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Abstract. As ever-larger knowledge bases (KBs) are being built, knowledge sharing becomes an aspect of paramount
importance in Knowledge Base Management Systems (KBMSs). In this paper, we propose a way of controlling
knowledge sharing by means of the LARS (Locks usingAbstractionRelationships’Semantics) approach for concur-
rency control in KBs. LARS synchronizes transactions through many different granules of locking, which are based
on the semantics of the abstraction relationships commonly used in knowledge representation approaches. LARS
supports a higher degree of potential concurrency in that it maintains different logical partitions of a KB graph, a
means for representing KBs, and offers many lock types to be used on the basis of each one of the partitions. By such
a way, LARS captures more of the semantics contained in a KB, through an interpretation of the (abstraction)
relationships between objects, profits from such semantics for synchronizing the transactions, and thus makes
feasible the exploitation of the inherent parallelism in a knowledge representation approach.
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1  Introduction

We begin this paper with the question: What exactly is a knowledge base? There is a lot of discussion on the

meaning ofknowledge or aknowledge base. Similarly, a variety of definitions of a knowledge base may be found

in the literature. We present here a specific definition, widely accepted in the knowledge representation

community, by Levesque and Brachman [LEV85]:

“A knowledge base has explicit structures representing the knowledge of the system which
determine the actions of the system. It is not the use of a certain programming language or a
data-structuring facility that makes a system knowledge-based.”

This definition views a knowledge base as a system with explicit structures representing the knowledge, and that

is exactly the most important characteristic of such a system for our purposes. Any data model which explicitly

represents the knowledge and, therefore, explicitly encodes the knowledge and the semantic structure of an appli-

cation domain may use the results we present in this paper. We will see in a later section how our protocol

visualizes such systems (as single-rooted, directed, and acyclic graphs). In other words, our approach for concur-

rency control (CC) is general and applicable to a broad class of applications (e.g., object-oriented), and not only to

knowledge-based systems.

In this paper, we present our approach for CC in KBs, an important research direction as ever-larger KBs are being

built and the applicability of KBMSs grows [MYL90]. The main objective we have in mind is the provision of

serializability for ACID transactions. With serializability we mean that our technique is governed by theSerializ-

ability Theory of Gray et al. [GRA76], which states that if an execution produces the same output and has the same

effect on the database (DB) as some serial execution of the same transactions, it is correct, because serial execu-

tions are assumed to be correct. With ACID transactions we mean that the transactions running in our system have

the properties of conventional ones, the ACID (atomicity, consistency, isolation, and durability) properties pointed

out by Härder and Reuter [HÄR83]. In other words, our protocol neither treats the operations’ semantics in order

to allow non-serializable schedules to be produced, nor copes it with long-duration transactions (in fact, the trans-

actions may span minutes and even hours, but are not anticipated in terms of days or months).

Among the most important classes of CC algorithms arelocking, timestamps, andserialization graphs [BER87].

There is also a great body of variations of these classes based on multiple versions, multi-level, optimistic methods,

etc. In particular, the class of locking-based algorithms has shown its practicality and performance. Additionally,

locking-based algorithms have special solutions for graph structures, the abstractions for KBs that appear to be the
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most appealing [CHA92, MYL94]. Consequently, we have chosen to develop our CC technique for KBs based on

locking. In particular, we consider multiple granules of locking for controlling the concurrent accesses in a KB.

Granular locks are known to be meaningful, because they provide transactions the possibility of choosing, among

different locking granules, the most appropriate one to accomplish their tasks. In addition, the use of implicit locks

significantly minimizes the number of locks to be set by transactions. These are some of the reasons which lead us

to hope to be able to use the power and elegance of granular locks also in KBs.

An initial version of the LARS protocol has been published in [REZ94]. In this paper, we present the evolution of

our investigations on CC in KBs since [REZ94], which are here condensed in this much more robust version of

LARS. Differently from [REZ94], here we have cut two lock modes (the conventional lock modes in the termi-

nology of that paper), we analyze the representation of edges in KB graphs, we make some comments on inference

engines, we analyze the problems of considering the semantics of methods for CC purposes, we expose in more

details the problems of granular locks in a semantically rich structure like KB graphs, and we discuss in much more

details the issues of insert and delete operations. This paper is organized as follows. After providing some particular

KBMSs’ issues (Sect. 2), we present an overview of granular locks and point out the main problems of its pure

appliance in the KBMS environment (Sect. 3). Then, we introduce our approach for transaction synchronization in

KBMSs (Sect. 4). Thereafter, we discuss related work (Sect. 5), and finally conclude the paper (Sect. 6).

2  Particular KBMSs’ Issues

2.1 Abstraction Relationships

KBMSs manage complex and structured objects, and also different types of abstraction relationships. In fact,

abstractions turned out to be fundamental tools for knowledge organization, and one of the most important aspects

of KBMSs is that objects can play different roles at the same time [MAT88]. Consequently, the KBs’ features can

be visualized as a superposition of the abstraction hierarchies (in fact Directed Acyclic Graphs (DAGs)) of gener-

alization, classification, association, and aggregation, building altogether the so-calledKB graph. It is beyond the

scope of this paper to begin a detailed discussion about the abstraction concepts, the reader is referred to [MAT88,

MAT89] for more details on this topic. In order to illustrate one such a KB graph, in Fig. 1 we provide an example

of a KB to support architects in the design of houses. Notice that the purpose of this scenario is merely to illustrate

our solution for knowledge sharing, rather than schema design issues. This application scenario will serve as a

running example for the rest of the paper.

Fig. 1.An architecture knowledge base.

In order to restrict the KB to a rooted and connected graph, we have added the objectsglobal, the only root of the
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finally aggregates, the root of the aggregation graph. We provide such objects in order to have an adequate

environment for the appliance of LARS. In addition, we assume that all objects (or schemas) are directly or

indirectly related toglobal. When a schema is neither a class/instance, nor a set/element, nor a component/part, it

is connected as a direct instance ofglobal. In turn, all classes/instances, sets/elements, and components/parts are

directly or indirectly related to the predefined schemasclasses, sets, andaggregates, respectively. Moreover, we

assume that the KB graph automatically stays in this form (rooted and connected) as changes undergo over time1.

