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Abstract. The goal of this paper is to bring together the worlds of design and ac
databases. Design databases have to provide a powerful data model for com
structured design data as well as a powerful activity model asserting basic data
sistency and supporting workflow (in the design area we should better call it des
flow) and cooperation among designers. There are numerous potential applic
areas for ECA rules within design demanding to incorporate active capabilities
design databases. We argue that ECA rulesarewell suited for error correction pur-
poses providing a forward oriented handling of failure situations, even for repai
inconsistencies which were caused by cooperative data access. We will further
that ECA rulesdo not suite for pre-planning, specifying, or implementing desig
flows. Beside these two areas, there are several application fields in design whic
be supported by ECA rules, but the requirements of which could also be fulfilled
alternative mechanisms.

Keywords. Active Databases, ECA Rules, Design Databases, Activity Supp
Designflow, Cooperation.

1 Introduction

Motivation

One of the long time perspectives of the DBMS research community is the sup
for engineering applications, especially support for an integrated view on the w
life cycle of a product. The very first phase of such a life cycle is the design of
product which is nowadays supported by a bunch of different tools, e.g., in softw
design there are upper and lower CASE tools, compilers, debuggers, etc. Not
the problem of supplying such a variety of tools with the data needed and inco
rating the results back into the global database is a focus of interest, but also the
port for the overall design process, i.e., basic building blocks for design method
gies, concurrent engineering and so on. Starting from the rigid ACID transaction
adigm (Atomicity, Consistency, Isolation, Durability) [19] numerous derivatio
have been developed to model the underlying processes often using ACID tra
tions as basic building blocks.

Active DBMS have been another research interest of the recent years prom
modeling and run-time support for the dynamics of an application area oppose
1
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the data model oriented approaches (e.g. relational data model). Even object-o
ed approaches only provide the environment which allows to describe and exe
dynamics through the methods of objects but the DBMS itself has no active
within this approach which is very different to what active DBMSs provide: T
DBMS is thought to be an active mediator steering the design process w.r.t. the
ious tasks, i.e., controlling the cooperation of designers, starting design tools, m
ing the results of the design process with the design goals and much more.

The key concept developed in the active DBMS area is the so-calledEvent-Condi-
tion-Action rule: After the occurrence of some event, the DBMS carries out an
tion, if a certain condition holds. Many authors propagating active DBMS facilit
do also view this approach as a panacea of the problems in the design area. O
other hand, CAD framework developers consider the problems to be solved fro
more abstract, application-oriented point of view. Hence, an evaluation of the po
tial of ECA rules w.r.t. design environments was hardly possible. This paper trie
bridge the gap between the high-level design problems and the more low level
plementation’ using ECA rules. We want to identify the domains within CAD en
ronments, in which the application of such rules is likely to provide real benefit
the sense of being adequate to solve the problems of that domainandproviding a nat-
ural specification formalism.

Overview of the paper
Bringing together different ‘worlds’ is the difficult task of this paper. Starting with
brief characterization of the basic concepts of active databases and their or
(Sect. 2), we will outline a representative design model (Sect. 3). Thereafter, we
cuss the areas within a design environment, for which the usage of rules is prop
(Sect. 4). For some of them the application of ECA rules will turn out to be ve
promising, others are possible application areas and for a third group ECA rule
not provide an adequate support at all. As the result of this research we sugg
concentrate on applying ECA rules in those areas identified highly promising (w
else?) and to work on the languages for events, conditions and actions required
sign to model tasks naturally and to support the entire process effectively.

2 The ECA-Rule Paradigm

Event-Condition-Action rules represent a paradigm rooted in multiple disciplines
DBMS research. To clarify the concepts of ECA rules it is helpful to look at the
areas of research and analyze their influence on this amalgamated concept.

Real Life
The usage of ’rules’ in every-day-situations is widespread. The example ’Only if
possess a driving license you are allowed to drive a car’ shows that such rules c
considered to consist of a left-hand-side lhs (antecedent ’possessing driving lice
and a right-hand-side rhs (consequence ’driving a car is allowed’). These rules
2
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be used for both, forward-chaining/deduction (if I know someone owns a driving
cense, I can deduce that she/he is allowed to drive a car) or backward-chaining
poses (if I want to be allowed to drive a car, I have to apply for a driving licens

Deductive Databases

As mentioned before, rules are one basis for deduction in general. In the mathe
ical sense of deduction the lhs and the rhs of a rule are logic formulas (e.g. first o
logic). Furthermore, the semantics of the rule itself has to be fixed (e.g. the lhs l
cally implies the rhs). In this sense rules without a lhs are facts, ’rules’ without a
can be called queries. The central question is: Given a set of rules (including f
and a query, is the query a logical consequence of the rules? The specialized fi
deductive databases [13] copes with the problem of large numbers of facts, e.g.
can the facts be manipulated efficiently during the deduction process’.

