
Towards a Logical Semantics for Referential Actions in SQLBertram Lud�ascher� Wolfgang May� Joachim Reinert+� Institut f�ur Informatik, Universit�at Freiburg, fludaesch,mayg@informatik.uni-freiburg.de+Fachbereich Informatik, Universit�at Kaiserslautern, jreinert@informatik.uni-kl.deAbstractWe investigate a logical semantics which unambiguously speci�es the meaning of SQL-likereferential actions of the form ON DELETE CASCADE and ON DELETE RESTRICT. The seman-tics is given by a translation of referential actions into logical rules. The proposed semanticsis less restrictive than the standard SQL semantics, yet preserves all referential integrityconstraints. First, a preliminary set of rules is introduced which rejects a set of user re-quests if a single request is rejected. Subsequently, a re�ned translation is presented usingStatelog [LHL95], a state-oriented Datalog extension which allows to de�ne active and de-ductive rules within a uni�ed framework. We show that our semantics yields the maximaladmissible subset of a given set of user requests. Apart from the Statelog formalization,a three-valued formalization based on the well-founded semantics and an equivalent game-theoretic speci�cation are presented, which give further insight into the problem of ambiguityof triggers.1 IntroductionThe concept of referential integrity has been present in the relational model from the beginning[Cod70]. Basically de�ned to guarantee the existence of referenced objects, it was re�ned byDate [Dat81] to a more active concept, ie the possibility to descriptively de�ne reactions in orderto compensate violations of referential integrity by so-called referential actions. Thus, referentialactions are used to automatically enforce integrity. This task is more involved than integritychecking : e.g., it is well-known that all common constraints in the relational model (functional,join, multivalued and inclusion dependencies) can be expressed by �rst-order formulas, which inturn can be de�ned as deductive rules. A simplistic way to enforce integrity is to let the userde�ne all updates to the database, check whether the new database is consistent, and abort theupdate if a constraint is violated. In order to relieve the user from the burden of de�ning everyinduced update which arises from some given user request wrt. referential integrity constraints,referential actions have been proposed. These ideas have been included in the SQL2 and SQL3standards [JTC92, JTC94]. Unfortunately, even those restricted versions of \active rules" maylead (in a straightforward implementation) to some indeterminism caused by ambiguities duringthe evaluation of user requests. Clearly, this is undesired and therefore not allowed in the SQLstandards.In this paper, we propose a step towards a logical semantics for referential actions by speci-fying these actions as a logic program P . The main bene�ts of this approach are:� Referential actions are precisely axiomatized by the logical semantics of P , thereby leavingno freedom of interpretation, or doubt about the meaning of a set of referential actions.In particular, ambiguities due to unspeci�ed behavior of the operational semantics areavoided.� Formal veri�cation techniques become applicable, e.g. to prove that a set of referentialactions guarantees the satisfaction of all referential integrity constraints for all instancesD of the database.



� The rules of P can be executed using well-known evaluation techniques developed fordeductive databases. Thus, an operational semantics for the execution of referential actionsis obtained as a \by-product" of the logical speci�cation.The paper is structured as follows. In Section 2, the basics of referential integrity and referentialactions in SQL are briey reviewed and an example illustrating the problem of ambiguity ispresented. In Section 3, we propose a logic-based speci�cation of referential actions whichprovides a simple method of enforcing referential integrity. In Section 4, a more sophisticatedalgorithm is introduced, which determines the maximal set of user delete requests which can beexecuted without violating any referential integrity constraint. In Section 4.1, this algorithm isformalized in Statelog. Two alternative characterizations of the algorithm using well-foundedDatalog and a game-theoretic approach are given in Sections 4.2 and 4.3 yielding additionalinsight into the properties of the algorithm. Section 5 contains concluding remarks; proofs areincluded in Appendix A.2 Referential IntegrityNotation and Preliminaries. In order to de�ne the concept of referential integrity, weintroduce some notation. Let R be a relation name. W.l.o.g., we assume that an order (e.g.lexicographic) is given on the set A of attributes of R. Therefore, A can be written as avector A = (A1; : : : ; Ak) of attributes. Then, R(A1; : : : ; Ak) denotes the relation schema of R.We further assume that all attributes range over the same underlying domain.1 Often, someattributes of A are distinguished, especially those which form a key. For notational convenience,these distinguished attributes are grouped into a vector~A = (Ai1 ; : : : ; Aid) :All remaining attributes are denoted as�A = (Aj1 ; : : : ; Ajr) :Since we will use �rst-order logic notation, R(A1; : : : ; Ak) is overloaded and also denotes a logicatom, where R is the relation name and A1; : : : ; Ak are variables for the (domain) values of thecorresponding attributes.Referential Integrity Constraints. Let RC(X1; : : : ;Xn) and RP (Y1; : : : ; Ym) be relationschemas, ~X = (Xi1 ; : : : ;Xik) and ~Y = (Yj1 ; : : : ; Yjk) be two vectors of k distinct attributes ofRC and RP , respectively. A referential integrity constraint (ric) is an expression of the formRC : ~X ! RP :~Y :~X is called a foreign key of the child relation RC ; it refers to the (candidate or primary) key ~Yof the parent relation RP .A ric RC : ~X ! RP :~Y is satis�ed by a given database D, if for every value of the foreign key~X of a tuple in RC , there exists a tuple with key ~Y in RP such that ~X = ~Y 2. This is denotedas D j= 'ric with the �rst-order sentence8 ~X; �X (RC( ~X; �X)! 9~Y ; �Y (~Y = ~X ^RP (~Y ; �Y )) ) : ('ric)A ric is violated by D, if it is not satis�ed by D.31The extension to the \typed version" with attributes ranging over di�erent domains is straightforward.2Here, the \overloaded meaning" as explained above is used, ie ~X = ~Y denotes equality of values of thecorresponding attributes (and not of the attribute names).3If null values are allowed in foreign keys, ric's should not be violated by such \null pointers". This can beachieved by the following modi�cation of ('ric): 8 ~X; �X (RC( ~X; �X) ^ null =2 ~X ! 9~Y ; �Y (~Y = ~X ^RP (~Y ; �Y )) ).



