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Abstract - We address a specific topic inside the context of nested transaction concepts,
namely, the assignment of identifiers to transactions. We discuss the most important information
such identifiers should carry, based on an analysis of the main requirements the components of
a general transaction system have on them. Thereafter, we present schemes for the assignment of
such identifiers, and discuss their pros and cons w.r.t. those requirements. Finally, we compare
one of our schemes to a conventional one, considering the most common operations that are
performed with the identifiers, and show some of the performance measurements that we have
obtained. Particularly w.r.t. processing time, our scheme has proven to be generally much faster.

1. Introduction
An important, performance influencing aspect in the implementation of nested trans-

actions (NTs, for short) is the choice of an appropriate strategy to the assignment of trans-
action identifiers. On one hand, a wrong choice may consume too much memory space
in every situation. On the other hand, it may be too costly in terms of processing time
when executing operations with the identifiers. Nested transactions have been imple-
mented in many systems (Camelot [16], Clouds [1, 3], Eden [2, 13], LOCUS [12, 17],
KRISYS [14], PRIMA [5, 6], etc.). Unfortunately, very little has been published on the
strategies employed by those systems for assigning identifiers (exceptions are [4, 7]).

In this paper, we propose enhanced encoding schemes for the assignment of identi-
fiers in nested transactions. The distinguishing feature of our schemes is that the identi-
fiers themselves carry the information about the internal hierarchical organization of
transactions. Thus, data structures like trees and hash tables traditionally used to maintain
such information are not necessary in our schemes. This feature enables our schemes to
obtain optimal processing times when manipulating the identifiers, especially during the
navigation through transaction hierarchies. Further, our schemes perform reasonably well
considering memory resources, however, as all has its price, they consume more memory
space than the traditional ones as the transaction hierarchies become too deep.

This paper is organized as follows. In Sect. 2, we present a model of NTs. Thereafter,
we build together the main features the identifiers should possess in Sect. 3. We then
present our schemes for assigning identifiers in Sect. 4. Following, in Sect. 5 we compare
one of our schemes to a traditional one and show some significant performance measure-
ments. At last, we present our conclusions in Sect. 6.

2. A Model of Nested Transactions
We basically follow Moss’s model and terminology [11], where a transaction may

contain any number ofsubtransactions, which again may be composed of any number of
subtransactions - conceivably resulting in an arbitrarily deep hierarchy of NTs. The root
transaction which is not enclosed in any transaction is called thetop-level transaction
(TL-transaction). Transactions having subtransactions are calledparents, and their
subtransactions are theirchildren. We also speak ofancestors and descendants. The
ancestor (descendant) relation is the reflexive transitive closure of the parent (child)
relation. We use the termsuperior(inferior) for the non-reflexive version of the ancestor
(descendant). The set of descendants of a transaction together with their parent/child
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relationships is called the transaction’shierarchy. In the following, unless otherwise
noted, we use the termtransaction to denote both TL-transactions and subtransactions.

3. Identifier Features
In this section, we build up the main features the storage structure for the transaction

identifiers (TRIDs, for short) should possess. We do this by considering the different
requirements the components of a general transaction system pose on these identifiers.

3.1 Transaction Manager
When a subtransaction commits, the transaction manager (TM) has many tasks to do,

e.g., to guide and to inform the lock and recovery managers, etc. In almost all these tasks,
the identifier of the parent transaction must be known. Hence, it would be useful for the
TM if it could, from the child TRID, immediately identify its parent. Additionally, the
TM is also responsible for creating transactions. On one hand, it should be able to create
as many subtransactions as necessary. On the other hand, there should not be a critical
upper limit to the assignment of TRIDs. In summary, for the TM, it is important that:
(1) A TRID should allow the immediate recognition of its parent.
(2) Deep as well as broad transaction hierarchies should be well supported.
(3) The TRID storage structure should accommodate as many identifiers as necessary.

