
Enriching Object-Relational Databases with Relationship Semantics

Nan Zhang, Theo Härder

Department of Computer Science
University of Kaiserslautern

67653 Kaiserslautern, Germany
e-mail: {zhang| haerder}@informatik.uni-kl.de

Joachim Thomas

IBM Toronto Laboratory
1150 Eglinton Av E, North York, Ontario, Canada

e-mail: jthomas@torolab.vnet.ibm.com

Abstract
Data relationships play a very important role in application
domains and thus should be a key issue in database
modeling. However, they are still not well considered in the
emerging object-relational database (ORDB) technology,
where the main concern is put on the extension of the
relational data model (RDM) with objects as basic
modeling constructs. This paper addresses exploiting and
supporting data relationships in ORDBs. The semantics of
various data relationships are investigated with the help of
an application example from manufacturing industry. The
purpose of this work is to integrate relationship semantics
into object-relational data models (ORDMs), that is, to
provide a general mechanism which facilitates the explicit
specification of relationship semantics. As a result, as much
semantics of data relationships as possible can be captured,
database management systems (DBMSs) will manipulate
data in a consistent way, and users are to a large extent
freed from having to take care of implementation details.

1. Introduction
There is a trend to unify pure object-oriented (OO) and

pure relational database (RDB) technology to allow users to
effectively model and manipulate complex data and use OO
technologies for application development without losing
the benefits of SQL and all its robust features. This trend is
reflected by the emergence of object-relational database
management systems (ORDBMSs) [25, 15, 14, 29].
However, current research in this area is focused on
extending relational database management systems
(RDBMSs) with OO features. Considerably less effort is
spent to let applications really take advantage of this new
technology. Especially, data relationships with their
complicated semantics and impact on both modeling as well
as implementation deserve further study.

Data relationships have been extensively investigated in
the design of RDBs [28, 7]. Those relationships are value-
based, and their semantics is guaranteed through hard-wired

referential integrity facilities of a DBMS. Most OO
approaches [20], on the other hand, map different types of
relationships to a single construct, reference pointers. As
those pointers embody little semantics, consistency of
relationships must be completely maintained inside appli-
cation programs.

ORDMs embody the evolution of the RDM in the OO
direction. This marriage is expected to retain the value-
based information representation which enables set-
oriented queries and, at the same time, support reference-
based navigation. As a result, ORDMs provide powerful
modeling facilities. However, adequate support of data
relationships is still missing. We want to extend ORDMs
beyond this limit. The central idea is to supply a mechanism
as a front-end to an existing ORDBMS, which helps to
explicitly specify semantically rich data relationships and to
automatically generate enforcement methods for the
maintenance of semantics. Relationship types are intro-
duced to facilitate extensibility and the incremental imple-
mentation of a prototype system.

To illustrate our approach, we will refer to our project
RITA [13] as the modeling example, whose goal is to
develop an integrated information system for a leading
manufacturer of automobile components. In the initial
phase of the project, focus is put on the department of
technical testing that performs tests on prototypical
technical objects. Besides the standard data types, our infor-
mation system also needs data types for representing long
texts of requirement documents and test reports, sketches of
test patterns, photos and videos of test progress, etc.
Moreover, the data structures range from simple flat struc-
tures (e. g., part catalog) to heterogeneous compound ones
(e. g., CAD objects). For these complex data types
ORDBMSs promise feasible data processing and
management support. Since data relationships are of
particular interest, we will select only a set of representative
data structures to facilitate the discussion.

In Sect. 2, we will give an overview of ORDMs. Based
on the application modeling prototype, Sect. 3 illustrates

In: Proc. 3rd Int. Workshop on Next Generation Information Technologies and Systems (NGITS‘97), Israel, 1997, pp. 215-222.

various kinds of data relationships ranging from appli-
cation-specific relationships to those having generic
predefined semantics. The semantics of data relationships
are addressed in Sect. 4. Sect. 5 describes our approach of
embedding relationship semantics in ORDBMSs to allow
designers to specify the desired semantics explicitly, as well
as to enable the system to maintain the relationships’
consistency. A comparison with related work is presented in
Sect. 6. Finally, we conclude our paper in Sect. 7.