Referential Actions in SQL. There are three basic manipulation operations which poten-tially may violate a ric, ie insert into, update, and delete from one of the relations RP andRC , respectively. It is easy to see from the logical implication in 'ric above that insert intoRP and delete from RC cannot introduce a violation. Furthermore, the operations insertinto RC and update RC on the child are forbidden in SQL (and immediately backed out) ifthese would result in a violation. Therefore, only the two operations update RP and deletefrom RP have to be handled by referential actions.In SQL, referential actions are speci�ed in the declaration of the child relation. When theuser issues an update request on the current state of the database D (which is assumed tobe consistent), these referential actions ensure that all referential integrity constraints remainsatis�ed in the new database state D0. A referential action for the referential integrity constraintRC : ~X ! RP :~Y is speci�ed in SQL as follows:fCREATE j ALTERg TABLE RC� � �FOREIGN KEY ~X REFERENCES RP ~Y[ON UPDATE fCASCADE j RESTRICT j SET NULL j SET DEFAULT j NO ACTIONg][ON DELETE fCASCADE j RESTRICT j SET NULL j SET DEFAULT j NO ACTIONg]� � �The Problem of Ambiguity. It is common to implement integrity maintenance using anindependent trigger or ECA-rule for each integrity constraint (see e.g. [Day88, Esw76]). Suchrules are de�ned like \ON delete of RP DO delete RC" and are executed in a recognize-actcycle [For81]. If the semantics of these triggers is only given by an informal description, someindeterminism with respect to the outcome of a user operation may occur. This is illustratedby the following example [Rei96]:Example 1 Consider the database with referential actions as depicted in Figure 1. For thisexample, assume that all dotted parts are empty. Let �del:RA(a) be a user request to delete thetuple (a) from relation RA.4 Depending on the order of execution of referential actions, one oftwo di�erent �nal states may be reached:(1) If execution follows the path RA ; RC ; RD, the tuple RC(a; c) cannot be deleted:Since RD(a; b; c) references RC(a; c), the referential action for RD restricts the deletions ofRC(a; c). This in turn also blocks the deletion of RA(a). Consequently, the user request�del:RA(a) is rejected, and the database state remains unchanged, ie D0 = D.(2) If execution follows the path RA ; RB ; RD, the tuple RB(a; b) and { as a consequence{ RD(a; b; c) are requested for deletion. Hence, the trigger for RD:(X;Z) ! RC :(X;Z)\assumes" that RD(a; b; c) is deleted, thus no referencing tuple exists in RD. Thus, alldeletions can be executed, resulting in the new database state D0 = ;.If there are di�erent possible �nal states of a database instance D (depending on the executionorder of referential actions), D is called ambiguous wrt. the given referential actions. Given aset of referential actions, a database schema is ambiguous, if some instance D is ambiguous.As shown in [Rei96] it is in general undecidable, whether a database schema with referentialactions is ambiguous. However note that, although the above schema is ambiguous, (2) maybe preferable to (1), because (1) { which is the semantics of SQL { does not accomplish thedesired user request { indeed, nothing is done at all. In contrast, (2) leads to a new consistentstate, in which the user request is accomplished. In the sequel, we present logical rules whichavoid ambiguities caused by conicting referential actions. This does not contradict the result4The triangle \�" denotes external (ie, user-de�ned) requests.
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RE :X ! RA:XON DELETE RESTRICT

Figure 1: Database with Referential Actionsof [Rei96], since our semantics does not have to discriminate ambiguous from unambiguousschemas: instead, deletions are preferred to restrictions whenever possible. We con�ne ourselvesto the speci�cation of triggers of the form ON DELETE CASCADE and ON DELETE RESTRICT; acomprehensive scheme covering all SQL-triggers is beyond the scope of this paper.3 Referential Actions as Logic RulesWe �rst specify the semantics of referential actions as a strati�ed Datalog program which canalso serve as the implementation of a naive algorithm executing user requests in an all-or-nothing style. The given rules provide the basis for further re�nements in subsequent sections.Let U� = f�del:R1(�x1); : : : ;�del:Rn(�xn)g be a set of user delete requests which are passed tothe database system.5 From these external requests, internal delete requests req del:R(�x) arederived: req del:R( �X) �del:R( �X): (I)The referential actions are speci�ed as follows:� RC : ~X ! RP :~Y ON DELETE CASCADE: This trigger generates two logical rules: the �rst onepropagates internal delete requests downwards from the parent to the child:req del:RC( ~X; �X) req del:RP (~Y ; �Y ); RC( ~X; �X); ~X = ~Y : (DC1)Additionally, restrictions are propagated upwards, ie when the deletion of a child is restricted,the deletion of the referenced parent is also restricted (blocked):blk del:RP (~Y ; �Y ) RP (~Y ; �Y ); blk del:RC( ~X; �X); ~X = ~Y : (DC2)� RC : ~X ! RP :~Y ON DELETE RESTRICT: The deletion of a parent tuple is blocked, if there isa corresponding child tuple which is not requested for deletion:blk del:RP (~Y ; �Y ) RP (~Y ; �Y ); RC( ~X; �X);:req del:RC( ~X; �X); ~X = ~Y : (DR)5Ri are (not necessarily distinct) base relations, �xi are tuples of constants from the underlying domain.