3.2 Recovery Manager
When a subtransaction commits, the recovery manager (RM) must chain the log

records written for the committing subtransaction to the ones of its parent. The main
purpose of this log chain is to rightly guide the RM in the abort process of a transaction.
In the NT model, when a transaction aborts, all its inferiors must be also rolled back,
independently of whether they are still active or have already committed. Hence, on the
basis of this log chain, the RM recognizes through a special subtransaction commit log
record that at that point in the transaction log a subtransaction of the aborting transaction
has committed. By this means, the recovery manager has enough hints to start rolling
back the committed subtransaction of the aborting parent transaction. Therefore, to the
end of easily chaining the log records, a TRID should carry the identifiers of its superiors,
allowing by this way the recognition of a parent transaction at any level of the hierarchy.
Thus, the RM’s requirement equals the first TM’s requirement stated above.

3.3 Lock Manager
We assume a model of NTs which enables maximum parallelism in a transaction

hierarchy, allowing for parent/child as well as sibling parallelism. Hence, a distinction
must be made between the locks explicitly acquired by a transaction and those acquired
by inferiors and then passed on to their parents at commit time (lock inheritance). This
distinction is usually made by stating that a transaction acquiring a lock on an objectholds
it. In turn, a transaction inheriting the locks of a committing subtransactionretains them.
If a transaction holds a lock, it has the right to access the locked object. However, a
retained lock is only a place holder and indicates that transactions outside the hierarchy
of the retainer cannot acquire the lock, but that descendants potentially can. Therefore,
when comparing locks’ compatibilities, the lock manager (LM) handles retained and held
locks. The comparison is very simple if the requested lock is compared with aheld lock:
If they are incompatible, the requested lock cannot be granted and that is all. However, it
is made more difficult in the case of comparing requested locks withretained locks: If
they are incompatible, the LM must go ahead and check whether the requesting trans-
action is a descendant of the one retaining the lock. If so, the lock can be granted,
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otherwise it cannot. In turn, this check could be made efficiently if the LM could immedi-
ately extract this information from both TRIDs. This point builds the LM’s requirement:
(4) The check whether a transaction is an inferior of another one should be made on the

basis of the own identifiers.

3.4 Deadlock Manager
We assume that an extension of the basic approach for deadlock detection in NTs is

followed. The basic approach [11] allows to identifydirect-wait andancestor-descendant
deadlocks. In turn, extensions [8, 15] maintain further information to detectopening-up
(future) deadlocks as early as possible. In those, the deadlock manager (DM) copes with
three different kinds of waiting relations. All thesewaits-for relations are represented in
a waits-for graph [9], where cycles are looked for. The first waits-for relation expresses
that the lock requester is directly waiting for the lock holder. The second waits-for
relation reflects the transaction hierarchy itself and means that a parent transaction waits
for the commit of its children. The third waits-for relation represents a waiting situation
between the lock requester and the highest ancestor of the lock holder (retainer) that is
not an ancestor of the lock requester (i.e., thehighest non-common ancestor between
both). Representing this third waiting relation may save a lot of useless work, since it
allows for early deadlock detection. However, it may be costly to find out which such a
non-common ancestor is. For this purpose, both hierarchies must be transitively upward
traversed and compared. However, this task would be facilitated if the DM could catch
this information by just comparing TRIDs, hence:
(5) It should be possible to identify the highest non-common ancestor between two trans-

actions through their identifiers.

3.5 Buffer Manager
From the buffer manager’s (BM) point of view, the storage structures for the identi-

fiers should be flexible enough to store short as well as long identifiers. As a matter of
fact, static structures are inappropriate, or even impossible to use, if breadth and depth of
the transaction hierarchy are not known in advance. Hence, the BM’s requirement:
(6) The TRIDs’ storage structure should be of variable length and flexible enough to

optimize the memory utilization and to efficiently store both short and long TRIDs.

4. Assigning Transaction Identifiers in Nested Transactions

4.1 The Elementary Scheme
The most elementary scheme, normally used as an illustrative example in the liter-

ature, is the one presented in Fig. 1. In this approach, the TRID is represented by a
variable length vector of integers. Such a vector is composed of one element at the top
level, and incremented by one more element at each forthcoming level. Hence, every time
a subtransaction is created, it receives the complete TRID of its parent and one more
element which distinguishes it from the other children of its parent.

