
Abstract

Due to the ever rising competition in nearly all industrial
sectors, there is a strong need for integrated information
systems (ISs) that will store, retrieve, manipulate and
exchange information efficiently to support all activities in
an enterprise. Moreover, such an IS should not be a one-
size-fit-all or a permanent solution; rather, the adaptability
must be pursued so that the system can deal with all possible
changes resulting from new technologies or new application
demands. In this paper, we present our first experience with
developing such an integrated IS for a technical application
domain. From the data processing point of view, the
environment to be managed consists of distributed client/
server systems embodied by heterogeneous hardware and
software components; unconventional data types such as
multimedia data and HTML statements are to be managed;
and effective and robust database (DB) support should be
provided. To meet the challenges posed by these advanced
applications, new information techniques, such as World
Wide Web (WWW or Web) and object-relational database
management systems (ORDBMSs), are employed to facil-
itate a platform-independent DB access via a versatile user
interface, as well as powerful DB services with high exten-
sibility.

1. Introduction
Although we have used DBMSs for more than 20 years

in industrial domains to build up technical ISs supporting
mission-critical design and development as well as
production and maintenance work, we are still unable to
shape truly integrated systems which can cover as many
aspects of the requirement spectrum as possible. Such
technical ISs have to provide adequate functions for storage
and management, retrieval and update, as well as exchange
and dissemination of a wide variety of information. They are
necessarily exposed to distributed and to some degree
autonomous client/server environments whose “natural
appearance” is formed by heterogeneous hardware and
software components (linked together by componentware).
Indeed, while manual control procedures and semi-
automated information exchange dominate its use in CAD
environments, a technical IS is often not more than a
conglomerate of relational or object-oriented DBs, files,
text-processing documents, image/photo repositories,
electronic mail systems, specialized CAD systems, etc.,
which is nowadays more and more extended by individual
and unorganizedWebusage.

To improve this situation, we started the RITA project
[7] which is carried out in cooperation with a leading
German manufacturer of automobile seats. Currently we are

implementing a subsystem supporting the design and test of
prototypical technical objects. A fundamental ingredient of
the system is information management requiring effective
and efficient DB support. To meet all challenges of this
advanced application, new information techniques such as
ORDBMSs and the ubiquitous Web should be employed to
provide adequate DB services and to facilitate the platform-
independent DB access.

As we know, there will be no single-step solutions
towards integrated technical ISs, but only continuous
improvements consisting of many comparatively small
steps. On the other hand, in the competitive and ever-
changing world with which every enterprise is confronted
today, managing a huge amount of information in a system
that is open, flexible, and extensible enough to withstand all
possible changes will be essential for an enterprise to stay on
the leading edge or even survive. These changes may be
imposed by the emergence of new data types (e. g., the
enormous interest in multimedia contents), by the new
processing requirements accompanying the introduction of
new data formats, by the advancement of domain-specific
techniques (e. g., the adoption of new methods and equip-
ments for seat testing), or by the development in computer
hardware and software areas (e. g., upgrading to or setting in
a new DB product or a new platform). Therefore, one of our
main concerns by designing and implementing such an IS is
the adaptability of the resulting system.

In this paper, we are focusing on the specific problems
of connectivity in heterogeneous settings together with
some DB support issues (such as extensibility of data types
and functionality), which we feel are the core aspects in this
regard. In particular, we investigate which role can be
played by HTML documents, the HyperText Transfer
Protocol (HTTP), and finally the huge information repos-
itory of the Web itself to improve technical ISs. We do not
claim or want to prove that in such environments all DB or
information retrieval/exchange problems can be solved by
using the Web techniques.

In the next section, we will at first outline the various
information management tasks which we face in our RITA
project. Then, Section 3 concentrates on enabling DB access
in a heterogeneous environment. In Section 4, the specifics
of Web connection as well as data modeling issues are
investigated in order to manage the dynamics in application
scenarios. The potential of intelligent Web usage, that is, the
automatic provision of information services supporting the
work of individuals or groups, is discussed in Section 5.
Finally, in Section 6, we conclude this paper and give an
outlook on future work.

Supporting Adaptable Technical Information Systems
in Heterogeneous Environments

- Using WWW and ORDBMS -

Theo Härder, Henrik Loeser, Nan Zhang
University of Kaiserslautern, Department of Computer Science,

P.O. Box 3049, D-67653 Kaiserslautern, Germany
email: {haerder | loeser | zhang}@informatik.uni-kl.de

In: Proc. 8th Int. Workshop on Database and Expert Systems Applications (DEXA’97), Toulouse, 1997, pp. 295-303.

2. RITA - a Heterogeneous, Adaptable IS for
Technical Applications

The goal of our project RITA is to build an integrated
IS to handle and/or support the technical applications
involved in all essential processes of the enterprise. RITA
will act as an information repository that manages data and
experience of earlier development projects and test suites,
and helps to optimize the preparation and execution of new
tests by supporting the engineers in presenting the data in a
suitable manner. Another aspect is to integrate relevant
information of new projects in the knowledge pool. By
establishing such kind of IS, the coordination and infor-
mation exchange should be supported, resulting in shorter
development cycles, making the achievement of goals more
secure, and reducing development costs.