2. Object-Relational Data Models

At the time being, there exist several proposals for
ORDMs, the most important of which is SQL3 [2] being
followed by major database products such as [15, 14].
While SQL3 envisions entire objects to be stored in a single
column of a table, another commercial system, UniSQL
[29] proposes to identify object attributes with separate
table columns. A comparable feature, in turn, is recently
provided by SQL3 in the form of so-calledrow types. There
is currently no generally accepted definition of “object-
relational”, nevertheless, some common features should
build the foundation of an ORDM:

• One of the primary ideas behind object extensions is that,
in addition to conventional built-in types, user-defined
abstract data types (ADTs) may also be specified and
used in the same way as the built-in types.

• Objects are associated withtypes. All objects of a type
possess common behavior and common states. While
type is an intensional concept,class extensionally de-
fines an implementation of a corresponding type.

• Inheritance (single as well as multiple) is supported by
organizing all types/classes into hierarchies.

• A conventional tableis extended by allowing object ref-
erences (ofreference types), ADTs, and alphanumeric
values as column domains. Users can attach procedures
to a table and have them operate on the column values.

• To organize homogeneous as well as heterogeneous col-
lections of objects, constructors such asset, list, multiset
or array are also essential ingredients of an ORDM.

Despite all these modeling constructs, the support of data
relationships in ORDMs is far too restricted. For example,
association and aggregation abstraction relationships are
usually not explicitly represented and must be modeled as a
(non-transitive) set of references (OIDs) to the instances of
other classes. Such an inexpressive modeling with a
uniform semantics for all kinds of references causes many
problems: There are no powerful, system-controlled opera-
tions that allow to easily specify and maintain different
semantics. Hence, users must realize such operations in
application programs and, as a result, are responsible for
performance and consistency issues.

3. Data Relationships in Applications
To analyze relationship semantics more clearly, we

describe a sample modeling at first.

3.1 Representative Application View

For better control of complexity, the graphical notations
are introduced in Figure 1, where the rectangles contain
entity names. Attributes and operations are ignored for the
sake of brevity. Besides abstraction relationships [19] we
identify also application-specific relationships, which are
shown as lines between entities. Among the abstraction
relationships, aggregation is represented with a black
triangle while association and generalization are described
with shaded and white triangles, respectively. Cardinality
restrictions are indicated at the end of the connecting lines.

Figure 2 illustrates a simplified view of the data struc-
tures in RITA with the explanation of some entities
presented in Table 1. Several relationships are especially

Table 1. Data dictionary

Entity Definition

automobile consists of several parts; here we consider only
three of them, i. e.,seat, door, andwindow.

unit
of an automobile; can be specified by three cate-
gories: seat, door, and window. Each unit will
undergo a set of tests for various purposes.

requirement

comes in three different forms:legal-regulation,
customer-requirement, and inhouse-standard.
Each kind of these requirements summarizes a set
of test specifications.

requirement-
catalog is a set of requirements essential for a unit.

test defines all attributes that are common to all tests.
Each test must fulfil a set of requirements.

dynamic-/
static-test

describes the test suite of dynamic/static aspects
of units.

seat-/door-/
window-test describes the test suite of different kinds of units.

Entity
Entity Name

Superentity

SubentitySubentity

Generalization

Entity

Application-Specific

PartPart

Aggregation
Assembly

One
Many
Optional
Specified

[m,n]

Cardinality

Set

SubsetSubset

Association

Relationship

Entity

Figure 1. Basic notations

named for convenience of later discussion. They are
consist-of, unit-test, andrequirement-test.

3.2 Various Kinds of Data Relationships

In our modeling example, there exist different kinds of
data relationships, including not only generalization,
association, and aggregation, which define abstraction
relationships [19], but also application-specific ones.

Generalization (IS-A relationship) is a powerful
abstraction for sharing structural and behavioral similarities
among entities while preserving their differences. It
describes the relationship between an entity and one or
more derivatives of it. In Figure 2, for example,test exhibits
characteristics common to all tests carried out for
automobile units.Dynamic-testand static-test are two
specified types oftest. These two kinds of tests are further
divided into three categories:seat-test, door-test, and
window-test. Generalization is an important and useful
construct not only for conceptual modeling but also for
implementation, since inheritance facilitates the reuse of
code. As a basic feature of all object-oriented or object-
relational data models, it is well considered and supported.