2.2 The Representation of Edges in KB Graphs

A point deserving a bit discussion is the representation of the edges in KB graphs. The edges in KBs may be repre-

sented either in a unidirectional way (one link, top-down) or in a bidirectional way (two links, top-down and

bottom-up), depending on the implementation characteristics of a particular system. Representing the edges by

unidirectional links has the clear advantage of less maintenance overhead, since maintaining one link up-to-date is

less expensive than two links, of course. However, with a unidirectional representation of edges many significant

queries may not be answered (at least at the same costs when bidirectional links are provided). Furthermore,

questions involving the inheritance of attributes may be made much more difficult. To be more precise, we provide

some examples (using the KB of Fig. 1) of such queries using a concrete knowledge base language, namely

KOALA (KRISYS Object-Abstraction LAnguage) [DES90, MAT89]. Let us analyze the following KOALA

query:

(ASK (?x inherited-slots
(supersguest-chambers dining))

(is-instance ?x rooms* ))

This query retrieves all (*) the instances of the classrooms and shows their attributes inherited from the classes

guest-chambers anddining. The first part of this query is a projection clause, which limits the results’ presentation

just to the attributes inherited (inherited-slots) from the classesguest-chambers anddining. The second part is a

selection clause, which transitively retrieves the instances (?x) of the classrooms. In order to evaluate this query,

first of all KOALA instantiates the classrooms (using the top-down links), retrieving all its instances. Secondly,

KOALA goes from the instantiated objects to the classesguest-chambers anddining (using the bottom-up links),

learns their structures, and by this way performs the projection. This is a common query, which may be evaluated

very efficiently if bidirectional links are present. In the following, we provide a query now using both the classifi-

cation and aggregation graphs:

(ASK (?x ?y)
(and (is-instance?x rooms* )

(is-instance?y suites* )
(is-aggregation ?x ?y* )))

In simple words, this query retrieves all (*) the instances ofrooms which take part in anysuites. To evaluate this

query, KOALA retrieves the instances ofrooms (?x), then the instances ofsuites (?y), and thereafter it goes from

the instances ofrooms to the instances ofsuites via the aggregation relationships (bottom-up). This is also a very

common query which may be evaluated efficiently by means of bidirectional links. In fact, whenever one wants to

know which instances of a class take part in some aggregate, one uses the bottom-up links for finding the aggre-

gates. Similar arguments may be used to justify bidirectional links in the association graph (for example, to

efficiently answer simple queries like: Which instances of a class take part in some set?).

Therefore, bidirectional links may not be considered performance ‘bottlenecks’ in KBMSs, because the costs for

maintaining them up-to-date are paid off when evaluating the queries much more efficiently. Smalltalk represents

the edges for the abstraction concepts it provides by means of bidirectional links [GOL89]. C++ standard is being

expanded to support bidirectional links, and in the next standard they are going to be available [HAR94, HÜS94].

KRISYS also supports bidirectional links [MAT89]. These are just some examples. Due to that, we assume that

the edges in a KB graph are bidirectionally represented. Like the KBMSs’ query evaluation components, we use

1. This representation and behavior are very similar to the ones used by KRISYS [MAT89] to represent KBs.
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the power of bidirectional links also in LARS. However, it is convenient to notice here that such bidirectional links

are used in LARS just in the representation of the abstraction concepts, andnot in the access paths (indices like

B*-trees). This will become clear in the later sections.

2.3 Inference

In Artificial Intelligence, inference refers to the various processes by means of which programs (the so-called

inference engines) drawn conclusions or generate new knowledge from facts and suppositions. There are several

alternatives to knowledge representation aimed at performing inference, such as production rules, (full) first-order

logic, Horn clauses, etc. In this section, we briefly discuss this topic and analyze the access and further lock require-

ments imposed by inference engines.

Production rules represent general knowledge about the problem domain, and can be used to represent a variety of

different types of inference. Each rule is a simple program with the format [DAV77]:

(IF <condition>
THEN <action>)

where the condition is typically a conjunction of predicates, and the action activates other procedures which poten-

tially change the KB state. A very important aspect of the inference process is the kind of control or guidance that

is available to direct the process to the desired conclusion [HEU87]. Mechanisms used to identify applicable rules

are denoted inference strategies [PUP86]. Among these, data-driven (or forward reasoning) and goal-driven (or

backward reasoning) are the most common. In turn, the mechanisms used to determine the rule to be executed are

called conflict resolution strategies (usually further divided into search strategies and conflict solving strategies).

Additionally to rules, first-order logic can also be used to represent procedural knowledge for the application

domain. However, a major problem with general first-order logic for knowledge representation is the difficulty in

expressing control structures that efficiently guide the use of a large KB [VAS85]. In order to reduce such

problems, at the costs of also reducing the representation power, practical tools (e.g. Prolog) do not use full first-

order logic, but only a subset known as definite (Horn) clauses. Horn clauses are interpreted in a procedural way

reminiscent of the backward reasoning of production rules, leading to efficient search processes [FRO86].

All in all, the backward or forward reasoning mechanisms are processed following an object(or record)-oriented

approach, and the paths that they use are the commonly available ones (indices, hash tables, abstraction graphs,

etc.). Anyway, the search and/or (subsequently) update processes triggered by either production rules or Horn

clauses may be mapped to the usual operators (like selection, projection, join, semi-join, etc.) supported by most

data manipulation and knowledge languages. Therefore, the process of locking the objects that need to be accessed

whenever the inference engine activates such production rules and/or Horn clauses does not generate any new

problem to a CC mechanism operating in KBMSs where inference is supported.