This is a nice and easily understandable scheme which even fulfils some of the
requirements we have pointed out previously: A TRID allows the recognition of its parent
TRID; deep as well as broad transaction hierarchies are relatively well supported; a TRID
reflects the execution history of transactions; and finally, the highest non-common
ancestor between two transactions are recognizable from their TRIDs. However, the
worst point of this approach is that its memory overhead makes its implementation
worthless. Assuming four bytes long integers, we would need 4× N bytes to identify any
transaction at level N. In addition, it would not matter if such a transaction is the 1st or
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the 232th child of its parent (at level N - 1), the same 4× N bytes would be allocated to
identify it. In summary, although wasting memory space, this scheme has some important
properties, so that the other schemes we present are based on this one.

Fig. 1: A transaction tree and TRIDs in the elementary scheme.

4.2 Exponential Growth of Transaction Identifiers - The EG Scheme
In order to be more precise, we need to scale down a factor and deal no longer with

bytes, but with bits. In this section, we present a scheme where the number of repre-
sentable TRIDs exponentially grows, accordingly to the number of bits allocated.

Like previously, in the EG scheme a TRID is going to carry the TRIDs of the superior
transactions. Hence, a TRID is divided into several units, each one representing a level in
the transaction hierarchy. We represent thislevel unit through anencoding sequence (ES,
for short), which in turn is composed of severalencoding units (EUs). The EUs have a
predefined length in bits, and therefore can represent a predefined number of TRIDs.
Every time the superior limit of an EU is reached, another one is allocated, and the
assignment of new TRIDs may proceed, until this second EU is also full, when a third is
then allocated, and so forth. In turn, to keep track of how many EUs build an ES, an
encoding unit counter (EUC) is needed. Such an EUC has also a predefined length, and
should precede the EUs for readability (Fig. 2). Hence, to determine an ES, one should:
- read the EUC, stored in the firstm bits, wherem = length of the EUC, and then
- read the next (EUC + 1)× n bits, wheren = EU length.

How many different ESs may be represented by this approach, i.e., how many TRIDs
may be built at each level of a hierarchy, can be calculated by means of Equation I.

Equation I: Maximal number of ESs representable by the EG scheme.
Fig. 2 shows the body of an ES. In our illustrations of this scheme, we have chosen 2

bits for the length of the EUC (m), and 4 bits for the EUs (n). However, the definition of
these lengths may be arbitrarily made and adjusted accordingly to the necessities of each
particular system. In addition, one could differentiate the EUs and state that there are two
EU lengths, one for TL-transactions (longer), and another one for subtransactions
(shorter). For the sake of simplicity, we make no distinction in the EU lengths yet (we
return to this point in the next section). Finally, each pair (EUC, EUs) represents an ES,
i.e., a level in the transaction hierarchy. Fig. 3 presents examples of TRIDs in this scheme.

Fig. 2: The EG scheme.
As seen, the EUC ascertains the length of an ES at each particular level. However,

there can be an arbitrary number of levels in a hierarchy, so that one cannot know, at the
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time of interpreting a TRID, when to stop reading the EUCs and skipping the corre-
sponding number of bits. Therefore, in order to know where a bit stream finishes and be
able to correctly interpret it, some kind of total length information of a TRID is necessary.
This information may be stored in a predefined number of bits in the beginning of a bit
stream, and interpreted as necessary. Usually, one would store this information as an
absolute number, simply representing the total number of bits in the bit stream. We have
particularly chosen to store this information as a relative number, representing the level
the transaction is in the hierarchy. The most important advantage of storing the number
of levels is to (more) easily capture the parent TRID (Fig. 4). In addition, for the sake of
homogeneity, we are going to represent this number of levels as before, i.e., as an ES
composed of a pair (EUC, EUs). Hence, the first ES of a TRID gives the number of levels
in the hierarchy. The EG scheme approaches even more the satisfaction of all our needs:

Fig. 3: Examples of TRIDs in the EG scheme.
Requirement 1: It is still possible to recognize the parent of a transaction on the basis of
its TRID. As shown in Fig. 4, one must read the first ES to the end of learning how many
levels there are (4). Knowing that the number of levels is 4, one knows that the transaction
itself is at the 4th level, and consequently that its parent TRID goes until the 3rd level.
One skips the following 3 ESs and has the complete parent TRID at hand. Of course, the
number of levels in the beginning of the parent TRID is one less than the one of its child.

Fig. 4: Capturing the parent TRID in the EG scheme.
Requirement 2: Deep as well as broad transaction hierarchies are well supported. With
the possibility of choosing an adequate number of bits for both EUC and EUs, one can
tune the EG scheme to the necessities of particular systems using Equation I.
Requirement 3: Assuming 4 bits as the length of EUs, one may create 216 children for
each transaction. This shall be sufficient for subtransactions. It may become critical for
TL-transactions in systems where TRIDs are not reused. Notwithstanding, this drawback
may be eliminated if a distinction in the EU lengths for TL-transactions and subtransac-
tions is made. In the next section, we detail this proceeding, which could be also used
here. However, even with the possibility of tuning the lengths of EUC and EUs, this
scheme always accommodates a potentially very large, but finite number of TRIDs.
Requirement 4: The execution history of transactions is completely reflected in the
TRIDs, so that the check whether two transactions are in the same path of a transaction
hierarchy can be made on the basis of their TRIDs. To accomplish that, one must only
verify whether the longer TRID contains the shorter one.
Requirement 5: The highest non-common ancestor between two transactions is recog-
nizable from their TRIDs. On comparing the ESs of both TRIDs until they are no longer
equal, one has at hand such a non-common ancestor.

0 0 0 0 0 1

a) - (15, 7)

b) - (16, 7, 15)

c) - (16, 7, 16, 1)

d) - (255, 7, 16, 2, 1) 0 0 0 0 0 1
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Requirement 6: TRIDs have variable length and one can precisely allocate the number
of bits necessary to represent subtransactions at different levels. Hence, the memory
space is efficiently used and short as well as long TRIDs are well stored.

In summary, the EG scheme fulfills all our requirements. Its main problem is that it
may fail when one tries to create a TRID out of the range supported by the ESs. Although
one may try to overcome this problem by adjusting those figures accordingly, it may not
be completely eliminated. Before presenting the next encoding scheme we comment on
how one could expand this scheme in order to try to postpone this problem’s occurrence.

Extending the EG Scheme
Since in the EG scheme the EUC may get saturated early, we suggest here an

expansion in the EG scheme with the representation of minimal extra information, which
turns out to be very important when allocating EUs. We suggest the representation of a
counter for the EUC. Such a counter has also a predefined length in bits (k), and works in
the same way as before, i.e., every time the superior limit of an EUC is reached, another
one is allocated, and so forth (refer to Fig. 5). Hence, to determine an ES in this extended
EG scheme, one should:
- read thecounter of EUC, stored in the firstk bits, wherek = length of the counter of

EUC,
- read the EUC, stored in the next (counter of EUC + 1)× m bits, wherem = length of

the EUC, and finally
- read the next (EUC + 1)× n bits, wheren = EU length.

Equation II gives how many different ESs may be represented by the extended EG
scheme at each level of a transaction hierarchy. By its means, we can perceive the
extremely high representation capacity of this scheme. For example, if we choose 2 bits
for the counter of EUC (k = 2), and keep the same figures form (= 2) andn (= 4) as before,
we can represent 21024 different transactions at each level of a hierarchy. Of course, such
a gain on representation capacity means, on the other hand, more processing overhead for
interpreting the bit streams and a bit more memory space for the extra counter.

