
- 1 -

Advanced Data Processing in KRISYS:

Modeling Concepts, Implementation Techniques,

and Client/Server Issues

Stefan Deßloch1, Theo Härder, Nelson Mattos1, Bernhard Mitschang2, Joachim Thomas

Department of Computer Science
University of Kaiserslautern

67653 Kaiserslautern, Germany
e-mail: {haerder, thomas}@informatik.uni-kl.de

Abstract

The increasing power of modern computers steadily opens up new application domains for
advanced data processing such as engineering and knowledge-based applications. To meet their
requirements, concepts for advanced data management have been investigated during the last
decade, especially in the field of object-orientation.

Over the last couple of years, the database group at the University of Kaiserslautern has been
developing such an advanced database system, the KRISYS prototype. In this article, we report
on the results and experiences obtained in the course of this project. The primary objective for
the first version of KRISYS was to provide semantic features, such as an expressive data model,
a set-oriented query language, deductive as well as active capabilities.

The first KRISYS prototype became completely operational in 1989. To evaluate its features
and to stabilize its functionality, we started to develop several applications with the system.
These experiences marked the starting point for an overall redesign of KRISYS. Major goals
were to tune KRISYS and its query processing facilities to a suitable client/server environment
as well as to provide elaborate mechanisms for consistency control comprising semantic
integrity constraints, multi-user synchronization, and failure recovery. The essential aspects of
the resulting client/server architecture are embodied by the client-side data management needed
to effectively support advanced applications and to gain the required system performance for
interactive work.

The project stages of KRISYS properly reflect the essential developments that have taken place
in the research on advanced database systems over the last years. Hence, the subsequent discus-
sions will bring up a number of important aspects w.r.t. advanced data processing that are of
significant general importance as well as of general applicability to database systems.

Key words: Object-Oriented Modeling Concepts - Consistency Control - Query Processing -
Run-Time Optimization - Client/Server Architectures.

1. IBM Database Technology Institute, Santa Teresa Laboratory, 555 Bailey Ave., San Jose, CA, 95161
USA, e-mail: {dessloch, mattos}@us.ibm.com.

2. Technical University of Munich, Computer Science Dept., Orleansstr. 34, 81667 München, Germany,
e-mail: mitsch@informatik.tu-muenchen.de.

In: The VLDB Journal 7:2, 1998, pp. 79-95

- 2 -

I Introduction

1. Advanced Data Management

The increasing power of modern computers steadily opens up new application domains for data
processing. As a consequence, the variety and sophistication of database applications is
growing rapidly. To meet the requirements of those applications, concepts for advanced data
management have been investigated over the last decade, especially in the field of object-orien-
tation. For these developments, mainly two phases can be observed, according to the objectives
the corresponding research activities were focused on.

The first stage was primarily concerned with providing powerful modeling features for
advanced applications. Knowledge-based systems [In84, JGJSE95] as well as prototypical
database implementations [Ma91, KL89] proposed concepts that allowed to adequately model
advanced applications. These concepts comprise

- expressive object-oriented data models featuring possibly multiple abstraction concepts,
- powerful query languages tailored to the particularities of the underlying object models,
- constraints and event-based processing, as well as
- deductive capabilities.

While these concepts were being shaped, several data model and language standards arose,
prominent examples of which are SQL3 [ISO96], ODMG [ODMG96], or STEP/EXPRESS
[ISO94]. Simultaneously, it became obvious that providing optimum support for advanced
applications is not only restricted to offering expressive semantic concepts, but that it also
requires their effective and efficient implementation. For this reason, research turned its
attention to performance aspects of advanced database processing.

This shift of activities, which has taken place in recent years, marks the second phase of research
in the scope of advanced data management. During this period, investigations concentrated on
processing issues covering aspects as, for example:

- object-oriented query processing,
- client/server processing,
- main-memory query processing, or
- parallelism.

While client/server environments have been widely accepted as being the ideal architectural
setting for processing advanced applications [HR85, DFMV90, HMNR95], there are a number
of approaches proposing different solutions to performance-critical topics in advanced database
processing [HS93, Gr94, LLPS91, CR94]. What is missing, however, is the integration of these
isolated approaches into a common implementational framework.

The advanced database system KRISYS (Knowledge Representation and Inference System),
which is at the focus of this article, has been developed at the University of Kaiserslautern over
the last eight years following exactly this evolutionary pattern. Subsequently, we will give a
brief overview of the history of KRISYS.

2. Evolution of the KRISYS Prototype

The overall goal of the KRISYS project is to combine adequate support for the design and
operation of advanced applications with database facilities that allow to securely and persis-
tently handle large amounts of data. Accordingly, KRISYS features a client/server architecture
providing a client-based infrastructure for application development and processing as well as a
centralized database system at the server side. While the design of both processing sites varied
in the evolutionary process of KRISYS (cf., the following sections), the overall distribution of

- 3 -

tasks remained unchanged. At the client, applications are supported by an object-oriented data
model (cf., Chapter II, Sect. 1) and a user interface featuring a set-oriented, declarative query
language. The server, on the other hand, takes over all tasks related to general data management.

In the first project phase, research activities focused mainly on providing expressive semantic
concepts that permit to adequately model the data and operations prevalent in advanced appli-
cations. Moreover, an essential objective for KRISYS has always been to incorporate uniform
support for all phases of an application’s life cycle, i.e., for application development as well as
for application processing. In this context, schema evolution is an important feature, which has
been incorporated into KRISYS from the very beginning of the project.

The first KRISYS prototype became completely operational in 1989. To evaluate its features
and to stabilize its functionality, we started to develop several applications with the system. The
following table gives an overview of the most important applications of KRISYS. We listed
only those applications that cover ‘real-world’ problems in sufficient depth and generality.
About the same number of applications were restricted in functionality, size, and depth and were
developed either for demonstration purposes or to evaluate specific modeling concepts.

Since 1991, the first version of KRISYS has been successfully employed in a practical semester
course on object-orientation and knowledge base management systems at our university as well
as shipped to other universities for being used in teaching courses and research projects.

The experiences gained in the development of these applications as well as the feedback
received from KRISYS users served as a broad and solid basis for evaluating the system from
various points of view. While the object model and its features proved to be adequately
expressive, the need for an elaborate concept for semantic integrity constraints became
apparent. Regarding the conceptual and implementational foundations of processing in
KRISYS, we learned that, for performance reasons, we needed a better adaptation of all related
tasks to the client/server architecture of KRISYS. Since interactions with users and applications
rely on the processing facilities at the client side, those improvements pertain primarily to the
client-based functionality of KRISYS, in particular to query processing in KRISYS.

These experiences marked the starting point for a major redesign of KRISYS. The new KRISYS
prototype was successfully presented at the 1995 SIGMOD demonstration session [TDM95].
For that purpose we extended the system by some specific explanation facilities in order to
highlight important aspects of the internal processing, for example, a graphical view and expla-
nation environment for query processing.

Application Application Area / Problem Class

MED2 XPS-shell [Pu86] Diagnosis

XPS for Trip Planning Classification

Real-Estate Valuation Support Decision Support in Finance

Intelligent CAD [DHMM89] Architectural Design

TechMo Mechanical Design

3D Objects Spatial Reasoning and Integrity

Multi-Media Application Object-Oriented Modeling of Multi-Media Data and Operations

Flexible Product Modeling
for an Insurance Company [ST95]

Object-Oriented Analysis and Design,
Schema Evolution

- 4 -

3. Related Work

As already mentioned, KRISYS features an expressive object model that is comparable to
object-oriented data models as, for example, the ODMG approach. In addition and in contrast
to most other approaches, the KRISYS model integrates active as well as deductive properties
in the form of triggers and rules, all needed for a powerful semantic integrity and constraint
management. Based on this enhanced object model, KRISYS supports the (evolutionary)
process of application modeling and development in the same framework as the data
management tasks. This is a distinct characteristic of the KRISYS approach that can only be
found in knowledge base management systems as, for example, KEE [In84].

KRISYS provides a set-oriented declarative query language, whose data processing technology
is built on well-founded relational query optimization and processing techniques. Hence, from
an implementation point of view there is a great similarity to other relational and post-relational
database systems as e.g. DB2/6000 [CMCD94], Starburst [LLPS91], POSTGRES [SK91], or
EXODUS [CD87]. Even object-oriented database systems are now considering SQL-like query
languages, thus evolving to similar directions [ODMG96].

Since KRISYS is conceived for client/server environments with most application-oriented
processing being done at the client side, a client infrastructure for efficient data processing is
indispensable. KRISYS supports main-memory query processing which asks for run-time
optimization to dynamically exploit the client buffer contents at run time, thus minimizing
client/server interaction. To the best of our knowledge we don’t know of any existing database
system employing a similar technology. However, if object-oriented database systems really
want to support set-oriented and declarative (perhaps SQL-like) query languages, they have to
devise similar concepts in order to provide acceptable performance [FMV94, Ki95, VD91].

Moreover, the KRISYS processing framework supports extensibility at different levels of query
processing to cope with later extensions either of the query interface (shifting more application-
oriented semantics into the scope of query processing) or of evaluation methods (such as
improved join algorithms) [TD93]. Since its processing framework is founded on relational
technology, its extensibility technology relies on the relational one as well [Gr93, HFLP89].

Another major design decision has been made to improve the interaction between client and
server components. The object-server approach [DFMV90], which turned out to be a perfor-
mance bottleneck in the first KRISYS implementation, was replaced by a query-server archi-
tecture that permits to delegate subqueries. In contrast to traditional query servers, this approach
exploits the current buffer contents at the client and improves the balance of processing across
the client-server architecture. Moreover, it supports set-oriented retrieval of objects from the
server, yet avoids drawbacks encountered with page-server approaches [LLOW91], whose
effectiveness strongly relies on appropriate object-clustering mechanisms [DFMV90].