2.4 Methods

Methods are used in KBMSs in order to describe the operational aspects of objects’ attributes, i.e., they characterize

the behavior of the real world entity. In the last few years, there have been considerable efforts in order to approach

the limits of concurrency by exploiting the semantics of objects and their operations when synchronizing transac-

tions. For example, a set object may allow simultaneous inserts, because the semantics of a set implies that the

order in which concurrent inserts are performed does not matter, i.e., it makes no difference in the results of these

operations, even though inserts would be classified as writes in a read-write scheme and therefore could not occur

concurrently. The main idea behind the use of operations’ semantics for transaction synchronization is to break the

serializability of transactions, allowing non-serializable schedules to be produced, as long as they preserve the

consistency and are acceptable to the system users.

Such an approach may be meaningful, since in some applications users may be satisfied with a schedule that

preserves consistency, even though it is not serializable. It is well-known that allowing the transaction processing

mechanism to run these schedules may result in higher parallelism and better performance in some cases [GAR83,
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CAS80, ESW76, KUN79, FIS82, GRA81, LYN83]. However, there is one drawback, among the main important

ones, of such an approach [GAR83]: It is difficult for a general transaction processing mechanism to decide what

schedules are semantically consistent. Although Badrinath and Ramamrithan [BAD88, BAD87] in their approach

hold the opinion that the designer of an object type needs only to specify the semantics of operations, and their

compatibilities ought to be (dynamically) determined from these specifications when the operations are requested

to be executed on an object, it is more widely accepted that such a transaction processing mechanism must receive

some help from the users of the system. The user (or objects designer) must provide a table indicating which opera-

tions conflict (cannot be executed concurrently). Hence, every time an object is created, besides describing the

operations (or in the KB terminology, the methods) to be available for manipulating the object, the user must define

a compatibility matrix for those operations (generally based on the commutativity of the operations). Such a

‘commutativity matrix’ is then used by the scheduler to synchronize the transactions executing those operations on

the object.

In LARS, we do not exploit the semantics of methods to allow for non-serializable schedules due to several

reasons. In the following, we discuss some of these reasons:

• One important question arising with such a methodology gives respect to schema evolution (or extensibility).

That is, KBMSs and object-oriented database management systems (OODBMSs) allow the objects’ definitions

to be dynamically modified (concurrently) with the accesses to the objects defined by them. For example, a class

can be modified by replacing an old method implementation by a new and perhaps more efficient one. Methods

or even attributes may be added or deleted from a class. All of that has some impact on the use of methods’

semantics for CC. Unfortunately, it is not yet so clear in such methodologies in how far schema evolution will

be affected. It may become very hard to users, if every time one changes or inserts or deletes a method, one must

analyze the semantics of all other methods of the object, in order to adjust the object’s commutativity matrix.

This is a drawback which may seriously confuse the extensibility property of such systems. In summary, the

cost of serializable schedules may be unacceptably high in some applications, but it is really not a good idea to

burden users with the classification and analysis of methods in order to define their commutativities.

• Another point worth of discussion is recovery. If commutative operations are allowed to be simultaneously per-

formed on an object, a conventional (e.g., page-oriented) recovery mechanism does not work correctly. In such

cases, logical logging must be performed and compensating transactions (or countersteps) must be provided. In

turn, it could be very difficult in some cases to analyze transactions in order to write countersteps for their op-

erations. The proper notion of commutativity depends upon the implementation and representation of the ob-

jects and all of that has impact on recovery. In particular, Weihl [WEI89] has shown that when operations on

an object are executed by using theupdate-in-place policy [HÄR83] for recovery then the conflict (commuta-

tivity) relation must be derived from what he calledright backward commutativity. On the other hand, if oper-

ations are executed with thedeferred-update approach then the conflict relation is derived fromforward com-

mutativity. In general, the more semantics one uses in synchronization to improve concurrency, the more com-

plex become the synchronization and, as a consequence, the recovery mechanisms.

• Most of the approaches for commutativity-based CC assume that each object provides operations that can be

called by transactions to examine and modify the object’s state, and additionally that these operations constitute

the sole means by which transactions can access the state of the objects (among others, examples are [WEI88,

BAD88, FAR89, GAR83, SCH84, RAK90, CHR91, HAD91]). However, we believe that in a real-life environ-

ment, some transactions may want to bypass the encapsulation of an object and rather access the object directly

through a generic knowledge or data manipulation language. Therefore, the scheduler should in fact deal with

the coexistence of methods and generic transactions that access objects directly. This may even more complicate

the synchronization of transactions in such methodologies. Muth et al. [MUT93] present conceivable reasons

for bypassing the encapsulation of an object and propose a protocol addressing this issue.

Finally, the most critical question is whether performance will really improve or not with the use of operations’

semantics for transaction synchronization. Of course, in special applications performance may be definitively

improved. However, there are applications where semantically consistent schedules may not be acceptable,
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because certainanomalies or race conditions [CAS80] may occur. As stated by Garcia-Molina [GAR83], it may

be impossible to obtain the results of a semantically consistent schedule with any serializable schedule, and this

may be undesirable to some users (refer to [GAR83] for some examples). In general, it is not yet known how

practical these methodologies will be. Since the use of operations’ semantics did not convince us so far, we

designed the LARS protocol where methods compete for locks like any other transaction request. Hence, LARS

copes with methods like ordinary read and write operations.

3  The Multigranularity Locking Protocol

Granular locks were first introduced by Gray et al. in [GRA76] by means of theMultigranularity Locking Protocol

(MGL, for short). The basic idea of MGL comes from the choice of different lockable units, which are locked by

the system to ensure consistency and to provide isolation. When choosing the lockable units for implementing this

protocol, one will be always faced with the dichotomy: Concurrency versus overhead. On one hand, concurrency

is increased by a fine lockable unit (e.g., a record or a field). Such a unit is appropriate for small transactions which

access few units [GRA76]. On the other hand, a fine locking granule is costly for complex transactions which

access a large number of granules. Such transactions would have to acquire and maintain a large number of locks

[GRA93], which implies a larger overhead. Thus, a coarse locking granule (e.g., a file) would be more convenient

for such transactions. However, a coarse granule discriminates against transactions which only want to lock a fine

granule of the file [GRA76]. The main benefit of MGL is that it satisfies both of these situations, allowing lockable

units of different granularities to coexist in the same system. Moreover, MGL created the notion ofimplicit locks,

stating that by putting a lock on a granule, all descendants of it become implicitly locked without the necessity of

setting further locks. Lastly, MGL introduced the so-calledintention locks in order to prevent locks on the ancestors

of a node which might implicitly lock it in an incompatible mode. Those locks are used to sign the intention of a

transaction to set locks at a finer granularity. Thus, MGL has a basic set of locks composed of the IS (Intention

Share), IX (Intention eXclusive), S (Share), SIX (Share Intention eXclusive), and X (eXclusive) modes, which are

then applied to the nodes in a lock graph (a hierarchy or a DAG) (Fig. 2) [GRA76].