Equation II: Maximal number of ESs representable by the extended EG scheme.
We have sketched in Fig. 5 a) the body of an ES in the extended EG scheme. Fig. 5

b), in turn, shows the minimal TRID, whereas Fig. 5 c) the maximal one. This extended
EG scheme copes well with the problem we mentioned before. However, we have
advocated that the size of an EU shall be tuned to each system to the end of rightly accom-
modating the TRIDs at each level of the transaction hierarchy. Hence, it is first of all
pretended and desired that in most cases the transactions should be identified by just one
EU. Therefore, in these cases the bits for the EUC and for its own counter are superfluous.
In the following, we present another interesting scheme where we cope with both
problems at the same time. We potentially allow an infinite number of TRIDs, while
avoiding the counters. Additionally, we still keep the good features of these schemes.

Fig. 5: The extended EG scheme.

m = length of EUC
n = length of EU

where:k = length of counter of EUC

2
n 2

m 2
k××

0 0 0 0 0 0 0 0 0 0
EUs (n = 4)

EUC (m = 2)

encoding sequence (level unit)a) b)

21024th transaction

28 times
0 00 0

counter of EUC (k = 2)

1 1 1 1 1 1 1 1 1 11 11 1 1 11 1

0 0 0 0 0 00 0

1st transaction
c)



7

4.3 Additive Growth of Transaction Identifiers - The AG Scheme
The idea underlying the AG scheme is very simple. We have a certain number of bits

(also an EU) for identifying the transactions at each level, which should cover the sub-
TRIDs in the normal, average case. When an EU is full, i.e., all its bits were already used,
then another EU is allocated and added to the previous one to proceed with the
assignment of TRIDs. Being it again full, another one is allocated, and so forth. The main
difference to the EG scheme is that we reserve one representation of bits to the end of
signaling us that an EU is full. Hence, when all bits of an EU are set to 0 (zero, our special
full representation), then the next forthcoming EU pertains to this same level. This
scheme is additive in the sense that, in order to capture a TRID at a level, all EUs of this
level must be added until a non-full representation is found, which then signals the
beginning of the next level. Therefore, to determine a TRID, one should:
(1) read the value of EU (say,value), stored inn bits, wheren = EU length, and
(2) check whether EU is equivalent to the full representation (0). If so, then add tovalue

the representation capacity of an EU (refer to Equation III), and return to step 1.
Equation III gives how many different representations can be produced per EU, i.e.,

at a level of a transaction hierarchy, by the AG scheme. In turn, an infinite number of
TRIDs may be represented, since it may potentially allocate an infinite number of EUs.

Equation III: Maximal number of representations supported per EU in the AG scheme.
Fig. 6 shows examples of TRIDs in the AG scheme. In particular and differently from

the EG scheme, we have chosen 8 bits as the length of EUs (n). The idea here is as before,
a single EU should be enough to identify the transactions at each level, being it not due
to an exception case, another EU is used. Therefore, the right tuning of the EU length is
a very important aspect, which influences the performance of the whole mechanism.

Fig. 6: Examples of TRIDs in the AG scheme.
As seen in the EG scheme, the first unit in a TRID is used to store its number of levels,

particularly because one needs to know where a TRID finishes. We also need this same
information here, and of course due to the very same reason. However, we cannot store
it as the number of levels like before. In the EG scheme, the number of levels together
with the EUC provide enough information to learn the length of the whole TRID. But we
do not have EUCs in this scheme, and the number of levels alone is not sufficient, since
a single level may spread along several EUs. Therefore, we have chosen for this scheme
to store this information as the total number of EUs. In addition, this information will be
stored in the same way as the EUs. Hence, the first ES in a TRID gives its number of EUs
(Fig. 7). In the following, we analyze this scheme w.r.t. our requirements:
Requirement 1: To recognize the parent TRID is an easy task (Fig. 7). The number of
EUs is read (= 5). Thereafter, one directly skips to where the parent TRID potentially is,
i.e., two EUs before the TRID ends. If this EU is not full, then this is the parent.
Otherwise, as illustrated in Fig. 7, one must skip backward until a non-full EU is found.
Requirement 2: This approach allows for a great flexibility in supporting deep as well
as broad hierarchies. On one hand, it potentially supports an infinite number of EUs. On

where:n = length of EU2
n

1–

Transaction
0 0 0 0 0 0 0 1
TRID in the AG scheme

0 0 0 0 0 0 0 00 0 0 0 0 0 0 1
0 0 0 0 1 1 1 10 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1
1

255
256
510
511
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the other hand, the EU length may be tuned, so that series of full EUs may be avoided.

