manage these results as lists of TIDs with an entry length

of 5 bytes these numbers result in lK · e = 5·104 bytes (roughly 50 Kbytes) resp. lF · e = 5·105 bytes (about

500 Kbytes). While the former is manageable within a multi-user environment, the latter is hardly possi-

ble. Hence, this approach of using n B*-trees seems only conceivable for the parent relation. This, how-

ever, is no severe problem because the thus supported partial match queries are needed for the parent

only.

To remove this difficulty, we propose a hybrid approach: a compound B*-tree for the F-key of C and n

single attribute B*-trees for the K-key of P. By this combination, the cost for inserting a tuple into C is

reduced to . The cost of “Delete from P” are given by

. Note that in this case 2 · n is not an upper bound

for m which, in turn, may range up to 2n - 2. Furthermore, we assume that the TID-lists in the B*-tree of

the child relation do not exceed one leaf page.

In principle, the access path for the K- and F-key could be combined using the CAPS approach. How-

ever, such a combination is useless or even impractical: a CAPS for the compound keys does not pro-

vide any improvement concerning MATCH PARTIAL. Used for the n single B*-trees, it quickly suffers

from unmanageable TID-lists.

Use of grid files

So far, we have simulated multi-key access and partial match queries to the relations P and C by “linear”

access paths, that is, B*-trees designed for one-dimensional access. In order to investigate the question

whether or not multi-dimensional access paths are better suited for checking the demands of the MATCH

1. In the sketched situation the B*-trees degenerate to inverted lists, because the height of
those trees won’t exceed 1.
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PARTIAL option, we consider the grid file [NHS84] as the best known multi-key access structure. The

mapping principle of the grid file is sketched in Fig. 6 for two dimensions.

The point objects in data space D are mapped by means of the grid directory GD into the buckets of the

grid file. For each of the n dimensions originating from the n attributes (keys), the grid file offers symmet-

ric and uniform access thereby guaranteeing a balanced access structure independent from key distri-

bution as well as insertion and deletion sequences.

The dimensions of D are represented by the ordered values of the attributes ki and fi resp. (i ≤ n); null is

considered as a special value for fi attributes. Each dimension is described by a scale vector SVi used

to map the search predicate of a query to the GD. The set of specified scale values qualifies the GD

entries which point to the buckets containing the records meeting the search condition. In order to com-

pare the structure with the B*-tree, we assume that the buckets exclusively store the K- or F-key values

(with n components) together with the corresponding TID or TID-list. Furthermore, we assume uniform

distribution of all ki and fi attribute values (i ≤ n).

In order to describe the cost of accessing a grid file some additional parameters are required:

Si number of scale values (intervals) in SVi

EGD number of GD entries: EGD =

B number of buckets Bi: B = N /(b * βavg)
1 where b is the bucket size and βavg the

average load factor of a bucket

α average number of GD entries mapping to a bucket, α ≥ 1: hence, EGD = α*B

PGD number of pages covered by GD: PGD = EGD * eBID/p where eBID is the length of

a bucket-ID and p the page size

The n scale vectors SVi are represented as one-dimensional arrays; they are always kept in main mem-

ory such that they do not provoke extra page references. Our access model further assumes that a point

1. A ceiling function has to be applied to the computed access cost or storage size because
disk access or pages (buckets) cannot occur in fractions.

X

X

D

X
X

X

X

0 m

n

0

X X

X
X

X
X

X

=∧

GD

Buckets

X Bi

Fig. 6: Mapping principle of a grid file

SV2

SV1

Si

i 1=

n

∏



31

query requires a single disk access to the GD. For partial match queries, however, sets of GD entries,

which may be mapped to pages in sophisticated ways, have to be located. To reflect this mapping in our

access model, we use the following heuristic approximation for the cost of GD access: CGD = PGD * u/n.

The set of qualified GD entries determines the number of buckets to be selected (by applying the given

α). Moreover, all buckets fully contain the allocated key/TID or key/TID-list pairs.

Apparently, the lion’s share of the query processing costs using grid files is caused by the set of buckets

to be accessed. For GDP, there are only two kinds of search-key terms: ki = v and ki =’−’; for a don’t-care

value in the search predicate, all existing values of the resp. key qualify. Hence, a point query delivers

a single GD entry. Partial match queries with one don’t-care value (ki =’−’) select SPi GD entries; two

don’t-care values ki and kj lead to SPi · SPj GD entries and so on.