Fig. 2.A lock graph for granular locks.

Notwithstanding, a protocol like MGL is designed for a single organization hierarchy, extended to DAGs in case

of index structures. Particularly in the case of DAGs, MGL requires that, before requesting an X mode access to a

node, all parents of the node must be covered with IX (or greater) locks [GRA78, GRA76]. Consequently, all

superiors of the node cannot be held by other transactions in incompatible modes. In the DAG of Fig. 2, to lock a

particularrecord in X mode, one should lock in advance the correspondingfile, index, area anddatabase in IX

mode. One question arises: How may transactions know which are the superiors of a node, in order to cover them

with IX locks before requesting an X lock on it? This is possible because the data model, to which MGL may be

applied, provides a strict separation between data and meta-data, a separate DB catalog. Hence, transactions may

access, e.g., the DB catalog, and learn that (using Fig. 2) arecord is always contained in afile and pointed to by

an index, in turn afile and the respectiveindex are contained in anarea, and at last anarea is contained in a

database.

However, in data (knowledge) models provided by KBMSs, the object concept is completely symmetric, such that

this separation data/meta-data (like, for example, in the relational model) no longer exists. The superiors of a node

(an object in the KB graph) may be arbitrarily chosen, accordingly to the semantics of the application being

modeled. More importantly, this information may be dynamically changed as a KB undergoes changes over time.

Exemplifying, by means of the classification DAG of Fig. 3, how could a transaction know which are the superiors

of any class, sayclassk? A transaction, obeying MGL, does need such information in order to lock a class in X

database

files indices

records

areas
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mode. This information is nowhere to find statically in KBMSs, as in usual DB catalogs in DB systems (DBSs). In

addition, how could a transaction be sure that by putting an X lock on a class, no one of its subclasses would be

accessed in a conflicting mode by another transaction? Using Fig. 3, a transaction putting an X lock onclassk and

IX on all its superiors (. . . ,classi, . . .) would have no guarantee that another transaction would not accessclassn
by similarly putting an X lock onclassj and IX on all its superiors (. . . ,classi, . . .). Therefore, transactions obeying

MGL may get into troubles with implicitly locked objects, as long as they implicitly lock those objects in

conflicting modes via different paths of the graph. As a consequence, the serializability of transactions may become

violated.

Fig. 3.A classification DAG.

Summarizing, if there would be juststrict abstraction hierarchies in KBMSs, MGL would be adaptable and could

work without problems. However, whenoverlapping, multi-abstraction hierarchies are possible, MGL fails due to

the implicit locks on objects with multiple direct parents, because those objects might be implicitly locked in

incompatible modes by different transactions using different paths along a single kind of hierarchy or different

paths using different hierarchies. Finally, the richness of the KB structure makes the synchronization substantially

more complicated in KBMSs.

Another problem of directly applying MGL in the KBMS environment is the unprofitable use of the semantically

rich structure represented by KB graphs. If we would directly apply MGL to KB graphs, we would not at all be

able to interpret their edges, which represent the abstraction relationships between objects (nodes). To put it

another way, using MGL, when a shared/exclusive lock on a node is granted to a transaction, all descendants of

this node are implicitly locked in the same mode, independently of the relationship the descendants have to the

ancestor. A transaction changing an object’s class properties puts an X lock on it and IX on its superiors, changes

the object itself and all its subclasses and instances (due to the inheritance mechanism). However, if such an object

is, at the same time, a set (component), all its subsets (subcomponents) and elements (parts) become also implicitly

locked. This needlessly restricts the access to those objects by other transactions. Therefore, with such a behavior,

many objects may be locked unnecessarily, because it is not possible to precisely specify which kind of descen-

dants should be implicitly locked, and thus the overall concurrency may be affected negatively.

4  The LARS Protocol

4.1 The Basic Idea

The key feature of KBs is the presence of several semantic relationships. The basic idea which originates LARS is

based on this feature: The KBs can be partitioned into several graphs, according to the semantics of those several

relationships. Thus, we create three different logical partitions from the whole KB graph. These are called the

classification (which includes also generalization),association, and aggregation graphs. Finally, we apply

granular locks to each graph. By this way, we provide users with the possibility of looking at a KB, and abstracting

from it just the partition to be worked out. On one hand, we acquire a minimization of the number of locks in

comparison with for example a conventional approach with shared and exclusive lock modes, where every touched

object must be locked. On the other hand, we define more precisely the granule of lock to be accessed by a trans-

action, allowing it to lock just the objects it really needs to access.

classi

classj classk

classl classm

classn
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4.2 The Lock Modes

Following these logical partitions, we have created three distinct sets of lock types. Hence, similar to MGL, we

have abasic set of lock modes, named: IR (Intention Read), IW (Intention Write), R (Read), RIW (Read Intention

Write), and W (Write). However, we have this basic set of lock modes to each one of the logical partitions, i.e., to

the classification (recognized by a subscript c (c) following the lock mode), association (s), and aggregation (a)

graphs. We named those locks as pertaining respectively to the sets ofC_type, S_type, andA_type locks (in general,

we call themtyped locks). Table 1 presents, in a compact form, their semantics.

4.3 The Lock Compatibilities

With respect to the compatibility of the above mentioned lock types, there are two distinct situations to be coped

with by LARS. First, if the locks requested and granted give respect to the same set of objects (either C_type vs.

C_type, or S_type vs. S_type, or A_type vs. A_type), then the compatibility matrix to be followed is the same of

MGL known from the literature [GRA76, GRA78] (Table 2).

