
in: Proc.12th Annual ACM Symposium on Applied Computing (SAC’97), San Jose, CA.,
Feb. 1997, pp. 158-165
GROUP-AUTHORING IN CONCORD
-

A DB-BASED APPROACH

Norbert Ritter

University of Kaiserslautern, Department of Computer Science
P.O.Box 3049, 67653 Kaiserslautern, Germany

e-mail: ritter@informatik.uni-kl.de
t

u
i
(

n

n

r

e

d.
be

be
ee-
to
cal
d,
o-
to
n-

d.
om-
h-
w
in-

in
re
2],

am
ous

e-
op-
d
t
ul-
re-
ing

he
d,
ion
be

g.
S

Keywords: Groupware, Collaborative Editing, Cooperation
Transactions, Concurrency Control.

ABSTRACT
CONCORD provides processing support for concurrent desig
engineering. As an extension of the well known transaction pa
adigm used in database systems, design transactions, des
flows as well as cooperation between designers are supported
this paper, we argue that group authoring and group editing c
also be supported by CONCORD; a corresponding group edi
will be presented. We show that the isolation property of conve
tional transactions is not inherently contradictory to cooperatio
Due to consistency reasons, isolation is still necessary (at low
levels) and, therefore, can be considered as the foundation of
operation, provided activities are adequately structured and s
able mechanisms are used to enforce isolation. Our group ed
CGE proves that both, adequate working in the text document
the sense that the processing principles visible at the interface
into the user’s mental model) as well as adequate cooperation
the sense that users may exchange intermediate results) ca
reached under exploitation of isolated transactions as a ba
means.

INTRODUCTION

Motivation

The CONCORD processing model is a database-oriented p
cessing model for design applications and has been proposed
and evaluated in design applications such as VLSI design, m
chanical design and software engineering. It exploits the we
known transaction paradigm as a basic means for consiste
maintenance. At the first glance, this might seem contradictory
cooperation requirements, but, as we will see, together with
adequate structuring of processing and adapted mechanisms
izing the ACID properties of transactions (ACID stands for ato
micity, consistency, isolation and durability [9]) cooperation ca
be supported appropriately. In this paper, we show that the ba
principles of the CONCORCD processing model can also be
fectively applied in group-authoring applications, which are typ
ical CSCW [8] applications.
ent
fa-
n.

ce
ere
,

n/
r-
ign-
. In
an
or
n-
n.
er

co-
it-
tor
in
fit
(in

be
sic

ro-
for
e-
ll-
cy

to
an
eal-
-
n
sic
f-
-

In [11] the major requirements for a group editor are summarize
Concerning individual work a user may wish, on one hand, to
free of technical access restrictions, and, on the other hand, to
supported by private areas, adjustable granularity, and the fr
dom of making updates public at any time. We think that, due
consistency maintenance, we cannot afford excluding techni
protocols completely. Using social protocols exclusively an
thereby, degrading the system to a conflict detector without res
lution (or avoidance) capabilities may too often provoke users
spend more time in resolving recently caused conflicts and inco
sistencies than in working productively and forward oriente
Thus, technical protocols are acceptable, as long as they are ‘c
patible’ with social protocols. Consequently, we claim that tec
nical protocols can effectively be exploited, as far as they allo
natural processing and do not exhibit bothering effects at the
terface.

Related Work and Overview of the Paper

Approaches towards support of collaborative writing proposed
literature can be divided into two major groups. First, there a
systems supporting synchronous editing, e. g. GROVE [3,
DistEdit [10], CAVEDRAW [13], PREP [16]. Supporting syn-
chronous editing means providing changes to cooperating te
partners in real-time. The second group contains asynchron
writing tools, such as DUPLEX [18], PREP [15] and MESSIE
[23].

As stated in [11], especially the synchronous tools are not fr
quently used, because they do not reflect the natural way of co
erative writing adequately. We think that there is definitely a nee
for WYSIWIS (‘What You See is What I See’), but that does no
mean that users want to modify overlapping text fragments sim
taneously and it, furthermore, does not mean that WYSIWIS is
quired in all phases of a document production process or dur
all modifications on all parts of the document.

Asynchronous tools have primarily been proposed to tackle t
problems of large scale environments being highly distribute
heterogeneous and having to care for ‘secure’ net communicat
and especially fault tolerance. Asynchronous approaches can
further classified in those exploiting a central data repository, e.
PREP [15], and those exploiting replication, e. g. IRIS [11], CE
[7], PREP [16].