An integrated IS with these tasks and objectives can be
functionally decomposed in many parts. It often manages
huge amounts of complex data to be shared among
independent or cooperative processes, in DBs. Moreover, it
should also provide ways for the user to interact with the
system, as well as ways for different components of the
system to communicate with one another in a decentralized
heterogeneous setting. Therefore, data modeling and manip-
ulation, workflow management and control, as well as infor-
mation processing in a heterogeneous client/server
environment are three main aspects of the system.
Moreover, the seamless integration into an existing infra-
structure of the enterprise constitutes another important
endeavor.

Typical characteristics centering on the role of RITA as
an information repository can be summarized as below:
a. Large volumes of data with diverse structures should be stored

and managed. There is a variety of complex data types,
including texts and reports, sketches of test plans, photos and
videos of test progresses, etc. Moreover, data structures range
from simple flat structures (part catalog) to heterogeneous
compound ones (CAD objects). Finally, dynamic integration
and use of newly defined data types should be allowed in the
IS.

b. Workflows and decision-making have to be supported. There-
fore the full functional spectrum of an industrial-strength
DBMS including ad-hoc querying must be guaranteed.

c. Object-oriented approaches are necessary for coping with the
complexity in developing such a technical IS. In particular, to
realize most of the sophisticated application logic related to,
e. g. complex object processing, native interfaces to object-
oriented programming languages such as Java or C++ will be
of great use.

d. An open, heterogeneous computing environment based on
Client/server architectures is now increasingly popular for IS.
Consequently, it is also a great challenge to bring about suc-
cinct and platform-independent DB access in such a setting, to
facilitate convenient interaction with the system, to provide a
single and versatile catalog of local or global information
repositories together, as well as to manage users through a
uniform interface and communication service.

e. A characteristic group of the client/server applications are
CAD applications with advanced modeling and high band-
width demands on DB servers. Since they have to rely on data
shipping techniques, such applications require efficient client-
side data management support (object caching, consistency
control, etc.).

f. Most importantly, to keep up with ever rising competition and

ever varying circumstances, flexible reaction to changes is
essential. An integrated technical IS with long-term goals
should empower users to dynamically alter data presentation,
functional requirements, application logic, and other aspects
w.r.t. the environment.

Two significant advancement trends of the information
technology, which are expected to make it possible to build
larger ISs with features listed above, can be attributed to the
emergence of the ORDBMS technique and the WWW
technique. The former promises the fulfillment of require-
mentsa, b, andc through its strong modeling power, the
facilities of user-defined types and functions, support for
object-orientation properties without sacrificing SQL and
other mission-critical DB features such as robustness. And
the latter can be exploited to achieve simple DB connec-
tivity through HTML and CGI (Common Gateway
Interface). Besides, it facilitates friendly, homogeneous, and
tailorable browser interfaces, efficient Web services for
local and also global information catalogs (e. g., ISO,
Bookmarks, Hotlinks, etc.), as well as DB-based user group
management for communication and authentication services
(point d). Although ORDBMSs incorporate advanced
modeling facilities, their availability at the client side
remains an open problem which cannot be dealt with in this
paper (pointe). However, ORDBMSs offer the possibility to
store HTML statements in DBs as data types, hence, these
two techniques can be combined together, and their own
flexibility can be employed to achieve more adaptable infor-
mation repositories (pointf).

The architecture of RITA based on these techniques is
briefly illustrated in Fig. 1, while more detailed discussion
will be made in the subsequent sections.

3. Supporting a Heterogeneous Environment
As stated above, one of the main problems in estab-

lishing a technical IS is to provide support for a heteroge-
neous environment, i. e., to support different hard- and

ORDBMS

CGI tool

W
F

M
S

WWW server

manuals
law suites

inhouse rules

RITA client ...

request documents or forms
put data back to server

HTTP

Fig. 1: The architecture of RITA

RITA client

software platforms. Currently, we evaluate two different
approaches for maintaining DB access w. r. t. their
adequacy for our needs. The first one is the “classical” use
of a programming language in conjunction with a platform-
independent graphical user interface (GUI) toolkit, e. g.,
wxWindows [18]. The second one is to employ WWW-
based DB access in order to have a platform-independent
tool, i. e., the WWW browser, for data displaying. In the
following we consider the pros and cons of both. After that,
the ideas and the work to be done for employing the chosen
technique will be described briefly.

3.1 Conventional client/server approaches
So far, client/server approaches are chosen to structure

the application when DB access is involved. These
approaches are typically based on traditional programming
languages (e. g., C or C++) together with a platform-
independent GUI toolkit and have some drawbacks
concerning the implementation and maintenance of an
application in a heterogeneous environment:
• A program with all its modules must be built (compiled and

linked) on various platforms. That is, the graphical environment
must be supported by the GUI toolkit. Moreover, libraries for DB
access and communication as well as a compiler supporting the
different libraries or language styles must be present for each
platform. Hence, there are a lot of prerequisites to be met in order
to really begin to write a program. Furthermore, a significant
amount of the coding effort has to be spent for the interface part
instead for the actual functionality.

• The installation and maintenance of a program is not only a time-
and manpower-intensive task, but also raises the question about
availability of testbeds for each environment during the develop-
ment phase.

• The GUI with all its components is hard-coded into the applica-
tion, therefore, is difficult to be adjusted to dynamics or changes,
such as changes to the DB schema during application develop-
ment.