The second situation with respect to the compatibility of the typed locks is the one where both are of different types

(either C_type vs. {S_type or A_type}, or S_type vs. {C_type or A_type}, or A_type vs. {C_type or S_type}). In

this case, the compatibility of the lock modes is not the same as above, because distinct sets of objects are being

dealt with. In [REZ94], a detailed discussion on this topic may be found. Here we limit to presenting the compat-

ibility matrix (Table 3) and making some comments. The main point of this compatibility matrix is that conflicting

lock modes applied to requests of the same abstraction hierarchy may become compatible when issued for different

abstraction hierarchies, e.g., IWc and Wa. In general, there are no conflicts between locks in different hierarchies

if one of them is an intention lock. Only non-intention locks of different hierarchies conflict like ordinary R and W

locks. The reason is simply that an intention lock in hierarchyh only ‘protects’ paths along hierarchyh. An R or

W lock in another hierarchyg only implicitly locks objects reachable by hierarchyg. In the absence of multiple

Table 1.Typed locks’ semantics.

IRc|s|a gives intention shared access to the requested object and allows the requester to explicitly
lock both directsubclasses | subsets | subcomponents of this object in Rc|s|a or IRc|s|a mode,
and directinstances | elements | parts in Rc|s|a mode.

IW c|s|a gives intention exclusive access to the requested object and allows the requester to explicitly
lock both directsubclasses | subsets | subcomponents of this object in Wc|s|a, RIWc|s|a,
Rc|s|a, IWc|s|a or IRc|s|a mode, and directinstances | elements | parts in Wc|s|a or Rc|s|a mode.

Rc|s|a gives shared access to the requested object and implicitly to all direct and indirectsub-
classes | subsets | subcomponents andinstances | elements | parts of this object.

RIW c|s|a gives shared and intention exclusive access to the requested object (i.e., implicitly locks all
direct and indirectsubclasses | subsets | subcomponents andinstances | elements | parts of
this object in shared mode and allows the requester to explicitly lock both directsubclasses |
subsets | subcomponents in Wc|s|a, RIWc|s|a, Rc|s|a or IWc|s|a mode, and directinstances |
elements | parts in Wc|s|a or Rc|s|a mode).

Wc|s|a gives exclusive access to the requested object and implicitly to all direct and indirectsub-
classes | subsets | subcomponents andinstances | elements | parts of this object.

[ c | s | a ]

Requested
Mode

Table 2.Compatibility matrix for typed locks of the same type.

IR IW R RIW W

IR ✓ ✓ ✓ ✓

IW ✓ ✓

R ✓ ✓

RIW ✓

W

Granted Mode [ c | s | a ]
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abstraction relationships to objects, one talks about disjoint sets of objects. Objects belonging to different hierar-

chies are implemented such that distinct parts of an object implement different hierarchies. Other object data can

be accessed independently of the hierarchy that has been used to locate the object. This is the only chance for

conflicts, and is covered by R/W and W/W conflicts. Multiple abstraction relationships to objects are discussed in

the next section. In Table 3, the boxes marked with darker shadows are where LARS offers more concurrency, all

of that due to the consideration given to the semantics of the edges in a KB graph.

4.4 Accessing Implicitly Locked Objects

Before passing on to the LARS’ locking rules, there is a last important point to be coped with by LARS which

deserves a little bit discussion. As a matter of fact, multiple abstraction relations involving an object in a KB may

lead to problems with the implicit locks, so that the isolation property of transactions [HÄR83] may be seriously

corrupted. Actually, an interference arises whenever an object with two or more parents (from now on called a

bastard, in order to be differentiated from an object with only one parent, apurebred) is implicitly locked by one

of them [REZ94]. The implicit lock on a child object is only visible if it is accessed through a specific path of the

graph. In order to find out possible conflicts with implicitly locked bastards, all superiors or inferiors of an object

may be accessed. For this purpose, all relationships have to be represented in a bidirectional way. In [REZ94], we

have discussed many possible alternatives for avoiding conflicts in such situations.

We have chosen for LARS a kind oflazy evaluation strategy for lock conflict resolution with implicitly locked

bastards. In this approach, a transaction may request and be granted an explicit lock without further proceedings.

However, just before effectively accessing an implicitly locked bastard, it must verify whether this object is already

locked in a conflicting mode by another transaction or not. If so, it must wait until this lock is released. If not, it

sets an explicit lock on this object, signalling that it has accessed it. This lock acts like a tag in the object indicating

that it has been already accessed via another parent of it. The key idea there is that a transaction needs to explicitly

lock only those bastards which it actually accesses, leaving the others for the concurrent access by other transac-

tions. This strategy may be better comprehended in the next section’s example (Fig. 4).

4.5 The Locking Rules

Having presented the general guidelines of LARS, we are finally able to expose its complete rules to be followed

by transactions when requesting locks on objects in a KB (see Table 4). Before explaining these rules, it is conve-

nient to notice that transactions are allowed to directly set locks in the root object in any mode, and that LARS

always producesstrict executions [BER87], i.e., it requires the locks of a transaction to be released only at its termi-

nation (either commit or abort).

The first rule states that an IR lock (from the C_type, S_type, or A_type) on a non-root object must be preceded by

either IR or IW locks (from respectively the C_type, S_type, or A_type) on at least one parent of this object, and

so recursively until the root object is reached. The second rule has a similar meaning, but for the IW locks, requiring

that they must be preceded by IW or RIW locks on at least one path from that object to the root object. The third

rule states, first of all, that an R lock on a non-root object must be covered by IR or IW locks on at least one path

from this object to the root object. Thereafter, it requires that a transaction must explicitly lock the bastard descen-

dants2. This is implemented by LARS’ lazy evaluation strategy thereby avoiding conflicts with implicitly locked

objects. The fourth and fifth rules have a similar meaning, but for RIW and W locks, respectively.

[ s or a | c or a | c or s ]
Requested Mode

Table 3.Compatibility matrix for typed locks of distinct types.