Production Rules and Real-time Processing

Production rules [12, 11], stemming from productions forming formal languag
can be characterized as operating on a set of objects (called situation, working m
ory, ...). The lhs, which is a formula of some logical calculus, is checked for valid
in the current situation. If it is valid, the rhs (called action), which manipulates
situation, may be applied. These changes result in non-monotonicity of the w
calculus (opposed to the deductive approach), which is a source of various prob
Because one rule may invalidate the results of another, the sequence of rule ap
tions becomes relevant for the result. To achieve a deterministic behavior addit
constructs are introduced (e.g. priorities) leading to complex nets of depende
between rules. Hence, another attractive feature of rule sets is lost.

Although, compared to production rules, the focus ofreal-time processing[4] is
slightly different (achieving a meaningful reaction within therestricted timeframeis
the main goal), this area of rule usage inherits the properties (and problems) from
production-rules approach.

ECA Rules

The ECA-rule paradigm [8] is mainly based on that of production rules and on
event concepts of real-time processing, i.e., the lhs is the description of a specifi
uation consisting of an event and a logical condition. The event is specified a
event-algebra expression. An algebra is defined as a set of simple events in co
tion with constructors allowing to build complex events, e. g., the sequence of ev
(see e. g. [14]). The condition specification is given as a database query whic
least) may take the database state before the event and after the event into ac
The rhs of a rule is a DML expression. Some authors suggest the use of a ge
purpose programming language with embedded usage of DML statements, esp
ly for object-oriented approaches. The rule-ordering problem, i.e. the execution
quence of actions if rules fire ‘at the same time’, is mostly left to the user through
introduction of some sort of priorities.
3
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A novelty of the ECA-rule paradigm in DBMS are the so-called ’coupling mode
which allow to specify the execution contexts of the parts of an ECA rule [8]. Su
coupling modes are defined between event and condition and between conditio
action separately and each defines a time-coupling, i.e., whether the following
should be executed immediately or should be deferred. Transaction coupling de
whether or not the following part of the rule should be executed within the sa
transaction. Additionally, a new type of transaction is introduced namely the ’dep
dent transaction’. A transaction of this type has to be started by another transa
and is only allowed to commit if the starting transaction commits. For the purpos
this paper, we will use ECA rules in the widest sense possible to discuss wheth
not such a paradigm is convenient within the development and usage of C
Hence, we will not propose a specific language for the rules but use intuitive exp
sions for events, conditions and actions. Furthermore, we will not elaborate on
problem of detecting complex events, testing non-trivial conditions and execu
complicated actions. For general requirements for active DBMS see [15].

In the next section, we will switch to the second ‘world’, we want to elaborate
the world of design applications. In Sect. 4 we will try to bring the two worlds t
gether by discussing potential application areas of ECA rules in design.

3 Design Model(s)

This paragraph serves for briefly addressing the areas within design application
which the exploitation of rules as a supporting mechanism has been proposed. S
it is not in the focus of this article to give a comprehensive view to design mod

we selected one representative model, the CONCORD1 design model [25, 26].
CONCORD allows to easily identify the mentioned areas, because it separate
ferent aspects of design dynamics by distinguishing three hierarchically arrange
erational levels which will be outlined in the remainder of this Sect. These operat
al levels are based on an version model allowing the management of explicit c
plex object versions and configurations [21].

