
1

An Approach to Multi-User KBMS
in Workstation/Server Environments

Fernando de Ferreira Rezende and Theo Härder

Department of Computer Science - University of Kaiserslautern
P.O.Box 3049 - 67653 Kaiserslautern - Germany

Phone: ++49 (0631) 205 3274/4030 - Fax: ++49 (0631) 205 3558
E-Mail: {rezende/haerder}@informatik.uni-kl.de

Abstract. We begin this paper by discussing relevant processing characteristics of Knowledge Base
Management Systems (KBMSs). Provided this basis, we present the main organizational forms of
workstation/server architectures, discuss their main features, and appoint the most feasible one to
KBMSs. As an implementation platform for our techniques for multi-user KBMSs, we introduce an
existing single-user KBMS and its architecture. Thereafter, we approach aspects of transaction facilities
for such systems, and discuss a general architecture offering transaction services. Following, we detail it
and introduce multi-user architectural components of such systems. Finally, we highlight the most
important characteristics of each one of these components and discuss their most distinguishing qualities.

Keywords: knowledge base management systems, database management systems, transaction
processing, concurrency control, recovery, cache coherency, deadlock management.

1 Introduction

Knowledge Base Management Systems (KBMSs), the core of theintelligent information
systems of the future [Br86], aim at the effective and efficient management of Knowledge Bases
(KBs), and were originated from knowledge management demands. However, most advanced,
knowledge-based systems nowadays have no adequate facilities for allowing the KB to be
shared among several applications. Typically, each user has his own private copy of the KB in
‘multi-user’ environments. This leads to a considerable redundancy in stored knowledge with
many severe consequences: Waste of storage space, consistency problems, inefficiency, unsuit-
ability, inapplicability, and the like. Consequently, KBMSs must be designed/extended to
support real multi-user environments. Moreover, this is imperative for both efficiency reasons
as well as the complete success and establishment of those systems in the market.

Without indulging in a discussion of the different (and sometimes contrary) ways of interpreting
the termknowledge base, we briefly highlight the features of KBMSs which are important for
our purposes. On the one hand, from the Artificial Intelligence community’s point of view, the
most important characteristics of such systems for our purposes are the explicit structures repre-
senting the knowledge as well as the organizational principles used to organize the knowledge.
On the other hand, from the Database (DB) community’s point of view, it is important to our
purposes that such systems must provide what a Database Management System (DBMS)
provides, i.e., transaction management, shared access, recovery facilities, etc. All in all, any data
model which (1) explicitly represents the knowledge and, therefore, explicitly encodes the
knowledge and the semantic structure of an application domain, and which (2) needs transaction
facilities’ support, can use the results we present in this paper. Therefore, unless otherwise
noted, we use in this paper the termsdatabases andknowledge bases interchangeably, meaning
that the results here presented are general and applicable to a broad class of applications.

The processing of knowledge in KBMSs can be characterized through different aspects. In our
view, a relevant aspect is that the modeling of knowledge in KBs allows for the specification of
user-defined relationships between objects (in a sense with ‘poor’ semantics) as well as
frequently occurring relationships with system-controlled semantics, e.g. the so-called

In: Proc. of the 11th Brazilian Symposium on Data Bases (SBBD’96), São Carlos, Brazil, Oct. 1996. pp. 58-72.

2

abstraction concepts like generalization/classification, association, and aggregation. Rules and
constraints may be applied to refine these modeling concepts. From an operational point of
view, an abstraction relationship can be viewed as a very large, meshed data structure forming
a Directed Acyclic Graph (DAG). Furthermore, since the different kinds of relationships share
common data (objects), all DAGs are overlapping.

An additional aspect is that declarative query languages are used to select and manipulate the
KB objects. In such languages, query statements may be issued todynamically define and
access sets of KB objects. Hence, the KB access requests are typically set-oriented, and the
resulting reference behavior is largely directed by the existing KB structures. Since there is a
rich variety of such requests by multiple applications, KB access behavior and storage structures
are hard to pre-plan. In particular, object clustering according to these multiple dynamic object
views seems to be impossible.

In this paper, we present an overview of our techniques for multi-user KBMSs. In Sect. 2, we
present the basic organizational forms of workstation/server architectures (the most promising
ones for KBMSs), and appoint the most feasible approach given the processing characteristics
of KBMSs. As a vehicle for the appliance of our multi-user KBMS techniques, we use an
existing single-user KBMS, which is presented in Sect. 3. Thereafter, we approach aspects of
transaction facilities for such systems, present a general architecture offering transaction
services, and finally we detail it and highlight the most distinguishing qualities of our
techniques for multi-user KBMSs in Sect. 4. Lastly, Sect. 5 summarizes our discussions.

2 Architectural Aspects of KBMSs in Workstation/Server Environments

We have shortly discussed previously the specific processing characteristics of KBMS applica-
tions. Typically, object-oriented systems, and so knowledge-based systems, are tailored to
workstation/server environments. In such an environment, the objects have to be fetched to the
workstation memory (object buffer) for further evaluation, transformation or visualization.
Thus, the processing of knowledge generally takes place in the workstation. Since under trans-
actions’ logic performance dictates main memory operations, the knowledge is then temporarily
stored in the workstation to the end of effectively exploiting the principle ofnear-by-the-appli-
cation locality [Ma91, HS93, HMNR95]. In this context, a server acts as both a persistent
knowledge reservoir as well as a source of knowledge for all the participating workstations. For
these reasons, query shipping to the use of stored procedures at the server is not feasible. In
contrast, data shipping is needed to provide the data supply of the KBMS applications at the
workstation side. Note that large sets of data may temporarily migrate to the reach of the appli-
cation. As a consequence, main-memory-based query processing may become desirable in the
workstation, thereby relieving the server and the communication network. Obviously, the more
tasks are assumed by the workstations, the more workstations can be efficiently supported by a
server. Additionally, since great amounts of data are to be transferred between workstations and
server, the organization of the communication is very important in such environments. The
communication channel must be alleviated, on the one hand, and measures must be taken to
provide isolation from failures, on the other.

Workstation/server architectures may be differentiated accordingly to the way the data is trans-
ferred and hence the distribution of tasks is organized. The three most important forms are illus-
trated in Fig. 1 [HMNR95, DMFV90]. Each one of the approaches puts available to the appli-
cations the same navigational and object-oriented interface by means of the object manager, and
each server possesses as a minimal functionality an storage system for the management of the
data in the secondary storage, and a page buffer for the minimization of I/O operations

3

(shadowed boxes in Fig. 1). Additionally, the server, in the role of the central component, must
take care of the synchronization of the workstations’ requests. Further on, preventive measures
against DB failures and server crashes (logging) as well as the handling of these situations
(recovery) are tasks of this central component. In the following, we discuss the characteristics
of these organizational forms to the end of appointing the most feasible one to KBMSs.