IR IW R RIW W

IR ✓ ✓ ✓ ✓ ✓

IW ✓ ✓ ✓ ✓ ✓

R ✓ ✓ ✓ ✓

RIW ✓ ✓ ✓ ✓

W ✓ ✓

Granted Mode [ c | s | a ]
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We now provide an example (Fig. 4) using the architecture KB (Fig. 1). Suppose a transaction, say T1, wants to

read the objectson-bedroom as an element of the objectnorth-rooms. To do that it must follow rules 1 and 3 for

requesting, respectively, IRs locks on the parents ofson-bedroom, and an Rs lock on it. On the other side, another

transaction, say T2, wants to write the objectsleeping together with its subclasses and instances. In turn, it must

follow rules 2 and 5 for requesting IWc locks on the ancestors ofsleeping and a Wc lock on it, respectively.

However, when trying to access the objectsparent-bedroom anddouble-room, T2 realizes that these objects are

bastards, and, as stated by rule 5, it requests Wc locks on them, and is granted because they were free. The same

may happen for the objectson-bedroom as long as T2 tries to access it. When trying this, either T2 must wait, if

the Rs lock on this object is still held by T1, or it may be granted, if T1 has already terminated.

Fig. 4.Avoiding conflicts with implicitly locked objects.

An important point of explicitly locking bastard descendants, besides guaranteeing serializability, is the slackness

of the original requirement of MGL of covering all paths from the node to the root, and as a consequence all

ancestors, with intentions before granting an exclusive lock [GRA76]. This is a serious limitation when an object

has several ancestors and is likely to be used via many of them. In such situations, it is very inefficient to set

intention locks on all the parents [HER89], and as a consequence on all paths to the root, because too many locks

are required, and a transaction may end up locking a large portion of the KB for a possibly simple operation,

decreasing seriously the concurrency and increasing the overhead. Therefore, LARS significantly limits the

overhead of the whole process of setting write locks, and still provides, to a limited extent, a minimization of the

number of locks to be set by transactions, through the use of implicit locks.

2. There may be situations where a descendant may have two edges pointing to the same ancestor. For example, when
an object is at the same time instance and element of the same object. In such situations, the object is considered to
be a bastard, no matter whether the parents are the same object.

Table 4.Locking rules.

1 Before requesting an IRc|s|a lock on an object, the requester must cover a path from the object to the
root with IRc|s|a or IWc|s|a locks.

2 Before requesting an IWc|s|a lock on an object, the requester must cover a path from the object to
the root with IWc|s|a or RIWc|s|a locks.

3 Before requesting an Rc|s|a lock on an object, the requester must cover a path from the object to the
root with IRc|s|a or IWc|s|a locks. In addition, before accessing any implicitly locked bastard
descendant, the requester must set an Rc|s|a lock on it.

4 Before requesting an RIWc|s|a lock on an object, the requester must cover a path from the object to
the root with IWc|s|a or RIWc|s|a locks. In addition, before accessing any implicitly locked bastard
descendant, the requester must set either a) an Rc|s|a lock on it, if it is a leaf object, or b) an RIWc|s|a
lock on it, if it is a non-leaf object.

5 Before requesting a Wc|s|a lock on an object, the requester must cover a path from the object to the
root with IWc|s|a or RIWc|s|a locks. In addition, before accessing any implicitly locked bastard
descendant, the requester must set a Wc|s|a lock on it.

rooms

classessets
ss

sc

sc
ss

scsc: subclass-of

i: instance-of

e: element-of

Notation:

ss: subset-of

global T2 : IWc

T2 : IWc

T2 : IWc

T2 : Wc

T1 : IRs

son-bedroom daughter-bedroomparent-bedroom

guest-chambers

single-room double-room

sleeping
sc

i
i

i
i

i

room-position

e

T2 : Wc

T1 : IRs

T1 : IRs

T1 : Rswrite access right byT2

read access right byT1

predefined schemas

signs the existence of other paths

north-rooms
ss

T1 : IRs

T2 : Wc



11

4.6 Coping with Insert and Delete Operations

Thus far, we have considered a KB as a fixed set of objects, which can be accessed by reads and writes. Most real

KBs can dynamically grow and shrink. Therefore, in addition to reads and writes, we must support operations to

insert new relationships and objects as well as to delete existing relationships and objects. Before passing on to the

explanation of the rules, we need to make some considerations in the way these operations are performed. We have

assumed (Sect. 2.1) that a KB is represented by a rooted and connected graph and, additionally, that when an object

does not participate in the defined abstraction relationships, it is treated as being an instance of the predefined root

global. Further, we have assumed that the abstraction relationships between the objects are represented in a bidirec-

tional way (Sect. 2.2). All of that has some consequences in the way each one of these insert and delete operations

should be performed. In the following, we discuss inserts and deletes in detail. In particular, these operations may

be arbitrarily complex, and we are interested in finding out the primitive operations by means of which any other

complex operation may be realized as a composition of those. The essence of our idea is: There are four operations

- insert node, insert edge, delete node, and delete edge; node operations are always accompanied by one edge

operation; to operate on a node, it must be locked, and to operate on an edge, its end points must be locked.

Inserting an Object.

Since the KB graph is connected, the insertion of an object must be handled as an operation composed of two steps:

The creation of the object itself and its connection to another existing object3. In turn, since two objects are

involved in this operation, one could ask: Which is the object being inserted, the superior or the inferior object?

The way LARS represents the KB graph (as a single-rooted graph) answers this question. It must be the inferior

object, otherwise one would create another root in the graph when inserting an object as a superior. Hence, LARS

considers the object being inserted as the inferior. Notice that this is not a restriction, but the establishment of a

primitive case. If one states that an object O being inserted must be the superior, LARS can handle it as two opera-

tions. First, the insertion of O and its connection to a superior object (at least to the corresponding predefined

object, and hence O is handled as an inferior), followed by the connection of O to the inferior object (coped with

by the objects’ connection rule).