Note, that for a given set of referential actions, the logic program P generated by (DC1), (DC2)and (DR) is strati�ed, ie does not contain negative cyclic dependencies. The strata are givenby fR; req del:Rg � fblk del:Rgfor all base relations R. Therefore, P has a unique strati�ed model.Note further, that this logic program solves the conicts and ambiguities between CASCADEand RESTRICT actions (Example 1) by the following strategy: First, all requested deletions arecascaded without considering restrictions. Then, all restricted deletions are computed using thedelete requests from the �rst step. This two-phase approach is the abstract formalization to thelengthy textual descriptions in the standard documents.6Example 2 Consider again the database given in Figure 1, where all dotted parts are empty.Given the user request �del:RA(a), the above program derives delete requests req del:R(�x) forRA(a), RB(a; b), RC(a; c), and RD(a; b; c), but no blocked requests of the form blk del:R(�x)(because RD(a; b; c) is requested for deletion before it gets a chance to block other requests).Hence all deletions are computed correctly.Unfounded Deletions. However, the above rule set may give rise to unfounded delete re-quests: a triggered delete request is unfounded, if its triggering request is blocked, but thetriggered request itself is not blocked:Example 3 Assume that the tuple RE(a) is added to the database in Figure 1. The triggerRE :X ! RA:X ON DELETE RESTRICT blocks the deletion of RA(a), but not the deletions ofRB(a; b), RC(a; c) and RD(a; b; c) which then become unfounded!This problem is avoided if a triggered request is executed only if its triggering request isexecuted itself. One way to guarantee this condition is to require that all delete requests areadmissible, otherwise the transaction aborts:del:R( �X)  req del:R( �X);:abort:abort  �del:R( �X); blk del:R( �X): (DEL)Here, del:R denotes the set of �nal deletions to be executed by the system. The rules (DEL)guarantee that the whole set of user delete requests is executed in an all-or-nothing style.4 Re�ned TranslationAlthough the preliminary translation given above is less restrictive than the standard SQLsemantics, it is still more restrictive than necessary:Example 4 Consider the database as depicted in Figure 2 and assume the user requestsf�del:RA(a);�del:RA(b)g are given. Like in Example 3, �del:RA(a) is not admissible sinceRE(a) blocks �del:RA(a). However, the other request, �del:RA(b), could be executed withoutviolating any ric by deleting RA(b), RB(b; b), RC(b; c) and RD(b; b; c).In the following, a more exible strategy is developed which determines the maximal subsetof admissible deletions of U� which does not violate any ric thereby relieving the user fromtrying all alternatives by himself. The basic idea of the re�nement is to consider only those userdelete requests which are not blocked in rule (I). However, this introduces an inherent negativecyclic dependency req del : blk del : req del resulting in a non-strati�ed logic program PW .The properties of PW will be further investigated in Section 4.2.6In fact the standard SQL semantics is more restrictive than our proposal, since it does not allow the existenceof any referencing tuple (even if it is marked for deletion). This more restrictive semantics the style of SQL canbe modeled by the following rule (DR): blk del:RP (~Y ; �Y ) RP (~Y ; �Y ); RC( ~X; �X); ~X = ~Y .
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Figure 2: Extended Database (Example 4)Informal Description of the Algorithm (cf. Figure 3): Initially, it is assumed thatthere are no blockings (ie, blk del:R(�x) does not hold for any tuple R(�x)). By cascading alluser requests, all potential delete requests are computed. In the next step, all blockings arecomputed caused by tuples which are not reachable by cascaded deletions. At this point, thepreliminary algorithm aborts if there is some delete request which is blocked. The re�nedalgorithm analyzes the situation in order to abort as few user requests as possible: For allblocked requests, the triggering user request is also blocked by propagating blockings upwardsthe ON DELETE CASCADE chain to parent tuples. For the remaining unblocked user requests, thecascaded requests are recomputed. Thus some more tuples will remain in the database, whichcould block other requests. These steps are repeated until a �xpoint is reached.4.1 State-Oriented Logic FormalizationThe �rst translation from referential actions to logic rules given above resulted in a strati�edDatalog program. However, the improved algorithm contains negative cyclic dependencies, sincerequested deletions and blocked deletions may depend negatively on each other. Therefore, adirect translation of the informally given algorithm into a logic program would result in annon-strati�ed program (cf. Section 4.2). The improved algorithm can easily be implemented ina state-oriented logic programming framework.Statelog is a state-oriented extension to Datalog which allows to de�ne active and deductiverules within a uni�ed logical framework [LL94, LHL95]. Since in this language di�erent statesof the database can be accessed, Statelog is well-suited as a speci�cation and implementationlanguage for de�ning the behavior of referential actions.In Statelog, di�erent database states are accessed using state terms of the form [S+k], whereS + k denotes the k-fold application of the unary function symbol \+1" to the state variable S.The domain of S is IN0, ie computations in Statelog evolve over a linear state space. Statelogrules are of the form[S + k0] H( �X)  [S + k1] B1( �X1); : : : ; [S + kn] Bn( �Xn) ;where the head H( �X) is an atom, Bi( �Xi) are atoms or negated atoms, and k0 � ki, for alli 2 f1; : : : ; ng. A rule is local, if k0 = ki, for all i 2 f1; : : : ; ng. Thus, a Statelog program