Our approach exploits a central database to manage docum
data and process-management meta-information. It integrates
cilities for synchronous as well as asynchronous cooperatio
Synchronous cooperation, however, is kind of restricted, sin
there are no simultaneous write operations. Nevertheless, th



ial

lted
del
he
e
pts
-

k.

-
ro-
i-
nd
d
the
is-

g
s
ct
or
ta
t be
n

it is
, so
the
can be a synchronous transfer of actions to cooperating users,
provided all involved users agree (no privacy violation) and
‘play’ roles allowing at least read access to the corresponding
document part.

Our major concern is concurrency control and corresponding
document data consistency. Collaborative editing literature
shows that there are three main approaches used in the corre-
sponding systems. First, using a technical concurrency-control
protocol, as known from database systems. Second, defining re-
sponsibilities of persons for document parts via roles users may
play. This reminds at access-control concepts also used in con-
ventional database systems. Third, exploiting social protocols,
i. e. relying on the assumption that users work together in a way
preventing conflicts.

Some systems, e. g. DUPLEX [18], provide several of these prin-
ciples, forcing users to care for concurrency-control problems,
since they have to chose appropriate protocols for the work on
particular parts of the document. Technical protocols [1, 19], e. g.
pessimistic concurrency-control protocols, are usually implicit.
The problem with these mechanisms is that they, if used in highly
interactive environments as group editing, lead to bothering ef-
fects at the interface [6]. For example, users do not tolerate arbi-
trary wait situations, which may occur, when the system employs
implicit blocking due to serialize actions or to ensure serializabil-
ity [5], respectively. In our opinion, these problems are particular
problems of the used mechanisms, not of the transaction proper-
ties, they ensure. Isolated transactions, in our opinion, can be
used, even in group-editing applications, if they (1) capsulate ex-
actly those data-manipulating operations needed to execute a se-
mantically coherent modification step and (2) isolate exactly that
portion of data semantically concerned by the modification (e.g.
flexible lock granules) and (3) conflict resolution fits into the
mental model of the user, i. e. corresponds to some conflict reso-

lution actions which can also be imagined to be used within soc
protocols.

In this paper, we want to describe such an approach. It resu
from the validation of the database oriented processing mo
CONCORD, developed for technical design applications, in t
group-editing scenario. After this introduction, Sect. 2 will giv
an overview of CONCORD. Sect. 3 and 4 introduce the conce
of the CONCORD Group-Editor CGE and outline its implemen
tation. Sect. 5 gives conclusions and an outlook to future wor

CONCORD PRINCIPLES

The CONCORD (CONtrolling COopeRation in Design environ
ments) model [20] captures the dynamics inherent to design p
cesses. Similarly to [22] CONCORD aims at combining princ
ples of transaction management, workflow management [4] a
cooperation control [14] in order to support both, well structure
as well as less structured cooperative applications. To reflect
spectrum of requirements different levels of abstraction are d
tinguished as roughly illustrated in Fig. 1.

Design-Data Management

W.r.t. engineering applications the CONCORD processin
model relies on a version model (OVDM [12]) providing mean
for the management and manipulation of explicit complex-obje
versions. Especially in applications such as VLSI design
mechanical design, typically complex-structured design da
must be managed and versions as well as configurations mus
supported adequately. Although the OVDM has primarily bee
developed to handle complex structured and versioned data,
also capable to handle version-free and flat data structures
that the relational model can be seen as being a part of
OVDM’s functionality.
Fig. 1: Abstraction Levels of the CONCORD Model

Advanced DBMS
(object and version management)

save suspend resume restore

checkout1 checkout2 checkin

transition

design state

delegation
negotiation

usage

Administration/Cooperation Level

Design Control Level

Tool Execution Level

Design Activity cooperation relationships

CA6CA5CA4

CA2 CA3

CA1(CA)

Cooperation Manager

Design Manager

Transaction Manager



on
ant

a
-
-,
p
e-
e

n
not

ict

s.

-

he
are

ers

CA
licit

se,
sso-
”,
re-
ng
in
the
in
so-

n
c-

r-
g-
rat-
et
der
nts
it-

ay
In the group-authoring context, we decided to consider document
data to be unversioned. The reason is that versioning is contrary
to flexible locking granules, which, as we will see, is a major
foundation of our approach. Furthermore, this avoids the problem
of semantic merging of versions, which cannot be supported by
automatic mechanisms.