Figure 1: Basic organizational forms of workstation/server architectures.

2.1. Page Server

In thePage Server approach (Fig. 1a), a page request is triggered in the workstation whenever
a page fault is detected, in which case the corresponding page is fetched from the server. The
server is unaware of the object concept, it manages just pages, which in general also are the
granule of synchronization and logging. Due to that, the buffering of objects in the workstation
can only be done by means of buffering the corresponding whole pages. All object-related
accesses and evaluations take place in the workstation. Due to its simplicity, the page server
approach was implemented in many systems (e.g., ObjectStore [LLOW91] and O2 [De91]).

Since the unit of transfer is a page, the communication overhead is strongly influenced by the
number of pages to be transferred and specially by their size. In order to make this scheme
efficient,cluster techniques should be employed, so that the objects to be accessed by an appli-
cation are stored in as the minimal number of pages as possible. Such an approach works fine
as long as complex objects can be allocated to separated physical containers (segments, files),
and only a simple view and a single access path are provided for the application. Unfortunately,
in KBMS applications, multiple views to sets of objects, preferably defined at run time, usually
prevent to take advantage from such static clusters. Furthermore, such cluster formations are in
general done at the time the objects are created, and being so following applications cannot
change them and they may then become unfavorable. Additionally, as we approach the era of
4T Machines [Gr95] (tera-op processing rate,terabytes of RAM storage, manyterabytes of disc
storage, andterabits-per-second of communications bandwidth), the page size is being signifi-
cantly enlarged (e.g., from 2 or 4 to 32 Kbytes). Thus, with ill-formed clusters things can go
from bad to worse, because the few the required objects are placed together, the more other
objects are unnecessarily transferred to the buffer. This has negative consequences to parallel
transactions, since the granule of locking is the whole page.

DB

Access System

Page Buffer

Communication

Page Buffer

Page
Server

Synchr./
Logging

Communication

Page Buffer

Access

Application

Communication

Page Buffer

W
or

ks
ta

tio
n

S
er

ve
r

a) Page Server b) Object Server c) Query Server

Storage System

DB DB

Storage System Storage System

Application

Object Manager
(Object Buffer)

Object Manager
Object Buffer

Object Manager
Object Buffer

Object Manager
Object Buffer

Application

Query Manager
Transfer Buffer

System
Synchr./
Logging

Synchr./
Logging

Access
System

4

Another deficiency of this scheme is the impossibility to realize attribute projections. The page
content and representation are managed by the server and remains unchanged in the
workstation. Thus, it is always only possible to load all the attributes of an object, although
generally just a subset of them is necessary. Further on, to realize selections of objects on the
basis of their contents or object scans is only possible at the workstation side, which must then
fetch into its buffer all the corresponding pages. These aspects lead to waste of storage, unnec-
essary transfer operations, and lower levels of concurrency. Due to all these reasons, the page
server approach would often lead to unfavorable performance behavior in KBMSs.

2.2. Object Server

In its basic form, anObject Server (Fig. 1b) provides on request a single object (through an OID
- object identifier).1 Workstation and server are now aware of objects. On trying to access an
object which is not in the workstation’s buffer, an object request is sent to the server. The server
then checks the corresponding page into its page buffer, copies from it the required object to its
object buffer, locks the object, and sends it to the workstation. In this approach, the object can
be used as the granule of synchronization and logging. This allows for higher levels of paral-
lelism (object locking) and efficient logging (entry logging). In turn, this scheme requires more
complex algorithms than the page server one, and was followed by, for example, Ontos [On91],
Versant [Ve90], and Itasca (Orion) [Ki90].

In this approach, the communication overhead is determined by the number of objects (the unit
of transfer) to be transferred and their size. Hence, single object requests from the workstation
strongly increase the communication costs. In turn, this approach is insensitive with respect to
cluster formation. Here, clusters may be used to reduce the I/O operations between the server’s
page buffer and DB. However, as before, the workstation receives all the objects it references
with all their attributes (no projection is possible). Further on, object selections and scans may
only be performed in the workstation’s object buffer. Hence, the before mentioned drawbacks
implied by these aspects remain in this approach, and therefore it is not the most appropriate one
for KBMSs either.

2.3. Query Server

At last, aQuery Server (Fig. 1c), on request, delivers to the application sets of (complex)
objects, which are the unit of transfer, and stored in the object buffer. The most important
enhancement of this approach is a powerful query interface, which is put available to the appli-
cation by the object manager, and by means of which the application can formulate its object
requests. In this scheme, object faults are declaratively recognized, and sets of objects are put
available by the server upon request. Also here, synchronization and logging can be performed
on the basis of objects. This approach is a big research challenge, and was up to now followed
only by prototype systems. Examples are: AIM-P [KDG87], PRIMA [HHMM88], ADMS-
EWS [RD91], XNF [MPPLS93], Starburt’s Coexistence Approach [AGKLP93], Persistence
[KJA93], KRISYS [TMMD93], and PENGUIN [LW94].

Essentially, a query server works on the basis ofcontexts. A context comprises a set of complex
objects, and may be specified for example by means of MQL or SQL/XNF statements
[MPPLS93]. The evaluation of such statements takes place now in the server, where the
complex objects are derived and stored in the transfer buffer. By means of operations like
projections, selections, and joins, the objects’ views can be tailored to the necessities of the
applications. Hence, the volume of information to be transferred and checked into the

1. Extensions of this approach allow for simple queries by means ofSimple Search Arguments.

5

workstation’s buffer is significantly reduced and optimized. Additionally, as before, this
approach is insensitive to cluster formations. Therefore, due to all its distinguishing qualities,
we hold the opinion that the query server approach mostly fulfils the necessities of KBMSs.

Before passing on to the presentation of our techniques for multi-user KBMSs, we present in
the next section the single-user KBMS we have chosen for applying our research results,
namely KRISYS. Hence, we have used KRISYS as a practical vehicle, an implementation
platform for our techniques, simply because we were not intended to develop all the function-
alities provided by the upper layers of KBMSs but to support them offering transaction services.