Fig. 7: Capturing the parent TRID in the AG scheme.
Requirement 3: If we assume 8 bits as the size of EUs, we may create (28 - 1) different
children for a transaction with a single EU. While being sufficient for subtransactions in
many systems, it is certainly not for TL-transactions. We overcome this problem here by
making a distinction in the EU length for TL-transactions and subtransactions. We may
consider, for example, that the EU length for TL-transactions is 4 bytes, and that the one
for subtransactions is 1 byte. With this distinction, we may store (232 - 1) different TL-
transactions in one EU (4 bytes long). When opening the transaction in the limit of the
EU storage capacity, a new EU is allocated (more 4 bytes). In order to be able to process
this information about the different EU lengths, we need to store it as meta-information.
In addition, one may think of using different lengths not only for TL-transactions, but also
for subtransactions at different levels of the transaction hierarchy.
Requirement 4: As before, the execution history of transactions is reflected in the
TRIDs, so that the check about the inferior relationship between two transactions is made
only on the basis of their TRIDs (the shorter TRID must be contained in the longer one).
Requirement 5: It is possible to recognize the highest non-common ancestor between
two transactions. As before, the ESs of the TRIDs are compared until they are unequal.
Requirement 6: This is the most important advantage of this scheme. The TRIDs are of
variable length, no space is necessary to store EU counters, and the EU lengths can be
rightly tuned in order to efficiently represent transactions at different levels.

Summarizing, two important points of this scheme are: A potentially infinite number
of transactions can be identified (of course, by an also infinitely large representation), and
no extra bits are necessary for EUCs at each level, since a special (full) representation
carries this information. A critical problem of this scheme is its additive behavior,
because for the transactions which do not fall in the normal case, there may be long
sequences of full EUs. In the following, we present a final and interesting encoding
scheme, where we combine both schemes (AG and EG) together. The idea is to capture
the best property of each particular scheme in only one scheme.

4.4 Combining the AG and EG Schemes Together - The AEG Scheme
In this scheme, we are going to apply the additive growth feature of the AG scheme

to the EUC of the EG scheme. In turn, the EUs themselves are going to work in the same
way as in the EG scheme, i.e., allowing for an exponential growth of TRIDs. Therefore,
to interpret an ES in the AEG scheme requires the following:
(1) read the value of EUC (say,value), stored inm bits, wherem = EUC length,
(2) check whether EUC is equivalent to the full representation (0). If so, add tovaluethe

representation capacity of an EUC (Equation III), and return to step 1.
(3) read the next (value + 1)× n bits, wheren = EU length.

Equation IV gives how many different ESs can be represented by the AEG scheme
at each level of a transaction hierarchy. In turn, like in the AG scheme, an infinite number
of TRIDs may be represented, since the occurrences of EUCs can increase accordingly.

Equation IV: Maximal number of ESs representable by the AEG scheme.

(7, 16, 4, 256)

Transaction

number of EUs=5 7 16 4 256

1st skip 2nd skip

0 0 0 0 0 0 0 00 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

n = length of EU
i = number of occurrences of EUCs

where:m = length of EUC

2
n i 2
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Fig. 8 shows some examples of transactions identified in the AEG scheme (only one
level in the hierarchy is shown, but like before the transactions carry the TRIDs of their
parents). As can be seen, the 1st transaction is represented by one EUC and one EU, like
in the EG scheme. However, as soon as an EUC reaches its EU allocation capacity,
another one is used to allocate and manage more EUs.