Input: A consistent database D and a set U�of user delete requests. No blockings: B := ;.1. (Re)Compute the set of induced blockings B�,which result from B by propagating blockingsupwards the ON DELETE CASCADE chain.2. (Re)Compute the set U� of internal requestswhich result from user delete requests U� bycascading downwards delete requests whichare not blocked: U� := (U� nB�)�.3. Add to B all blockings which are issued by ONDELETE RESTRICT actions of tuples not in U�,ie which are not requested for deletion.Tuples in B nB�?Execute requests from U�.Output: The new consistent database after ex-ecuting the maximal subset of external delete re-quests from U�.
No

Yes

Figure 3: Algorithm A: Computing all admissible deletionscan be viewed as a syntactical variant of a logic program in which every predicate containsone additional distinguished argument for state terms. In particular, local rules refer only tothe current state [S + k] and not to the transition between di�erent states. Thus local rulescorrespond to (strati�ed) Datalog rules which are applied locally in every state [S + k].Formalization in Statelog. The above algorithm is formalized in Statelog as follows:7EDB relations R are propagated to subsequent states (modulo the set of �nal deletions del:R( �X);see below) by frame rules: [S+1] R( �X) [S] R( �X);:del:R( �X):User requests �del:R are propagated to the successor state as long as the computation is running:[S+1] �del:R( �X) [S] �del:R( �X); running:From user delete requests �del:R, internal requests req del:R are raised unless they are blocked:[S] req del:R( �X) [S] �del:R( �X);:blk del:R( �X): (IS)Referential actions are translated as follows:� RC : ~X ! RP :~Y ON DELETE CASCADE: The rules (DC1) and (DC2) above are simply extendedby state terms [S] and yield the following local rules:7In literals referring to the same state, only the leftmost literal is pre�xed with a state term.



[S] req del:RC( ~X; �X) [S] req del:RP (~Y ; �Y ); RC( ~X; �X); ~X = ~Y : (DCS1 )[S] blk del:RP (~Y ; �Y ) [S] RP (~Y ; �Y ); blk del:RC( ~X; �X); ~X = ~Y : (DCS2 )� RC : ~X ! RP :~Y ON DELETE RESTRICT: The new rule (DRS) for ON DELETE RESTRICT con-tains the crux of the re�ned algorithm: In the successor state [S+1] only those tuples causeblockings, which are not requested for deletion in the current state [S]. This corresponds tothe iteration step in Figure 3 and avoids negative cyclic dependencies within a state.[S+1] blk del:RP (~Y ; �Y ) [S] RP (~Y ; �Y ); RC( ~X; �X);:req del:RC( ~X; �X); ~X=~Y ; running: (DRS)The whole process keeps running while there are new blockings:[0] running:[S+1] running [S+1] blk del:R(X); [S] :blk del:R(X): (RS1 )When the iteration terminates, the �nal set of delete requests is derived:[S+1] del:R( �X) [S+1] :running; [S] running; req del:R( �X): (RS2 )After termination, the sets of performed and abandoned updates can be determined:[S] committed del:R( �X) [S] :running;�del:R( �X);:blk del:R( �X):[S] aborted del:R( �X) [S] :running;�del:R( �X); blk del:R( �X): (RS3 )In the following, we refer to this program as PS .PS is state-strati�ed, which implies that it is locally strati�ed and has a unique perfect model[Prz88]. The notion of state-strati�cation takes into account the di�erent \time-stamps" ofrelations:De�nition 1 The labeled dependency graph G(P ) of a Statelog program P is de�ned as follows.Its vertices are the relation names occurring in P . For every rule[S0] H( �X0) [S1] B1( �X1); : : : ; [Sn] B1( �Xn) :of P , G(P ) contains for every i = 1; : : : ; n� a negative edge Ai li;:! H, if Bi is a negative literal :Ai( �X)� a positive edge Bi li! H otherwise.Here, the label li := S0 � Si � 0 is the \gap" between states; it may be omitted for l = 0.A cycle of G(P ) involving only edges with l = 0 is called a local cycle. A program P is calledstate-strati�ed if no local cycle of G(P ) contains a negative edge. 2Figure 4 shows the dependency graph for PS . The labels of edges have been depicted as follows:Solid lines represent local edges (marked with l = 0), dotted lines represent edges across statetransitions (ie, labeled with l = 1). Note that only solid edges have to be considered for state-strati�cation.From the dependency graph it is clear that the program implementing the algorithm is state-strati�ed. Thus, for every database D and every set U� of user delete requests, it has a perfectmodelM(PS ;D; U�).The dependency graph also mirrors the stages of the algorithm: The main relations in-volved in the computation (represented by solid-lined ovals) are R, �del:R, req del:R andblk del:R for EDB relations R. The relations R, �del:R remain unchanged during the it-eration. Since req del:R depends negatively on blk del:R, the naturally given strati�cationfblk del:Rg � freq del:Rg corresponds to the steps shown in Figure 3:



�del:R req del:RR blk del:R
del:R running:

: :
:Figure 4: Dependency GraphEvery iteration of the algorithm starts with a set of blockings, which is given in the Statelogtranslation by (DRS). According to the strati�cation, at �rst the induced blockings are com-puted (DCS2 ) also determining the blocked user delete requests. Then the remaining user deleterequests issue internal delete requests (IS) which are cascaded by (DCS1 ). From these, theresulting blockings for the next iteration are computed.With the formal basis given by the Statelog program, the correctness of the algorithm canbe proven:De�nition 2 Let D be a database, U� a set of user delete requests, and RA a set of referentialactions of the form RC : ~X ! RP :~Y ON DELETE f CASCADE j RESTRICT g. A set U� of (internal)delete requests is called admissible if1. every R(�x) 2 U� is founded by some �del:R0(�x0), ie there is a chain of references from R(�x)to R0(�x0) in D using ON DELETE CASCADE triggers from RA, and2. all referential actions RA (and hence all ric's) are satis�ed in the new databaseD0 := DnU�. 2De�nition 3 Let DELn(PS ;D; U�) be the set of delete requests in state [n], DELn�(PS ;D; U�)is the subset of these which are given by the user, ieDELn(PS ;D; U�) := fdel:R(�x) j M(PS ;D; U�) j= [n] req del:R(�x)gDELn�(PS ;D; U�) := DELn(PS ;D; U�) \ fdel:R(�x) j �del:R(�x) 2 U�g :Finally, assuming that the algorithm terminates in a state [nfinal] (this is proven below), letDEL(PS ;D; U�) := DELnfinal(PS ;D; U�) and DEL�(PS ;D; U�) := DELnfinal� (PS ;D; U�) :2In the next theorem, arguments PS , D, and U� ofM and the DEL sets are omitted:Theorem 1 (Correctness) Given a database D, a set of ric's with corresponding referentialactions, and a set of external delete requests U�, the algorithm given by PS determines themaximal set of admissible delete requests.More speci�cally, one can show (cf. Appendix A):1. In every state [n], all internal delete requests are founded by some user request which is notblocked in [n].



2. In every state [n], no tuple is both blocked and requested for deletion, ie there is no n andR(�x) s.t.M j= [n] req del:R(�x) ^ blk del:R(�x).3. Wrt. subsequent states, delete requests and blockings are nonincreasing and nondecreasing,respectively: M j= [n+1] req del:R(�x))M j= [n] req del:R(�x)M j= [n] blk del:R(�x))M j= [n+1] blk del:R(�x):4. In every state [n], executing all internal delete requests of [n] would not violate any ON DELETECASCADE trigger.5. In every state [n], DELn is the set of internal deletions which have to be executed to accom-plish the user requests DELn�.6. After termination, ie when M j= [n]:running ^ [n�1] running, executing all outstandingdelete requests req del:R(�x) would not violate any ON DELETE RESTRICT trigger.7. In every step, all tuples R(�x) s.t.M j= [n] blk del:R(�x) _:req del:R(�x) are not contained inany admissible set of deletions.8. DEL is the maximal admissible set of delete requests, the subset DEL� is the maximal setof admissible user delete requests.9. DEL (and thus DEL�) is unique.Theorem 2 (Termination) For every database D and every set U� of user delete requests,there is a unique �nal state nfinal � jU�j+1, ie for all k < nfinal: M(PS ;D; U�) j= [k] running,and for all k � nfinal: M(PS ;D; U�) j= [k]:running.Proof The algorithm stops in state [n] if there are no new blockings compared to [n�1].Let n � 2. Assume that there is some new blocking in [n], ie M j= [n] blk del:R(�x) andM j= [n�1]:blk del:R(�x). Then there also has to be some R0(�x0) s.t. (i)M j= [n] blk del:R0(�x0)andM j= [n�1]:blk del:R0(�x0) and (ii)M j= [n] blk del:R0(�x0) is derived by (DRS). Thus, thereis a tuple R00(�x00) s.t.M j= [n�1]:req del:R00(�x00) andM j= [n�2] req del:R00(�x00). Furthermore,since M j= [n�2] req del:R00(�x00) has to be founded by some user delete request �del:U(�y) s.t.M j= [n�2]:blk del:U(�y), this user delete request must be blocked in [n�1]. Hence, for eachiteration, at least one user request is blocked which has not been blocked before. Since blk delis nondecreasing and the algorithm terminates as soon as blk del becomes stationary, there areat most jU�j+ 1 iterations.4.2 A Three-Valued FormalizationThe presented Statelog formalization of algorithm A makes explicit use of state terms [S+1] and[S]. This is the reason why it is possible to de�ne updates within the Statelog language. On theother hand, it is desirable to have a \static" logical semantics which is de�ned without referenceto di�erent states. In this section, we show how such a semantics can be directly obtained fromreferential actions. However, due to the inherent negative cyclic dependecies between deleterequests req del and blockings blk del, the resulting program will be non-strati�ed. The well-founded semantics [VGRS91], which is generally accepted as a declarative semantics for suchprograms, assigns a third truth value unde�ned to atoms whose truth value can neither bederived as true nor as false using a \well-founded" argumentation and the given logic rules. TheStatelog formalization given in the previous section can be seen as a certain interpretation ofthis well-founded model where priority is given to deletions.PW : A Direct Translation with Well-Founded Negation. Recall the �rst direct trans-lation of referential actions into logic rules from Section 3. Let PW be the program consistingof rules (DC1), (DC2), (DR) and the modi�cation of rule (I):