3 An Overview of the Single-User KBMS KRISYS

KRISYS integrates concepts from DB systems and knowledge representation in order to
support the effective and efficient modeling, manipulation, and maintenance of knowledge for
complex, advanced applications in workstation/server environments [Ma91]. The three
orthogonal ways of looking at KBMSs from a conceptual point of view [BL86, BM86] are
reflected in KRISYS through its three different layers, denoted, respectively,application,
engineering, andimplementation layers (Fig. 2):

• The application layer addresses all issues related with the needs of the applications, and
hence it pays attention to the information content of a KB;

• Theengineering layer considers the modeling aspects of an application expressed as KB con-
tents; and finally

• The implementation layer views a KB in terms of data structures and access algorithms.

These three layers provide, respectively, the needs of knowledge system (KS) applications,
knowledge engineering support, and suitable resources and implementation aspects [Ma91].

Fig. 2, in addition, relates this conceptual KBMS architecture to KRISYS’ overall system archi-
tecture. The application layer of KRISYS, which is responsible for the realization of its appli-
cation interface, is resembled by theKOALA processing system, whose task is to prepare and
control the processing of KOALA statements. Further, KRISYS provides the KB designer with
a mixed knowledge representation framework, defined by theKOBRA knowledge model, which
corresponds to the engineering layer. Additionally, theConstraint Manager appears as an extra
component besides KOBRA. It performs all activities related to checking or processing the
constraints of the KB [De93]. Finally, the implementation layer is divided into two main parts.
The server part, which is resembled by anAdvanced DBMS, concentrates on an efficient and
reliable KB management. It provides application independent data management functions at its
interface. The workstation part is partitioned into three components: TheWorking Memory
(WM) embodies thenear-by-the-application locality principle, and is seen as a passive appli-
cation buffer controlled by theContext Manager. The context manager keeps a declarative
description of the WM contents and is responsible for loading and unloading sets of objects into
or from the WM. The replacement of these objects is carried out in accordance with processing
characteristics of the KB, so that calls to the advanced DBMS, accesses to disk, as well as
transfer overhead are substantially reduced. In order to transfer objects between server and
workstation, the context manager interacts with theMapping System, which transforms objects
from the advanced DBMS’ structures to KOBRA’s structures and vice versa. It is also respon-
sible for generating an appropriate mapping scheme for the processing phase of an application.
To implement a multi-user KBMS prototype as a research vehicle, we did not want to start from
the scratch and to code already existing components anew. Therefore, we have used compo-
nents such as context management, query processing, object mapping, etc. from single-user

6

KRISYS to rebuild a multi-user system. In this way, we could focus on the various aspects of
transaction management, cache coherency control, and communication.

Figure 2: The KRISYS approach towards KBMSs.

4 Architectural Components of Multi-User KBMSs

In order to be capable of providing correct, concurrent access to the KB by many users at once,
KBMSs must possess the distinguishing quality oftransaction management, the ability to
manage simultaneously large number oftransactions. The concept oftransaction is established
in the DB community for over two decades [EGLT76], and provides a basis for automatically
enforcing DB consistency. This concept reflects the idea that the activities of a particular user,
i.e. the sequence of interactions with the DB, must beisolated from all concurrent activities, and
atomic in the sense that the activities inside a transaction are indivisible (the particular actions
belong together) as well as uninterruptible (either all actions are properly reflected in the DB as
a whole or none of them). Härder and Reuter have coined the widely-used term ACID [HR83],
an acronym for the four fundamental properties of transactions which describe the major
highlights of the transaction paradigm:

• Atomicity: A transaction’s changes to the state of the DB must be of the ‘all-or-nothing’ type
described above: Either all happen or none happen.

• Consistency: A transaction is a correct transformation of the DB state, and must therefore pre-
serve the DB consistency. It brings the DB from a consistent state to another consistent state.

• Isolation: The actions within a transaction must be hidden from other concurrently running
transactions. Thus, it must appear to each transaction that other concurrent transactions are
executed either before or after it, but not both.

• Durability: Once a transaction completes successfully (i.e. commits), it has the guarantee that
its changes to the state of the DB survive any subsequent failures.

The consistency property of transactions requires that each transaction must be a correct
program. The KBMS can, of course, watch for keeping the consistency of the KB by means of

application layer

engineering layer

knowledge
engineer

knowledge manipulation

knowledge modeling
concepts for KB construction

efficiently coping with
knowledge storage

goal
KS or

end-user

and retrieval

means for solving problems

knowledge maintenance
 mechanisms for

 a) Conceptual KBMS architecture b) Overall system architecture of KRISYS

implementation layer

KOALA Processing System

Constraint
Manager

KOBRA Context
Manager

Mapping System

Advanced DBMS

knowledge
base

Working
Memory

W
o
r
k
s
t
a
t
i
o
n

S
e
r
v
e
r

knowledge
base

7

checking defined integrity constraints, and taking the necessary actions when the KB consis-
tency is to be injured (as seen before, the constraint manager is the component who takes care
of that). But, fortunately, the user is responsible for defining and writing correct programs.
Hence, as a general consensus, it is assumed by definition that each transaction is correct, and
the effects in the DB of an inevitable incorrect transaction can only be removed by counter-
transactions, thus. Therefore, we will no longer give further attention to the consistency
property of transactions along this paper.2 In turn, the techniques that achieve the isolation
property of transactions are known assynchronization [GLPT76], and concurrency control
protocols take care of it [Ko81]. On the other hand, the atomicity and durability properties of
transactions are achieved byrecovery techniques.

Since we are considering KBMSs in a workstation/server environment, these properties must
be achieved by components offering transaction services distributed along such an
environment. As seen, the server acts as a reservoir and source of knowledge. Thus, the server
must synchronize the object requests coming from the workstations. In addition, the server must
guarantee the atomicity and durability of workstations’ object manipulations performed against
the KB. In order to do that, the server must then now provideglobal transaction services
(Fig. 3). On the other hand, a transaction is started at the workstation side, and, further, the
application starting it must be informed about its fate. Additionally, object requests are specified
in a declarative way by the workstation, and the corresponding formulas are used for concur-
rency control. Furthermore, in-transaction backout would enable minimal fine-grained recovery
for workstation transactions. Thus, the workstations must be equipped now withlocal trans-
action services (Fig. 3).

Figure 3: General transaction services in multi-user, workstation/server KBMSs.