Administration/Cooperation Level

This highest level of abstraction reflects the more creative and administrative pa
design work. The focus is on the description and delegation of design tasks as
as on a controlled cooperation among the design tasks. The key concept at this
is thedesign activity (DA)being the operational unit representing a particular des
task or sub-task. All relationships between DAs essential for cooperation are ex
itly modeled, thus capturing task-splitting (delegation), exchange of (preliminary)
design data (usage), and negotiation of design goals (negotiation).
Potential application areas for ECA rules at this level are pre-planning coopera

1. The CONCORD acronym stands for: CONtrolling COopeRation in Design environme
4
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(see Sect. 4.4), handling inter-task dependencies (Sect. 4.5), implementing co
ness criteria for cooperation (Sect. 4.6) and performing notifications (Sect. 4.7

Designflow Level

Looking inside a DA reveals the designflow level. There, the organization of the p
ticular actions to be performed in order to fulfill a certain (partial) design task is
subject of consideration (designflow). At this level, thecontrol/data flowamong sev-
eral design actions performed within a DA is modeled. Usually, these actions are
sign tool applications which are applied to improve existing design states w.r.t.
corresponding design goal. The operational unit serving for the execution of a de
tool is thedesign operation (DOP). In order to control the actions within the scop
of a single DA, but without restricting the designers’ creativity, flexible mechanis
for specifying and controlling designflows are provided [26].
Potential application areas for ECA rules at this level are design-task descrip
(Sect. 4.1) and implementation (Sect. 4.2).

Transaction Level

From the viewpoint of the DBMS or data repository, a DOP is a long transaction h
ing the properties of conventional transactions as far as DB-schema consistenc
rability of updates, and isolation from concurrent transactions are concerned.
cause of long duration, the atomicity property is relaxed; a transaction is intern
structured by save/restore and suspend/resume facilities [18] to be able to rollba
the application level and to continue the design work after breaks. A DOP proce
design object versions according to the load-operate-merge cycle.
Potential application areas for ECA rules at this level are maintaining design
consistency (Sect. 4.8) and error correction (Sect. 4.3).

4 Discussion: Application Areas of ECA Rules within Design

This chapter discusses the various areas where ECA rules might be applied w
the CAD-framework. This discussion is required, because ECA rules are prom
for each of these areas, but seem inadequate for some of them.

4.1 Design-Process Description through ECA Rules

Some authors (e.g. [20]) propose the ECA-rule paradigm to model the whole de
process, i.e., to use ECA rules to describe the dynamics of the designflow. To de
whether or not such an approach is useful, let us consider the major constituen
the design process. At the abstract level, the elements involved in the design pr
are designers, design objects and tools used to manipulate the design objects. T
trol the design process, some information on the status of the design has to be
lected. In our design process model ([26], see Sect. 3), we suppose to store th
formation within the design objects, i.e., each object (version) is in a specific s
w.r.t. the overall process. Other approaches propose to maintain this information
arately. Those approaches allow to reference the state of a design process exp
5
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• Explicit modeling of the design process state
The common approach for an explicit modeling is through the use of a de
script. The elements of a script are tool invocations, which are connected thro
control structures (sequence, loop, parallel execution, etc.). These structures
to be expressed. For ECA rules, the occurrence of an event is a pre-conditio
a rule to be effective. Hence, each rule (or each tool, if the tools are tightly in
grated) has to post the correct events for other rules so that these rules get ‘f
In a software development environment such a rule may look like

ON end-of-compilation(sub-module)
IF no-syntax-errors(sub-module)
DO FOR EACH super-module OF submodule

start INTEGRATIONTEST(sub-module, super-module)
and

ON end-of-compilation(sub-module)
IF syntax-errors(sub-module)
DO start EDITOR(sub-module)

These rules describe IF-THEN-ELSE branches and remain very simple bec
the only event is ‘end of design step’ and the only action is ‘initiate design ste
The condition is used to simulate the control sequences known from progr
ming languages. However, the description of the process becomes very com
because the number of rules will grow rapidly with the complexity of the des
process modeled leading to a set of rules which will become rapidly unman
able. To grasp the semantics of such large rule sets additional abstractions a
quired (e.g. stratification in the sense of [2]). Thus, the direct usage of ECA ru
to model the design process explicitly is inadequate.

• Implicit modeling of the design process state
Opposed to the first approach we propose implicit modeling, i.e., the progres
the process is not controlled explicitly but each object is in a specific state w
the overall process. This results in a data-driven approach. Hence ECA rules
be used to describe, which design step is next for a specific object. In order to
cide which steps are applicable, the rules have to test which state the objec
reached within the design process. Therefore, the concept of events is not s
portant, but the condition is the critical part of the description:

ON ANY CHANGE OF sub-module
IF compile(sub-module) = NO ERROR
DO FOR EACH supermodule OF sub-module

start INTEGRATIONTEST(sub-module, super-module)
and

ON ANY TIME
IF not-released(sub-module)
DO start EDITOR(sub-module)
6
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In contrast to the former approach these rules representpossibilitiesof the next
design step based on the actual state of an object. To face the problem of han
complex rule sets, rule processing obviously has to be guided by the designe
example, in a situation where the compilation succeeded (without errors) bu
sub-module under consideration is not (yet) released, both rules are applic
and, hence, the designer has to decide which step to do next, or there have
meta-rules which control the rule execution (which, in turn, results in an expl
model of design states).