Tool-Execution Level (TE Level)

CONCORD provides long ACID transactions (see Fig. 1). In this
context,longdoes not necessarily mean long duration, but refers
to the concept of checking out data from the server into an object
buffer at the workstation, processing it there, and, eventually,
propagating back the modified data within a final checkin step.
Schema-consistency and persistency is guaranteed by a central
system component, calledtransaction manager. It is also respon-
sible for the isolated execution and for recoverability of transac-
tions, which are indispensable properties for a level-specific fail-
ure handling.

Design-Control Level (DC Level)

The transactions mentioned above are used to map design-tool
applications to system processes. The DC level incorporates a de-
sign-flow model allowing the flexible pre-specification and
scheduling of design-flows as well as of ad-hoc design-flows.
The design-flow model is state/transition based, where the states
stand for design-object states and the transitions, in the simplest
case, are design-tool applications or transactions, respectively.
Since we think that group-editing applications do not require
workflow capabilities, we do not detail this layer.

Administration/Cooperation Level (AC Level)

At the highest level of abstraction, we reflect the more creative
and administrative part of design work. There, the focus is on the
description and delegation of design tasks as well as on a con-
trolled cooperation among the design tasks. The key concept at
this level is thedesign activity,also calledcooperative activity
(CA). A CA is the operational unit representing a particular task
or subtask. During the design process, aCA hierarchycan be dy-
namically constructed resembling (a hierarchy of) concurrently
active tasks. All relationships between CAs essential for cooper-
ation are explicitly modeled, thus capturing task-splitting (coop-
eration relationship typedelegation), negotiation of design goals
(cooperation relationship typenegotiation), and exchange of de-
sign data (cooperation relationship typeusage). The inherent in-
tegrity constraints and semantics of cooperation relationships are
enforced by a central system component, calledcooperation
manager. Especially the protocols which are associated with us-
age relationships are interesting in the context of database-sup-
ported cooperation. Explicit cooperation relies on the fact that
each CA is associated with local design data. Between CAs ac-
cess rights can be explicitly and dynamically granted. For techni-
cal applications, where design-flows can be pre-planned, explicit
cooperating can also be pre-planned. A third kind of cooperation,
implicit cooperation, exploits the mechanisms proposed in [17]

to control design-tool applications issued by cooperating CAs
shared object pools. Since this way of cooperation is not relev
for group editing, we do not detail it.

BASIC CGE FEATURES

CGE follows the mentioned CONCORD principles. It is not
tool designed to be used within the CONCORD activity frame
work; CGE directly implements those parts of the three (AC
DC-, TE-) subsystems, which we found to be relevant for grou
authoring. In the following, we discuss these features. During d
veloping CGE processing-control, we emphasized fulfilling th
following requirements:

• in order to provoke as few conflicts as possible, manipulatio
operations must not access document data (text), which is
semantically affected by the modification;

• there must not be implicit blocking of user activities;
• conflicts must be detected early, i. e. foresighted, and confl

resolution must be very flexible.

Close Cooperation

CGE allows to create single-user CAs as well as multi-user CA
The principles of working within a CA are:

• users dynamically invoke text-manipulating functions pro
vided by CGE;

• each function, e. g. reading text or manipulating a part of t
text, is a database transaction, i. e., read/write operations
isolated against each other;

• results of manipulation steps can be directly accessed by us
associated with the same CA;

• the current state of a text (segment) associated with the
can be made accessible to cooperating CAs by issuing exp
cooperation operations (as mentioned in Sect. 2.4).

Imagine a group of persons is to write a paper. For that purpo
CGE can be used to create a CA all group members can be a
ciated with. An ‘empty’ text is created, may be named “paper
and its completion is considered being the task of the newly c
ated CA. Now users start working on the document by applyi
CGE functions. Usually they start with agreeing in a certa
structure of the text and with delegating parts to members of
group. Initially the text consists of a single segment. Working
CGE means manipulating a segment being part of the text as
ciated with the team. We distinguishexplicit segmentsfrom im-
plicit segments. Explicit segments are created for cooperatio
purposes; this matter will be discussed in the following subse
tion. An implicit segment is the part of an explicit segment cu
rently accessed by the CGE modify-function. Thus, implicit se
ments cope with synchronizing actions of users closely coope
ing with each other, i. e. (so far), belonging to the same CA. L
us assume for the remainder of this subsection to only consi
actions initiated by members of the same CA. Reading segme
just means transferring the data to the CGE frontend and comm
ting the read transaction immediately. Thus, multiple users m



-
ated

s

t of
ed

nip-
re-

ly

E
ng
am-
ent
is

nt
the
an
ion
ated
-
op-
read the same segment. During text modifications the following
rules are observed:

• The part of the segment to be manipulated must be explicitly
or implicitly marked; it is important to mark exactly that ex-
cerpt which is semantically concerned by the intended modi-
fication; this can usually only be decided by the user who ini-
tiates the modification function; marking explicitly is done by
mouse, marking implicitly means that a pre-setting leads to
expand the cursor position to the corresponding word, sen-
tence, paragraph or user-defined excerpt, e.g. the text between
two headers of a certain format.