4.1. An Architecture for a Multi-User KBMS

Fig. 4 extends the general architecture presented in Fig. 3. The activities of the user, expressed
as statements of the knowledge language, must be seen as a unit of work, and are then
considered a transaction, to which, as explained before, the ACID properties apply. To control
such activities, aTransaction Manager was introduced. Further, to take care of the transaction
properties, aLock Manager (isolation) and aRecovery Manager (atomicity and durability) were
introduced. Additionally, since now objects may be checked into several workstations’ buffers
at the same time, aCache Manager was introduced to watch out for the coherency of the objects.
Due to the fact that (1) transactions are started by the applications at the workstation side, (2)

2. The reader is referred to [De93] for an approach to maintain the semantic integrity in advanced DBMSs.

Server

Workstations

KBMS’ Upper Levels

Local Transaction Services

Global Transaction Services

knowledge
base

Query Server

Communication Channel

8

the contexts must stay in the workstation buffer for normally long periods of time, (3) the object
requests are generated in the workstation, and (4) the applications should be able to control the
fate of their own transactions, all these new components work closely related to each other, both
at the workstation side, as local managers, as well as at the server side, as global managers.

Figure 4: Architectural components of multi-user KBMSs.

When objects are to be accessed, transactions require locks on those for avoiding inconsistency
anomalies due to the concurrent access. By requiring locks on objects, transactions may
sometimes have to wait for other transactions. At this time, there may appear cyclic waiting
situations between transactions. These situations characterizedeadlocks, whose detection and
resolution are tasks of theDeadlock Manager. Additionally, in order to control the locks and
the graph structure built by the objects in a KB, aKB Graph Manager was introduced. Finally,
aLog Manager assists the recovery manager in recording and accessing the log records of trans-
actions in aLog File. These components work on behalf of all the workstations, and are thus
located at the server side. At last, aCommunication Manager controls the traffic of information
through the communication network among the several workstations and the server.

We have seen in the architecture of single-user KRISYS (Fig. 2) that theMapping Systemwas
located at the workstation side. The mapping system is activated whenever objects are checked
out from the KB into the buffer (as KRISYS’ objects), and the other way round. Hence, this
component is able to exactly reflect the KB structure with all its abstraction relationships, i.e.,
to build the KB graph. Since our synchronization protocol works on the basis of the KB graph
by exploiting the semantics of the abstraction relationships, it is assisted by the mapping system
in building and maintaining the KB graph up-to-date as changes go by. Due to this reason, the
mapping system was placed now in the server side. However, its tasks remain the same as

Server

WorkstationsLocal
Transaction

Manager

Local
Recovery
Manager

Local
Lock

Manager

Local
Cache

Manager

Mapping
System

KB Graph
Manager

Lock
Manager

Deadlock
Manager

Cache
Manager

Log
ManagerLog

Recovery

Manager

Transaction

Manager

Communication Manager

knowledge
base

Query Server

KBMS’ Upper Levels

9

before, just its component interfaces were adapted and expanded. Finally, the advanced DBMS
still provides application independent data management functions at its interface. However, it
is seen now purely as aQuery Server in the new architecture, by means of which sets of objects
can be stored and retrieved as necessary.

4.2. Transaction Manager

The main goal of thetransaction manager is to orchestrate the execution of transactions (their
fate - commit/abort) as well as the recovery of objects, resource managers, or sites after failures.
By accomplishing these tasks, the transaction manager, governed by a transaction model,
provides a rigorous basis for automatically enforcing a criterion for DB consistency for a set of
multiple concurrent read/write accesses to the DB in the presence of potential system failures.

As a matter of fact, when processing complex applications and thereby executing more complex
transactions, it turns out that single-level transactions do not achieve optimal flexibility and
performance. As a solution, the concept of nested transactions was popularized by Moss
[Mo85], where single-level transactions are enriched by an inner control structure. Such a
mechanism allows for the dynamic decomposition of a transaction into a hierarchy of subtrans-
actions thereby preserving all properties of a transaction as a unit and assuringatomicityand
isolated execution for every individual subtransaction. These aspects lead to advantages in a
computing system like: Intra-transaction parallelism, intra-transaction recovery control, explicit
control structure, system modularity, and distribution of implementation [Mo85, HR93].
Additionally, nested transactions lead to some more significant advantages in KBMSs. Among
others, they provide adequate control structures for modeling: Methods inside methods,
complex functions, and virtual rule processing [RH95]. Further on, nested transactions offer
suitable control structures for the realization of main-memory-based query processing.

Due to these inherent functionalities and to the very end of achieving a high degree on intra-
transaction parallelism, we have chosen to implement a nested transaction model in our archi-
tecture [RH95, Zi95]. In our model, we allow the transactions in all levels to be executed simul-
taneously, achieving by this means the maximum degree of parallelism in as well as among
transaction hierarchies. Further, besides supporting the basic concept ofupward inheritance of
locks [Mo85], our model allows forcontrolled downward inheritance of locks [HR93], in order
to enable a transaction to restrict the access mode of its inferiors for an object [RH95].

4.3. Lock Manager

To guarantee isolation, the transactions setlocks on the objects when accessing them. The main
task of thelock manager is to control such locks on objects, thus regulating the concurrent
access to objects. By this means, it prevents a transaction from both seeing uncommitted
updates of as well as altering the data read or written by concurrently running transactions.
Among the most important classes of concurrency control mechanisms arelocking, timestamps,
and serialization graphs [BHG87]. In particular, the class of locking-based algorithms has
shown its practicality and performance. Additionally, locking-based algorithms have special
solutions for graph structures, the abstractions for KBs that appear to be the most appealing
[CHM92, RH94]. Consequently, we have chosen to develop our concurrency control technique
for KBs based on locking.

As seen, the key feature of KBs is the presence of several semantic relationships. The basic idea
which has originated our lock mechanism tailored for KBMSs (LARS - Locks using Abstraction
Relationships’ Semantics [RH94, RH96, Lu96]) is based on this feature. The most important
characteristic of LARS is the partition of the KB graph into several logical ones, allowing by
this way transactions to concurrently access such partitions through different points of view.

10

Thereafter, to each one of these partitions, LARS applies granular locks, providing thus many
different lock types and taking the necessary precautions with respect to the dynamism of the
KB graph. In this manner, LARS captures more of the semantics contained in the KB graph in
the sense that it does not consider descendants of an object as being simply descendants of it,
but, on the contrary, descendants with special characteristics and significance, which are based
on the abstraction relationships ofclassification, generalization, association, andaggregation.
This is the most important point of LARS, by means of which it can obtain a high degree of
concurrency, exploiting the inherent parallelism in a knowledge representation approach.