Another important point in the insertion of an object gives respect to the roles of the superior object in the current

KB state. We use the architecture KB (Fig. 1) in order to explain this point. Suppose we are designing our KB and

that we have not yet defined the parts of the objectparent-suite. Hence,parent-suite currently is just an instance

of suites, and therefore takes no part in the aggregation graph. When inserting any part ofparent-suite, one should

acquire a lock of the A_type on it, since the aggregation concept is being applied. However, it is impossible to

acquire an A_type lock onparent-suite, because it is not yet in the aggregation graph, and therefore one cannot

navigate from the predefined objectaggregates to it. Nevertheless, since the aggregation graph is rooted ataggre-

gates, this operation must be accompanied by the connection ofparent-suite to aggregates anyway. Hence, LARS

treats such cases as first of all the connection of the superior object to the corresponding graph, followed by the

insertion of the inferior object. In our example, LARS would connectparent-suite to aggregates, and thereafter

insert any part of it. By this way, we have that the superior object is already connected to the corresponding graph

when an inferior of it is being inserted. Particularly, we need this to synchronize the type of the locks to be

requested in both objects.

At last, another important aspect is how many relationships (connections) are specified in the insertion of an object.

For example, one can state that the object being inserted is an instance of a class and an element of a set (likeson-

bedroom in our architecture KB). In such a case, LARS decomposes such an operation and handles it as an insertion

followed by as many connections as necessary (and so handled by the objects’ connection rule). Hence, by the

insertion of an object we are connecting it to a single superior object.

Finally, rule 6 in Table 5 presents the lock requests necessary to insert an object. It states that before inserting an

object, its parent (the superior object) must be held in at least IW mode (and so recursively until the root object is

3. At least the predefined objects (global, classes, sets, andaggregates) will always be present in the KB graph.
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reached). The type of such an IW mode is dictated by the abstraction relationship being inserted. Fig. 5 provides

an example of the appliance of this rule. Suppose transaction T1 wants to insert the objectmaid-bedroom as an

instance ofsleeping. To accomplish this task, T1 must request an IWc lock on sleeping, the parent ofmaid-

bedroom. In turn, this IWc lock must be covered by IWc locks on the parents ofsleeping until the rootglobal. Just

after holding those locks, T1 is then able to insert the objectmaid-bedroom. As soon asmaid-bedroom is inserted,

T1 is granted a Wc lock on this object, and holds it until it terminates.

Fig. 5.Locks for the insertion of an object.

Deleting an Object.

We will profit from the above discussions about the insertion of an object and summarize our considerations about

deleting an object. There may be several steps involved in this operation (the deletion of the object itself and several

disconnections, depending on the current KB state). The primitive case comprehends the deletion of an inferior

object and its disconnection from a superior object. Like above, the other more complex cases may be built upon

this simple case, so that they may be composed of this primitive case and as many disconnections as necessary

(thus handled by the objects’ disconnection rule). Rule 7 in Table 5 deals with deletion of objects, similarly to inser-

tions, with the extra requirement that the object itself (the inferior) must be held in W mode. Notice that such a W

lock implies IW locks on a parent, on a parent of the parent, and so forth until the root is reached. Finally, the type

of such W and IW locks is dictated by the abstraction relationship in question.

Connecting Objects.

Like before, also here two objects are affected by this operation, namely a superior and an inferior object, and the

current state of both objects with respect to other objects in the KB may be arbitrary. The main difference here is

that the inferior object may be either a bastard or a purebred. Rule 8 in Table 5 copes with the connection of objects.

It states that in order to connect objects, the inferior object must be held inany W mode, and the superior object in

at least IW mode (this one according to the abstraction relationship being applied). In Fig. 6, which complements

the last example (Fig. 5), it becomes clear why any exclusive typed lock may be requested in this case, indepen-

dently of the type. Suppose that T1 wants to connect the recently created objectmaid-bedroom as an element of

north-rooms. Following rule 8, T1 must request a W lock on this object, normally a Ws lock, since it is applying

the association concept. However, this object is not an element of any other object yet, what makes impossible the

acquirement of a Ws lock on it (before the connection, there is no path fromsets to it). Sincemaid-bedroom is an

instance ofsleeping, T1 requires a Wc lock on this object, and is granted because it in fact already holds such a

lock due to the proceedings of the last example (if this were not the case, it should cover a path to the root with IW

locks). Thereafter, T1 must require an IWs lock onnorth-rooms, the new parent of it. In turn, this intention lock

requires intention on the parents, recursively. Finally, after holding all the required locks, T1 connects the objects.

Therefore, in the particular case of connecting objects, a transaction is allowed to acquire a W lock of any type in

the inferior object. In general, such a W lock will in fact be of the C_type (Wc), because normally an object first

receives its structure (type) by means of the inheritance mechanism of the classification concept, and thereafter it

is connected to other objects using the association or aggregation concepts. As can be seen, the connection of

objects is a bit more complicated operation, because the transaction does not know a priori which are the roles of

both objects in the current KB state.

sc
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maid-bedroom
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object inserted byT1
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Fig. 6.Locks for the connection of objects.

Disconnecting Objects.

Profiting from all discussions so far, we shortly present the disconnection of objects. We shall only mention that

we do not allow the disconnection of purebred objects, because if we disconnect a purebred (deleting its only edge,

then), we are either disconnecting the KB graph or creating a new root of it. Hence, in the disconnection of a

purebred, the transaction must choose between either deleting the object (and thus handled by the object’s deletion

rule), or connecting it firstly to another superior object (and hence handled by the objects’ connection rule).

Therefore, when disconnecting objects, the inferior object must always be a bastard object. Rule 9 in Table 5

presents the objects’ disconnection rule. It is a simple case because the transaction does know the current roles of

both objects, and by this way the path it must traverse for requesting locks. It must request a W lock on the inferior

object, an IW lock on the superior, accordingly to the abstraction concept in question, and thus recursively cover

a path to the root with IW locks.

4.7 The Phantom Problem

As stated by Bernstein et al. [BER87], thephantom problem is the CC problem for dynamic DBs. Granular locks

provide physical locks, and being so we have problems with the so-called phantoms in LARS. Phantoms are

characterized by inserted or deleted objects which may seem to appear or disappear to some concurrent transactions

like a ghost. The phantom problem was first introduced by Eswaran et al. in [ESW76], which also proposed the

predicate locks for elegantly coping with such situations. Since predicates do not seem applicable in an efficient

way in the given KB structures, we must deal with phantoms in some other manner.