Association (SUBSET-OF relationship) is an
abstraction in which a relationship between member objects
(or subsets) is considered a set object of a higher level. For
example, an instance ofrequirement-catalog for an
automobile unit is represented as a set of instances of
requirement. Instead of characterizing the members
themselves, set properties express properties of the set as a
whole, which are determined based on the properties of the
members. Besides, membership stipulations are valid for
each member of the set. For example, supposing a set
requirement-catalog-of-seat as a subset ofrequirement-
catalog, it will have “seat” as value of the attributefor-unit.
Moreover, association may span n levels, since it can be
applied recursively. In ORDMs, “set” as type constructor is
generally provided, however, the kind of association
modeled in this way is restricted to a single level of
reference without any transitive semantics of operations.

Aggregation (PART-OF relationship) is used to
describe objects (aggregates, complex objects, or composite
objects) that are assembled of certain parts. In this way,
aggregations are special forms of object collections where
an aggregate object is made up of components, and compo-
nents are parts of the aggregate. In our example, seat(s),
door(s), and window(s) together form an automobile,
between them there exists an aggregation relationship
consist-of, whereautomobile is the aggregate object with
seat, door, andwindow as its parts. Since the aggregation
concept specifies that a subobject should be an integral part
of an aggregate, the aggregate and all its subobjects should
be addressed and fetched collectively as a unit in a high
level query (transitivity) and can be required to exist
together (existence dependency). These properties have
great meaning for referential integrity and some operations,
as, e. g.,select, delete, andcopy. Therefore, this kind of
relationship should be carefully identified and modeled. In
most OODBMSs as well as ORDBMSs aggregation must
be expressed by object references (e. g., attribute typeSET
OF <ref>). Warranting the semantics remains to be
burdened on application developers.

Application-Specific Relationships:Besides the above
described abstraction concepts, other kinds of data relation-
ships with additional properties are needed in various appli-
cation scenarios. For instance, in Figure 2, betweentest and
requirement there is an m:n relationshiprequirement-test,
and betweentest andunit there is an 1:m relationshipunit-
test. It is indispensable to maintain these cardinality restric-
tions in our application. Sometimes, a pair of matched refer-
ences is employed to represent the interconnection.
However, the fact that the forward and inverse references
are dependent on each other as well as other kinds of
semantics are not explicitly supported by DBMSs.

4. Relationship Semantics
We will now analyze properties of relationships,

stressing that the data involved are not only structurally
related to, but also semantically dependent on each other.

4.1 Structural Semantics

With respect to the connections of objects, there are the
following kinds of semantics.

Composition semantics: Ordinary references carry no
semantics of composition. It typically exist in abstraction
relationships and has impact on the transitivity semantics
(see below), which may not only refer to propagating opera-
tions over a hierarchy, but also to pass on structural or
behavioral properties.

Sharability: This semantic concept is especially useful
for abstraction relationships and determines whether an
object of a lower level can participate in one or more
relationship with another object of a higher level. For

Figure 2. A part of data model

requirement

customer-
requirement

inhouse-
standard

legal-
regulation

test

dynamic-static-

seat- door- window- seat door window

automobile

[2,8] [2,6] [4,8]

unit

requirement-
catalog

test test

testtesttest

consist-of

unit-test
requirement-test

example, a seat, a door, and a window belong to only one
automobile, therefore, the aggregation relationshipconsist-
of is non-sharable. Moreover, sharability is also a factor
influencing the existence semantics (cf., Sect. 4.2).

Degree: Relationships may be binary, ternary, or of
higher degree. A binary relationship can be implemented as
an attribute containing a reference to the related objects. For
n-ary relationships, however, this simple structure is not
suitable any more. In general, an n-ary relationship must be
seen as an atomic unit and cannot be broken down into a set
of binary ones without altering its proper meaning.

Cardinality: Cardinality characterizes the connectivity
of a relationship and constrains the number of related
objects. Cardinalities can be further refined and represented
with pairs of values as [min, max], i. e., the minimum and
the maximum number of objects that participate in a given
relationship. As illustrated in Figure 2, an automobile can
have at least two and at most eight seats.