4.4. Deadlock Manager

As briefly explained,deadlock situations may appear between transactions in their process of
acquiring locks on objects. Such situations happen whenever there is a cyclical sequence of
transactions (T) each waiting for the next to release a lock it must acquire (T1 ➔ T2 ➔ ... ➔ T1),
and hence no one in the cycle can make any progress. To detect and above all resolve such situa-
tions are the main tasks of thedeadlock manager. The literature reflects different opinions about
deadlock management. Gray and Reuter [GR93] advocate that deadlocks are very, very rare
events (rare2), and Härder [Hä84] states that there are no general purpose deadlock-free locking
protocols that always provide a high degree of concurrency. On the other hand, Yannakakis
[Ya82] holds the opinion that it is very easy to construct scenarios where deadlocks arise, and
Silberschatz and Kedem [SK80] state that deadlock detection and recovery in general is an
expensive task and should be avoided whenever possible. Anyway, our lock technique does not
avoid deadlocks, and so we must detect and resolve them.

There are a lot of strategies to detect deadlocks. One of them istimeout, where the system,
finding that a transaction is waiting too long for a lock, just guesses that there may be a deadlock
involving this transaction and simply aborts it and restarts it later again (although imprecise in
the detection of deadlocks, it works).Waits-for-graph is another strategy, where the system
maintains a graph showing which transactions are waiting for other ones. When a cycle is found
in this graph, it precisely means that the transactions in the cycle are deadlocked. The system
then chooses one of them as avictim, aborts it, obliterating its effects from the DB, and restarts
it later again. Particularly, we feel that timeout does not always offer an optimal solution to
deadlocks. Although being very easy to implement, the number of transactions that may be
unnecessarily aborted and restarted again may be unacceptably high, due to the impreciseness
of this technique. On the other hand, waits-for-graph shows a very good precision for all kinds
of transactions, independently of their duration.

The deadlock manager must be aware of the transactions’ nesting. In the nested transaction
model, deadlocks may occur among transactions belonging to various transaction hierarchies
and even among subtransactions within a single transaction hierarchy. In contrast to single-level
transactions wheredirect-waits-for-lock relations are sufficient to search for waiting cycles
among transactions, detection of all deadlocks in nested transactions further requires the
maintenance ofwaits-for-commit relations. If deadlocks are frequently anticipated, opening-up
deadlocks, which may span transaction trees, should be detected as early as possible to save
transaction work [HR93]. For this purpose, our deadlock manager maintains further information
to detect opening-up deadlocks as early as possible (indirect-waits-for-lock relations). Finally,
our strategy additionally represents in the waits-for-graphdetection arcs, by means of them, and
only them, cycles in the graph can be found out. They represent an abstraction of the other
waiting relations, and serve the only purpose of detecting deadlocks’ occurrences. Hence, they
significantly alleviates the search for cycles’ process, since the analysis of the whole waiting
relations in the graph every time a waiting situation occurs is no longer necessary [RG96, Gl96].

11

4.5. Recovery and Log Managers

As a matter of fact, the DB must contain all of the effects of committed transactions and none
of the aborted ones. Essentially, the system must provide for the safety of the data stored despite
failures. This is the primary responsibility of therecovery manager. The recovery manager
relies on alog manager, which implements a sequential file of all the updates of transactions to
objects, so that a consistent version of all objects can be reconstructed in case of failure.3

Most of the commercially available DBMSs employ the Write Ahead Logging (WAL [Gr78])
protocol. Traditionally, recovery strategies following the WAL protocol and doing entry
logging employ a uniquelog sequence number (LSN) per page in order to track the page’s state
with respect to logged actions to the page. This is usually so, no matter whether a locking
granule finer than a page is supported. Notwithstanding, if we think of such large pages of the
4T machines’ era (e.g. 32 KB), it turns out that one LSN per page is insufficient for precisely
tracking what is really going on inside a page. This is a fact because such large pages may store
hundreds/thousands of objects. However, one operation affecting any of these objects must be
generalized by such recovery strategies as being an operation performed to a page, simply
because a page’s LSN disregards the contents of the page. This generalization leads to a lack of
information, with hard consequences to the restart processing in such recovery strategies.

We have designed a recovery strategy, called WALORS (WAL-based and Object-oriented
Recovery Strategy [RB96, Ba95]), focusing on such aspects like very large page sizes. When
we started designing WALORS, our main goal was to cope with the problem mentioned above,
and thus to more precisely track the state of the objects inside a page, rather than the state of the
page as a whole. In order to achieve this goal, we have then employed an LSN per object. Hence,
each object carries its own LSN in WALORS. On this basis, we can be very precise when
analyzing the log records, and track a log record to the specific object that it gives respect to,
and not to the set of objects inside a page. The general features of WALORS are:

• WALORS was designed to cope withtransaction, system, and media failures. Additionally,
WALORS also supports partial rollbacks.4

• In behalf of a better performance during normal processing, since failures should be consid-
ered as exceptions, WALORS doesentry logging at the object level.5

• As the acronym itself betrays, WALORS follows the WAL protocol.

• WALORS supports fine-granularity locking, i.e., object-level locking.

• WALORS does selective redo (i.e., it avoids repeating the history [MHLPS89] to gain a
unique DB representation after a crash) as well as selective undo passes. Additionally,
WALORS dynamically builds at restart time aforward chain, in which all log records to be
redone take part, and by means of which a very efficient redo processing is possible.

• WALORS is flexible enough and does not make any kind of restrictive assumptions about
the buffer management policies being employed (force/no-force, steal/no-steal [HR83]). In

3. The reader may have noticed that we have not considered log files at the workstation side (Fig. 4). The
main reason for that is merely to avoid having to do log merges, and to support a broader class of work-
stations, especially the ones where no disk is available. However, due to its features, our recovery strategy
may be straightforwardly extended in order to cope with several log files and hence log merges.

4. Partial rollbacks are crucial for user-friendly handling integrity constraint violations, application program
failures and deadlocks [LS87], problems arising from using obsolete cached data [LHMWY84], etc.

5. Entry logging allows to do logical logging and supports semantically rich lock modes (e.g., based on the
commutativity of operations [Ga83, SS84, BR88, We88, FO89, RGN90, CRR91, HH91]). (Notwith-
standing, we have strived for maintaining WALORS as simple as possible and hence avoiding complex,
and thus error-prone, algorithms.)

12

our implementation, the no-force/steal policy is in effect.