However, the use of such conventional techniques for
DB access in a heterogeneous environment has some advan-
tages, too. These include the facility of implementing
complex algorithms for the application using existing
libraries, and the perhaps higher execution performance.

3.2 WWW-based techniques
For heterogeneous environments, the Web offers some

rather opposite properties - accessibility and ease of use, but
possibly compromising performance. Since the integration
of the Java Virtual Machine (JVM) into WWW browsers,
there exist two techniques for WWW-based DB access: CGI
programs and Java applets.

CGI-based gateways
The CGI enables the WWW server to transfer data

submitted from a WWW browser to a program residing on
the server (see Fig. 2,❶), to execute it (❷), and to transmit
the resulting output (❺) back to the browser (❻). Such a
program located at the server side can be a DB client which
establishes a DB connection, submits a query to the DB
server (❸), gets the result (❹), and converts it to an HTML

page (❺) which then is transferred back to the browser (❻).
While in the past CGI programs for DB access had to be

programmed in C or Perl, nowadays every DB vendor offers
a special tool for this purpose. These tools are comfortable
and provide a mixture of HTML and SQL, but they cannot
overcome some principal shortcomings of the CGI when
accessing DBs [11, 15]:
• As we have seen, six steps are needed to get a result from a DB

server back to the browser. Each time a DB is accessed, a con-
nection has to be established and access authorization has to be
acquired. Since the DB server and the WWW server must be con-
tacted for each query issued to the DB server, the WWW server
is likely to become a bottleneck.

• Because of the statelessness of HTTP used for the communica-
tion between the WWW browser and the server, only single-que-
ry transactions are possible.

• In the case of failures, there may appear in-doubt situations, since
the user cannot be sure whether or not the query execution was
finished, e. g., connection failures may affect a query before (❷
or ❸) or after its execution (❹ to ❻). Hence, transaction proper-
ties (ACID) cannot be guaranteed even for single-statement up-
dates [6]. Therefore, this update option may only be used if the
user is willing to deal with in-doubt situations and if acceptable
DB states can be reached. This means that such an approach is
only tolerable for simple data structures without consistency
constraints across objects or for less important data resources
(without system-enforced consistency control).

• Another problem of CGI-based tools is their restricted access to
only one DB server. In some cases, in conjunction with special
products like IBM DataJoiner [9] or UniSQL/M [20], other DB
servers can be accessed indirectly, causing further performance
problems.

Nevertheless, CGI-based DB access has advantages, too:
• By using HTML forms and tables a GUI for data input and dis-

play can be developed in a straightforward way. Input forms and
the resulting output pages can be created on-the-fly, providing
the opportunity for dynamic reactions.

• To establish a DB frontend, a single HTML page is sufficient for

WWW server

WWW client

HTML
documents,

CGI programs

Fig. 2: Database access from the Web (overview)

images,
Java applets

DB
client

DB server

Comm.
Server

persistent

(1)

❹

❻

❺

❸

❷

①a ②a

③②

(2)

① ④

module cache

❶
HTTP

#!/bin/
perl
0101010
1010101
0101011

the transfer to the browser. Hence, apart from a WWW browser
and the server’s address, there are no prerequisites to access a DB
in a distributed and heterogeneous environment.

• Because of having only CGI programs and HTML pages both of
which reside on the WWW server, all changes can be done in a
central place, having minimal administration costs.

If low bandwidth and user-responsible consistency
control is tolerable for DB applications in a heterogeneous
environment, this approach saves budget and time [11]. Due
to the mentioned strengths, CGI-based DB access is the
right choice for low-frequency access to simply-structured,
low-volume DBs, e. g., for our application inserting
measurement data of tests three or four times a day or
browsing data of previous tests.

Using Java
The programming language Java offers new opportu-

nities for accessing a DB from a WWW browser. An applet,
i. e., a Java program embedded in an HTML page and trans-
ferred to the browser using a normal HTTP connection ((1)
and (2), see Fig. 2), is able to open a connection to a DB
server residing on the WWW server’s machine. A “trusted
applet”, an applet which is cryptographically signed by a
certified institution and accepted by the user, may connect to
a DB server located even anywhere. Several different
approaches exist to access a DB from an applet [15]:
• The first one requires the use of the JDBC (Java DataBase Con-

nectivity, [5]), an SQL-based call level interface (CLI) defined in
the Java language. Some JDBC drivers enable the applet to di-
rectly connect to the DB server (①a and②a), others use a special
Communication Server located between the applet and the DB
server (① to ④), e. g., IBM’s DB2 JDBC driver.

• Another technique is based on proprietary CLIs, e. g., MsqlJava
[4] for mSQL or J/OCI [21] for Oracle.

• Using an applet as a CORBA (Common Object Request Broker
Architecture) client, embodies a conceivable third approach of
getting data from a DB server. In this case, the Communication
Server in Fig. 2 will be an ORB (Object Request Broker).

Beside some drawbacks like longer loading times of
applets in comparison to normal HTML pages or the loss of
HTML as an easy-to-maintain user interface, Java offers a
number of advantages for accessing DBs:
• Because of the direct DB connection, it is possible to have “long”

transactions, i. e., consisting of more than one query.
• The user is no longer in-doubt about the fate of DB queries due

to the direct DB connection and the now possible 2PC (Two-
Phase Commit).