The most reasonable solution we found is to delegate to the transactions the decision about tolerating or not

phantoms. If a transaction decides to avoid phantoms at all, it must then request exclusive typed locks (i.e., either

Wc or Ws or Wa) on the object in the next higher level of the graph it is currently working on (what is foreseen by

the locking rules). Taking this measure accordingly, no phantoms may happen because other transactions are

unable to access any inferior of such an object, or to create a new inferior, or to delete an existing inferior (all of

that with respect to the working graph, of course). Exemplifying, if a transaction wants to read all instances of some

class, it must request an Rc lock on the class (andnot an IRc lock on it and start locking its instances in Rc mode).

Thereafter, any other transaction may neither create a new instance of this class, nor delete an existing one, due to

Table 5.Locking rules for insert and delete operations.

6 Before inserting an object in the classification | association | aggregation graph, the requester must
acquire an IWc|s|a, RIWc|s|a or Wc|s|a lock on the superior object. After the insertion, the requester is
granted a Wc|s|a lock on the object.

7 Before deleting an object from the classification | association | aggregation graph, the requester
must acquire a Wc|s|a lock on it, and an IWc|s|a, RIWc|s|a or Wc|s|a lock on the superior object.

8 Before connecting objects using the classification | association | aggregation concept, the requester
must acquire either a Wc or a Ws or a Wa lock on the inferior object, and an IWc|s|a, RIWc|s|a or
Wc|s|a lock on the superior object.

9 Before disconnecting objects using the classification | association | aggregation concept, the
requester must acquire a Wc|s|a lock on the inferior object, and an IWc|s|a, RIWc|s|a or Wc|s|a lock on
the superior object.
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the Rc lock hold by the reading transaction on it, and hence no phantom appears.

5  Related Work

As far as we know, the only other work addressing transaction synchronization in KBMSs is Chaudhri’s Dynamic

Directed Graph (DDG) policy presented in [CHA92, CHA94, CHA94a]. It is an extension of the locking protocol

for hierarchical DBSs of Silberschatz and Kedem [SIL80]. Whereas the former is able to cope with cycles and

updates in the underlying structure, this is not considered by the latter. The main distinction between LARS and

DDG is that they address different problems. When transactions access a large number of objects there are two

potential problems. The first problem is that the large number of locks held by a transaction can mean high locking

overhead which can be potentially reduced by locking several objects at once (i.e., by using coarse granules of

locking). The second problem, which is a consequence of using two-phase locking, is that the locks may be held

for a long period of time, thus limiting the concurrency. DDG attempts to address the second problem and does not

say anything about the first. In turn, LARS addresses the first problem and does not deal with the second problem.

Nevertheless, among the main drawbacks of this protocol, we can cite: First, no difference is made between

different abstraction relationships, i.e., it does not treat, for example, neither a class and its instances, nor an

aggregate and its components, etc., as a single lockable unit. Hence, the semantics of the KB graph is not exploited

to improve the concurrency. Second, no kind of implicit locks is defined. This may jeopardize the overall perfor-

mance of this protocol, and, in addition, lead the lock system to run out of storage. Third, phantoms are not taken

into consideration. A more detailed critical analysis of this protocol may be found in [REZ95].

Due to the lack of work on transaction synchronization in KBMSs, we have analyzed the suitability of some CC

protocols from OODBMSs to the KBMS environment. The results of our analysis are reported in details in

[REZ95a]. Due to space limitations, we are not going to discuss them here.

6  Conclusions

KBMSs are a growing research area finding applicability in many different domains. The higher its demand, the

greater the necessity for knowledge sharing. In the near future, KBMSs will be applied more and more in real world

applications. As a matter of fact, the research for CC techniques tailored to the KBMS environment plays a crucial

role to this applicability. Moreover, it assumes a paramount importance as the demand for ever-larger KBs grows.

Following this research direction, we have presented the LARS approach for CC in KBs. The most important

characteristic of LARS is the partition of the KB graph into many logical ones, allowing by this way transactions

to concurrently access such partitions through different points of view. Thereafter, to each one of these partitions,

we have applied granular locks, providing thus many different lock types and taking the necessary precautions with

respect to the dynamism of the KB graph. In this manner, LARS captures more of the semantics contained in a KB

graph in the sense that it does not consider descendants of an object as being simply descendants of it, but, on the

contrary, descendants with special characteristics and significance, which are based on the abstraction relationships

of generalization, classification, association, and aggregation. This is the most important point of LARS, by means

of which it can obtain a high degree of concurrency, exploiting the inherent parallelism in a knowledge represen-

tation approach.

In summary, the most important characteristics of LARS are: First, LARS offers different granules of locks and

considers implicit locks, alleviating the task of managing too many locks due to the high number of objects in real

world applications. Second, LARS copes well with multiple abstraction relationships to objects, by means of the

requirement of explicitly locking bastards, which, in turn, relaxes the necessity of covering all paths to the root with

intentions, reducing it to only one path. Third, LARS interprets the relationships between objects with respect to

their semantics, providing typed locks for all abstraction concepts.

We have designed LARS to work with the three abstraction concepts that should be provided by KBMSs. However,

LARS is flexible enough to be used by other object-oriented data models. In the case of a specific data model not

supporting all the three abstractions, one should only cut off the corresponding lock modes of LARS, and handle



15

bastards in the same way. Of course, the data model must be powerful enough to support bidirectional links in the

representation of edges in KB graphs, because LARS uses them to easily find bastards. Representing the edges

bidirectionally in KB graphs exclusively for the right functioning of LARS would probably not pay off. Finally,

due to space limitations, we have not discussed issues like deadlocks, lock conversion, lock escalation, correctness

concerns, and implementation aspects, although we have already addressed all of them. In particular, we have

implemented LARS using as a running example the KBMS KRISYS.
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