• The frontend tries to create an implicit segment containing the
marked text. If the frontend realizes that the user has marked
within an out-of-date version (this occurs, if the user’s fron-
tend content is not in accordance with the corresponding con-
tent of the database w.r.t. to that segment) his frontend repre-
sentation is brought up-to-date and all parts currently under
modification by other users are correspondingly visualized
(i. e. the user can get the information, which cooperating user
is currently working on that part). The system keeps read
locks on the (remaining) segment-data for a certain duration
within which the user has to decide whether or not the intend-
ed modification is still reasonable.

• The user may now choose free parts of the current segment
state for manipulation; he may also choose from parts current-
ly in work by a cooperating user; this leads the frontend to si-
multaneously visualize the actions issued by the cooperating
user (provided the latter permits ‘observation’); in this way,
the user can see, what the cooperating user is doing, but can
only manipulate that part of the text he write-locked.

Now we can summarize the principles of manipulating text with
in a group of closely cooperating users, e. g. the users associ
with the same CA:

• Short read transactions: a segment-reading transaction i
committed as soon as the frontend received the content.

• Modifying semantic units: the processing structures rely on
the assumption that the user is able to mark exactly the par
the text, which is semantically concerned by the intend
modification.

• Demand-updating of frontend representation: since the fron-
tend contents can become outdated with the release of ma
ulations done by cooperating users, the topic version is
loaded as soon as required.

• ‘Looking a cooperating user over the shoulder’: A user can
watch the modifications of a cooperating user, but can on
change text he has currently write-locked.

Loose Cooperation

An explicit segment is created by issuing the corresponding CG
function, extracting the (marked) part of the text and establishi
a sub-segment of the one currently opened by the user. For ex
ple, creating a sub-CA usually requires to extract a sub-segm
and to delegate it to the newly created CA. Thus, the new CA
aimed at fulfilling the task of completing the received segme
and passing it back as enforced by the protocol underlying
delegation relationship type. In this way, a hierarchy of CAs c
be dynamically established corresponding to text decomposit
and team structure (members of the team need to be associ
with certain CAs in order to fulfill the task of completing the seg
ment). Fig. 2 visualizes the creation of a sub-CA. Suppose, a t
“Title”

Abstract

Introduction

Chapter1

Chapter2

Section2.1

Section2.2

Chapter3

Conclusions

References

Text: “paper”

Chapter2

Section2.1

Section2.2

CA1

CA2

S
egm

ent 1
S

egm
ent 2

S
egm

ent 1

CGE: “paper”

Segment1: Info
...

Segment2: Info
...

...

Level 1

Level 2

Fig. 2: Text Decomposition and Team Structure

Segment1: Info

CGE: “paper”

Segment1: Info
...

Segment2: Info
...

...
Segment1: Info



re-
ting

ted
ers

. If
co-
e-

of
ro-

uc-

/

t

ac-
ld
ed
GE
g-
ten-

fer,

to
uch

-
E.

d
wn
level CA (CA1) has been created to write the text “paper”. After
having determined the structure of the paper (note that the text
structure is not a kind of meta-data), chapter2 is supposed to be
delegated. For that purpose, CA2 is created, one or more team
members are associated with the newly created CA, a corre-
sponding explicit segment chapter2 is created and delegated to
CA2. This constellation is depicted at the left-hand side of Fig. 2.
The right-hand side of Fig. 2 illustrates, what members of the dif-
ferent CAs may see after having read the document. The (explic-
it) segment structure is shown on the screen, an info-bar gives in-
formation about the corresponding segment, but contents, which
are not in the scope of the CA, cannot be accessed (black text bars
in Fig. 2). Now users can work on the text (segments) which is
(are) associated with their respective CA in the way described in
Sect. 3.1. After having finished chapter2, CA2 is expected to pass
back the corresponding text to be integrated again into the overall
document.

By use of the text-segmentation functions and the functions al-
lowing to manipulate sub-CAs, a hierarchy of concurrently active
tasks can be dynamically established. So far, we reported on the
cooperation possibilities between users of the same CA. In the
following, we will report on the facilities enabling cooperation
between CAs, i. e. facilities for loose cooperation.