• It is possible to support application logic at the client side, i. e.,
the WWW server will be relieved from certain processing tasks.
For example, lists or tables may be redisplayed or reordered
without contacting the server again.

Hence, Java is adequate for implementing WWW-
based complex and data-intensive applications, i. e., appli-
cations incorporating workflow control, traversing a DB, or
performing complex data manipulation.

3.3 Remark and outlook
Due to the weaknesses of “traditional” programming

languages concerning the provision of DB access in a heter-
ogeneous environment, WWW-based techniques are the

right choice in RITA for specific DB applications relying on
query shipping. Because of the different application charac-
teristics in RITA, CGI-based as well as Java-based solutions
must be employed.

For simple and low-frequent applications, e. g., for
performing test data input or browsing in a requirement
catalog, HTML and CGI programs are adequate. By
supplying manuals and law suites as HTML documents,
“ubiquitous” browsers provide a homogenous user interface
to the whole IS for the dissemination and retrieval of such
kinds of information. If workflow control or application
logic, e. g., for complex data manipulation, are needed at the
client side, Java programs can be integrated in HTML pages,
and the same user interface, the WWW browser, can be used
for data input and presentation.

4. Supporting Dynamically Adaptable Appli-
cations

As we have seen, both approaches accessing DBs from
the WWW support a uniform user interface in a heteroge-
neous environment. In this section, we discuss how to
provide the means for dynamic adaptation to changes in our
IS through the joint facilities of WWW techniques and
ORDBMSs.

4.1 Using WWW techniques
In Section 2, we have outlined the requirements for

RITA, including the run-time support for new data types
such as new test suites. To provide adequate tools for the
dynamic creation of new data types as well as the input and
display of instances of these new data types, we will exploit
the WWW-based techniques presented in last section.

Creating new types
The specification of new data types by means of WWW

is a non-trivial task, since the number and the types of new
attributes required are usually unknown in advance. As a
consequence, using only a single static HTML form is not
sufficient. For this problem, we have considered two
possible solutions. The first one is to create new types in an
attribute-by-attribute manner using chained HTML forms.
The second one employs a Java program for this purpose.

Using chained HTML forms requires either to alter the
new type step by step or to pass all user input from one form
to the next and then to create the new type with a single
operation. Since the step-by-step connection of the WWW
server and the DB server may result in dubious situations,
the first alternative is unsuitable for our demands. On the
other hand, the second way only needs a WWW server
connection for each step, but the new attributes specified in
previous steps must be integrated into the current page, i. e.,
a CGI tool must convert the attribute descriptions to
HTML’s “hidden value tag”, integrating the data invisibly
into HTML pages.

Employing a Java program offers opportunities such as
graphically aided user interaction, and, apart from only a
single DB access at the end of the creation process to insert
the data, a server-independent construction of types, as well

as a dynamically changeable GUI. Hence, creating a new
type can be done by selecting a base type, specifying the
attribute’s name and clicking an “Add” button. If all
attributes are specified, only “Create” must be pressed to
built a new type.

For example, to create a new type for the “static back-
rest inclination test”, we have to select “float” as base type
for the different angles of inclination and the load, “image”
for the pictures, and “text” for the special observations.
After having specified each attribute needed, a data type for
the new test suite can be created.

Data input and display
Data input and display for instances of dynamically

created types can be realized using HTML forms and pages.
With a fixed number of attributes, a template for HTML
forms consisting of input fields for each attribute can be
generated during the type creation process. In addition to
this, an HTML page, extended with SQL statements, is
needed to insert the data using a CGI tool. To provide data
display, another generated and SQL-enriched HTML page
for the CGI tool must be produced during the type creation.
This page contains a selection statement and a data output
section for each attribute, based on a template for each base
type.

In the case of our new test suite, the data input form
consists of text input fields for the angles and the load, a text
area for the observations, and an input field for the path to
the picture. The data display page may be composed of
small units consisting of a label for and the value of an
attribute for text-based types, as well as pictures embedded
into the HTML page.

4.2 Using ORDBMSs
So far, we have discussed that the WWW offers a

promising means for a platform-neutral and user-friendly
style of DB access in heterogeneous environments, where
information is distributed both throughout an enterprise (the
Intranet) and all around the world (the Internet). Moreover,
there is an ever-broadening spectrum of information
resources, and users want a system that handles all the data
types involved in the operational processes of the enterprise.
As an example, the RITA system should provide more than
textual descriptions of test progress and test patterns: there
are photos and videos recording the course and the status
change of the vehicle seats, graphics designed for seat
constructions and spatial locations, as well as composite
multimedia documents reporting the final test results. The
Web supplies on one hand an arena to present such mix-
media information, on the other hand, it requires effective
DB support to manage this information. An increasing
demand for new types of information and corresponding
ways to manage them is posed on DBMSs.

Why choosing an ORDBMS?
Traditional relational DBMSs (RDBMSs) do not

support advanced data types natively. Since they consider
only character strings and numbers, data types that cannot

neatly fit into tables, such as image, audio, full text, and
HTML, are not understood by RDBMSs. Specific data types
as well as the operations on them cannot be dynamically
customized to individual application domains. As a result,
although the proposed idea concerning the WWW technique
can give our IS some degree of flexibility in the heteroge-
neous environment, the full expectation, however, cannot be
met by only using RDBMSs to support the underlying data
storage and management.