In the database literature, there are only few publications discussing theoretical or implementa-
tional aspects of descriptive buffer management. For example, [BJNS94] presents a
polynomial-time algorithm for performing subsumptions, while [KB96] describes a query
optimizer relying on query-like descriptions for exploiting locality of reference in the appli-
cation buffer. Recently, however, descriptive buffer management is being paid more attention
in conjunction with materialized views anddata warehousing [Ro91, CR94, Lo95].

Just like in KRISYS, most of those approaches interleave query optimization and matching
operations on the cache contents. However, they operate on the relational data model, so that
subsumption tests are easier to perform as those required for the KRISYS object model called
KOBRA or object-oriented data models in general, and only value-based comparisons must be
considered (and not, e.g., transitive abstraction relationships). The commonalities of the
approaches like [CR94] to the one of KRISYS lie in the functional organization of query
processing and in the access and description facilities provided for cached sets of objects. The

- 5 -

main difference is the fact that [CR94] has to cope with materialized views whose base data may
be updated outside the cache causing consistency problems. As the multi-user environment of
KRISYS employs an adequate hierarchical lock protocol [RH97], the Context Manager is not
faced with the decision on how and when to react to such external updates. As far as multi-user
synchronization in object-oriented database management systems is concerned, similar work
was performed in the ORION project [GK88]. However, our solution handles more complex
situations, since the KRISYS object model allows for different abstraction hierarchies as well
as multiple inheritance (multi-class membership) for classes and instances.

4. Overview of the Paper

The rest of this article is made up of three chapters. Chapter II deals with the conceptual founda-
tions of KRISYS. The KRISYS object model, its query language, as well as its overall system
architecture are being presented. Moreover, a basic understanding of the tasks of each architec-
tural component is provided and the interaction of these components during query processing is
demonstrated using a small example. These discussions mark the starting point for the imple-
mentational considerations as being described in Chapter III. Finally, Chapter IV gives a
conclusion and an outlook to future work.

II Conceptual View of KRISYS

1. Object Model and Query Language of KRISYS

In this chapter, we summarize the main features supported by the object model of KRISYS, as
adopted from the first version of KRISYS. The KOBRA (KRISYS Object Representation)
object model featured by KRISYS is comparable to object-oriented data models [Ca91]. A
KRISYS object is uniquely identified by aname (i.e., object identifier) and is made up of
attributes, denoting descriptive or organizational characteristics of objects, andmethods
defining behavioral properties. All attributes or methods can be annotated withaspects
providing additional information, e.g., default values or comments. KRISYS supports the
abstraction concepts of classification, generalization, association, and aggregation [Ma91]
whose semantics (e.g., inheritance along the classification and generalization relationships) is
automatically enforced by the system. Objects are typically organized in hierarchies or lattices
defined via those abstraction relationships. For generalization and classification, this means that
both multiple inheritance and multiple instantiation (i.e., an object is a direct instance of more
than one class) are supported. In addition, the object model of KRISYS provides various other
features, as, e.g., constraint and rule management, not usually found in object-oriented data
models [Ma91, De93].

()(

(ASK)

<selection>

TELL

WHERE

<projection>

<assertion>

<selection>

Fig. 1: Syntactic structure of KOALA statements

- 6 -

KOALA (KRISYS Object Abstraction Language) [Ma91], a descriptive, set-oriented language,
constitutes the user and application interface of KRISYS. KOALA is computationally complete
w.r.t. the KOBRA object model. KOALA features two operations, ASK and TELL (cf., Fig. 1),
to perform set-oriented queries or modifications of the object base. Both statements allow to use
variables (indicated by leading question marks) for referring to any part of an object, as, for
example, entire objects, attributes, methods, aspects, or their values. Moreover, query variables
may appear in each part of either ASK or TELL.

An ASK statement consists of two parts, a selection and a projection. The selection clause
defines the scope of a query and conditions to be met by entities in order to qualify as query
result. Compared to SQL-like query languages, the selection clause combines the tasks of the
FROM clause and of the WHERE clause. This is due to the fact that the KOBRA object model
treats metadata (i.e., information on classes) and “regular” data (i.e., instances) alike. Hence,
specifying a class may serve to access the object itself as well as its extent, i.e., its instances.

Just like the ASK construct, the TELL statement consists of two clauses, a selection part for
detailing the objects which are to be manipulated, and an assertion part describing the state to
be achieved by the TELL at hand. Thisstate-orientation introduces a major difference to
relational query languages, as it allows the user to specify the net effects of modifications
instead of forcing him/her to explicitly declare which actions must be taken to transform the
current state of the object base into the new one. As outlined in [DLM90, De93, DLMT93], this
feature is especially valuable if the query language is employed for processing constraints or
rules, as it is the case for KOALA. Hence, depending on the current state of the object base, a
TELL operation, translated to a relational setting, may correspond to possibly multiple
INSERTs, UPDATEs, DELETEs, or no modification operations at all.

In summary, KOALA offers a versatility which is comparable to relational query languages, but
which is hardly to be found in the realm of object-oriented database systems. For the examples
to follow, we assume an architectural application with an object base containing generalization
hierarchies forrooms andfurnishings. The ASK statement given in Fig. 2 selects all furnishings
costing more than US$1,000, which are suitable for rooms located at the south side of the house
to be planned. For reference purposes, we numbered the lines of the query. The projection
clause (line (1.0)) states that the complete objects retrieved constitute the result of that query.
The query refers to the abstraction concept of classification and reads as follows: Firstly,
instances of rooms (direct as well as indirect ones, indicated by the asterisk behind the class
name) are retrieved into query variable ?X (line (1.1)). This set of objects is further restricted
by the condition that attributeorientation contain value ‘South’ (line (1.2)). In addition to
instances ofrooms, the query also refers to instances offurnishings which must have a price
higher than US$1000, represented by the value of attributeprice (lines (1.3), (1.4)). Finally, a
methodis-suitable-for is invoked to determine the feasibility of furnishings for certain rooms
(line (1.5)). This is done by resorting to the MESSAGE predicate provided by KOALA.

(1.0)(ASK ((?X)(?Y))

(1.1) (AND (IS-INSTANCE ?X rooms *)

(1.2) (EQUAL South (SLOTVALUE orientation ?X))

(1.3) (IS-INSTANCE ?Y furnishings *)

(1.4) (> (SLOTVALUE price ?Y) 1000)

(1.5) (MESSAGE is-suitable-for ?Y ?X)))

Fig. 2: Sample ASK statement.

projection clause

qualification clause

- 7 -

2. KRISYS Architecture and Processing Model

We will now present the current KRISYS architecture, as shown in Fig. 3, to give an overview
of the tasks of each system component and to exemplify the interaction of the components.

2.1 Overview of the Architecture

The server part, formed by thePRIMA database kernel [HMMS87], concentrates on efficient
and reliable object-base management. At its interface, it features composite objects represented
in terms of the MAD (Molecule-Atom Data) model [Mi88], and that are accessible via the
associated query and manipulation language MQL. Thus, application-independent data
management is warranted. The client side of KRISYS is partitioned into several components.
The Working Memory, the client-based object buffer, is controlled by the Context Manager
which is responsible not only for maintaining a declarative description of the Working Memory
contents, but also for loading and unloading sets of objects into or from the application buffer.
To transfer objects between server and client, the Context Manager interacts with the Mapping
System, which transforms objects from the server data-model to KOBRA and vice versa. The
Mapping System is also responsible for generating appropriate, application-specific mapping
schemes for objects. The Constraint Manager performs all activities related to checking or
processing the constraints of the object base. The KOALA Processing System, finally, provides
the user (and application system) interface. Its task is to process and execute KOALA queries.

2.2 System Components

TheMapping System provides KOBRA objects as uniform representation for the client-based
components of KRISYS. Thus, it isolates processing in the client from representational aspects
of the server database system. Moreover, the Mapping System allows to generate optimized,
application-dependent mapping schemes and to exploit them during application processing.
Such a mapping permits, for example, to combine several interrelated classes in a single table
or to split one class across several tables, in order to improve the performance of critical DML
operations. The activities of the Mapping System can be divided into the following independent
subtasks:

• generation of an optimized mapping for a specific application,
• transformation of delegated KOALA subqueries into queries of the PRIMA kernel, and

Fig. 3: A sketch of the KRISYS system architecture.

KOALA Processing System

Constraint
Manager

KOBRA Context
Manager

Mapping System

PRIMA Database Kernel

Server

Client

object base

Working Memory

- 8 -

• adaptation of the mapping in case of changes in the object-base structure (schema evolution).

TheWorking Memory is the KRISYS object buffer, and its general task is to support locality of
reference during query processing. In order to accomplish this task, the Working Memory

• provides data structures and operations for representing and effectively manipulating objects
in a format directly reflecting the semantics of the object model,

• allows efficient set-oriented processing of objects by the KOALA Processing System through
so-calledAccess Structures (AS), combining scans with main-memory index facilities, and

• supports pointer-like navigational access or traversal of objects in abstraction hierarchies to
optimize the processing of model-inherent constraints.

Transformations of the object format take place whenever objects are transferred from the
server and stored in the Working Memory. Such transformations include swizzling pointers
representing inter-object relationships, constructing appropriate Access Structures, etc. While
the Working Memory provides basic functions for accessing objects in main memory, buffer
management is performed by the Context Manager introduced later in this paper.