Provision of State Information

Since users associated with a particular CA may not access data
assigned to another CA, they are at any time allowed to acquire
(meta-) information about the current state of the overall process.
This contains information about the current CA hierarchy, the us-
ers associated with CAs, the tasks of the CAs (responsibility for
particular text parts), and thestateof a text segment in work by a
particular CA. The state gives some idea of how far the CA is
away from finishing the segment. Each segment delegated to a
CA gets the default statesstart, preliminaryandfinished. Users
may refine the state information and attach a textual description/
explanation to the state identifier. For example, a state ‘almost
finished’ may stand for ‘text must only be supplemented by some
further literature references’. During work users should set text
states to show others whether or not the text fulfills qualitative
prerequisites for a cooperative exchange.

Communication / Notification

Thus, CGE provides functions to get the information which text
states are defined for a particular segment and which state is cur-
rently set for that segment. Now, if the segment is in a state prom-
ising any benefit to cooperate on, a user of another CA may send
a request to the owning CA, applying for getting access (in read
mode or even in write mode) to that segment. If, on the other
hand, the segment is not in the wanted state yet, CGE may be in-
structed to send a notification as soon as the particular text state
is reached.

Cooperation (Granting Access)

After having received a request, a user has to decide on whether
or not access can be granted, and, if so, which mode (read or

write) is supposed to be provided. CGE allows to grant (and
voke) certain access on own segments to certain coopera
CAs.

Thus, due to cooperation facilities, not only the users associa
with the CA owning a segment may access the text, but also us
of a cooperating CA, which got corresponding access rights
write access has been granted, the users of the involved CAs
operate with each other (w.r.t. the corresponding text) as d
scribed in Sect. 3.1 (Close Coop.).

Further Features

Due to space restrictions we can only report important features
CGE. Besides the mentioned cooperation possibilities, CGE p
vides a rich spectrum of functions for

• manipulating the CA hierarchy, user associations (team str
ture) as well as text structures;

• manipulating text;
• notifications, direct communications, and messages;
• annotating text;
• logging and providing history information (which users read

modified which segments at which time).

CONCURRENCY CONTROL AND
CONSISTENCY MAINTENANCE

After having introduced major CGE functionality, we now wan
to report on the concurrency-control aspect.

Mapping CGE Functions to Database Transactions

Obviously, user sessions cannot directly be mapped to trans
tions, since the DBMS provides ACID transactions, which wou
completely isolate users from each other. Therefore, we decid
to chose a smaller operational granule and mapped single C
functions, such as reading a segment or modifying a text fra
ment to transactions, respectively. This ensures basic consis
cy, but introduced two new problems:

• editor and database representation of a segment may dif
due to concurrent manipulations;

• locks must be acquired on flexible text granules, in order
lock as few data as necessary and, thereby, enable as m
concurrency as possible.

In the following, we will outline, how these problems of data rep
lication and flexible locking granules have been solved in CG

Modeling Editor Blocks and Database Blocks

Blocks are portions of text (implicit or explicit segments) an
serve as data manipulation units. There are editor blocks sho

segment-no segment-level version-no text
editor block:

segment-no segment-level version-no lock text
database block:

Fig. 3: Blocks



D.
As
cks

by
tter
ex-
ro-

w

’s
m-

of
n the
text
be

g-
ari-
b-
d.

r1

p
ur-

-
r-
ali-
he
ili-
ea
an
ne

S1 0 0 F

S2 1 0 BCDE

S1 0 0 A

S1 0 0 F

S2 1 0 BCDE

S1 0 0 A

0S1 0 0 F

0S2 1 0 BCDE

0S1 0 0 A

User2 (Frontend)DB (Backend)User1 (Frontend)

Fig. 4:Initial State of a
to the user and manipulated by the CGE frontend as well as data-
base blocks. These blocks embody the structures illustrated in
Fig. 3:

segment-no: number of an explicit segment; note that creating a
sub-segment means pulling out a text part; this implies that the
original segment keeps the text parts, which were before and
after the cut out part;

segment-level: refers to the level of the explicit segment w.r.t. the
overall text structure;

version-no: to each block (also blocks representing implicit seg-
ments) a version number is assigned, which is incremented by
each successful write operation;

lock: indicates, whether or not the corresponding block is current-
ly locked by a modify operation; actually the lock entry is giv-
en as the pair (CA-Id, User-Id) in order to provide information
to other users if necessary; due to simplicity we will consider
it in the following as a flag; the lock entry is only important for
database blocks, since it must be decided, whether or not the
contents may be delivered to a frontend after a request;

text: refers to the contents of a block containing text and format
information.