Finally, we have extended WALORS to work in a client/server environment, and to support
nested transactions. In this context, WALORS follows our nested transaction model [RH95],
and supports the enhanced lock modes for KBMSs provided by LARS [RH94, RH96].

4.6. Cache Manager

By employing large buffers,caching can substantially reduce the amount of expensive and slow
disk accesses by utilizing locality of reference [EH84]. As seen, in order to provide then faster
access to objects, each workstation has its owncache, where the objects are temporarily stored.
By such a means, a single object can be stored into different workstations’ caches at the same
time. If such objects reside in the caches just during the processing of transactions, their
coherency is guaranteed by means of the lock manager. Nevertheless, to the end of exploiting
even more the near-by-the-application locality principle, such objects should stay in the caches
beyond transaction boundaries. Consequently, a generic mechanism must regulate the
coherency of the objects in the many caches. This is the responsibility of thecache manager.

Hence, abuffer invalidation problem arises with caching, since a modification of the object in
any buffer invalidates copies of this object in other workstations as well as its copy stored in
secondary storage. The basic task of cache coherency is to ensure that transactions always see
the most recent version of the objects despite buffer invalidations.

In general, buffer invalidations can be eitherdetected or avoided, and choosing the best alter-
native to solve this problem depends on the concurrency control policy (optimistic/pessimistic),
the strategy used for update propagation to disk (force/no-force), and the granule for locking
(page/object) [Ra91]. Considering the features of both our lock and recovery managers, we have
chosen to implement an avoidance scheme similar toretention locks[HR85], but based purely
onclient locks at the server side [MN91]. In this approach, for every cached object only a client
lock exists in the server. In turn, transaction locks exist in the workstation for the objects
accessed by its transactions. Before an object can be modified at any workstation, an exclusive
transaction lock must be granted to the transaction, and for that an exclusive client lock must be
requested to the server, which may then conflict with other client locks. In addition, a client lock
is released only if no corresponding transaction lock exists. Further, on releasing a client lock,
the object is purged from the buffer so that its invalidation is avoided. Finally, our scheme
follows adynamic owner principle, and allows by this means objects to be exchanged directly
among the workstations, alleviating thus the communication with the server [Ha96].

4.7. KB Graph Manager

As discussed, our lock manager sets locks on objects in favor of transactions by using the
semantics of the abstraction relationships. In order to do that, it needs a structural representation
of the objects in a KB and their abstraction relationships. To build and maintain such a repre-
sentation, the KB graph, are the main tasks of theKB graph manager. This manager maintains
a single-rooted directed acyclic graph, where the objects represent the nodes and the abstraction
relationships between the objects the edges. It provides interfaces for inserting, removing, and
querying the contents of the graph. Additionally, some general management tasks, like repre-
sentation of object LSNs and storing the lock modes on objects, are also included in the
functionality of this manager [Ka95].

4.8. Communication Manager

All these above mentioned managers have their own communication interfaces, both local at the
workstation side and local/global at the server side. To control the managers’ traffic of infor-

13

mation in the workstation as well as between workstations and server is the main purpose of the
communication manager. Our communication manager provides synchronous (using RPC) and
asynchronous (using multi-threads) communication facilities, and ensures safe, reliable infor-
mation exchanges [He96].

5 Conclusions

We have discussed the relevant processing characteristics of KBMSs, and presented the basic
organizational forms of workstation/server architectures. We have appointed the query server
approach as the most appropriate one for KBMSs, especially because (1) it provides a powerful
query interface by means of which the application can formulate its object requests, (2) object
faults are declaratively recognized, (3) sets of objects are delivered by the server upon request,
(4) an object can be the granule of synchronization and logging, (5) the objects’ views can be
tailored to the application’s necessities, (6) the volume of information to be fetched is signifi-
cantly reduced, and finally, (7) ill-formed clusters do not increase the communication overhead.

We have introduced the single-user KBMS KRISYS, the practical vehicle we are currently
using to implement our multi-user KBMS techniques. Following, we have introduced the basic
principles of transaction management together with the fundamental properties of transactions
(ACID properties). In this scope, we have presented a general architecture for multi-user
KBMSs where general transaction services are then considered. Thereafter, we have extended
this architecture with the main components for providing transaction facilities, and discussed
their locations in the architecture and their team work. Finally, we have given an overview of
these components’ tasks and goals, and highlighted their most distinguishing qualities.

Our transaction manager implements a nested transaction model, and supports upward as well
as controlled downward inheritance of locks. Our lock manager implements LARS, which sets
granular locks using the semantics of the abstraction relationships. The introduction of the
detection arcs in our deadlock management policy has enormously facilitated the deadlock
manager’s work of detecting the occurrence of a deadlock. Our recovery strategy, WALORS,
employs an LSN per object, and by such a means it can very precisely track the state of each
particular object with respect to logged actions to it, a distinguishing feature as long as the page
sizes are being enlarged, and which enables it to do selective undo as well as selective redo
passes during system restart. Our cache manager avoids buffer invalidations by means of client
locks, and implements a dynamic owner policy, enabling the workstations to exchange objects
between themselves, and alleviating thus the communication with the server. Our KB graph
manager represents the KB objects as nodes in a DAG, and the abstraction relationships as
edges between the nodes, therefore giving support to the other components. Finally, the commu-
nication manager provides synchronous as well as asynchronous communication facilities to the
other components, ensuring a safe, reliable information exchange.

At last, as a point for future work and further optimization, we are currently interested mainly
in two issues. On one hand, our architecture, as any centralized DB architecture, has its
Achilles’s heel: A single point of failure and which may become a bottleneck when the system
grows. To optimize this, we intend to investigate architectures containing clusters of servers,
which jointly manage a single (distributed) DB. By such a means, we can achieve high levels
of availability, resilience, as well as scalability. On the other hand, we intend to enter the area
of distribution, and research aspects of providing the transaction facilities as much as possible
locally, e.g., allowing transactions to independently commit locally, and handling client crashes
by the own clients. This is particularly important to give support for the ever increasing area of
mobile computing.

14

Acknowledgments

The research project here presented would perhaps not have reached its actual stage of development and imple-
mentation without our team work with Jörg Lutze, Christian Kasparek, Jan Zielinski, Thomas Baier, Andreas
Gloeckner, Ulrich Hermsen, and Victoria Hall. We would like to acknowledge all of them.