The KOALA Processing System is responsible for performing statements formulated in the
query language KOALA [Th96]. The overall steps of query processing proceed in a similar
fashion as those in relational database systems [HFLP89]: first, an algebra graph is generated
and subsequently optimized, i.e., rewritten; thereafter, an execution plan is constructed; finally,
executable code is assembled, and the query is actually evaluated. We will discuss these steps
more elaborately in Chapter III, Sect. 2.

The evaluation of a query must exploit the Working Memory contents as far as possible.
Therefore, the KOALA Processing System closely interacts with the Context Manager and with
the Constraint Manager to identify those parts of the query that should be performed at the client
side and those that are to be delegated to the server. As we will see in our discussion of imple-
mentational aspects of query processing (cf., Chapter III), this decision is reflected by different
types of plan operators in the execution plan (e.g. 'Buffer-SELECT' and 'DB-SELECT').

During the generation of an execution plan, the KOALA Processing System has to find out
which parts of the query may be executed on the buffer contents, because the required objects
are already present in the Working Memory. A buffer description based on object identifiers is
not sufficient for accomplishing this task [De93, DLMT93]. Instead, a declarative description
is required. It is the major task of theContext Manager to maintain such declarative buffer
descriptions. They can be incrementally constructed from the subqueries that are delegated to
the server, since the selection conditions of these queries perfectly describe the results (i.e., the
contexts) that are installed in the Working Memory. To provide the required information for the
KOALA Processing System, the Context Manager performs special context-inference opera-
tions comparing data requests of queries to the contexts of the buffer and producing a declar-
ative description of those object sets to be fetched from the server database system.

TheKOBRA component realizes the semantics of the KOBRA object model and its associated
operational facilities [Ma91]. KOBRA provides operations for accessing single objects based
on their object names. This includes functions, e.g., for creating or deleting objects, for reading
or changing attribute values, for establishing or removing abstraction relationships, or for
executing methods. Objects may be interrelated by one or more of the abstraction concepts or
by virtue of application-defined relationships. Thus, networks of objects can be constructed.
While KOALA provides transitive-closure operations for surveying such networks in a set-
oriented fashion, the functional capabilities of the KOBRA component are restricted to naviga-
tional, object-wise operations only. They are accomplished by exploiting object references
occurring as values of attributes that establish any of the object relationships mentioned above.
KOBRA provides the conceptual and implementational basis for all activities to be carried out

- 9 -

in main memory at the client side. Consequently, KOALA and the activities of the KOALA
Processing System are mapped to the operational primitives of the KOBRA component.

The task of maintaining object-base consistency according to the given constraints is fulfilled
by the Constraint Manager [De93]. Based on events reported by the KOALA Processing
System or the KOBRA component (e.g., atomic write/read operations, begin/end of composed
activities, etc.), the Constraint Manager initiates actions to ensure consistency, or stores the
events for later, deferred activation. Moreover, the creation, deletion, or modification of
constraints is reported to this component. Additionally, the Constraint Manager provides infor-
mation about certain types of constraints to the KOALA Processing System which are necessary
for rewriting purposes during query optimization.

2.3 Interaction of System Components During Query Processing

To illustrate the interactions and dependencies between the different system components of
KRISYS, we sketch the evaluation of a simple example query. We refer to the query presented
in Fig. 2. Details of this discussion can be found in [De91, De93].

After having been submitted to the KOALA Processing System (Fig. 4➀), the statement is
transformed into an algebra graph, on which algebraic optimizations are performed (Fig. 4➁).
These involve query rewrites commonly applied in relational database systems, such as
subquery-to-join transformation, selection-push-down, etc.

In the next step, an execution plan is generated. At this stage of processing, the KOALA
Processing System interacts with the Context Manager (Fig. 4➌) to determine which parts of
the query can be executed on the Working Memory contents and which have to be delegated
(Fig. 4 ➂). Not all constituents of the query are considered for delegation. For example, all
operations involving method calls, like the join operation of rooms and furnishings resulting
from the activation of methodis-suitable-for, can only be performed at the client side. To
provide the required objects, the Context Manager analyzes the descriptions of the contexts
currently installed in the Working Memory. There may, for example, be no context containing
rooms, so that an appropriate answer is given to the KOALA Processing System, which will
then consider the delegation of the corresponding subquery. In many cases, however, there will

➏

KOALA

Constraint
ManagerKOBRA Context

Manager

Mapping System

Working
Memory

Mapping Info

Processing
System KOALA

Query
Algebra
Graph

Execution
Plan

Query
Result

(ASK ...)➀

➁

➌➎

➂ - ➄

➌

➎

➅ - ➉

➏

➐

➐ AS

➑

➑ ➓

➓

Fig. 4: Interaction of components during the evaluation of a KOALA query.

➍

Database Kernel PRIMA
➒

- 10 -

be contexts that somehow overlap with the sets of objects requested by subqueries. For this
purpose, the Context Manager supports inference capabilities that allow to determine a declar-
ative description of those objects that are still missing and consequently have to be fetched from
the server. For our example, we assume that the Context Manager detects that the selection
subquery involving furnishings can completely be supported by an existing context.

Using the information provided by the Context Manager, the KOALA Processing System
produces an appropriate execution plan. For this task, this component additionally needs an
estimation of execution costs (Fig. 4➃). Here, the mapping scheme chosen for the current
application plays a crucial role. To provide the required cost estimations, the Context Manager
therefore enriches its description of execution alternatives with cost information provided by
the Mapping System, before passing it to the KOALA Processing System (Fig. 4➍).
Depending on this cost information, the KOALA Processing System determines which infer-
ences drawn by the Context Manager to exploit in order to guarantee optimum query execution.

Additionally, the KOALA Processing System must interact with the Constraint Manager (Fig.
4 ➎)3, because the evaluation of predicates in the selections to be delegated might involve the
activation of constraints, which cannot be performed by the server. For example, the attribute
price of furnishings may be referred to in a constraint relating it to the additional features of the
furnishing. Depending on how the object-base designer has chosen to represent this constraint
(e.g., defining the price offurnishing as a virtual attribute, whose value is computed on
demand), additional rewrite operations may be necessary (Fig. 4➄).

Let us assume that the subqueries chosen for delegation do not require to activate constraints,
so that the execution plan generated by the KOALA Processing System is confirmed and can
be compiled and executed (Fig. 4➅ - ➉). The execution of Working Memory plan operators
is based on Access Structures containing sets of objects (Fig. 4➏). Each operator can be under-
stood as producing a temporal Access Structure to be consumed by its successor. The function-
ality required to implement the operations performed on each element of the Access Structure
during the execution of a plan operator (e.g., accessing the attribute 'price’ of the instances of
furnishings) is provided by the KOBRA component (Fig. 4➐). Working Memory operators
appearing as leaves of the plan-operator graph rely on contexts residing in the application
buffer. To this end, the Context Manager provides initial access to the associated contexts
organized in particular Access Structures managed by the Context Manager. In our example, an
Access Structure containing the furnishings is provided.

The execution of database plan-operators is performed in several steps. First, the Mapping
System is consulted to produce an equivalent server DML operation based on the current
mapping scheme (Fig. 4 ➑). This DML operation is sent to the server and executed (Fig. 4➒).
The result of the query is then returned to the Mapping System, which transforms it into the
Working Memory representation (i.e., KOBRA objects). Finally, the resulting objects are
inserted into the Working Memory and collected in a new Access Structure (Fig. 4 ➓). This last
step is performed by the Context Manager, which registers the result of the delegated subquery
as a new context and provides it as an Access Structure to the KOALA Processing System.

Plan execution is continued in the above described manner and completed by returning the
result of the query to the user or application.

3. Please note that points➂ - ➄ are not necessarily executed in the sequential order chosen above for illus-
trating the interactions.

- 11 -

III Implementational View to Advanced Data Processing in KRISYS

1. Working Memory

As described above, operations on objects sparked by applications are carried out through the
KOALA Processing System, the Constraint Manager, the Context Manager, and KOBRA. All
client-based activities arising in this fashion are performed in the Working Memory. This appli-
cation buffer therefore must provide adequate efficient support functions for its associated
system components.

1.1 Efficient Navigational Access to Objects

An important processing requirement is the fast localization of objects in the Working Memory
based on their identifiers. This is achieved through a hash table relating object identifiers to the
current location of the objects in the buffer. Efficient access to object-internal information (i.e.,
attributes, aspects, etc.) is supported by means of a pointer-based representation. Access usually
occurs repeatedly to different attributes of the same object, or to different aspects of the previ-
ously accessed attributes, and can therefore be seen as a kind of ‘navigation within the object’.
For example, an update operation involves to localize the object in the Working Memory, to
modify an attribute within the object, and to additionally access aspect information associated
with the attribute, in order to record events and notify the constraints affected by the update.

The different internal representational levels (object, attribute, and aspect) are directly reflected
in the Working Memory representation (Fig. 5 (c)), and are linked via main-memory pointers.
The pointers allow to efficiently retrieve attribute and aspect information stored in the object.
In Fig. 5 (c), we have sketched this representation for objectroom_1.

This representation has the additional advantage to integrate structurally heterogeneous objects
in a single, uniform data structure for accessing object information. For example, even objects
belonging to the same class may have varying structures because they belong to structurally
different subclasses. Moreover, some objects might be instances of multiple classes, or some
attributes may have been defined only for individual objects. Due to the above representation
scheme, information about objects can be retrieved and modified on a uniform basis without
access to meta-information (e.g., class descriptions) in order to interpret the data structures.
Moreover, the Working Memory provides functions for creating and deleting data structures for
objects, attributes, and aspects, as well as for read/write access.