Fig. 8: The AEG scheme.
All in all, the AEG scheme is more flexible than the EG scheme because it is not

subject to allocation capacity failures. In turn, it is more powerful than the AG scheme in
the sense that it allows an exponential growth of TRIDs. However, it certainly incurs
more processing overhead for interpreting the TRIDs.

5. Performance Evaluation

5.1 The Conventional Scheme
The conventional scheme we have chosen for comparison is the one implemented in

PRIMA [6, 5, 7]. In this scheme, the NT structure is visualized by a set of m-ary trees,
where the nodes are transactions and the edges are parent/child relationships. The root of
such an m-ary tree corresponds to a TL-transaction. The transactions are represented by
transaction control blocks (TCBs), and the edges by pointers between them. PRIMA’s m-
ary transaction trees are implemented by a special type of binary trees (Fig. 9). A TCB
contains four pointers which are used to establish the nested structures. The parent of a
transaction may be found by traversing theparent pointer. In turn, all children of a trans-
action can be reached by traversing thechild pointer, and from this pointer on one can
navigate via theright sibling pointers to the other children. In particular, theleft sibling
pointer is used for easily removing a transaction from the sibling chain. Hence, in order
to reflect the nested structure of the transactions, the conventional scheme explicitly
chains the TCBs together, and the TRIDs are uniquely given by means of a counter.

Fig. 9: Transaction trees in a conventional scheme.

5.2 The Algorithms and the Environment
The algorithms we have implemented, in C, may be gotten viaanonymous ftp under

ftp.uni-kl.de (131.246.94.94, /pub/informatik/software/rezende/TRIDs_NT). These are
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of a general use, and so programmed that all EU lengths are represented as meta-infor-
mation (defines). By this means, one can easily tune the TRIDs to any system. However,
for performance reasons, it is desirable that one changes the algorithms accordingly, so
that some of the tasks and checks performed may be facilitated. In particular, we have a
version of these algorithms tailored to the features of KRISYS [10], where the length of
EUs for TL-transactions is four bytes, the one for subtransactions is one byte, and one
first byte for the total length information. This version of the algorithms is much simpler.
Here, we present the performance results we have obtained with this version. We have
run the algorithms in a Sun Sparc Station ELC 4/251, with 64 Mbytes of main memory,
under SunOS 4.1.41, windows system Sun-X11R51. In order to get precise time measure-
ments, we have implemented a kernel module in Sparc-Assembler, which has allowed us
to access the Hardware-µsec-Timer of the Sun-Workstation1. We have performed the
algorithms until the 50th level in a hypothetical transaction hierarchy, where the 1st level
corresponds to the TL-transaction. Further, we have repeated all functions thousand times
to the end of getting averages, and so not being disturbed by eventual machine overloads.

5.3 The Performance Results

5.3.1 Memory Space Utilization
The first aspect we have compared is the memory space utilization in both approaches

(Fig. 10). We have assumed in our comparisons that one EU in the AG scheme is suffi-
cient to store the TRIDs at each level. Otherwise, it would be very hard, if not impossible,
to draw comparisons. In the conventional scheme, the number of bytes is constant,
independently from the number of levels. This scheme always allocates 20 bytes to
identify a transaction: 4 bytes for each one of the four pointers plus 4 bytes for the TRID
itself. In turn, the first level in the AG scheme consumes 5 bytes: 4 bytes for the TL-TRID
plus 1 byte for the length information. Subsequently, one more byte is needed for each
forthcoming level. As can be seen in Fig. 10, before the 16th level the AG scheme uses
less memory in the normal cases than the conventional one. However, after the 16th level
the AG scheme consumes more memory space than the conventional scheme.

5.3.2 Getting the Parent TRID
Whereas in the conventional scheme the TCB of the transaction, after being directly

accessed through a hash table, must be traversed via the parent pointer, in the AG scheme
the parent TRID is contained in the TRID itself, and thus all that must be done is to simply
recompute the total length information. In both approaches, the execution time for getting
the parent TRID is more or less independent of the level the transaction is (Fig. 11).