In contrast to RDBMSs, object-oriented DBMSs [16]
exhibit much stronger modeling power which stems from a
rich type system. However, supporting application-specific,
advanced data types is not the sole requirement which is
essential in our setting. Most of the conventional DB
features (e. g.,integrity constraints, fine-granule concur-
rency control, content-based query and query optimization,
as well asrobustness issues such as recovery and backup)
are still critical.

To allow users to model and manipulate unconven-
tional data effectively and to use object-oriented technol-
ogies for application development without losing the
benefits of SQL and all the commercial-strength DBMS
features, recently almost all of the top DB vendors have
redirected the strategies to object-relational and are
extending their DB server architectures accordingly.
Challenges posed by adaptable ISs are expected to be met by
the emerging object-relational technique [3,13,14,19] for
several reasons:

• Support of a rich and extensible set of data types for technical in-
formation management, such as full-text, multimedia, temporal,
and spatial data.

• The ability to enable dynamic WWW connections: The ability to
define HTML as a new data type allows the DB server to natively
understand, search on, and dynamically generate HTML pages
from the underlying DBs directly.

• Support for user-friendly interaction and consistency control:
Today, active rules have become one of the main properties of
the object-relational technique. In the presence of more freedom
in user interaction with the system, more attention should be paid
on the consistency and integrity of stored data.

• A flexible and extensible architecture which is easily tailored ac-
cording to domain-specific demands: Generally, the architecture
contains two kinds of components: a core engine, which pro-
vides, among others, the ability to create new data types, new
functions, and new access methods; and a series of pre-built or
user-developed modules (such as DataBlades, Extenders, or
Snap-Ins), which are collections of data structures with functions
that manipulate them, and optionally new access methods. As a
result, it is unnecessary to worry about, e. g., new data formats
that emerge dynamically and continually in an enterprise and
thus need to be included and maintained.

HTML pages as data type

In Illustra [12], e. g., HTML pages are of the data type
defined by the Web DataBlade, whose kernel is theWebEx-
plode function executing inside the Illustra DB server.

This function is
called through a
client DB appli-
cation interface
— Webdriver. It
selects an
Appl icat ion
Page (an HTML
page containing
embedded SQL
statements) stored
in the DB.
WebExplode
parses the
extracted pages,
executes the
embedded SQL
queries, and
formats the resulting HTML page, which is then transferred
back to the client browser program byWebdriver through the
Web server.

Due to the length limit, we can only present a simplified
example. Fig. 3 illustrates anApplication Page with the
corresponding output of the Browser shown in Fig. 4.

In this way,
many problems
inherent in
previous genera-
tions of Web
connections are
solved,
including diffi-
culties with the
management of
complex data
types and the
need to write
proprietary
CGI access and
management
code. Moreover, since theApplication Pagesare kept in the
DB, they can be easily retrieved or manipulated using the
powerful functions provided by the Web DataBlade module.

4.3 Comments
Our primary goal is to implement an adaptable IS that

is flexible enough to keep up with the rapid and unpre-
dictable changing of requirements on how data are used and
managed. Therefore, a DBMS that can natively support new
data types, enables dynamic and interactive Web connec-
tions in all platforms, and allows users to easily custom the
functionality and express specific application logic, is
crucial in today’s competitive world. ORDBMSs, though
without a generally accepted standard definition at the time
being, embody a promising potential to build advanced ISs
satisfying more complex requirements. The modeling
potential as well as the shortcomings of ORDBMSs are

Fig. 3: An Application Page stored in DB

<TITLE>Display Tests</TITLE>
[RITA Home]

<H1>Display Tests</H1>
<HR NOSHADE>

<?MISQL SQL=”set schema RITA;”><?/MISQL>

<TABLE BORDER>
<TR><TH>Test_Number<TH>Test_Name</TR>

<?MISQL SQL=”select test_number, test_name
from tests where project_number=1997006;”>
<TR><TD>$1</TD><TD>$2</TD></TR>
<?/MISQL>
</TABLE>
<HR NOSHADE>

Database Group, University of Kaiserslautern
, 1997

Fig. 4: Browser output

investigated in another paper [23] based on our practical
experiences with the RITA project.

It should be noted that current ORDBMSs, in their
infancy, cannot yet meet all the promises and challenges.
Type extensibility provides a fundamental facility to
manage changes. However, a real adaptable IS is faced with
more complicated situations than just to be able to define
application-specific data types and functions on-the-fly.
Primary requirements in technical domains include, among
others, efficient support for large and complex objects. In
such a context, managing changes needs extensive study of
semantic-rich data relationships and genuine set-valued
attributes, efficient support of schema evolution and object
migration, as well as management of versions and configu-
rations. Our work in this direction can be reflected by an
ongoing project ORIENT [22] aiming at integrating
relationship semantics into an ORDBMS and another
project being planned to enhance ORDBMSs with mature
version concepts. All these efforts rely on the extensibility
inherent in ORDBMSs.

5. External WWW Usage in Technical Infor-
mation Systems

Thus far, we have primarily discussed the “internal
usage” of HTML and HTTP providing a platform-
independent means for information representation and
transfer in heterogeneous environments. However, we did
not yet check the original ideas and objectives of the Web
itself and how they could be exploited to improve the
“external information exchange” of technical information
systems.