Access Structure

room_1rooms

abstraction
hierarchy object

Fig. 5: Organization of objects in the Working Memory.

attribute
aspect

(a) (b) (c)

- 12 -

1.2 Fast Navigation across Abstraction Hierarchies

It is important to speed up the retrieval of objects via abstraction relationships (e.g., all transitive
instances of a class) and to provide means for efficiently guaranteeing model-inherent integrity
constraints. For example, the creation of a new attribute in a class requires to traverse the class
hierarchy to perform inheritance. Consequently, the abstraction relationships between objects
are materialized as main-memory pointers. This materialization is depicted in Fig. 5 (b) for the
generalization/classification hierarchy ofrooms.

Besides operations for establishing/deleting abstraction links among objects, the Working
Memory offers additional functionality to traverse abstraction hierarchies and perform opera-
tions on the traversed objects. These functions, which are mainly used for maintaining model-
inherent integrity, can be supplied with parameters that determine the relationships to be
followed, specify a search strategy for the traversal, or denote operations to be performed at
each node during the traversal. For example, attribute inheritance was easily implemented as a
breadth-first traversal following thesubclass-of andinstance-of relationships.

1.3 Set-Oriented Processing of Objects in the Working Memory

For set-oriented processing of objects, the Working Memory allows the KOALA Processing
System to create, maintain, and exploit collections of objects organized as Access Structures (cf.
Fig. 5 (a)). In order to be suitable for the purposes of the KOALA Processing System, an Access
Structure must contain items that match the internal format used during query processing, i. e.,
tuples, which will be described in detail in Sect. 2.3 of the current chapter.

As shown in Fig. 5 (a), these tuples do not contain copies of Working Memory objects, but are
associated with the objects via main-memory pointers. In this example, the Access Structure
comprises pairs of objects resulting from a join. This ensures that during query processing no
redundancies are introduced by the KOALA Processing System. Intermediate results are
produced by employing a sophisticated concept for sharing object information even at the
attribute and aspect level, using multiple pointers to the same information.

The Working Memory provides the following operations for exploiting Access Structures.

• Creation and deletion of Access Structures.

• Opening and closing cursors for Access Structures, which allow to scan Access Structures in
forward or backward direction. Multiple cursors can be defined for the same Access Struc-
ture, so that an intermediate query result can be exploited by several ‘threads’ of the query
execution simultaneously.

• Functions for reading, inserting, removing, and replacing tuples of Access Structures relative
to the cursor position.

In their basic form, Access Structures are organized as lists of tuples. In addition, they can also
be implemented as search trees or hash tables, thereby serving as main-memory indices. To this
end, additional information must be provided upon creation of Access Structures, describing the
key attributes of objects to be indexed. During query processing, such index structures may be
installed dynamically and temporarily, e.g., in the scope of a single query or transaction.
Moreover, associative access to the contents of Access Structures is supported through
additional operations. With these facilities, the KOALA Processing System can fully exploit the
contents of the Working Memory during query processing.

In summary, the Working Memory directly and effectively covers the basic requirements
related to the processing of object information, thereby providing a suitable foundation for
query processing in the client component of KRISYS.

- 13 -

2. Query Processing

Query Processing is performed by the KOALA Processing System [Th96]. To guarantee a
semantically clear and streamlined system design, we partitioned its overall tasks into a
processing framework and a part responsible for object-model semantics. While the processing
framework is based on an algebraic model that allows conventional (relational) algebraic
optimizations to be used to a large extent, object-model semantics is founded on the function-
ality provided by KOBRA. In the following, we will discuss those issues in detail.

2.1 Object-Model Semantics

Except for the notion of object structures, the processing framework of the KOALA Processing
System is completely independent of object-model semantics which is introduced viabase
predicates. Base predicates represent an intermediate level between KOALA and KOBRA.
Fig. 6 depicts the different representational levels and their processing characteristics. While
KOALA expressions are declarative, state-oriented, and set-oriented, base predicates operate
object-wise, however still being declarative and state-oriented. Since base predicates resemble
assertions on single objects, they can be easily mapped to the procedural level of KOBRA.

To the right side of Fig. 6, we sketched how an example KOALA statement is firstly translated
to the level of base predicates and then to the KOBRA level. We use a TELL statement asserting
that all corridors (being instances of that class and bound to query variable ?C) are adjacent to
any room ?R lying in the same private area ?A. In the selection part (WHERE clause), the
existence of private-areas, corridors, and rooms, as well as of aggregation relationshiphas-
rooms is assumed. Let us have a look at the way the assertion is translated to base predicates. In
the state to be achieved, each qualifying corridor ?C must be a value of attributeneighboring-
rooms of any adjacent room of that private area. Consequently, the assertion is translated into a
piece of code at the KOBRA level that reads the value of attributeneighboring-rooms and adds
the current value of ?C to the attribute value if it is not yet included.

2.2 Processing Framework

As mentioned before, the overall steps of query processing proceed in a similar fashion as those
in relational database systems [HFLP89]. We will discuss them more concisely in the following.

KOALA declarative
set-oriented
state-oriented

base predicates

(TELL (IS-IN ?C (SLOTVALUES neighboring-rooms ?R))
WHERE (EXIST ?A

(IS-INSTANCE ?A private-areas *)
(IS-INSTANCE ?C corridors *)
(IS-INSTANCE ?R rooms *)
(IS-AGGREGATION ?A has-rooms ?C)
(IS-AGGREGATION ?A has-rooms ?R)))

Conditions:
is-inst(?A, private-areas), is-inst(?C, corridors), is-inst(?R, rooms)
is-aggr(?A, has-rooms, ?C), is-aggr(?A, has-rooms, ?R)
Assertions:
has-attval-member(?R, neighboring-rooms, ?C)

declarative
object-wise
state-oriented

KOBRA procedural
object-wise
state-dependent

.....
actval:= read-attr(?R, neigboring-rooms)
(if not(member (?C, actval))

add-attr-value(?R, neighboring-rooms, ?C)
......

level processing example

Fig. 6: Mapping KOALA to KOBRA.

- 14 -

Due to the client/server environment in which query processing is performed, determining the
evaluation site of each operator is a crucial issue (step➋ in Fig. 7). By delegating operations to
the server, the amount of data to be transferred to the Working Memory can be reduced signif-
icantly. This also results in less objects to be installed in the Working Memory allowing a better
exploitation of its storage capacities. Deciding on the evaluation site of each operator is based
upon two criteria. Firstly, those algebra operators must be assigned to the client that are either
too complex to be evaluated by the server component or that cannot be transformed into appro-
priate queries due to the current mapping to the server database system.4 Secondly, for perfor-
mance reasons, the KOALA Processing System must exploit the contents of the Working
Memory (including indices, sort orders, etc.).

The first criterion can be tested at compile time so that a preliminary borderline between client-
based and server-based operations can be drawn (cf., Fig. 7, right side). Depending on the
contents of the Working Memory at run time, the operators below the borderline may be
assigned to client or server. Hence, plan-level manipulations can be definitively completed only
at run time, yet, to save run-time effort, preliminary plan optimizations may be performed for
those operators definitively assigned to the client (step➌ in Fig. 7).

At run time, the KOALA Processing System interacts with the Context Manager to compare the
actual contents of the Working Memory to the information referred to by the query at hand. If
the input to an operator already resides in the Working Memory (as an Access Structure), the
producing subgraph5 is pruned and replaced by a pointer to the appropriate Access Structure.
While this applies to operators above as well as below the preliminary borderline, for the latter
it also implies that these operators are assigned to the client, i.e., the borderline is moved
downward, and less operators must be delegated to the server (sketched in Fig. 7, right side).
For those subgraphs not yet assigned to client or server, two further situations may arise. If the
Working Memory does not contain any input for a subgraph, the whole subgraph must be
evaluated at the server6, and the border between client and server processing remains where it
has been put at compile time.

4. For simplicity, we shall not consider this aspect in this paper.
5. Consisting of one or more plan operators.

Plan Level

Algebra Level

Assignment of algebra operators to the client
according to their complexity

Dynamic Code Assembly and Execution

Working

c
o
m
p
i
l
e

t
i

m
e

r
u
n

t
i

m
e

Fig. 7: Processing of KOALA queries - basic steps.

Interaction with the Context Manager:
Assignment of remaining algebra operators

to client or server

Plan generation and plan optimization for the
remaining parts of the algebra graph

Plan generation and plan optimization for the
definitively assigned parts of the algebra graph

Generation and optimization of an algebra graph➊

➋

➌

➍

➎

➏

Memory

- 15 -

The second situation occurs if only part of the required input is residing in the Working
Memory, and the rest must be fetched from the server. In this case, basically two processing
strategies are possible: either to completely delegate the query to the server, requiring to previ-
ously write back the potentially updated objects installed at the client side, or to complement
the Working Memory contents such that the query can be performed at the client side. To solve
this optimization problem, the KOALA Processing System interacts with the Context Manager
(step➍ in Fig. 7). This interaction and its outcome for our example query will be detailed in
Sect. 2.3. Fig. 9 (b) shows the resulting plan-operator graph7 assuming that no instance ofarea
is installed in the Working Memory. Hence, the corresponding selection must be executed in
the server and is transformed into a server plan-operator (DB-SELECT). Since the subsequent
UNNEST operator refers to object structures of the object model, it must be carried out at the
client side. Consequently, all its successors must be executed there as well. Since making asser-
tions over the object base may involve the full functionality of the object model, algebra
operator ASSERT is always transformed into a client-based plan-operator (of the same name).