Concurrency Control

In the following, we want to outline the concurrency-control
mechanism exploited in CGE by considering a sample scenario
illustrated in Fig. 4. The database contains a text ABCDEF,
where the capital letters stand for arbitrary contents. Thus, ex-
plicit segment S1 refers to the overall text. A sub-segment S2 has
been cut out containing text BCDE. This leads to segmentation of
the text into database blocks depicted in the middle of Fig. 4. Let
us assume, there are two users performing CGE sessions editing
the text. Both users issued the CGE read function on the overall
text and got the complete contents, so that both frontends manage
editor blocks, each equivalent to a database block (see Fig. 4).

Let us now assume that user1 starts a modification on text C
Since there are no conflicts, the modification can be allowed.
a consequence, S2 is implicitly segmented (see database blo
depicted in Fig. 5). Implicit segmentation can be recognized
equal segment numbers and negative version numbers. The la
indicate that the considered block does not correspond to an
plicit segment and, therefore, has only been created for synch
nization purposes.

Next, user2 intends to modify the text part DE. The system no
has to perform the following steps.

1. Version-Check: It has to be checked, whether or not the user
frontend representation is up-to-date. This is found out by co
paring the version numbers of the frontend representation and
the corresponding database segment. Since these are equal i
example, it can be concluded that the user sees the current
version and that the frontend representation does not need to
brought up-to-date.

2. Lock-Compatibility-Check: Checking Compatibility requires
finding the concerned text part (possibly an implicit sub-se
ment) at the database side, what has to be done by text comp
sons. In this way, the system determines the last two implicit su
segments (CD, E) of explicit segment S2 (BCDE) to be checke
It is detected that part D is currently under modification by use
(see lock entry).

3. Conflict-Resolution: Since a conflict has been detected in ste
2, the system provides the information to user2 that part D is c
rently in use by user1 and offers him to manipulate the last im
plicit sub-segment of S2 (E). During the decision period the co
responding segments are locked so that no third user can inv
date the offer. User2 now has to decide whether or not t
intended modifications are still reasonable. He has the possib
ties to reject the offer or to accept the restricted modification ar
(last implicit sub-segment with contents E). Furthermore, he c
request a window showing him the current manipulations do

Sample Scenario
S1 0 0 F

0S2 1 -1 E

S2 1 0 BCDE

S1 0 0 A

S1 0 0 F

S2 1 0 BCDE

S1 0 0 A

1S2 1 -1 CD

0S2 1 0 B

0S1 0 0 A

User2 (Frontend)DB (Backend)User1 (Frontend)

-

Note: Despite implicit
segmentation of S2, the
first S2-database-block
(B) does not get a nega-

tive version number, bec
0S1 0 0 F
ause it is con
sidered to be the representative of S2.
Fig. 5: Situation after Request of User1



h-
r-

en-

n-
o-
l-
age-

he
-
al
re
on-
ex-
ic.
In
ef-
ra-
on-
in-

o-
ned.

in
en-

S1 0 0 F

1S2 1 -1 E

S2 1 0 BCDE

S1 0 0 A

S1 0 0 F

S2 1 0 BCDE

S1 0 0 A

0S1 0 0 F

1S2 1 -1 CD

0S2 1 0 B

0S1 0 0 A

User2 (Frontend)DB (Backend)User1 (Frontend)

Fig. 6: Situation after Request of User2
by user1 on the second implicit sub-segment (referring to text
CD). Note that conflict resolution does not apply blocking, but
asks the requesting user to do a dynamic (manual) resolution
[21].

4. Managing Modification Area: Supposing, user2 decides to
modify part E, he is enabled to do so, i. e., the constellation
shown in Fig. 6 occurs. Note that this step does not require data
transfer between backend and frontend, since contents are al-
ready equivalent (at the latest since step 1).

Next, user1 finishes his modifications. The system releases the
lock on the second implicit sub-segment of S2 (CD) and tries to
merge it with (unlocked) neighbored, implicit sub-segments. In
our example, this leads to a merge of the first (B) and the second
(CD) sub-segment. After user2 also finishes his modifications,
the situation illustrated in Fig. 7 is given, in which all implicit
sub-segments mentioned above are again integrated into the ex-
plicit sub-segment S2 and the text CDE has been modified.