req del:R( �X) �del:R( �X);:blk del:R( �X): (IW )Due to the negative dependencies, the well-founded model W(PW ;D; U�) of PW may containatoms blk del:R(�x) and req del:R(�x) with the truth value unde�ned. The fact that the presentedStatelog formalization is sceptic wrt. blockings and gives priority to deletions whenever possibleis established by the followingTheorem 31. M(PS ;D; U�) j= [nfinal] req del:R(�x) , W(PW ;D; U�)(req del:R(�x)) 2 ftrue ; undef g .2. M(PS ;D; U�) j= [nfinal]:blk del:R(�x) , W(PW ;D; U�)(blk del:R(�x)) 2 ffalse ; undef g .Therefore, whenever the well-founded model yields the truth-value true or unde�ned for a deleterequest req del:R(�x), the tuple R(�x) is deleted by PS . On the other hand, unde�ned blockingsblk del:R(�x) in the well-founded model are ignored and regarded as false by PS .Example 5 The \diamond" in Figure 1 results in a \dispute" between blockings and deletions:Given the user request �del:RA(a), the delete requests req del for RA(a), RB(a; b), RC(a; c),RD(a; b; c), as well as the blockings blk del for RA(a), RC(a; c) will be unde�ned in the well-founded model. This can be regarded as an ambiguity which is resolved in the presented algo-rithm A by giving priority to delete requests. Thus, according to Theorem 3, the above deleterequests are interpreted as true, while the blockings are interpreted as false.Looking at the database in Figure 2 with the user requests f�del:RA(a);�del:RA(b)g, we�nd that the blockings for RA(a) and RC(a; c) are true in the well-founded model (due to thereferencing tuple RE(a)) and thus RA(a), RC(a; c) cannot be deleted. In contrast, the tuplesRA(b); RB(b; b); RC (b; c) and RD(b; b; c) can be deleted, since there are unde�ned delete requestsfor them in the well-founded model, and { like above { priority is given to deletions.4.3 Playing GamesIn the following, we develop a very intuitive game-theoretic presentation of PW which yields analternative and elegant speci�cation of referential actions. As indicated in the previous example,deletions and blockings can be viewed as a dispute whether a certain tuple can be deleted orhas to remain in the database.More precisely, the dispute is a game between two players I (the \Deleter") and II (the\Spoiler").8 The game is played in rounds with a pebble which can be placed on any tuple ofthe given database D and on any user request in U�. Thus, D [ U� are the positions of thegame. Each round consists of two moves.Initially, the pebble is on an arbitrary tuple R(�x) in D. Then I starts to play and triesto prove that R(�x) can be deleted. He does so by moving the pebble from R(�x) to some userrequest �del:R0(�x0) such that there is a �nite sequence of references { encoded as ON DELETECASCADE { leading from R(�x) to �del:R0(�x0) in D. Player II tries to disprove the argument ofI by moving the pebble to some tuple R00(�x00) which cannot be deleted due to an ON DELETERESTRICT trigger and a �nite sequence of references using ON DELETE CASCADE triggers whichwill eventually also restrict the user request �del:R0(�x0). If a player cannot move, he has lostthe game. In this case the opponent has successfully proved his claim and won the game. Thefollowing moves in the game are possible:Player I can move from R(�x) to �del:R0(�x0) :,\there is a �nite sequence of ric's with ON DELETE CASCADE triggers leading from R(�x) to�del:R0(�x0) in D."8Read I and II as \one" and \two", respectively. From the point of view of player I, you can read it also as\I" (myself) and \You" (\II" resembles \U").