The resulting plan-operator graph can be further optimized (step➎ in Fig. 7).

2.3 Algebra Level

Algebra operators work on data streams consisting of sets of n-tuples which they accept as input
and also produce as output. A data stream can be seen as a table made up of n columns bound
to query variables. A table is represented as an Access Structure in the Working Memory, and
each n-tuple (table row) represents an associated entry comprising n elements. Each element, in
turn, features object level, attribute level, and aspect level. Depending on the operations to be
performed, this nested structure of column elements may be resolved. This is achieved by
unnesting the elements on the attribute level and/or the aspect level. Fig. 8 depicts an example
table consisting of 2-tuples and demonstrates the effects of unnesting/nesting the first column
on the attribute level8.

The KOALA algebra consists of three kinds of operators. Firstly, there are operators that are
responsible for handling columns or object structures (e.g., COL-COPY, COL-PROJECT,
COL-UNION, NEST, UNNEST). The operators of the second kind provide functionality
comparable to conventional relational algebras, e.g., EXIST, FORALL, JOIN, PRODUCT, or
SELECT. The third kind is responsible for modifications of the object base. As described above,
the KOALA algebra employs state-oriented base predicates for realizing object-model

6. Note that it has already been checked at compile time that all operators below the borderline can be
evaluated at the server.

7. For simplicity, we did not repeat the base predicates for the plan operators.
8. Nesting and unnesting of attributes is used, for example, during projections.

Fig. 8: Unnesting/nesting of columns.

(living-room
(instance-of ((rooms)
(size ((24)

(possible-values (integer)))
(usages ((leisure)

(possible-values (inst-of usages))
(cardinality ([1 2])))))

...........

...

.....

column

element
Unnest attributes

(living-room
(instance-of ((rooms)

...

(living-room
(size ((24)

(possible-values (integer)))))

...

(living-room
(usages ((leisure)

(possible-values (inst-of usages))
(cardinality ([1 2])))))

...

..... ...2-tuple

Nest attributes

object unnested
attributes nested
aspects nested

variables:
?X

meta
information

object unnested
attributes unnested
aspects nested

variables:
?X

meta
information... ...

- 16 -

semantics. Consequently, the algebra level need not consider the actual state of the object base,
and requires only a single operator, ASSERT, to carry out modifications. In relational algebras,
however, where state-orientation is not known, several operators are required to carry out
changes in the database (e.g., UPDATE, INSERT, DELETE).

To illustrate how a query is translated into an algebraic representation, we refer to the sample
TELL statement and the way it is decomposed into base predicates shown in Fig. 6. First, an
algebra graph is constructed (cf. step➊ from Fig. 7). It is shown in Fig. 9 (a). Firstly, instances
of areas are selected. Since relevant rooms and corridors must be components of some private
area, the corresponding object identifiers can be retrieved from attributehas-rooms of each
selected area. To access this attribute, each area object must be unnested on the attribute level.
Thereafter, all objects referenced by attributehas-rooms of a given area can be retrieved. Since
such an evaluation of object references is quite a frequent operation, the KOALA algebra
provides a special operator, FOLLOW-UP. After the FOLLOW-UP operation has been
performed, rooms and corridors are selected separately. Those belonging to the same private
area are joined and provided as input to the assertion part of the TELL statement.

2.4 Plan Level

Our plan-operator approach involves the concepts shown in Fig. 10. We briefly recapitulate the
prominent features of the plan level; for details we refer to [TD93, TGHM95, Th96].

Plan-operator templates realize asimple processing paradigm for plan operators, as well as
extensibility at the plan-operator level. Object-model semantics is introduced into plan-operator
processing via base predicates supplied as parameters to the plan operators. By combining plan-
operator functionality with object-model semantics in such a fashion,extensibility of the query
language is possible without affecting existing plan operators. Plan-operator subgraphs are
combined to units of execution, calledblocks (cf. Fig. 9 (b)). Data streams between blocks are
materialized in the Working Memory and mapped to Access Structures, thus ensuringefficient
data flow between blocks. To minimize the amount of intermediate Access Structures, blocks
are constructed such that intra-block processing works in a pipelining mode, i.e., tuple-wise,
without the need for intermediate result materialization [TGHM95, Th96]. The concept ofLAS
(Logical Access Structures) provides an adequate data structure for this kind of internal data
flow. Structurally, LAS correspond to their “physical” counterparts, yet they abstract from the
internal organization of Access Structures that is visible at the interface of Access Structures,
i.e., whether the Access Structure is a simple list, a tree, or a hash table. Instead, LAS possess a
uniform interface tailored for sequential processing by supporting anopen-next-close protocol
consisting of a set of navigational operations.

SELECT

Fig. 9: Example TELL statement.

is-inst(?A,private-areas)

ASSERT
has-attval-member(?R,neighboring-rooms,?C)

(a) algebraic representation (b) plan-level representation

UNNEST

FOLLOW-UP
is-aggr(?A,has-rooms)

SELECT
is-inst(?R,rooms)

SELECT
is-inst(?C,corridors)

DB-SELECT

UNNEST

FOLLOW-UP

Buffer-Seq-SELECT_2Buffer-Seq-SELECT_1

Nested-Loop-JOIN

server

client

ASSERT

Access Structure

block

JOIN
attr-val(room-of,?C) = attr-val(room-of,?R)

- 17 -

Finally, the way in which blocks, Access Structures, and LAS are combined warrantsefficient
dynamic query optimization and the construction offlexible units of execution even at run time.
These characteristics were achieved by a modular design and realization of the plan level.

2.5 Dynamic Code Assembly and Execution

The tasks of dynamic code assembly and execution complete overall query processing (step➏
in Fig. 7). The plan graph of a query is divided intoblocks (sketched in Fig. 7, right side) which
are the units of execution in our approach [TGHM95, Th96]. Just like plan operators, blocks
accept one or more input streams and produce a single output stream. Blocks are constructed
based on the processing characteristics of plan operators to minimize the amount of materialized
intermediate results during query processing. For this purpose, a set of rules has been defined
which exploits both the structural properties of a given plan-operator graph and the processing
characteristics of the operators contained. Fig. 9 (b) shows the blocks derived for our example
query. The UNNEST and FOLLOW-UP operators work in a pipelined fashion, and are
therefore combined into a single block. The same holds for the Buffer-Seq-SELECT_1 (alter-
natively Buffer-Seq-SELECT_2), NESTED-LOOP-JOIN and ASSERT operators.9

Evaluating a query means executing the corresponding blocks. The most straightforward way
is to perform blocks in a sequential order defined by the inter-relationships of the block-struc-
tured graph. Additionally, our query-processing approach also permits parallel execution of
blocks [TMMD93, Th96]; however, this topic is not discussed in this paper.

Opposed to conventional query-processing systems requiringstrict compilation, we assemble
executable code by putting together precompiled functions, yet we may also compile a query,
e.g., for complex queries or large amounts of data to be processed. We call this approach
dynamic code assembly [TGHM95, Th96], allowing to assemble executable code from fully
compiled code fragments employing data structures containing function pointers.

3. Context Management

It is the task of the Context Manager to provide the KOALA Processing System with infor-
mation about Working Memory contents during query optimization and plan generation. Due
to the declarative query interface to the server component, the Context Manager can maintain a
description of the buffer contents in a declarative form as well. Consequently, the Context
Manager perceives the Working Memory as a collection ofcontexts. A context represents a set
of objects being the complete extension of a logical condition, the context description.

Contexts directly correspond to the results of (sub-)queries that have been delegated to the
server and whose results have been brought into the Working Memory. For each set of query
results received from the server, the Context Manager keeps the query condition as a context

9. Note that, for this block being able to operate as a pipeline, the complete results of Buffer-Seq-
SELECT_2 must be computed previously. Only in this case, the NESTED-LOOP-JOIN can directly
process any new result being piped from Buffer-Seq-SELECT_1.

Fig. 10: Constituents of our plan-operator concept.

Access

plan-operator

plan-operator
concept

template
LAS

b l o c k
s

base
predicatesStructures

- 18 -

description and maintains an Access Structure that contains the set of result objects.10 The
language for context descriptions is therefore equivalent to the subset of KOALA that can
appear as a condition of DB-SELECT plan operators. In the following, we will illustrate the
main activities performed by the Context Manager in coordination with the KOALA Processing
System using the example query already introduced above (cf., Fig. 2).

3.1 Context Description

Let us assume, that all instances ofareas having more than three rooms have been retrieved
from the server by a previous query. The Context Manager has registered the following context
description.

The description consists of three parts. Thevariable definition part (V) characterizes the
domain of the context in terms of predicates referring to the abstraction concepts. Theselection
part (S) states further conditions applying to the context. Finally, theprojection part (P) lists
those attributes that have been brought into the Working Memory.

3.2 Context Comparison

When consulting the Context Manager, the KOALA Processing System submits a description
of a ‘wanted’ context W, resembling the subquery currently under consideration. The Context
Manager compares W with a ‘given’ context G, i.e., with a context available in the Working
Memory. For our example query, the KOALA Processing System will ask the Context Manager
about contexts available for supporting the selection onprivate-areas. The result of the involved
context comparison is depicted in Fig. 11.