References

[AGKLP93] Ananthanarayanan, R., Gottemukkala, V., Käfer, W., Lehman, T.J., Pirahesh, H.: Using the Coexistence Approach
to Achieve Combined Functionality of Object-Oriented and Relational Systems. In:Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, Washington, DC, USA, May 1993. pp. 109-118

[Ba95] Baier, T.:WALORS - A WAL-Based and Object-Oriented Recovery Strategy (in German). Diploma Work, Univ.
of Kaiserslautern, Germany, Nov. 1995.

[BHG87] Bernstein, P.A., Hadzilacos, V., Goodman, N.:Concurrency Control and Recovery in Database Systems. Addi-
son-Wesley, USA, 1987.

[BL86] Brachman, R., Levesque, H.:The Knowledge Level of KBMS. In: [BM86]. pp. 9-12.
[BM86] Brodie, M., Mylopoulos, J. (Eds.):On Knowledge Base Management Systems: Integrating Artificial Intelligence

and Database Technologies. Springer-Verlag, New York, USA, 1986. (Topics in Information Systems).
[Br86] Brodie, M.L.: Future Intelligent Information Systems: AI and Database Technologies Working Together. In: My-

lopoulos, J., Brodie, M.L. (Eds.),Artificial Intelligence and Databases, Morgan Kaufmann, USA, 1986.
[BR88] Badrinath, B.R., Ramamritham, K.: Synchronizing Transactions on Objects.IEEE Transactions on Computers,

Vol. 37, No. 5, May 1988. pp. 541-547.
[CHM92] Chaudhri, V.K., Hadzilacos, V., Mylopoulos, J.: Concurrency Control for Knowledge Bases. In:Proc. of the 3rd

Int. Conf. on Principles of Knowledge Representation and Reasoning, Cambridge, USA, 1992. pp. 762-773.
[CRR91] Chrysanthis, P.K., Raghuram, S., Ramamritham, K.: Extracting Concurrency from Objects: A Methodology. In:

Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Denver, USA, May 1991. pp. 108-117.
[De91] Deux, O. et al.: The O2 System.Communications of the ACM, Vol. 34, No. 10, 1991. pp. 34-49.
[De93] Dessloch, S.:Semantic Integrity in Advanced Database Management Systems. Doctor Thesis, Univ. of Kaiserslau-

tern, Germany, Sept. 1993.
[DMFV90] DeWitt, D.J., Maier, D., Futtersack, P., Velez, F.: A Study of Three Alternative Workstation/Server Architectures

for Object-Oriented Databases. In:Proc. of the VLDB, Brisbane, Australia, 1990. pp. 107-121.
[EGLT76] Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The Notions of Consistency and Predicate Locks in a Data-

base Systems.Communications of the ACM, Vol. 19, No. 11, Nov. 1976. pp. 624-633.
[EH84] Effelsberg, W., Härder, T.: Principles of Database Buffer Management.ACM TODS, Vol. 9, No. 4, 1984.
[FO89] Farrag, A.A., Ozsu, M.T.: Using Semantic Knowledge of Transactions to Increase Concurrency.ACM TODS, Vol.

14, No. 4, Dec. 1989. pp. 503-525.
[Ga83] Garcia-Molina, H.: Using Semantic Knowledge for Transaction Processing in a Distributed Database.ACM

TODS, Vol. 8, No. 2, Jun. 1983. pp. 186-213.
[Gl96] Gloeckner, A.:Deadlock Management in Nested Transactions in KRISYS(in German). Project Work, Univ. of

Kaiserslautern, Germany, Aug. 1996.
[GLPT76] Gray, J.N., Lorie, R., Putzolu, F., Traiger, I.L.: Granularity of Locks and Degrees of Consistency in a Shared Data

Base. In:Proc. of the IFIP Working Conf. on Modelling in DBMS, Freudenstadt, Germany, Jan. 1976. pp. 365-394.
[Gr78] Gray, J.N.: Notes on Database Operating Systems. In: Bayer, R., Graham, R.M., Seegmueller, G. (Eds.),Operat-

ing Systems: An Advanced Course, Springer-Verlag, Berlin, Germany, 1978. pp. 393-481. (LNCS 60).
[Gr95] Gray, J.N.: Super-Servers: Commodity Computer Clusters Pose a Software Challenge. In:Proc. of the BTW, Dres-

den, Germany, Mar. 1995. pp. 30-47.
[GR93] Gray, J.N., Reuter, A.:Transaction Processing: Concepts and Techniques. Morgan Kaufmann, USA, 1993.
[Ha96] Hall, V.: Cache Coherency in a Client/Server Knowledge Base Management System(in German). Diploma Work,

Univ. of Kaiserslautern, Germany, July 1996.
[Hä84] Härder, T.: Observations on Optimistic Concurrency Control Schemes.Information Systems, Vol. 9, No. 2, 1984.
[He96] Hermsen, U.:Communication Management in a Client-Server/Multi-User KBMS(in German). Project Work,

Univ. of Kaiserslautern, Germany, March 1996.
[HH91] Hadzilacos, T., Hadzilacos, V.: Transaction Synchronization in Object Bases.Journal of Computer and Systems

Sciences, Vol. 43, No. 1, Aug. 1991. pp. 2-24.
[HHMM88] Härder, T., Hübel, C., Meyer-Wegener, K., Mitschang, B.: Processing and Transaction Concepts for Cooperation

of Engineering Workstations and a Database Server.Data and Knowledge Engineering, Vol. 3, 1988. pp. 87-107.
[HMNR95] Härder, T., Mitschang, B., Nink, U., Ritter, N.: Workstation/Server Architectures for Database-Based Engineering

Applications (in German).Informatik Forschung & Entwicklung, 1995.
[HR83] Härder, T., Reuter, A.: Principles of Transaction-Oriented Database Recovery.ACM Computing Surveys, Vol. 15,

No. 4, Dec. 1983. pp. 287-317.
[HR85] Härder, T., Rahm, E.: Quantitative Analysis of a Synchronization Protocol for DB-Sharing (in German). In:Proc.

of the 3rd Conf. on Measurement, Modeling, and Evaluation of Computer Systems, 1985. pp. 186-201.