4.2 Existence Dependencies

Existence dependencies specify how insertion or
deletion of one object may influence the existence of
connected objects. For instance, in the case of aggregation
different kinds of existence dependencies w.r.t.delete
operations might look as follows:
• On Deletion of Part
- MDA (Mandatory Deletion of Aggregate): Upon

deletion of one of the parts of an aggregate, the aggregate
object is also deleted.

- CDA (Conditional Deletion of Aggregate): The user
may decide whether the deletion of a part incurs the
deletion of the entire aggregate or not.

- RDA (Restricted Deletion in the existence of
Aggregate): The deletion of a part of an aggregate is not
permitted. Only the aggregate object as a whole may be
deleted (see below).

• On Deletion of Aggregate
- MDP (Mandatory Deletion of Part): Upon deletion of the

aggregate object, all part objects are deleted.
- CDP (Conditional Deletion of Part): Upon deletion of

the aggregate object, all part objects which are not partic-
ipating in any other aggregation relationship are deleted.

- RDP (Restricted Deletion in the existence of Part): The
deletion of the aggregate object is rejected if it will leave
a dangling part object.
In our example, the deletion of a seat, a window or a door

will incur the deletion of an automobile and vice versa. In
this sense, the aggregation relationshipconsist-of should be
assigned with MDA and MDP semantics. Corresponding
existence dependencies can also be defined, e. g., forinsert
operations and for association as well as other application-
specific relationships.

4.3 Transitivity

Transitivity is a common property of many relationships.
Since, for example, an instance ofseat-test is also the
instance ofdynamic-test as well as oftest, it will inherit
features (such as attributes and methods) fromtest as well
as fromdynamic-test. Moreover, aggregation is inherently
transitive. An aggregate has parts, which may in turn have
parts, just like an automobile consists of several units,
which can in turn consist of subparts. Whenever an
aggregate object is requested, all part objects are also poten-
tially accessed. For application-specific relationships, there
can be also some operations implying transitive closure and
operating on both directly and indirectly related objects.

4.4 Operation Propagation

According to propagation rules, operations applied to
some starting objects will automatically incur operations on
other related objects. As an example, operations at the
aggregate level can be propagated to the part levels. This
process provides a powerful way for specifying transitive
actions and for securing consistency. Propagation is
possible for both data manipulation operations as, e. g.,
select, delete, copy, and display, as well as data
management operations such aslock andsave.

4.5 Summary of Relationship Semantics

Table 2 summarizes the different aspects of relationship
semantics discussed so far. Aggregation and association are
taken as examples of generic relationships, for which some
properties are standard (denoted as “+”), such as compo-
sition, transitivity and propagation. Other aspects vary in
different concrete application domains, for instance, if a
part can be associated with more than one aggregate or not,
if a part can be reused or not after the aggregate is disas-
sembled, etc. Therefore, these aspects (denoted as “-”)
should be further specified to catch the exact meaning in
various scenarios. This consideration also leads us to model
relationships in an inheritance hierarchy (cf., Sect. 5.1).

For application-specific relationships, we choose
consist-of and unit-test. To reflect that an automobile
consists of seats, doors, as well as windows, the relationship
consist-of is defined. It is a special kind of aggregation with
add-on semantics for cardinality, sharability and existence
dependencies: Units can not be shared among different
automobiles and should be deleted if the automobile does
not exist any more. Another relationshipunit-test embodies
no composition and transitivity semantics. Moreover, more
than one test can be carried out on a unit, but if the unit is
deleted, all these tests should also be deleted. In the table,
symbol “o” means that the corresponding semantic aspect
does not exist or is not necessary for the relationship, while
symbol “>” represents that this aspect is inherited from a
more generic type of relationship.

5. Integrating Relationship Semantics into
ORDBs

With the exception of generalization, relationships with
built-in semantics are not supported by current ORDMs.
Schema designers or application programmers have to
maintain the complicated semantics of various relationships
discussed in Sect. 4. Therefore, the database modeling
challenges posed by current advanced applications can not
be well met. In order to remedy this deficit, we are devel-
oping a prototype system ORIENT (Object-based
Relationship Integration ENvironmenT) to integrate
relationship semantics into an ORDBMS. Our approach
enables to specify relationship semantics explicitly, which
are then mapped to basic mechanisms provided by the
underlying DBMS. As a consequence, relationships are
available as first-class modeling constructs, domain-
specific logic can be caught and reflected more accurately
in the conceptual modeling process, and the relationship
semantics is no longer embedded, distributed, and repli-
cated within the user-supplied code.