Player II can move from �del:R(�x) to R0(�x0) :,\R0(�x0) is blocked by an ON DELETE RESTRICT trigger, and there is a �nite sequence of ric'swith attached ON DELETE CASCADE triggers leading from R0(�x0) to �del:R(�x) in D."The moves by I are reected in the logical speci�cation: if there is a successful (top-down)derivation of req del:R(�x) using (DC1) and successfully ending in a fact �del:R0(�x0), then themove from R(�x) to �del:R0(�x0) is allowed. Similarly, moves by II are reected in the logicalspeci�cation by rules (DC2) and (DR) (without the negated goal).The game itself can be easily de�ned in well-founded Datalog using the famous rule:win( �X) move( �X; �X 0);:win( �X 0):Ambiguity Revisited. We say that a game is won (lost) for I at position R(�x), if I (II)can win the game starting at R(�x), no matter how II (I) moves. A position which is neitherlost nor won for I is drawn. Drawn positions can be viewed as ambiguous situations: Using\well-founded" arguments, neither can I prove that R(�x) has to be deleted, nor can II provethat it must not be deleted: there are negative cycles in the arguments leading to the truth-valueunde�ned for req del:R(�x).The previously given speci�cation PW correctly reects the intuitive game-theoretic description:Theorem 4� I wins at R(�x) i� W(PW ;D; U�) j= req del:R(�x),� II wins at R(�x) i� W(PW ;D; U�) j= :req del:R(�x), and� R(�x) is drawn i� W(PW ;D; U�)(req del:R(�x)) = undef .Example 6 Consider again the \diamond" in Figure 1. The positions are RA(a), RB(a; b),RC(a; c), RD(a; b; c), and �del:RA(a).I can move from any position in fRA(a); RB(a; b); RC(a; c); RD(a; b; c)g to �del:RA(a), whileII can move from �del:RA(a) to RD(a; b; c). Thus, after I has started the game moving to�del:RA(a), II will answer with the move to RD(a; b; c) and so on. Hence the game is drawn forall start positions of I.In contrast, if RE(a) is added to the database in Figure 1, there is an additional move from�del:RA(a) to RE(a) for II, who now has a winning strategy: by moving to RE(a), there is nopossible answer for I, so I loses. By Theorems 4 and 3, RA(a) cannot be deleted.5 ConclusionReferential actions (triggers) have been included in the SQL2 and SQL3 standards [JTC92,JTC94] as a means to automatically enforce referential integrity in relational databases. How-ever, a naive implementation of the standard trigger semantics can lead to ambiguities due todi�erent execution orders resulting in di�erent �nal database states after an update. Moreover,as was shown in [Rei96], it is undecidable whether a given database schema with a set of ric'sis ambiguous. For a given database, the problem becomes decidable and can be checked atrun-time as proposed in the SQL2 standard.In this paper, we have argued for an alternative, logic-based semantics of referential actionswhich results in a concise and elegant description of the precise behavior of triggers. In thispaper, we have con�ned ourselves to ON DELETE CASCADE and ON DELETE RESTRICT triggers.The proposed semantics is less restrictive than the SQL semantics and allows to execute themaximal set of user delete requests. In particular, the problem of ambiguity is avoided since
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A Appendix: ProofsProof of Theorem 1.1. M j= [n] req del:R(�x) only if it is derivable by (DCS1 ) and (IS). Thus, there is a chain of ONDELETE CASCADE triggers from R0(�x0) to R(�x) such thatM j= [n]�del:R0(�x0);:blk del:R0(�x0).2. IfM j= [n] blk del:R(�x) ^ req del:R(�x) then by (1), req del:R(�x) is founded by some user re-quest �del:R0(�x0) s.t.M j= [n]:blk del:R0(�x0) using a chain of ON DELETE CASCADE triggers.However, in [n], (DCS2 ) also propagates blocking upwards this chain from blk del:R(�x) toblk del:R0(�x0) which is a contradiction.3. First observe that in PS , req del:R and blk del:R depend negatively on each other, ie if oneincreases the other can only decrease and vice versa. Moreover, M j= [0]:blk del:R(�x) forall R(�x), thus M(PS ;D; U�) j= [0] req del:R(�x) for all req del:R(�x) which are founded bysome user delete request. Therefore, initially all blk del:R are minimal and all req del:R aremaximal possible wrt. (1), so blk del:R can only increase while req del:R can only decrease.4. All delete requests are cascaded exhaustively: If a ric encoded as ON DELETE CASCADE isviolated, then there are RP (~x; �x) and RC(~y; �y) such that ~x = ~y andM j= [n] req del:RP (~x; �x),but notM j= [n]:req del:RC(~y; �y). This contradicts rule (DCS1 ) in PS for the correspondingric.5. Follows from (1) and (4): In every state all internal delete requests are founded by some non-blocked user delete request and all non-blocked user delete requests are cascaded exhaustively.6. Because ofM j= [0] running, n � 1.If a ric of the form ON DELETE RESTRICT is violated, then there are RP (~x; �x) and RC(~y; �y)such that ~x = ~y and M j= [n] req del:RP (~x; �x) ^ :req del:RC(~y; �y). Since req del:RP isnonincreasing,M j= [n�1] req del:RP (~x; �x).(i) Assume that in [n�1] this ric is not violated. ThenM j= [n�1] req del:RC(~y; �y). Since inevery state, internal delete requests are computed by cascading deletions from all non-blockeduser delete requests, all user delete requests which founded req del:RC(~y; �y) in [n�1] (andthus were not blocked in [n�1]) must be blocked in [n], so there is at least one �del:R0(�x0)s.t. M j= [n�1]:blk del:R0(�x0) and M j= [n] blk del:R0(�x0), thus by (RS1 ), M j= [n] runningand [n] cannot be the �nal state.(ii) If [n�1] violates the above ric,M j= [n�1] req del:RP (~x; �x) ^ :req del:RC(~y; �y). By rule(DRS) we haveM j= [n] blk del:RP (~x; �x). Contradiction to (2).7. [0]: As shown in the proof of (3), req del:R is overestimated to be the whole set of foundeddelete requests, thus every deletion of a tuple R(�x) s.t. M j= [0]:req del:R(�x) would beunfounded. blk del:R is empty in the �rst step.[n�1]! [n]: IfM j= [n] blk del:R(�x)^ [n�1]:blk del:R(�x) then by (DCS2 ) and (DRS), thereis some R0(�x0) and R00(�x00) s.t. there is a sequence of ON DELETE CASCADE triggers from R(�x)to R0(�x0), and an ON DELETE RESTRICT fromR0(�x0) to R00(�x00) andM j= [n�1]:req del:R00(�x00).Thus, by induction hypothesis, R00(�x00) is not in an admissible set of deletions. Since deletionof R(�x) would trigger the deletion of R0(�x0), but this is restricted by R00(�x00), it follows thatR(�x) can also not be deleted, ie is not in an admissible set of deletions.If M j= [n]:req del:R(�x) ^ [n�1] req del:R(�x) then all user delete requests which foundedthe deletion of R(�x) in [n�1] are blocked in [n] ((IS) and (DCS1 )), ieM j= [n] blk del:R0(�x0)for all those tuples. Thus, as proven above, all of them cannot be deleted, thus the deletionof R(�x) would be unfounded wrt. the remaining set of user delete requests.8. At the beginning, req del:R is overestimated to be the whole set of founded internal deleterequests. As shown in (7), only tuples are removed from req del:R which cannot be in anyadmissible set. Thus the set is maximal.