5.1 Personalize the Web
The WWW or Internet already connects vast infor-

mation resources dispersed around the world and is increas-
ingly perceived as a single, global data repository offering
all users simple means of authoring as well as uniform,
simple, and (sometimes) fast access. Millions of persons,
organizations, and institutions have built the Web which
currently incorporates hundreds of millions of pages of
various kinds of information. We strongly believe that the
potential of the Web has to be tapped to broaden the
spectrum of services in technical ISs. Moreover, this
provision of services has to be tailored to the specific tasks
and professional activities.

All pages of information just referenced by their URLs
are equally proximate to a user. Hyperlinks can group
“some” of the related information to enable a kind of
clustering and to reduce the user’s decision space. Web
browsers as cross-platform, multimedia information
displays and command generators are ubiquitous. Together
with these browsers they simplify somewhat search and
access of information pages, however, their accessibility is
completely impersonal. Users often complain that the infor-
mation accessed in the Web is badly organized, irrelevant,
outdated, or even wrong. On the other hand, they quickly
loose track and get lost if they follow chains of hyperlinks to

obsolete. A number of reasons such as slow network or
connection speeds, helplessness or inability to locate infor-
mation already found, insufficient means to manage and
organize retrieved information [17] require more appro-
priate user support for accessing the Web. We believe that
the provision of Web services has to be shifted from manual
management to automatic approaches thereby tailoring the
Web for individual users - at least in professional environ-
ments.

5.2 Proxy topologies
For this purpose, the simple Web model resulting in a

very tight linkage of Web browser and Web server has to be
adjusted to allow for suitable user assistance. Although the
fundamental communication mechanism of the Web -
HTTP whose simple and direct request-response protocol
between browser and URL server is stateless - cannot be
changed, the Web model could essentially be improved
concerning our needs by introducing programmable inter-
mediaries between browsers and servers. A first decoupling
is achieved by the use of a so-called proxy which serves as
a mediator for the user’s Web transactions as illustrated in
Fig. 5.

In this scenario, a client issues an initial request to the
proxy which performs the Web transaction on behalf of the
client. Note, the proxy’s response is passed back to the
client. Usually, the original response is not modified, but, in
principle, a proxy can produce arbitrary responses.
Nowadays, a proxy is typically used to provide page caching
for individual users or groups of users in an organization; on
the other hand, it can incorporate a one-way firewall for
intranet security. Since each request of a browser is directed
to the related proxy, it can check for cached pages or the
authorization of the user before further actions are taken.

This rudimentary form of control and service optimi-
zation could be greatly expanded by evolving the idea of a
mediator between browser and server. Some architectural
approaches for establishing such a mediator are recently
proposed in the literature. [2] proposes a proxy server shell
called OreO that can be used to modify the HTTP stream
between a client and a Web server. The proxy server
consists of a number of cooperating agents which can carry
out various tasks as kind of an assistant of the user. The

Web

original request proxy request

original responseproxy response

Fig. 5: Simple Web model extended by an intermediary

ServerBrowser HTTP
Proxy

group of agents and their connectivity has to be configured
at system start-up which makes this approach somewhat
static, whereas the WBI approach (Web Browser Intelli-
gence, [1]) can dynamically connect agents for specific
tasks based on data contained in HTTP requests and
responses. In our proposal, we adhere to this mediator archi-
tecture where the provision of useful Web-related services is
performed by a number of cooperating agents acting
between a user’s Web browser and the Web.

To sketch the full potential of the mediator idea, we
would like to point out the entire range of proxy topologies.
As shown in Fig. 6 we can distinguish between client,
workgroup, and server proxies.

The client proxy is responsible for all Web transactions
of a single user, whereas a server proxy observes/handles all
requests to a server. Finally, the workgroup proxy controls
all server accesses of one workgroup which may be a
suitable place for building a firewall. Note, not all of these
proxy types may be mounted in a particular IS, but, in
principle, each of these proxies can be implemented by a
collaborating set of agents, as outlined above.

5.3 WBI architecture
In our special environment, we include a number of

agents simplifying and tailoring the Web access to the
individual needs where these agents perform on behalf and
as assistants of the Web user. To replace the normal proxies
by such agent-based assistance systems, we have adopted
the key ideas of the WBI approach [10]. WBI consists of
four types of agents:
• Monitor agents track and record user actions to provide informa-

tion for other agents. For this purpose, they observe the request/
response stream and perform, without altering it, actions based
on the stream, e. g., monitoring page contents or deriving usage
patterns.

• Editor agents intercept the communication stream, modify re-
quests or responses, and forward their own requests/responses.
Hence, they can connect to either the request part or to the re-
sponse part of the stream. Examples for such modifications in-
clude inserting additional related links or information, highlight-
ing text, modifying URLs, or adding annotations to a response
page for a browser.

• Generator agents receive requests and convert them into respons-
es by using any other resource, e. g., a local storage system, a
standard form, or the Web. For example, a default service is to
pass a URL request on to the appropriate Web server, to retrieve
the response, and to pass it back to the browser. Likewise, a
cached page is located in a local store and immediately delivered
back.