First of all, the projection parts of the contexts are compared. Since both projection parts
preserve complete object structures, they turn out to be equivalent. Next, the variable definitions
are compared. To determine the result, the Context Manager will at this point have to inspect
the abstraction relationships defined in the object base. Sinceareas is known to be a superclass
of private-areas, the result of the comparison is the set inclusion V(G)⊇ V(W). Finally, the
selection parts are compared. Since no additional selection is defined for W (i.e., allprivate-
areas are contained in the context), the comparison results in the set containment S(G)⊆
S(W).11 The comparison of predicates in both the selection and the variable-definition parts
relies on the interpretation of set relationships as logical connectives, where set containment is
equivalent to logical implication.

To obtain the overall relationship between G and W, the individual comparison results for P, V,
and S are combined. In our example, the relationship ‘G overlaps with W’ (denoted by ‘O’) is
achieved, because we have obtained two ‘inverse’ set inclusions in V and S. The ‘overlap’ result
implies that we can exploit the context existing in the Working Memory for answering the
query. However, we still have to access the server for those objects not covered by the context.
Therefore, the Context Manager also produces descriptions how to filter the existing context for
the required result set (i.e., how to obtain G∩ W from G), and how to retrieve the remaining
objects from the server (i.e., how to retrieve W \ G). These results are passed to the KOALA
Processing System for modifying the query plan accordingly. Moreover, a pointer to the Access
Structure containing G is passed on to make it accessible for the KOALA Processing System.

10.The Access Structure can later be handed to the KOALA Processing System for accessing the context.
11. If several predicates are involved in a selection (or a variable-definition) part, each predicate of G must

be compared with each one of W. For complex selection conditions (involving disjunctions, etc.), a dis-
junctive variant of the algorithm is supplied in addition to the above described (conjunctive) version.

((?X)
(IS-INSTANCE ?X areas *)
(> (SLOTVALUE no-of-rooms ?X) 3))

projection (P)
variable definition (V)
selection (S)

- 19 -

Let us assume that in our example, the KOALA Processing System chooses not to consider the
private areas already in the Working Memory but to fetch all instances ofprivate-area from the
server. Before executing the query, however, the Context Manager must write back to the server
all modified objects relevant for this server operation. Analogously, the Context Manager is
asked about contexts for rooms and corridors, the other classes involved in the example query.
For reasons of simplicity, we assume that these subqueries can be fully supported by contexts
at the client component. The resulting query execution plan is depicted in Fig. 9 (b).

The above algorithm, which is outlined in detail in [De93], exhibits polynomial time complexity
w.r.t. the number of predicates involved in the comparison. It is important to note that, although
we retrieve only objects in W \ G from the server, we might well retrieve objects that are already
in the Working Memory. For example, other contexts might be present that overlap with W, but
are not exploited because the ‘amount of overlap’ is not promising enough. The Working
Memory is capable of handling this situation simply by ignoring newly fetched versions of
already installed objects (i.e., no additional copies are introduced into the Working Memory).

3.3 Additional Tasks of the Context Manager

Although maintaining and comparing context descriptions are the central task of the Context
Manager, additional activities are performed by this component to achieve consistent buffer
management based on the notion of contexts.

For instance, the Context Manager is involved in the process ofupdate propagation to the
server. Before a query is delegated there, updates that have occurred on Working Memory
objects must be propagated to the server. Otherwise, inconsistencies between server database
and Working Memory may arise. Using the Context Manager, we can realize a partial update
delegation approach, i.e., only those updates (or a relatively small superset) that are needed to
guarantee a correct query result are propagated.

Additional activities of the Context Manager relate to keeping context extensions ‘up-to-date’
after modifications, and to discarding contexts from the Working Memory. A detailed
discussion of these tasks can be found in [De93].

4. Consistency Control

Consistency control in a DBMS is needed for various aspects: semantic (logical) integrity
control or constraint management, multi-user synchronization, and physical database integrity.
In advanced DBMS, these tasks become more challenging, because the rich modeling concepts
provide more complex operations on the more complex data structures. Their consistency has
to be preserved in case of modification operations and multi-user access, thereby observing the

G(iven) Rel. W(anted)

P: (?X) ≡ P: (?X)

V: (IS-INSTANCE ?X areas *) ⊇ V: (IS-INSTANCE ?X private-areas *)

S: (> (SLOTVALUE no-of-rooms ?X) 3) ⊆ S: ‘true’

context G ‘O’ context W

Fig. 11: Context comparison (example).

SELECT (IS-INSTANCE ?X private-areas *) FROM G LOAD (?X)

(AND (IS-INSTANCE ?X private-areas *)

(NOT (> (SLOTVALUE no-of-rooms ?X) 3))

W \ G:G ∩ W:

- 20 -

well-known transaction concept whose key properties are atomicity, consistency, isolated
execution, and durability - the so-called ACID properties [HR83]. Hence ACID transactions
can be seen as dynamic control structures isolating the operations of multiple users and making
failures transparent to them. These properties, in turn, are guaranteed by the components
responsible for consistency control: constraint management, concurrency control, as well as
logging and recovery. Each of our solutions to implement these components is - in its very
nature - complex and multi-facetted. Due to space restrictions, we can therefore only outline our
conceptual approaches and their implementations.

4.1 Constraint management

KRISYS supports a layered approach for representing constraint characteristics at different
abstraction levels. The central part of a constraint is its condition, i.e., a logical formula that has
to be valid in a consistent state of the object base. At the operational level, the constraint is
described in terms of adjustments telling the system how to correct inconsistencies. For a single
constraint, alternative adjustments can be specified, which are selected and executed according
to various criteria. At the realization level, the ‘implementation’ of a constraint is described in
terms of event patterns, whose occurrence will lead to the execution of particular checking and
adjustment operations. Among other things, the constraint designer may choose either a data-
driven realization (i.e., where violating actions trigger corrections), or a demand-driven
semantics (i.e., ‘dependent’ information is recomputed each time it is needed).

In KRISYS, constraints are represented as objects. In other words, an object-base designer
defines constraints by creating instances of the classesconstraint andadjustment. Character-
istics of constraints, such as the constraint condition and the adjustments state, are represented
as attribute values of these objects. In addition, abstraction concepts may be used to further
organize the constraints defined for an object base. This is especially important for applications
such as design environments where a large number of constraints are defined, probably in a
dynamic way and for individual objects.

For an elaborate description of the modeling and processing concepts devised for integrity
constraints we refer to [De93].

4.2 Synchronization based on Abstraction Relationships

Concurrency control and failure transparency are the most important properties to be provided
for system operation in multi-user mode. Both functions give far-reaching guarantees, and, in
order to avoid deterioration of system performance, they need sophisticated and adjusted
solutions. First of all, they must support the existing object-base structures and operations in an
efficient and effective way to preserve the performance gained in single-user mode as far as
possible. Selection or modification of data sets using the spectrum of abstraction concepts or
access to such data sets qualified by predicates - comparable to the object-base modeling opera-
tions - are the most natural form of advanced data processing. Hence, we tried to capture the
properties and processing principles of these structures when we designed the supporting
functions of our transaction concept.

The most important techniques in real-world database applications used to control concurrency
are based on locking. Especially, the Granular Lock Protocol (GLP, [GLPT76]) and its variants,
widely applied in commercial database systems, embody an effective way to control locking
overhead and transaction parallelism by providing multiple lock granularities. This hierarchical
lock protocol is tailored to database structures forming a single directed acyclic graph (DAG).
Its operational power and effectivity stems from the use of intention locks and implicit locks in
subhierarchies where all objects in a subhierarchy are covered by a single lock at the root.

- 21 -

Unfortunately, such a protocol is unable to solve all data access conflicts occurring in a KRISYS
object base. Note, we have set-oriented operations exploiting the semantics of abstraction
relationships, and we have three of them (classification/generalization, association, and aggre-
gation). Each of these abstraction relationships is directed from the root object GLOBAL12 to
all objects participating in them. Furthermore, each object may be a member of multiple
abstraction relationships of the same or different type. Hence, concurrency control is more
complicated, since multiple inheritance may be used for modeling classification/generalization
relationships. In such cases, multiple paths may lead from a superclass to one of its subclasses/
instances. If a subhierarchy starting from such a superclass (e.g., classk in Fig. 12) must be
locked, how can we know that all these objects are safely isolated? Of course, limited solutions
were proposed, e.g., for ORION [GK88]. The application of the ORION lock protocol restricts
multiple inheritance to classes and requires single-class membership for instances. Processing
conflicts are solved by explicit locks on all classes in the subhierarchy to be accessed.
Obviously, this approach works only well when the number of related classes is small.

In KRISYS, however, multi-class membership may occur for instances as well. Since explicit
locks for all classes and, in particular, for all instances in a subhierarchy may be extremely
expensive, the procedure chosen in ORION is not advisable for KRISYS classification/gener-
alization hierarchies. On the other hand, locking only a single path in a DAG may cause the so-
called “bastard problem”, i.e., a particular object (instance or class) can be reached via multiple
parents in the classification/generalization DAG. In addition, objects can participate in aggre-
gation and association relationships, which makes the synchronization task even more complex.
For this general situation where objects can be associated to multiple classes and can participate
in multiple abstraction relationships, we developed a locking protocol called LARS. It is based
on the application of Locks using Abstraction Relationship Semantics in the following way:

• The object-base structures are logically partitioned into three DAGs for classification/gener-
alization, association, and aggregation.

• A hierarchical lock protocol using tailored locks is provided for each of the logical partitions.

• When locking an object, the paths to be accessed and isolated must be determined dynami-
cally. To do so, lazy locking (that is, not before the object is actually accessed) is used. Ex-
plicit locks are only acquired for objects having multiple parents, whereas single-parent ob-
jects are implicitly locked.

By using intention locks as well as different lock modes for the different access hierarchies, the
LARS protocol keeps the flexibility of the GLP. The details of the LARS protocol can be found
in [RH97].