5.1 Data Structures

The core concepts of data structures, which we use to
model and implement relationships, are types and type
hierarchies. A type system introduces a formal framework
defining integrity conditions for the extension of each type.
Typing also allows to perform consistency checks which
will give great benefits to the processing of operations on
relationships. Moreover, a type hierarchy facilitates
genericity and the incremental implementation of systems.

In ORIENT, relationship is defined as the most generic
type which possesses several well-known relationships as
default subtypes. Schema designers can select such a type

with some built-in characteristics, then specify the exact
semantics of the domain by introducing subtypes or
instances thereof. Alternatively, they can define completely
new types underrelationship, if desired. An example of the
resulting relationship hierarchy is illustrated in Figure 3.

The upper layer contains a generic and extensible model
of relationships that is implemented in an application-
independent fashion, for example, the generic abstraction
relationshipsassociation andaggregation. Generalization
is not illustrated explicitly in Figure 3, because this concept
is typically offered by the underlying DBMS without any
options for tailoring its semantics. The layer below contains
specialized relationships created by users, which include the
specialization of abstraction relationships and the definition
of relationships with application-specific meanings.

The information captured by the specification of
relationship types includes: relationship name, degree,
references to participants, semantic constraints such as
cardinality and existence dependencies, etc. For example,
relationship typeconsist-of should be described with the
attributes shown in Figure 4.

Notice that most of the relationship semantics is by
virtue some kind of integrity constraints and can be imple-
mented relying on active mechanisms featured by the
DBMS. Moreover, the rich modeling power of ORDMs
provides the possibility to embed explicit constraints into
data structures as procedural attachments. Thus, relation-
ships can be implemented as database objects with

Table 2. Relationship examples with their semantics

Semantics
Generic relationships Application-specific

relationships

Aggregation Association consist-of unit-test

Cardinality

1:1

- -

o o

1:m + +

m:n o o

Composition
Semantics + + > o

Sharability - - o o

Existence
Dependency - - MDA,

MDP, ...

MD of test
on deletion
of unit

Transitivity + + > o

Propagated
Operations

select,
delete, ...

select,
delete, ... > deleteunit

Notes: “+” defined; “-” to be further specified; “o” not existing;
“>” inherited from a more generic relationship.

relationship

... ...association aggregation

User-Defined
Relationships

consist-of

Generic Relationships

unit-test

(ORIENT’s Library)

Figure 3. Inheritance hierarchy of relationship types

relationshipconsist-of (
inherit-from: aggregation;
degree: 4;
participants: automobile, seat, door, window;
composition-owner: automobile;
non-sharable: seat, door, window;
cardinality: 1 : [2,8], [2,6], [4,8];
existence: MDA OF automobile ON

 seat, door, window;
 MDP OF seat, door, window

ON automobile)

Figure 4. Attributes specifying semantics

enforcement methods that encode the active behavior of
relationships. It is the task of ORIENT to transform declar-
ative specification of relationship semantics into internal
implementation of relationship objects.

5.2 Relationship Objects

There is no distinction between a relationship object and
a normal object except that the former has attributes and
methods with relationship-specific meaning: a list of
objects that may participate in the relationship, a method
acting as a monitor, and associated semantic enforcement
methods. The structure of relationship objects can be
roughly illustrated as in Figure 5.

The relationship semantics is implemented in such a way
that it gives a relationship object the ability to react to the
behavior of related objects and to take appropriate actions to
maintain the integrity. These actions are encoded in
enforcement methods, which make participating objects
reject an operation that would violate integrity, enforce the
propagation of an operation across relationships, etc.

Enforcement methods are invoked by a monitor method
based on two parameters: the name of participants and the
operation which triggers the monitor. Thus, the monitor is a
special method that plays a role as event checker and also
function dispatcher as depicted in Figure 6.