5.3.3 Checking the Inferior Relationship
The function for checking the inferior relationship is performed differently in both

approaches. The conventional scheme, which uses a bottom-up strategy, varies in terms
of execution time accordingly only to the difference of levels between the transactions in
the hierarchy, and it is independent from which specific levels these transactions are. In
our measurements (Fig. 12), we have then varied this level difference for the conventional
scheme, starting from 1 until 50 levels. In turn, the AG scheme is more or less
independent from such a level difference. On the contrary, it varies accordingly to the
specific levels the transactions are. This is so because it compares a certain number of
bytes of both transactions (the shorter TRID must be inside the longer), which corre-
sponds to the transactions’ levels. Hence, for the AG scheme, we have varied this number

1. Registered trademark of Sun Microsystems, Inc.
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of byte comparisons from the 1st to the 50th levels in the hierarchy.

Fig. 10: Memory utilization in the normal case. Fig. 11: Getting the parent TRID.

5.3.4 Getting the Highest Non-Common Ancestor
This function works completely different in both schemes. The AG scheme follows,

like before, a top-down strategy in a very simple way. It starts comparing the bytes of both
transactions from the beginning until the first different byte is found. This is then the
highest non-common ancestor. Hence, its time measurements vary accordingly to the
number of bytes examined, i.e., accordingly to the level such an ancestor is. In turn, in the
conventional scheme the TCB of the transaction which is deeper in the hierarchy must be
brought to the same level of the other transaction’s TCB. Thereafter, the parent pointers
of both TCBs are navigated upwards in the hierarchy until the first common ancestor is
found. During this navigation, the previous transaction in the path must be remembered.
On finding the first common ancestor, the most recently remembered transaction is the
highest non-common ancestor between both.

Due to different influencing factors, we have realized different measurements for this
operation. All of them have shown almost the same behavior. In the one shown in Fig.
13, we have kept both transactions at the same level of the hierarchy. We have varied then
the position such a non-common ancestor is, i.e., level 1 means that it is the TL-trans-
action itself. In turn, level 50 means that this ancestor is at the 50th level. Whereas the
AG scheme is very fast to find a non-common ancestor when this is the TL-transaction
(it must just compare the first ES of both TRIDs for realizing that), the conventional
scheme takes longer, because it must upward traverse 50 TCBs in the tree until it reaches
the TL-transaction. In turn, it gets better performance results as such an ancestor is deeper
in the hierarchy (the path it must traverse becomes shorter). On the other side, the AG
scheme takes longer because it must compare more ESs.

Fig. 12: Checking the inferior relationship. Fig. 13: Getting the highest non-
common ancestor.
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6. Conclusions
We have addressed the assignment of TRIDs in NTs. Essentially, a TRID should be

of variable length, and carry the superior TRIDs. The elementary scheme is hardly worth
of implementation. The EG scheme supports a finite number of TRIDs, and must
represent extra bits for EUCs. The extended EG scheme allows for more flexibility in the
allocation of EUs, putting its upper limit to a very large value with the addition of some
more information in the ESs. The AG scheme copes well with the allocation of EUs and
needs no counters, and it potentially supports an infinite number of TRIDs, as long as an
infinite representation is possible. In addition, it avoids extra bits for EUCs, because it
uses a full representation for signaling sequences of EUs. At last, the AEG scheme is not
subject to failures in the allocation of EUs, and allows an exponential growth of TRIDs.

We have also realized many performance measurements, the most important of them
we have shown here: A comparison between the AG scheme and a conventional one.
With respect to all kinds of processing, our AG scheme has shown time figures much
better than the conventional one. As all has its price, our AG scheme consumes more
memory than the conventional one as soon as the transaction hierarchies become too
deep. Finally, we hope to have covered a topic of NTs which has not received much
attention thus far, although influencing the performance of any systems employing NTs.
With the algorithms we have put available via anonymous ftp, we hope to facilitate the
work of the ones who might like to implement our ideas in their own systems.
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