“Insert into C” with u undefined values in the F-key requires a partial match query on GDP with u don’t-

care values in the attributes of key K. If the set of attributes ki is indexed by mi, i = 1,..., u, we obtain the

following costs of page references (worst case)

,

where the first term stands for the GD access and the second one for fetching the buckets. If the number

of scale values S is equal in all dimensions, the cost formula can be simplified to the following form

,

which makes clear the dominant influence of parameter u. For our convenience, we will use this simpli-

fied formula in the following; however, it may deliver only approximate numbers of page references.

To make the cost factors clear, assume the following situation: N=106, b=200, βavg=0.75, S=20, u=2, and

α = 1.2, then we potentially reference CR = (7 + 334) pages to check whether there is a partially matching

tuple tP for the inserted tuple tC. Since we can stop the evaluation of the buckets as soon as we have

found a valid tuple tP, the given cost formula describes the worst case. To complete the “Insert into C”

operation, we have to locate the insertion point for tC in GDC which needs a point query (2 page refer-

ences).

“Delete from P” is the second critical operation which has to be supported by partial match access.The

inverse check procedure is applied to test the existence of tuples having partially matching foreign keys.

If we execute a partial match query, e.g. <x, −, −>, on GDP, all keys can be derived including the defined

component x. For this purpose, all buckets qualified by <x, −, −> have to be accessed and filtered (using

the x-value in our example). The list of keys derived allows for all templates with component x to test

whether or not the parent exists. Optimization requires to cache the list of keys in main memory; other-
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wise the full set of partial match queries has to be applied sequentially. Hence, by applying our optimized

search and check procedure we obtain the following cost formula for page references:

 or  for uniform numbers of all Si.

Unsuccessful inspections in GDP require checks in GDC to determine whether children exist for the resp.

templates. Since we assume m such tests, m + 1 point queries have to be performed using GDC resulting

in CR = (m + 1) · 2 page references.

Comparison of access path structures

Table 5 compares the search costs for the basic support of MATCH PARTIAL with the option RESTRICT.

Remember, these costs represent the required accesses to determine which children are subject to ref-

erential actions, but not the entire costs to accomplish them (such an analysis would have to take the

referential action SET DEFAULT into consideration to deliver worst case costs).

2 compound-key
B*-trees

n simple key B*-trees for P
compound B*-tree for C

2 grid files

Insert
into P

hK n · hK 2

Delete
from P

Update
attribute
 ki of P

Insert
into C

Delete
from C

2

Table 5: Summary of the results (page references) for MATCH PARTIAL with the option RESTRICT
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Obviously, a comparison of the search costs is difficult at the chosen level of abstraction due to the fact

that some cost factors apply to only one or two of the implementation alternatives (e.g. NKleaf applies only

to the compound-key solution). To get some hints about the relative costs of the MATCH PARTIAL sup-

port, we elaborate some practical cases by using numbers approximating large applications (in the order

of magnitude of Sect. 4.1):

• The number of tuples NP is 106, and the K-keys resp. F-keys consist of n=3 attributes. We use u=2

for the “Insert into C” operation.

• A key/TID-pair needs 10 bytes if the key is simple or 15 bytes if it is compound. In both cases, we

assume key compression. Note that the front/rear-compression is not applicable for grid files. There-

fore, the key/TID-pairs managed in the buckets of a grid file are assumed to have a length of 25 bytes.

The page or bucket size is 4K bytes. Further parameters: βavg = 1, eBID = 4 bytes.

• EGD = S3 = α*B; a minimum value of S is chosen which also minimizes α for the given B.

• The heights of the B*-trees are derived from Fig. 4. For the computation of NKleaf, completely filled leaf

pages are assumed (best case!).

The grid-file performance depends heavily on the number of buckets and directory entries. Here, we sup-

pose the best mapping of GD to the buckets minimizing the number of buckets and GD entries. Never-

theless, we obtain substantial costs as shown inTable 6. Note, βavg = 0.75 would increase the number of

page references roughly by 21%.

As discussed previously, the inverse and the straight-forward check procedures provoke the same cost

in the worst case (m = 2n - 2). Table 5 and 6 reveal, however, that the lion’s share of the page references

arises from the partial match queries. Therefore, it seems to be advisable in practical cases to execute

Update
attribute
 fi of C

2 compound-key
B*-trees

n simple key B*-trees for P
compound B*-tree for C

2 grid files

Delete from P 3759 + 4 · m
3759 -- 3783

46 + 4 · m
46 -- 70

1006 + 2 · m
1006 -- 1018

Insert into C 3755 46 336

Table 6: Exemplary access costs for referential integrity with MATCH PARTIAL

2 compound-key
B*-trees

n simple key B*-trees for P
compound B*-tree for C

2 grid files

Table 5: Summary of the results (page references) for MATCH PARTIAL with the option RESTRICT
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the cheap point queries first thereby hoping to find no or only a few foreign keys. This may greatly reduce

the number of partial match queries required.