12. This object constitutes the root of all abstraction hierarchies existing in an object base.

classi

classj classk

classl classm

classn

Fig. 12: Multiple inheritance for classification/generalization.

- 22 -

4.3 A WAL-based and Object-oriented Recovery Strategy

To provide physical integrity of the database and failure transparency for the user in the
framework of a transaction concept, the advanced database system automatically has to recover
from all transaction, system, and media failures. Therefore, logging must be applied for all
object-base modifications during normal system operation, in order to perform the required
recovery actions in case of a failure. Since logging and recovery are typically oriented towards
the physical representation of objects, little object-model related semantics can be exploited by
these algorithms. As a consequence, all concepts and approaches known from database systems
[HR83] can be applied. Therefore, we only sketch the main properties of our solution.

We have designed a recovery algorithm called WALORS [RB96] which is able to run in a
STEAL/NOSTEAL and FORCE/NOFORCE system environment. As its name suggests, our
algorithm is WAL-based and uses an Object-oriented Recovery Strategy. WAL (Write Ahead
Log) is applied when necessary; hence, it allows update-in-place propagation of modified
objects, and it supports arbitrary buffer replacement algorithms. WALORS mainly deals with
objects instead of pages, that is, logging is performed at the object level in form of physical
entries guaranteeing minimal log space and log I/O. In turn, entry logging allows fine-granu-
larity locking at the object level or even at the attribute level.

To check and correlate the state of objects with their corresponding log records, WALORS
stores a Log Sequence Number (LSN) in every object of the object base. In contrast to other
recovery strategies using page LSNs, WALORS is more flexible during recovery, since it can
be very precise when analyzing the log records to be applied to the (indefinite) state of the
objects and deciding whether or not to undo or redo object updates. Accordingly, it does not
need to perform “repeating history” and is prepared to run selective undo as well as selective
redo passes in case of crash recovery. In addition to the standard requirements of failure
recovery, WALORS supports partial rollbacks of transactions by means of a checkpoint
concept.

The properties of WALORS, in particular fine-granularity logging together with the full set of
recovery functions, as well as access synchronization by object-granularity locking, provide a
flexible basis for the KRISYS multi-user environment.

4.4 Enhanced Transaction Model

ACID transactions encapsulate the DB-related work and guarantee isolated execution of the
data accessed by them. Since advanced applications may incorporate long-running activities,
atomicity of all operations inside the transaction is neither useful nor desirable, since each
failure would automatically undo all work accomplished in the current transaction. A first
refinement deviating from this ‘all-or-nothing’ kind of transaction processing was the provision
of checkpoints to prevent loss of work in case of failures. In order to gain more control inside a
transaction, we have designed a nested transaction model adjusted to the particular needs of the
processing in KRISYS [HR93, RH95]. Such enhanced transactions consist of hierarchically
nested subtransactions which are the unit of atomicity and isolated execution.

We are currently implementing the nested transaction model in the KRISYS client/server archi-
tecture [Re97]. Based on the flexibility of nested transactions, we enable fine-grained recovery
and intra-transaction parallelism to enhance system performance. For example, method invoca-
tions may be assigned to subtransactions thereby encapsulating their execution and guaran-
teeing isolated recovery. Since such method invocations may be recursively triggered, e. g. for
constraint adjustments, flexible and fine-grained failure control can be achieved. Furthermore,
nested transactions provide means to organize parallel threads on shared data. When supported
by suitable adjustments of the locking and deadlock detection protocols, they enable parallel
query processing within a transaction in isolation and, as a consequence, automatic fine-grained

- 23 -

recovery in case of deadlocks. In this context, we have already integrated selected protocols into
the KRISYS testbed and conducted first performance measurements [RHGL97].

IV Conclusions and Outlook

In the previous chapters, we reported on how the KRISYS system evolved over almost a decade.
The central objective of KRISYS has always been to support advanced application processing
in an adequate fashion. While during the first development phase of KRISYS provision for
expressive semantic concepts (such as an expressive data model, a set-oriented query language,
semantic integrity constraints, deductive as well as active capabilities) was at the center of
interest, the second stage is characterized by the endeavor to improve processing, architectural
aspects, as well as to establish multi-user mode governed by an adequate transaction model,
since the practical applicability of database systems is not only determined by their function-
ality, but also by their performance.

Among the most important issues addressed by the KRISYS framework to advanced data
processing are the object model together with the various abstraction concepts and the query
language. As already indicated, we have validated all concepts of the object model in various
practical applications. Our realization was tailored to a workstation/server environment; its
impact on overall data processing affected the following major design and implementation
issues:

• Descriptive Buffer Management
The Context Manager guarantees that the Working Memory contents (at the client side) is ex-
ploited for query processing, thus reducing data transfer between workstation and server to a
minimum.

• Main-memory-based Query Processing
The processing framework of KRISYS founds on the KOBRA knowledge model and bene-
fits from well-known query-processing techniques, especially from the areas of relational,
main-memory, and object-oriented database systems [HFLP89, IEEE92, Ca91, MPTW94].
That is, requests in the query language KOALA are evaluated following an algebraic ap-
proach that was designed to be sufficiently flexible to adapt to language extensions. The plan-
operator concept has been adjusted to main-memory query processing; it allows for run-time
optimizations and shows extensibility as well.

• Consistency Control
Semantic integrity control (constraint management), multi-user synchronization, as well as
logging and recovery have been designed according to the data model’s complex data struc-
tures and powerful operations, and finally integrated into the system.

The availability of main-memory query processing opens up a range of further research activ-
ities we are currently working on or which will be part of our future work:

• Thorough evaluation of the Context Manager to experimentally investigate the interplay be-
tween the data referenced by queries and the costs and benefits of context maintenance.

• Evaluation of the Constraint Manager starting from the basic functionality linking query pro-
cessing and constraint management, i. e., event management, constraint scheduling, and con-
straint enforcement.

• Consideration of non-algebraic optimization, i. e., establishing a cost model for query pro-
cessing taking into account features of our advanced data model (method calls, transitive clo-
sure operations like inheritance, etc.), context management, and specialized client/server
mapping.

- 24 -

• Completion of a nested transaction facility to support fine-grained recovery and intra-transac-
tion parallelism at both query-execution level and method-invocation level in order to enhance
system performance.

The applicability of our approach as well as of the mechanisms necessary for implementing it are
not restricted to KRISYS but are generally valid for (advanced) DBMS requiring client-based
query processing. Therefore, we see our processing framework and its implementation as a
valuable contribution to current research in advanced DBMS.

- 25 -

V References
BJNS94 Buchheit, M., Jeusfeld, M., Nutt, W., Staudt. M.: Subsumption Between Queries to Object-Oriented

Databases, Advances in Database Technology - EDBT ‘94, Jarke, M., Bubenko, J. (eds.), LNCS 779,
Springer, 1994, 15-22.

Ca91 Cattell, R. (ed.): Next Generation Database Systems, Special issue of Comm. ACM 34:10, 1991.
CD87 Carey, M., DeWitt, D.J.: An Overview of the EXODUS Project, Data Engineering Bulletin 10:2, 1987,

47-54.
CMCD94 Chen, J., Mattos, N., Chamberlin, D., DeMichiel, L.: Extending Relational Database Technology for

New Applications, IBM Systems Journal 33:2, 1994, 264-279.
CR94 Chen, C.M., Roussopoulos, N.: The Implementation and Performance Evaluation of the ADMS Query

Optimizer: Integrating Query Result Caching and Matching, Advances in Database Technology -
EDBT ‘94, Jarke, M., Bubenko, J. (eds.), LNCS 779, Springer, 1994, 323-336.

De91 Deßloch, S.: Handling Integrity in a KBMS Architecture for Workstation/Server Environments, in:
Proc. GI-Fachtagung "Datenbanksysteme in Büro, Technik und Wissenschaft", H.-J. Appelrath (ed.),
IFB 270, Springer, 1991, 89-108.

De93 Deßloch, S.: Semantic Integrity in Advanced Database Management Systems, Doctoral Thesis, Com-
puter Science Dept., University of Kaiserslautern, 1993.

DFMV90 DeWitt, D., Futtersack, P., Maier, D., Velez, F.: A Study of Three Alternative Workstation-Server-Ar-
chitectures for Object-Oriented Database Systems, D. McLeod, R. Sacks-Davis, H.-J. Schek (eds.),
Proc. 16th VLDB Conf., Brisbane, Australia. Morgan Kaufmann Publishers, Palo Alto, CA, 1990, 107-
121.

DHMM89 Deßloch, S., Härder, T., Mattos, N., Mitschang, B.: KRISYS: KBMS Support for Better CAD Systems,
Proc. Int. Conf. on Data and Knowledge Systems for Manufacturing and Engineering, Gaithersburg,
MD., IEEE Computer Society Press, Washington, D.C., 1989, 172-182.

DLM90 Deßloch, S., Leick, F.J., Mattos, N.M.: A State-oriented Approach to the Specification of Rules and
Queries in KBMS, ZRI-Report 4/90, University of Kaiserslautern, 1990.

DLMT93 Deßloch, S., Leick, F.J., Mattos, N., Thomas, J.: The KRISYS Project - A Summary of What We have
Learned so far, Proc. GI-Fachtagung "Datenbanksysteme in Büro, Technik und Wissenschaft”, Stucky,
W., Oberweis, A. (eds.), Springer (Informatik Aktuell), 1993, 124-143.

FMV94 Freytag, J.C., Maier, D., Vossen, G. (eds.): Query Processing in Object-Oriented, Complex-Object,
and Nested Relation Databases, Morgan Kaufmann, 1994.