The rationale of such an implementation is also deter-
mined by the inherent non-local nature of relationship
semantics: the behavior of an object depends not only on the
class to which it belongs but also on the objects to which it
is related. As an example, takeconsists-of, which expresses
a transitive and dependent relationship, so that deleting one
participating object may cause the deletion of other
associated ones. Therefore, relationship semantics should
not be encapsulated within the boundaries of one single
object, rather, relationship objects are needed to supervise
the behavior of participants and to make appropriate
responses. Figure 7 illustrates the interconnection between
a relationship object and its related objects.

5.3 System Architecture

By facilitating a declarative specification as well as an
automatic maintenance of relationship semantics, ORIENT
can serve on one hand as a semantic front-end of an
ORDBMS or OODBMS and on the other hand as a tool for
database designers, which will facilitate the user interaction
with databases and improve DBMS independence. The
system architecture of ORIENT is shown in Figure 8.

Relationship specifications provide modeling constructs
to aid the designers in expressing the relationship semantics
in the conceptual schema. Internally these specifications are
processed by a precompiler, whose main task is to identify
the relationship types and to generate relationship objects
which are compatible with the underlying DBMS. Various
semantic aspects are specified by attributes of predefined
types (cf., Figure 4). The most genericrelationship type
provides default methods to guarantee and, if necessary, to

Type consist-of
 {Participants

 {Type automobile Owner;
 Type seat P1;
 Type door P2;
Type window P3}

 Monitor ()
 {if deletion of Owner then

 Enforcement-Method1 (Owner, Delete);
 if deletion of P1 then

 Enforcement-Method2 (P1, Delete);
}

 Enforcement-Method1 (Owner, Delete)
 {delete Participants recursively}

 Enforcement-Method2 (P1, Delete)
{delete Owner and other Participants recursively}
......}

Figure 5. Structure of a relationship object

Participant1
Participant2
Participant3

......

Enforcement Method1

Enforcement Method2

Enforcement Method3
......

Monitor

Event
Checker

Function
Dispatcher

referencing

triggering

invoking

from participating objects

Figure 6. Relationship object as event checker
and function dispatcher

consist-of

automobile
seat

Monitor

D
elete w

indow
... ...

automobile window

door
window

D
elete door

... ...

D
elete seat

... ...

D
el

et
e

...
 ..

.
au

to
m

ob
ile

door seat

referencing supervising

Figure 7. Interconnection of relationship object
and related objects

enforce relationship semantics. In this way, a framework of
integrity maintenance is established. These default methods
can be inherited and also adjusted to match the application-
specific needs. In fact, method inheritance operates over the
entire relationship hierarchy. The derivation of actual
methods for enforcement and monitoring consists of the
following steps:
• The related objects as well as the semantics of their rela-

tionships are identified with the help of attributes (e. g.,
participants, composition-owner, etc.).

• For every semantic aspect, all relevant operations should
be determined, e. g., forcardinality theinsert anddelete
operations must be supervised. For the transitive rela-
tionships, other operations such asselect andcopy must
also be taken into account. Based on such an interplay of
relationship properties, their related objects, and the af-
fected operations, enforcement methods are generated.

• Finally, the monitor method responsible for the schedul-
ing of these enforcement methods is constructed corre-
spondingly. Thus, the relationship objects are automati-
cally enriched by the required mechanisms.

It should be noticed that, although in the prototype
implementation, we take the object-relational system
Illustra [15] as the sample DBMS, our approach can be
applied to enrich other DBMSs, including object-relational
as well as object-oriented ones, with relationship semantics.

6. Related Work
The Entity-Relationship Model [6] is famous for

including relationships as main primitives. Further develop-
ments in this area led to a broad spectrum of semantic data
models [12, 22] providing a set of abstraction relationships.
However, these models are rarely supported by a DBMS.

In the field of object orientation, [18] presents an
algorithmic method and a tool for transforming a binary-
relationship schema to an object-oriented one. Several

authors [23, 9, 4, 21, 1] propose to extend OO models with
explicit relationships. These attempts are compatible with
the goal presented in this article. [23], as the first to address
user-defined relationship constructs, has a strong impact on
some proposals (e. g., [4]) which, like in [23], allow n-ary
relationships to be defined over objects, but only with
simple notions of integrity control such as cardinality
constraints. The idea in [9], expressed in a knowledge-
representation language based on frames, allows to define
binary relationships between objects as well as several
kinds of constraints on relationships. In [21], user-defined
relationships and constraints are modeled via a static set of
attribute objects. Moreover, [1] proposes a more compre-
hensive approach to model objects, relationships, and
declarative constraints through the use of an object-oriented
programming language. Several other approaches such as
[17, 11] have been suggested to support aggregation
relationships. Nevertheless, more general semantics for
other types of relationships are not addressed.