• Autonomous agents react to trigger conditions (e. g., events or
time intervals) independent of the usual request/response stream.
Such an agent terminates after having performed its task which

locate the desired information. The
standard “help” of the browser
software such as “Bookmarks” or
“Hotlists” (to keep track of
frequently used URLs for fast
relocation) is quite static and will
quickly get out of control as these
lists grow and their entries become

Browser 1
Workgroup

proxy

Client
proxy

Server
proxy Server 1

Server
proxy Server m

(firewall)

Fig. 6: Extended Web model illustrating the proxy topologies

Browser n
Client
proxy

could be some housekeeping actions (e. g., to detect obsolete
links and find their new URLs) or some “active exploration” of
the Web to find new or refreshed information.

These agents are dynamically created and linked
together by a system kernel. To keep persistent data, they
are using an ORDBMS to store information of HTML as
well as other advanced types. Typically, a combination of
agents of different type is constructed to assist given
requests/responses. To enable their proper activation, each
agent is registered in the kernel component with its trigger
rules for activation. Such triggers can refer to times or
intervals as well as to specific situations when particular
servers are accessed or specific document types are received
(e. g., only .com URLs or HTML documents, respectively).
Based on such trigger rules and collaborating agents, our
model of Web usage could be enhanced in the following
way.

5.4 Automated index of viewed pages
Retrieval of previously-viewed pages is often

frustrating, since it is hard to remember and to relocate such
pages. The current use of bookmarks only allows some
imperfect support, because these handles are unorganized,
static, and difficult to maintain. Many situations such as
obsolete links or source document updates are not properly
treated. WBI agents, however, could greatly improve this
situation by automating a local index capturing the personal
history of accessing pages. For example, to provide easy-to-
use and up-to-date information a monitor extracts text from
pages accessed and records it in a DB. An editor adds an
appropriate query form to the browser interface to allow for
keyword search. Hence, a generator can then search the DB,
access the Web, and produce the requested results. Note, the
search of the personal history limits the search space to 103

- 104 pages as compared to a Web search of 1010 - 1012

pages and improves dramatically relevance and precision.
Furthermore, an autonomous agent could regularly check
the cached pages for timeliness or adjust URLs.

5.5 Maintenance of cached library
In technical environments, frequent references occur to

all sorts of catalogs (related to parts or manufacturers) and
standards (ISO, ANSI, DIN). Of course, fast access to their
latest WWW editions, including all corrections and changes,
is highly desirable, which could be best achieved by a local
cache of this “distributed digital library”. Since large
volumes of data are involved, a workgroup library would be
most economical.

trated in a scenario in Fig. 7, pages of interest could be
located by observing Web usage patterns. Monitoring (❶)
the page accesses of individuals or of the group (frequency,
contents) could lead to the identification of clusters of
retrieved pages and to the extraction of keywords (❷). With
these hints, autonomous agents could search for related
documents (❸) to be added to the “cached library”. To
ensure the “importance and relevance”, a user can confirm
suggestions (❹) concerning these extensions. Finally,
generator and editor agents could add links or annotations to
responses❺ to communicate amendments for updated or
new information sources to the group members.

In a similar way, access to highly volatile and
frequently changing information could be provided for the
group. This concerns newsletter, information of profes-
sional organizations and activities as well as a calendar of
events or a whiteboard.

Another important issue is the authoring and publi-
cation of the research results or other achievements of the
group. Editors could provide a uniform presentation and
inform about changes or replacement of requested reports.
Since bibliographic and state information of research reports
evolves over time (draft, submitted, accepted, published,
when and where), an autonomous agent could make sure
that all requests are always directed to the current version of
the report.

5.6 Enhancement of convenience and performance
Obviously, Web assistants could take over a substantial

share of the user’s routine work. For example, electronic
mail management could greatly benefit from the use of
agents which can tailor the mail handling, organization, and
retrieval to the needs of individuals. With the given
framework, a mail DB could be easily integrated giving
multi-dimensional access by time, hierarchically organized
subjects, contents, etc. Likewise, advanced use of monitors
and generators could also speed up the user’s work as well
as internal processing. For frequently used chains of hyper-
links, this access behavior could be detected and the
combined use of these agents makes a shortcut available to
the user. Monitoring of traffic speeds could be exploited in
various ways. Internally, there are typically several transac-
tions performed per requested Web page (HTML, graphics
(GIF)). Hence, expensive, but less important transfers could
be delayed or automatically switched off. Moreover, WWW
access could greatly benefit from the knowledge about
current traffic conditions by propagating warning signals to
the user, selected use of servers, or dynamically routing

Library retrieval and maintenance
could be improved by a similar use of agents
as discussed in the previous section
(keyword search, detection of obsolete
hyperlinks, cache refresh of updated pages).
Furthermore, unknown documents which
may contribute to the work of the group
could be searched as some kind of
automated background activity. As illus-

WebE

G M

A

all

user profile

record Web usage
and contents

seek related

Alta
generate

suggestions

❶
❷ ❸

❹
❺

Vista

Fig. 7: Automatic retrieval of pages of interest
documents

add annotations
and related links

Browser

transactions.