As shown in (4), no ric encoded as ON DELETE CASCADE is violated in any state [n] whenexecuting all internal delete requests of this state, and (6) gives that no ric encoded as ONDELETE RESTRICT is violated in the �nal state when executing all internal delete requests.9. For any two admissible sets of deletions U1; U2, also U1 [ U2 is admissible. Hence there is aunique maximal admissible set DEL.Proof of Theorem 3. This is shown by recasting the alternating �xpoint computation ofW(PW ) using an equivalent Statelog program PA. Finally, we show how PA and PS are relatedwhich concludes the proof. As described in [LHL95], PA can be constructed as follows:Attach state terms to the given non-strati�ed program PW , such that all positive literalsrefer to [S+1] and all negative literals refer to [S]. The resulting Statelog program PA computesthe alternating �xpoint of PW :9[S+1] req del:R( �X) �del:R( �X); [S] :blk del:R( �X): (IA)% RC : ~X ! RP :~Y ON DELETE CASCADE:[S+1] req del:RC( ~X; �X) RC( ~X; �X); ~X = ~Y ; [S+1] req del:RP (~Y ; �Y ); (DCA1 )[S+1] blk del:RP (~Y ; �Y ) RP (~Y ; �Y ); ~X = ~Y ; [S+1] blk del:RC( ~X; �X): (DCA1 )% RC : ~X ! RP :~Y ON DELETE RESTRICT:[S+1] blk del:RP (~Y ; �Y ) RP (~Y ; �Y ); RC( ~X; �X); ~X=~Y ; [S] :req del:RC( ~X; �X): (DRA)Note that PA is a state-strati�ed Statelog program. Its perfect model M(PA;D; U�) mimicsthe alternating �xpoint computation of W(PW ;D; U�): even-numbered states [2n] correspondto the increasing sequence of underestimates of true atoms, while odd-numbered states [2n+ 1]represent the decreasing sequence of overestimates of true (and unde�ned) atoms. The �nalstate of the computation is reached if M[2nfinal] = M[2nfinal + 2]. Then for all relations R,the truth value of atoms R(�x) in W(PW ) can be determined fromM(PA) as follows:W(PW ;D; U�)(R(�x)) = 8<: true ifM(PA;D; U�) j= [2nfinal] R(�x)undef ifM(PA;D; U�) j= [2nfinal] :R(�x) ^ [2nfinal + 1] R(�x)false ifM(PA;D; U�) j= [2nfinal + 1] :R(�x)It remains to show how PA and PS are related:Lemma 5 The model M(PA;D; U�) corresponds to M(PS ;D; U�) as follows:1. M(PA; D; U�) j= [2n] blk del:R(�x) , M(PS ;D; U�) j= [n] blk del:R(�x).2. M(PA; D; U�) j= [2n+1] req del:R(�x) , M(PS ;D; U�) j= [n] req del:R(�x).Proof PS and PA di�er in the rules (IS) and (IA): While (IA) derives internal delete requestsin [S+1] from unblocked user requests in [S], (IS) already establishes these in the current state[S].In [0] neither program derives blockings blk del:R(�x); hence we have an underestimate ofthe �nal set of blockings. From this, both programs derive an overestimate of delete requestsreq del:R(�x). Due to rules (IS) and (IA) these overestimates are computed in [S] and [S+1]by (IS) and (IA), respectively. Using these overestimates, the next sets of underestimatesblk del:R(�x) are derived in [1] for PS , and in [2] for PA. Applied inductively, this argumentconcludes the proof.Proof of Theorem 4. First, we prove the following9It is assumed that base relations R and user requests �del:R are propagated unchanged by frame rules, so nostate terms are needed for these relations.



Lemma 6� I wins at R(�x) within n rounds i�M(PA;D; U�) j= [2n] req del:R(�x).� II wins at R(�x) within n rounds i�M(PA;D; U�) j= [2n�1] :req del:R(�x).Proof (All subproofs below can be extended to \i�", but for better readability, this is notalways formulated exactly.)II wins in one round starting at R(�x) i� Player I cannot move to a user request, ie if thedeletion of R(�x) is unfounded. That is the case i� in the �rst overestimate of PA, R(�x) is notrequested for deletion: M(PA;D; U�) j= [1] :req del:R(�x).I wins in one round at R(�x) i� the deletion of R(�x) is founded by some user delete request�del:R0(�x0), and II cannot move from �del:R0(�x0). This is the case, if there is no ON DELETECASCADE chain from R0(�x0) to a tuple R00(�x00) which is restricted by some other tuple. Thus, inthis case, in the �rst overestimate of PA, the deletions of R00(�x00) and R0(�x0) are not blocked:M(PA;D; U�) j= [1] :blk del:R0(�x0). Then, since there is a user delete request �del:R0(�x0),M(PA;D; U�) j= [2] req del:R0(�x0) andM(PA;D; U�) j= [2] req del:R(�x).The induction step follows the same line of argumentation:II wins in n+1 rounds at R(�x) i� for all moves to some �del:R0(�x0) of I, he can move to sometuple R00(�x00) which he wins in n rounds: M(PA;D; U�) j= [2n�1] :req del:R00(�x00) by inductionhypothesis. Thus, since there is a move from �del:R0(�x0) to R00(�x00), there are triggers ON DELETERESTRICT and ON DELETE CASCADE s.t. M(PA;D; U�) j= [2n] blk del:R0(�x0). Since this is thecase for all R0(�x0) where I can move to from R(�x),M(PA;D; U�) j= [2n+1] :req del:R00(�x00).I wins in n+1 rounds at R(�x) if there is a R0(�x0) he can move to s.t. for all positionsR00(�x00) where II can move to from R0(�x0), II will lose in at most n rounds. By inductionhypothesis, for all those R00(�x00), M(PA;D; U�) j= [2n] req del:R00(�x00). Thus,M(PA;D; U�) j=[2n+1] :blk del:R0(�x0) andM(PA;D; U�) j= [2n+2] req del:R(�x).From the previous lemma, Theorem 4 follows immediately: Since even-numbered states areunderestimates, there is an n such thatM(PA;D; U�) j= [2n] req del:R(�x) i� W(PW ;D; U�) j=req del:R(�x), and on the other hand, since odd-numbered states are overestimates, there is an nsuch thatM(PA;D; U�) j= [2n+1] :req del:R00(�x00) i� W(PW ;D; U�) j= :req del:R00(�x00).The game is drawn at R(�x) if for every tuple R0(�x0) which II chooses, I can �nd a user requestwhich deletes it, and conversly, II has a witness against each such user request. Thereforeeach player has no \well-founded" proof for or against deleting those tuples. This directlycorresponds to the alternating �xpoint characterization of the well-founded model: The n-thoverestimate of deletions excludes those tuples which can be disproved in n rounds, whereas then-th underestimate contains all tuples which can be proved in n rounds.