The solution based on two compound B*-trees is not competitive at all, because the cost of the leaf page

scan grows linearly with N. Only for very small N or for special partial match search keys (having the

leftmost values defined) this solution would be a good contender for the task considered.

Our best solution relies on n single B*-trees for the partial match queries and on a compound B*-tree for

the point queries. A combination based on a CAPS solution (the best alternative for the regular MATCH

clause) is here unfeasible because of extreme TID-list lengths for larger numbers of N. As indicated in

Table 6, for the given scenario the other two approaches are outperformed by factors of 15-20 resp. 50-

80. Nevertheless, our hybrid approach remains expensive, that is, the usage of MATCH PARTIAL seems

prohibitive in any time-critical application (e.g. OLTP). Note that in our cost measures, we have neglect-

ed the computation costs for the TID-list intersections. These costs, however, will become substantial if

the lists grow beyond some threshold which, in turn, depends on other parameters (e.g. hardware capa-

bilities), and, therefore, this alternative may reach its limits, too.

The most elegant approach is the usage of an access path which supports the costly partial match que-

ries directly. As an example we presented the grid file. In contrast to the expected result, however, the

analysis obtained relatively bad numbers for the grid file performance. This is mainly caused by the fact

that we are not interested in all resulting tuples of a given partial match query, but only on the information

whether or not at least one tuple exists. While the former is the classical application for grid files the latter

is not. In addition to the performance argument, other problems are yet to be solved to provide grid files

for large applications: Referential integrity maintenance is typically performed in multi-user environments

with a high degree of concurrent access. To cope with such situations, optimal locking protocols were

designed for B*-trees [ML92, Mo90], giving direct access for keys and key ranges whereas competitive

locking protocols for grid files [Sa86] are not known so far. For this reason and the performance figures

derived, our best candidate to support MATCH PARTIAL remains the hybrid solution based on B*-trees.

Nevertheless, our best advise is to avoid the use of MATCH PARTIAL at all.

5 Conclusions and Outlook

We have presented an investigation of referential integrity support in relational DBMS. The focus of our

paper has primarily been on determining the functional requirements of referential integrity maintenance

caused by modification operations on the parent relation P and the child relation C. Furthermore, an ex-

tensive study has been performed to answer the question: “which access paths should be provided in a

DBMS to effectively and efficiently meet these functional requirements?”

Our initial discussion outlined the specification of the SQL2 standard and its semantics as far as refer-

ential integrity is concerned. As an outcome, we have derived the query types which are necessary to

maintain referential integrity. If the regular MATCH option is used, then the complexity of all queries re-
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quired is at most of type (P, S) which represents a point query in the key space and results in a set of

elements (TIDs or tuples). This type of query is well supported through a B*-tree (either for the foreign

key or for the primary key). An optimization can be achieved using only a single CAPS jointly used for

the primary key and the foreign key.

This relatively simple situation gets much more complicated if the MATCH PARTIAL option of the refer-

ential integrity constraint definition is considered. In such cases, the query type needed is (PMu, E) which

denotes a partial match query (with u unknown values) in the resp. key space resulting in a set of tuples

or TIDs. Another complication arises through the exponential growth of the number of point queries to

be tested. As it turns out, the latter does not contribute the major share to the costs of all access paths

explored. Therefore, support of partial match queries becomes the most critical factor. For this reason,

the solution based on compound keys is inappropriate. Although the access costs using a grid file are

very low for some operations, others are remarkably more expensive than those of the hybrid solution

based on B*-trees. Accordingly, we recommend the latter solution when MATCH PARTIAL is used.

The presented results rely on the assumption that the search costs are indicative for the entire costs of

referential integrity maintenance. This assumption has to be justified through further research especially

at the system level. Another interesting question to be answered is whether or not MATCH PARTIAL is

useful for a real world application. To do so existing applications have to be evaluated to reveal the prac-

tical relevance of MATCH PARTIAL. Furthermore, it may be interesting to analyze real world applications

to see whether or not the various MATCH options interfere on one parent relation. For such cases, the

combined usage of our concepts has to be investigated.
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