15

[HR93] Härder, T., Rothermel, K.: Concurrency Control Issues in Nested Transactions.VLDB Journal, 2 (1), Jan. 1993.
[HS93] Hübel, C., Sutter, B.:DB-Integration of Engineering Applications - Models, Tools, Controls(in German). Data-

base Systems Series, Vieweg, Germany, 1993.
[Ka95] Kasparek, C.:The KB Graph Management in the Multi-User KBMS KRISYS (in German). Internal Report, Univ.

of Kaiserslautern, Germany, 1995.
[KDG87] Küspert, K., Dadam, P., Günauer, J.: Cooperative Object Buffer Management in the Advanced Information Man-

agement Prototype. In :Proc. of the 13th VLDB, Brighton, UK, Sept. 1987. pp. 483-492.
[Ki90] Kim, W.: Introduction to Object-Oriented Databases. MIT Press, USA, 1990. (Series in Computer Systems).
[KJA93] Keller, A., Jensen, R., Agrawal, S.: Persistence Software: Bridging Object-Oriented Programming and Relational

Database. In:Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Washington, DC, USA, May 1993.
pp. 523-528.

[Ko81] Kohler, W.H.: A Survey of Techniques for Synchronization and Recovery in Decentralized Computer Systems.
ACM Computing Surveys, Vol. 13, No. 2, June 1981. pp. 149-183.

[LHMWY84] Lindsay, B.G., Haas, L.M., Mohan, C., Wilms, P.F., Yost, R.A.: Computation and Communication in R*: A Dis-
tributed Database Manager.ACM Transactions on Computer Systems, Vol. 2, No. 1, Feb. 1984. pp. 24-38.

[LLOW91] Lamb, C., Landis, G., Orenstein, J., Weinreb, D.: The ObjectStore Database System.Communications of the ACM,
Vol. 34, No. 10, Oct. 1991. pp. 50-63.

[LS87] Lockemann, P.C., Schmidt, J.W. (Eds.):Databases Handbook (in German). Springer-Verlag, Germany, 1987.
[Lu96] Lutze, J.:Lock Management in the KBMS KRISYS - An Implementation of the LARS Protocol for Nested Transac-

tions(in German). Project Work, Univ. of Kaiserslautern, Germany, Jan. 1996.
[LW94] Lee, B., Wiederhold, G.: Outer Joins and Filters for Instantiating Objects from Relational Databases Through

Views. IEEE Knowledge and Data Engineering, Vol. 6, No. 1, 1994. pp. 108-119
[Ma91] Mattos, N.M.:An Approach to Knowledge Base Management. Springer-Verlag, Germany, 1991. (LNAI 513).
[MHLPS89]Mohan, C., Haderle, D., Lindsay, B.G., Pirahesh, H., Schwarz, P.:ARIES: A Transaction Recovery Method Sup-

porting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. IBM ARC Research Report
RJ6649, San Jose, USA, Jan. 1989.

[MN91] Mohan, C., Narang, I.: Recovery and Coherency-Control Protocols for Fast Intersystem Page Transfer and Fine-
Granularity Locking in a Shared Disks Transaction Environment. In:Proc. of the VLDB, Barcelona, Spain, 1991.

[Mo85] Moss J.E.B.: Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press, USA, 1985.
[MPPLS93]Mitschang, B., Pirahesh, H., Pistor, P., Lindsay, B., Südkamp, S.: SQL/XNF - Processing Composite Objects as

Abstractions over Relational Data. In:Proc. of the Int. Conf. on Data Engineering, Vienna, Austria, April 1993.
[On91] Ontologic Inc.:ONTOS Developer’s Guide. Billerica, USA, 1991.
[Ra91] Rahm, E.:Concurrency and Coherency Control in Database Sharing Systems. ZRI Research Report No. 3/91,

Univ. of Kaiserslautern, Germany, Dec. 1991.
[RB96] Rezende, F.F., Baier, T.: A WAL-Based and Object-Oriented Recovery Strategy (in German). In:Proc. of the 7th

Workshop on Transaction Concepts, Nieheim, Germany, Jan. 1996. GI Datenbank Rundbrief 17, May 1996.
[RD91] Roussopoulos, N., Delis, A.: Modern Client-Server DBMS Architectures.ACM SIGMOD RECORD, Vol. 20, No.

3, Sept. 1991. pp. 52-61.
[RG96] Rezende, F.F., Gloeckner, A.:Deadlock Management in Nested Transactions Using Detection Arcs. Internal Re-

port, Univ. of Kaiserslautern, Germany, 1996.
[RGN90] Rakow, T.C., Gu, J., Neuhold, E.J.: Serializability in Object-Oriented Database Systems. In:Proc. of the 6th Int.

Conf. on Data Engineering, Los Angeles, USA, Feb. 1990. pp. 112-120.
[RH94] Rezende, F.F., Härder, T.: A Lock Method for KBMSs Using Abstraction Relationships’ Semantics. In:Proc. of

the 3rd Int. Conf. on Information and Knowledge Management, Gaithersburg, USA, Nov. 1994. pp. 112-121.
[RH95] Rezende, F.F., Härder, T.: Concurrency Control in Nested Transactions with Enhanced Lock Modes for KBMSs.

In: Proc. of the 6th Int. Conf. on Database and Expert Systems Applications, London, UK, Sept. 1995. pp. 604-613.
[RH96] Rezende, F.F., Härder, T.: Multiple Granularity Locks for the KBMS Environment. In: Fong, J., Siu, B. (Eds.),

Multimedia, Knowledge-Based & Object-Oriented Databases, Springer Verlag, Singapore, 1996. pp. 126-148.
[SK80] Silberschatz, A., Kedem, Z.: Consistency in Hierarchical Database Systems.Journal of the ACM, Vol. 27, No. 1,

Jan. 1980. pp. 72-80.
[SS84] Schwarz, P.M., Spector, A.Z.: Synchronizing Shared Abstract Types.ACM TOCS, Vol. 2, No. 3, Aug. 1984.
[TMMD93] Thomas, J., Mitschang, B., Mattos, N.M., Deßloch, S.: Enhancing Knowledge Processing in Client/Server Envi-

ronments. In:Proc. of the 2nd CIKM, Washington, DC, USA, Nov. 1993. pp. 324-334.
[Ve90] Versant Object Technologies Inc.:VERSANT Technical Overview. Menlo Park, USA, 1990.
[We88] Weihl, W.E.: Commutativity-Based Concurrency Control for Abstract Data Types.IEEE Transactions on Com-

puters, Vol. 37, No. 12, Dec. 1988. pp. 1488-1505.
[Ya82] Yannakakis, M.: A Theory of Safe Locking Policies in Database Systems.Journal of the ACM, Vol. 29, No. 3,

1982. pp. 718-740.
[Zi95] Zielinski, J.:An Approach to Transaction Management in a Knowledge Base Management System (in German).

Diploma Work, Univ. of Kaiserslautern, Germany, Oct. 1995.