Generally, complex semantics is expressed via
constraints [26, 8]. The enforcement of integrity constraints
is therefore of special concern for the implementation.
Active rules are increasingly being incorporated in many
commercial products and research prototypes. They are also
fostered by the forthcoming and still evolving SQL3
standard [2]. Much of the research promotes triggers or
database rules as a uniform mechanism to support various
kinds of semantics that otherwise would have to be encoded
in applications. The rule system in Illustra [15], for
example, can be used to handle a variety of situations,
including traditional integrity constraints, referential
integrity, view management, access control and audits. As
to relationship-based constraints, [10] focuses on describing
the update rules for user-defined relationships. However,
relationships are not supported as first-class objects, and
only binary relationships are considered.

To avoid direct specification of update rules, some
authors [27, 3, 5] advocate the automatic generation from
declarative constraints. In particular, for relationship
semantics, [24] addresses the control of operation propa-
gation by means of propagation attributes. And [16]
presents an approach for integrating inter-object constraint
maintenance into an OODBMS. Relationships are not used
as an explicit construct; instead, the semantics is encoded
locally within the involved objects, which is exactly the
opposite of our approach.

It should be noticed that most of the previous work put
only attention to propagation in the context ofinsert, delete,
and update operations. Since date relationships may also
have a side effect on other database operations such as
select, we believe that the general problem of specifying
and maintaining relationship semantics deserves more
detailed attention.

Figure 8. System architecture of ORIENT

Database

Relationship Specifications

Relationship Objects

Graphical User Interface

Precompiler

DBMS ORIENT’s Library

7. Conclusion
This paper has primarily been focused on the importance

of data relationships in database application modeling and
on investigating the semantics of data relationships. To
remedy the deficits of the emerging ORDB technologies,
which lack adequate support in this respect, we presented an
approach that augments ORDMs with refined relationship
facilities. A prototype system was described, whose generic
relationship model can be adapted to the specific modeling
needs of different application domains, particularly those
which require support for complex data relationships.

This endeavor incorporates several important aspects
such as the automatic generation of enforcement methods
and a query mechanism that fully supports relationship
semantics. In addition, a user-friendly interface is indis-
pensable to provide system-supplied menus to tackle the
complexity of the specification and to convey to the system
as much application-specific semantics as possible.

The project RITA being carried out in corporation with
an industrial partner presents a suitable setting to analyze
user requirements as well as the diversity of relationships in
real-world applications. Moreover, this environment
provides a realistic test-bed both for the semantics specifi-
cation and for the ORIENT system implementation. We
will report the benefit as well as our experience of using the
facilities offered by ORIENT in a future paper.

References
[1] A. Albano, G. Ghelli, R. Orsini, “A Relationship Mecha-

nism for a Strongly Typed Object-Oriented Database Pro-
gramming Language”, Proc. 17th VLDB Conf., Barcelona,
Sept. 1991, pp. 565-575.

[2] ANSI X3H2, “Database Language SQL — Part 2: SQL/
Foundation, Committee Draft”, July 1996.

[3] M. Bouzeghoub, E. Métais, “Semantic Modeling of Object
Oriented Databases”, Proc. 17th VLDB Conf., Barcelona,
Sept. 1991, pp. 3-14.

[4] S. E. Bratsberg, “FOOD: Supporting Explicit Relations in a
Fully Object-Oriented Database”, in: Object-Oriented Data-
bases: Analysis, Design and Construction, R. A. Meersman,
W. Kent, S. Khosla (eds.), North-Holland, 1991, pp. 123-
140.

[5] S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca, “Automatic
Generation of Production rules for Integrity Maintenance”,
ACM TODS 19:3, 1994, pp. 367-422.

[6] P. P. Chen, “The entity-relationship model — Towards a uni-
fied view of data”, ACM TODS 1:1, 1976, pp. 9-36.

[7] C. J. Date, An Introduction to Database Systems, 6th Edition,
Addison-Wesley Publ. Comp., 1995.