GK88 Garza, J.F., Kim, W.: Transaction Management in an Object-oriented Database System, H. Boral, P.-
A. Larson (eds), Proc. ACM SIGMOD, Chicago, Ill. SIGMOD Record 17(3), 1988, 37-45.

GLPT76 Gray, J.N., Lorie, R.A., Putzolu, G.R., Traiger, I.: Granularity of Locks and Degrees of Consistency in
a Shared Data Base, in: G.M. Nijssen (ed), Proc. IFIP Working Conf. on Modelling in DBMSs, North-
Holland, 1976, 365-394.

Gr93 Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Comp. Surveys 25: 2, 1993, 73-
170.

Gr94 Graefe, G.: Volcano, an Extensible and Parallel Query Evaluation System, IEEE Trans. Knowledge
and Data Engineering 6:1, 1994, 120-135.

HFLP89 Haas, L. Freytag, J., Lohman, G., Pirahesh, H.: Extensible Query Processing in Starburst, J. Clifford,
B. G. Lindsay, D. Maier (eds), Proc. ACM SIGMOD, Portland, Ore. SIGMOD Record 18(2), 1989,
377-388.

HMMS87 Härder, T., Meyer-Wegener, K., Mitschang, B., Sikeler, A.: PRIMA - A DBMS Prototype Supporting
Engineering Applications, P. M. Stocker, W. Kent (eds), Proc. 13th VLDB Conf., Brighton, UK, Mor-
gan Kaufmann Publishers, Palo Alto, CA, 1987, 433-442.

HMNR95 Härder, T., Mitschang, B., Nink, U., Ritter, N.: Workstation/Server Architectures for DB-based Engi-
neering Applications (in German), Informatik - Forschung und Entwicklung 10:2, 1995, 55-72.

HR83 Härder, T., Reuter, A.: Principles of Transaction Oriented Database Recovery, ACM Comp. Surveys
15:4, 1983, 287-317.

HR85 Härder, T., Reuter, A.: Architektur von Datenbanksystemen für Non-Standard-Anwendungen (in Ger-
man), A. Blaser, P. Ristor (eds), Proc. GI-Fachtagung "Datenbanksysteme in Büro, Technik und Wis-
senschaft”, Karlsruhe, IFB 94, Springer, 1985, 253-286.

HR93 Härder, T., Rothermel, K.: Concurrency Control Issues in Nested Transactions, VLDB-Journal 2:1,
1993, 39-74.

HS93 Hong, W., Stonebraker, M.: Optimization of Parallel Query Execution Plans in XPRS, Distributed and
Parallel Databases 1, 1993, 9-32.

IEEE92 Eich, M. (ed.): IEEE Trans. Knowledge and Data Engineering 4:6, Special Issue on Main-Memory Da-
tabases, 1992.

In84 IntelliCorp Inc.: The Knowledge Engineering Environment, IntelliCorp, Menlo Park, CA, 1984.
ISO94 ISO 10303 - Industrial automation systems and integration - Product data representation and exchange

- Part 1: “Overview and fundamental principles”, International Standard, 1st edition, 1994.
ISO96 ISO/IEC CD 9075 Committee Draft, Database Language SQL, Jim Melton (ed.), 1996.

- 26 -

JGJSE95 Jarke, M., Gallersdörfer, R.,Jeusfeld, M., Staudt, M., Eherer, S.: ConceptBase - a deductive object base
for meta data management, Journal of Intelligent Information Systems 4:2, Special Issue on Advances
in Deductive Object-Oriented Databases, 1995, 167-192.

KB96 Keller, A., Basu, J.: A Predicate-based Caching Scheme for Client-Server Database Architectures,
VLDB Journal 5:1, 1996, 35-47.

Ki95 Kim W. (ed.): Modern Database Systems: The Object Model, Interoperability, and Beyond, ACM
Press, 1995.

KL89 Kifer, M., Lausen, G.: F-Logic, a Higher-Order Language for Reasoning about Objects, J. Clifford, B.
G. Lindsay, D. Maier (eds), Inheritance and Schema, Proc. ACM SIGMOD, Portland, Ore. SIGMOD
Record 18(2), 1989, 134-146.

LLOW91 Lamb, C., Landis, G., Orenstein, J., Weinreb, D.: The ObjectStore Database System, in: [Ca91], 50-63.
LLPS91 Lohman, G. Lindsay, B., Pirahesh, H., Schiefer, B.: Extensions to Starburst: Objects, Types, Functions,

and Rules, Comm. ACM 34:10, 1991, 94-109.
Lo95 Lomet, D. (ed.): Bulletin of the Technical Committee on Data Engineering 18:2, Special Issue on Ma-

terialized Views and Data Warehousing, 1995.
Ma91 Mattos, N.: An Approach to Knowledge Base Management, LNCS 513, Springer, 1991.
Mi88 Mitschang, B.: A Molecule-Atom Data Model for Non-Standard Applications - Requirements, Data

Model Design, and Implementation Concepts (in German), IFB 185, Springer, 1988.
MPTW94 Mohan, C., Pirahesh, H., Tang, W., Wang, Y.: Parallelism in Relational Database Management Sys-

tems, IBM System Journal 33:2, 1994, 349-371.
ODMG96 Cattell, R. (ed.): The Object Database Standard: ODMG-93, Release 1.2, Morgan Kaufmann., 1996.
Pu86 Puppe, F.: Diagnostic Problem Solving with Expert Systems (in German), Doctoral Thesis, Computer

Science Dept., University of Kaiserslautern, 1986.
Re97 Rezende, F.: Transaction Services for Knowledge Base Management Systems - Modeling Aspects, Ar-

chitectural Issues, and Realization Techniques, Doctoral Thesis, University of Kaiserslautern, 1997.
RB96 Rezende, F., Baier, T.: WALORS - A WAL-Based and Object-Oriented Recovery Strategy, R. Wag-

ner, H. Thoma (eds), Proc. 7th Int. Conf. on Database and Expert Systems Applications (DEXA’96),
Zürich, Switzerland, LNCS 1134. Springer, Heidelberg Berlin New York, 1996, 116-129.

RHGL97 Rezende, F., Härder, T., Gloeckner, A., Lutze, J.: Detection Arcs for Deadlock Management in Nested
Transactions and their Performance, C. Small, P. Douglas, R. G. Johnson, P. J. H. King (eds), Proc.
15th British National Conference on Databases (BNCOD’97), London, U.K., LNCS 1271, Springer,
Heidelberg Berlin New York, July 1997, 54-68.

RH95 Rezende, F., Härder, T: Concurrency Control in Nested Transactions with Enhanced Lock Modes for
KBMSs, Proc. 6th Int. Conf. and Workshop on Database and Expert Systems Applications, London,
LNCS 978, Springer, 1995, 604-613.

RH97 Rezende, F., Härder, T.: Exploiting Abstraction Relationships’ Semantics for Transaction Synchroni-
zation in KBMSs, Journal of Data and Knowledge Engineering (DKE) 22:3, 1997, 233-259.

Ro91 Roussopoulos, N.: An Incremental Access Method for ViewCache: Concept, Algorithms, and Cost
Analysis, ACM Transactions on Database Systems 16:3, 1991, 535-563.

SK91 Stonebraker, M., Kemnitz, G.: The POSTGRES Next-Generation Database Management System,
Comm. ACM 34:10, 1991, 78-93.

ST95 Sauter, G., Thomas, J.: An object-oriented approach to structuring business information processing (in
German), G. Lausen (ed), Proc. GI-Tagung “Datenbanksysteme in Büro, Technik und Wissenschaft”,
Dresden, Germany. Springer, Heidelberg Berlin New York, 1995, 348-357.

TD93 Thomas, J., Deßloch, S.: A Plan-Operator Concept for Client-Based Knowledge Processing, R.
Agrawal, S. Backer, D. A. Bell (eds), Proc. 19th VLDB Conf., Dublin, Ireland. Morgan Kaufmann
Publishers, Palo Alto, CA, 1993, 555-566.

TDM95 Thomas, J., Deßloch, S., Mattos, N. M.: Design and Implementation of Advanced Knowledge Process-
ing in the KBMS KRISYS, M. J. Carey, D. A. Schneider (eds), Proc. ACM SIGMOD, Exhibits Pro-
gram, San Jose, CA, SIGMOD Record 24(2), 1995.

TGHM95 Thomas, J., Gerbes, T., Härder, T., Mitschang, B.: Implementing Dynamic Code Assembly for Client-
Based Query Processing, T. W. Ling, Y. Masunaga (eds), Proc. 4th Int. Conf. on Database Systems for
Advanced Applications, Singapore. World Scientific Press, Singapore, 1995, 264-272.

Th96 Thomas, J.: An Approach to Query Processing in Advanced Database Systems, Doctoral Thesis, Com-
puter Science Dept., University of Kaiserslautern, 1996.

TMMD93 Thomas, J., Mitschang, B., Mattos, N., Deßloch, S.: Enhancing Knowledge Processing in Client/Server
Environments, B. K. Bhargava, T. W. Finin, Y. Yesha (eds), Proc. 2nd Int. Conf. on Information and
Knowledge Management (CIKM’93), Washington, D.C. ACM Press, New York, 1993, 324-334.

VD91 Vandenberg, S.L., DeWitt, D.J.: Algebraic Support for Complex Objects with Arrays, Identity, and In-
heritance, J. Clifford, R. King (eds), Proc. ACM SIGMOD, Denver, Colo. SIGMOD Record 20(2),
1991, 158-167.