The fonts used in Fig. 7 illustrate, which (parts of) editor blocks
are up-to-date and which are not. Suppose, user1 next wants to
modify part E. The system then finds out by comparing the ver-
sion numbers that the frontend representation is outdated. Thus,
the frontend representation is brought up-to-date and the user
must decide again, whether or not the intended modification is
still reasonable.

The example shows the basic principles used in CGE to control
processing:

• the lock granule is flexible (implicit segments) and is deter-
mined by the intended modification;

• implicit blocking of user activities does not occur;
• conflict resolution can be done early (foresighted) and in a

flexible manner, since besides automatic reactions also users
can be involved to resolve conflicts dynamically (manually);

• modifications are propagated to other frontends in a lazy fas
ion, i. e. not before they are meaningful and, therefore, impo
tant for the corresponding user.

In this way, an adequate harmony of cooperation support and
forcement of data consistency is achieved.

Implementation
CGE has been implemented in C++ on SUN workstations ru
ning the operating system UNIX. Tk/TcL has been used to pr
vide the frontend (state information is visualized by using co
ors), data is managed by the object-oriented database man
ment system ObjectStore.

CONCLUSIONS
CGE exploits a similar document decomposition as used in t
DUPLEX approach [18]. But in addition to explicit segmenta
tion, implicit segmentation is introduced to support the technic
concurrency-control protocol. Cooperation facilities, which a
installed at a higher abstractional layer as the concurrency-c
trol mechanisms, deal with user operations and user objects (
plicit text segments), and, additionally, are explicit and dynam
Thus, cooperation control fits into the mental model of users.
the same way, concurrency control does not lead to bothering
fects at the interface, although basic (text-manipulating) ope
tions are isolated against each other. The CGE concurrency-c
trol mechanism fulfills the requirements mentioned at the beg
ning: no implicit blocking, early conflict detection, flexible
resolution by involving users into the conflict management pr
cess as far as concurrency control on user objects is concer
Thus, the used mechanism enforces isolation only in situations
which users want to be isolated (and to work undisturbed) and
Note: If user2 would
have marked only an
excerpt of text E, CGE

would have created a
 new, implicit
sub-segment of S2, correspondingly.
S1 0 0 F

S2 1 1 BCDE

S1 0 0 A

S1 0 0 F

S2 1 1 BCDE

S1 0 0 A

0S1 0 0 F

0S2 1 2 BCDE

0S1 0 0 A

User2 (Frontend)DB (Backend)User1 (Frontend)

Fig. 7: Resulting State



rk,

d
e

a
a

d
r-
r-

-
-
l,
gi-
s-

.,

er
p.

,
e
.
r-

-
s;

d
:
ed
.

g
o-
,

.,
-
g

-
d
g,

h,
o-

,

or

ut-
.

ables cooperation in situations they want to exchange prelimi-
nary information.

First experience in using CGE confirms that the used technical
protocols are not contrary to natural processing but agree with so-
cial protocols. Nevertheless, in the future additional case studies
will be performed. Furthermore, we want to deal with problems
occurring with decentralizing data management and using heter-
ogeneous data management facilities. Up to now CGE can just be
used within a LAN (local area network) environment. Extending
CGE to be usable in large-scale networks will also mean to cope
with problems of communication delays, node crashes and data-
transfer failures.

Acknowledgments

The author would like to thank T. Härder and H.P. Steiert for
their helpful comments on an earlier version of this paper and T.
Krech for managing the CGE implementation.

Literature

1 Barghouti, N.S., Kaiser, G.E.: Concurrency Control in
Advanced Database Applications, ACM Computing Sur-
veys, Vol. 23, No. 3, September 1991.

2 Ellis, C.A.; Gibbs, S.J.: Concurrency Control in Group-
ware Systems, in: Procs. of ACM SIGMOD Int. Conf. on
Management of Data, Portland, OR, 1989, pp. 399-407.

3 Ellis, C.A.; Gibbs, S.J.; Rein, G.L.: Design and use of a
group editor; Engineering for Human Computer Interac-
tion; Cockton, G., Ed., North Holland, Amsterdam, 1990,
pp 13-25.

4 Georgakopoulos, D., Hornick, M., Sheth, A.: An Over-
view of Workflow Management From Process Modeling
to Infrastructure for Automation, Journal on Distributed
and Parallel Database Systems, 3(2), April 1995.

5 Gray, J., Reuter, A.: Transaction Processing: Concepts
and Techniques, Morgan Kaufmann Publ., San Mateo,
CA, 1993.

6 Greenberg, S., Marwood, D.: Real Time Groupware as a
Distributed System: Concurrency Control and its Effect
on the Interface, in: Proc. ACM 1994 Conference on Com-
puter Supported Cooperative Work, Chapel Hill, NC,
1994, pp. 207-218.