[8] S. Deßloch, Semantic Integrity in Advanced Database Man-
agement Systems, Ph. D. Thesis, Dept. of Computer Science,
University of Kaiserslautern, Aug. 1993.

[9] O. Díaz, P. M. D. Gray, “Semantic-rich User-defined Rela-
tionships as a Main Constructor in Object Oriented Data-
base”, in: Object-Oriented Databases: Analysis, Design and

Construction, R. A. Meersman, W. Kent, S. Khosla (eds.),
North-Holland, 1991, pp. 207-224.

[10] O. Díaz, “The operational semantics of user-defined relation-
ships in object oriented database systems”, Data & Knowl-
edge Engineering 16 (1995), pp. 223-240.

[11] M. Halper, J. Geller, Y. Perl, W. Klas, “Integrating a Part Re-
lationship into an Open OODB System using Metaclasses”,
in: N. Adam, B. Bhargava, Y. Yesha (eds.), Proc. 3rd Int.
Conf. on Information and Knowledge Management (CIKM-
94), Gaithersburg, Maryland, Nov. 1994, pp. 10-17.

[12] R. Hull, R. King, “Semantic Database Modeling: Survey,
Applications, and Research Issues”, ACM Computing Sur-
veys 19:3, Sept. 1987, pp. 201-260.

[13] T. Härder, J. Thomas, “RITA - ein rechnergestüztes Informa-
tionssystem für technische Anwendungen” (in German),
ITG-Fachbericht 137 (STAK’96), Munich, March 1996, pp.
111-126.

[14] IBM DB2 SQL Reference - for common servers (Version 2),
IBM Corp., 1995.

[15] Illustra User’s Guide (Release 3.2), Illustra Information
Technologies, Inc., 1995.

[16] H. V. Jagadish, X. Qian, “Integrity Maintenance in an Ob-
ject-Oriented Database”, Proc. 18th VLDB, Aug. 1992.

[17] W. Kim, E. Bertino, J. F. Garza, “Composite Object Revisit-
ed”, Proc. 1989 ACM SIGMOD Conf., Portland, 1989, pp.
337-347.

[18] Y. Kornatzky, P. Shoval, “Conceptual design of object-ori-
ented database schemas using the binary-relationship mod-
el”, Data & Knowledge Engineering, 14 (1994), pp. 265-288.

[19] N. M. Mattos, An Approach to Knowledge Base Manage-
ment, LNCS 513, Springer-Verlag, 1991.

[20] F. Manola (eds.), Object Model Features Matrix, ANSI
X3H7-93-007v10, Feb. 1995.

[21] R. Nassif, Y. Qiu, J. Zhu, “Extending the Object-Oriented
Paradigm to Support Relationships and Constraints”, in: Ob-
ject-Oriented Databases: Analysis, Design and Construction,
R. A. Meersman, W. Kent, S. Khosla (eds.), North-Holland,
1991, pp. 305-329.

[22] J. Peckham, F. Maryanski, “Semantic Data Model”, ACM
Computing Surveys 20:3, Sept. 1988, pp. 153-189.

[23] J. Rumbaugh, “Relations as Semantic Constructs in an Ob-
ject-Oriented Language”, OOPSLA’87, pp. 466-481.

[24] J. Rumbaugh, “Controlling Propagation of Operations using
Attributes on Relations”, OOPSLA’88, pp. 285-296.

[25] M. Stonebraker, Object-Relational DBMSs - The Next Great
Wave, Morgen Kaufmann Publ., Inc., 1996.

[26] B. Thalheim, “Semantical Constraints for Database Models”,
in: Advances in Database Systems - Implementations and
Applications, J. Paredaens, L. Tenenbaum (eds.), CISM 347,
Springer-Verlag, 1994.

[27] S. D. Urban, L. M. L. Delcambre, “Constraint Analysis: A
Design Process for Specifying Operations on Objects”, IEEE
TKDE 2: 4, Dec. 1990, pp. 391-400.

[28] J. D. Ullman, Principles of Database and Knowledge-Base
Systems (Vol. I), Computer Science Press, Rockville, Mary-
land, 1988.

[29] UniSQL Server User’s Guide, UniSQL, Inc., 1996.