6. Conclusions and Outlook
The WWW and ORDBMSs are driving forces of a

tremendous change on how information is organized, stored,
processed, and exchanged. They enable the construction of
advanced ISs with more effective data management facil-
ities as well as more convenient communication mecha-
nisms both between the user and the system and also
between various components in heterogeneous environ-
ments. In particular, they allow for low-bandwidth, low-
budget solutions for a spectrum of DB-based services in a
technical IS. The fast development times are a product of the
simplicity of HTML and HTTP mechanisms and because of
the fact that most heterogeneity issues are hidden even in the
development process. Furthermore, the internal information
services can be easily extended and enhanced by the infor-
mation resources of the Web. However, its potential
problems caused by information updates and unorganized
growth should be fixed by automated agents controlling
changes, growth, and newly created information resources
while assisting the individual users or workgroups. We have
taken advantage of this potential by developing an
integrated IS for technical applications, with explicit focus
on adaptability and flexibility concerning changes of the
application requirements and the environment.

Moreover, the Web (and its mechanisms) is not a
panacea for providing or mediating DB services in heteroge-
neous environments, but its potential for transparent and
platform-independent information exchange may help a lot
to alleviate our heterogeneity-induced problems in technical
ISs, when applied appropriately. For example, handling of
highly structured objects consisting of checkout/checkin,
data transport and DB integration problems are not solvable
by simple cross-platform Web techniques [8]. While DB-
integrated client-side data processing remains an open
problem area, we expect major improvements for the server/
client connectivity, data transport across platforms, as well
as DB access in heterogeneous environments and more
intelligent use of the information resources of the Web.

Although these issues are beyond the limits we can
explore in this paper, further investigation and practice
should surely be done to make full use of the new technol-
ogies and also to achieve more satisfactory results.

References
[1] Barrett, R., Maglio, P. P., Kellem, D. C.:How to Personalize

the Web, in: Proc. CHI’97, New York, ACM Press, 1997.
[2] Brooks, C., Mazer, M. S., Meeks, S., Miller, J.:Application-

specific Proxy Servers as HTTP Stream Transducers, in: Proc.
4th Int. World Wide Web Conference, 1995.

[3] Chamberlin, D.: Using the New DB2: IBM’s Object-
Relational Database System, Morgan Kaufmann, 1996.

[4] Collins, D.:An MsqlJava Tutorial, University of Queensland,
http://www.minmet.uq.oz.au/msqljava/tutorial.html, 1996.

[5] Hamilton, G., Cattell, R.:JDBC: A Java SQL API, Version
1.10, SUN Microsystems Computer Company, Oct. 1996.

[6] Härder, T., Reuter, A.:Principles of Transaction Oriented
Database Recovery, in: ACM Comp. Surveys 15: 4, 1983,
287-317.

[7] Härder, T., Thomas, J.:RITA — ein rechnergestütztes
Informationssystem für technische Anwendungen (in
German), ITG-Fachbericht 137 (STAK’96), Munich, March
1996, 111-126.

[8] Hardwick, M., Spooner, D. L., Rando, T., Morris, K. C.:
Sharing Manufacturing Information in Virtual Enterprises,
in: Comm. of the ACM 39:2, 1996, 46-54.

[9] IBM: DataJoiner: A Multidatabase Server - Version 1,
Whitepaper, 1995, http://www.software.ibm.com/data/pubs/
papers/

[10] IBM: Web Browser Intelligence - Agent Software, http://
www.networking.ibm.com/wbi/wbisoft.htm.

[11] IBM: Net.Data Programming Guide, http://
www.software.ibm.com/data/net.data/docs, Feb.1997.

[12] Illustra User’s Guide (Release 3.2), Illustra Information
Technologies, Inc., 1995.

[13] ISO/IEC CD 9075 Committee Draft, Database Language
SQL, Jim Melton (ed.), July 1996.

[14] Kim, W.: Object-Relational — The Unification of Object and
Relational Database Technology, Whitepaper, UniSQL Inc.,
Austin, 1996.

[15] Loeser, H.:Datenbankanbindung an das WWW - Techniken,
Tools und Trends (in German), in: Proceedings of GI-
Fachtagung “Datenbanken in Büro, Technik und
Wissenschaft” (BTW’97), Informatik aktuell, Ulm, March
1997.

[16] Manola, F. (eds.):Object Model Features Matrix, ANSI
X3H7-93-007v10, Feb. 1995.

[17] Pitkow, J. E., Kehoe, C. M.:Emerging Trends in the WWW
User Population, in: Comm. of the ACM 39:6, 1996, 106-108.

[18] Smart, J.:User Manual for wxWindows 1.65: a portable C++
GUI toolkit, Artificial Intelligence Applications Institute,
University of Edinburgh, Aug. 1995.

[19] Stonebraker, M.:Object-Relational DBMSs — The Next
Great Wave, Morgen Kaufmann Publ., Inc., 1996.

[20] UniSQL Server Multidatabase Support User’s Guide,
UniSQL, Inc., 1996.

[21] J/OCI Gateway - Product Information, Vincent Engineering,
http://www.vincent.se/Products/JOCIGateway/
JOCIGateway.html, 1996.

[22] Zhang, N., Härder, T., Thomas, J.:Enriching Object-
Relational Databases with Relationship Semantics, in: Proc.
3rd Int. Workshop on Next Generation Information
Technologies and Systems (NGITS’97), Israel, June 1997.

[23] Zhang, N., Härder, T.:On Modeling Power of Object-
Relational Data Models in Technical Applications, in: Proc.
1st East-European Symposium on Advances in Databases and
Information Systems (ADBIS‘97), St. Petersburg, Sept. 1997.