7 Greif, I., Seliger, R., Weihl, W.: A case study of CES: A
distributed collaborative editing system implemented with
Argus, IEEE Transactions on Software Engineering,
18(9), pp. 827-839.

8 Grudin, J.: Computer-Supported Cooperative Work: His-
tory and Focus, IEEE Computer, May 1994, Vol. 27, No.
5, pp. 19-26.

9 Härder, T., Reuter, A.: Principles of Transaction-Oriented
Database Recovery, ACM Computing Surveys 15, 4,
1983, pp. 287-318.

10 Knister, M.J., Prakash, A.: DistEdit: A distributed toolkit
for supporting multiple group editors, in: Procs. ACM

Conference on Computer-Supported Cooperative Wo
Los Angeles, CA, 1990.

11 Koch, M.: Design Issues and Model for a distribute
Multi-User Editor, Computer Supported Cooperativ
Work, International Journal, 5(1), 1996.

12 Käfer, W., Schöning, H.: Mapping a Version Model to
Complex Object Data Model, Procs. 8th Int. IEEE Dat
Engineering Conference, Tempe, Arizona, 1992.

13 Lu, I.M., Mantei, M.M.: Idea Management in a Share
Drawing Tool, in: Procs. 2nd Europ. Conf. on Compute
Supported Cooperative Work, Amsterdam, The Nethe
lands, 1991, pp. 97-112.

14 Mitschang, B., Härder, T., Ritter, N.: Design Manage
ment in CONCORD: Combining Transaction Manage
ment, Workflow Management, and Cooperation Contro
Proc. 6th Int. Workshop on Research Issues in Data En
neering: Interoperability of Nontraditional Database Sy
tems (RIDE-NDS), New Orleans, 1996.

15 Neuwirth, C.M., Chandhok, Kaufer, S.D., Erion, P., R
Morris, J.H.: Flexible diff-ing in a collabortive writing
system, in: Procs. ACM 1992 Conference on Comput
Supported Cooperative Work, Toronto, Canada, 1992, p
147-154.

16 Neuwirth, C.M., Kaufer, S.D., Chandhok, R., Morris
J.H.: Computer Support for Distributed Collaborativ
Writing: Defining Parameters of Interaction, in: Procs
ACM 1994 Conference on Computer Supported Coope
ative Work, Chapel Hill, NC, 1994, pp. 145-152.

17 Nodine, M.H.; Zdonik, B.: Cooperative Transaction Hier
archies: Transaction Support for Design Application
VLDB Journal 1, 1992, pp. 41-80.

18 Pacull, F., Sandoz, A., Schiper, A.: Duplex: A Dsitribute
Collaborative Editing Environment in Large Scale, in
Procs. ACM 1994 Conference on Computer Support
Cooperative Work, Chapel Hill, NC, 1994, pp. 165-174

19 Ramamritham, K., Chrysanthis, P.K.: Executive Briefin
- Advances in Concurrency Control and Transaction Pr
cessing, IEEE Computer Society, Los Alamitos, CA
1996.

20 Ritter, N., Mitschang, B., Härder, T., Gesmann, M
Schöning, H.: Capturing Design Dynamics - The CON
CORD Approach; Procs. 10th Int. IEEE Data Engineerin
Conference, Houston, Texas, 1994, pp. 440-451.

21 Ritter, N., Mitschang, B., Härder, T.: Conflict Manage
ment in CONCORD, 6th. Int. Conference on Data an
Knowledge Bases for Manufacturing and Engineerin
Tempe, Arizona, Oct. 1996, pp. 81-100.

22 Rusinkiewicz, M., Klas, W., Tesch, T., Waesch, J., Mut
P.: Towards a Cooperative Transaction Model - The C
operative Activity Model, in: Procs. 21. Int. Conf. on
Very Large Data Bases (VLDB), Zurich, Switzerland
Sept., 1995, pp. 194-205.

23 Sasse, M.A., Handley, M.J., Chuang, S.C.: Support f
Collaborative Authoring via Email: The MESSIE Envi-
ronment, in: Procs. 3rd European Conference on Comp
er-Supported Cooperative Work, Milan, Italy, 1993, pp
249-264.


	INTRODUCTION
	Motivation
	Related Work and Overview of the Paper
	CONCORD PRINCIPLES
	BASIC CGE FEATURES
	CONCURRENCY CONTROL AND CONSISTENCY MAINTENANCE
	CONCLUSIONS