From this short description of the problems occurring by using ECA rules directl
model the design process, it should be obvious that such an approach suffers
the difficulties of any rule-based approach (gaining control over a large rule b
and would not be successful for a complex design process.

4.2 Implementation of the Design Process using ECA Rules

Another proposal is to use some model of the design process (e.g. the part o
CONCORD [26] model associated with the designflow level, see Sect. 3) and ‘c
pile’ this model into a set of ECA rules (e.g. [5]). This would allow to gain contr
over the set of rules through the compiler. The main advantage seems to be fle
ity: Each concept of the design model is embodied by a (hopefully) small set of ru
The compiler combines these sets according to the overall structure of the spe
design process. Enhancing the design model or altering the semantics of an ele
only requires some additional rules or the editing of a rule set. In our model, e
(pre-planned or possible) design-state transformation would lead to a rule like

ON ANY CHANGE OF sub-module
IF compile(sub-module) = NO ERROR
DO ADD  ( FOR EACH super-module OF sub-module

start INTEGRATIONTEST(sub-module, super-module) )
TO LIST-OF-POSSIBLE-ACTIONS(sub-module)

Then the designer interacts with each design object to select the next step in th
sign process. This approach may be successful but the real complexity is hidd
the compiler. From our point of view, the usage of rules to describe the semanti
a concept in the design process model is at least questionable. Aren’t other appr
es (functional specification, petri nets) more promising because of their well foun
theoretical basis? Furthermore, the requirement of a compiler levels also the
ment that rule bases can be extended easily even at run-time opposed to other
digms. Another point is: if rules are used as the ‘object code’ of a compilation p
cess, are they used according to the ideas of rule processing or will they be us
predefined pieces of code copied into the right places? As we think, the latter
happen, we conjecture that ECA rules are one possibility to implement a run-
system of the design-process model, but alternatives are available.
7
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4.3 Using ECA Rules to Achieve Flexible Error Correction

As already mentioned (Sect.3), we suppose ACID transactions to encapsulate d
steps (tool runs). In a CAD framework some sort of integration layer for tools is
quired. Up to now, the focus of these layers was often restricted to problems of
provisioning and propagation. We think, it also has to cope with the situation
tools do not terminate successfully. Fig. 1 depicts a simple design step. The too
plication itself is encapsulated in a transaction which is not (automatically) termi
ed at the end of the tool run; we distinguish three different outcomes:

• The tool ends without an error condition, and the data generated fulfills the p
condition of the transition. In this case, the manipulated objects reach the
Sn+1 which will be the basis for further manipulations.

• The tool ends with an error condition, e.g., the designer aborts editing a file.
simple approach is to rollback the transaction and restart in state Sn. But for some

tools (mostly those which abort due to an automatically detected data inconsi
cy) it may be possible to adjust the object under design using a small set of (in
active) ECA rules so that, nevertheless, the goal (Sn+1) can be achieved.

• The tool ends without an error but the resulting data violates the post-conditio
the transition in some sense. If it is possible to remedy this violation (maybe w
designer interaction) such a situation is also a good candidate for the usage
small rule base developed by the tool integrator especially for the particular t
sition (Sn, Sn+1).

Fig. 1: A single tool run

With respect to these outcomes, why do ECA rules seem useful and adequate in
situations? As already mentioned, building a CAD framework requires the inte
tion of tools not developed with a complete development cycle in mind. As long
the tool and the generated data are congruent with the overall design process
fine. But a CAD framework requires also an adequate exception handling. From
point of view, ECA rules provide capabilities to implement such an except
handling, because the termination of a tool (positively or negatively) may serv
the basic event, the condition part of rules may test various post-conditions an
actions may provoke (interactively) some repair actions to save the work already
ried out. Hence, ECA rules provide the features of exception handling in a nat
way. Furthermore, the defect of large rule sets being unmanageable does not
to this application: The rules are structured according to the transition they are b
to, and the size of the rule set per transition remains small. Another problem of
systems, namely the overall semantics of a set of rules, is also not relevant to th
plication scenario: The designer is a well educated engineer, so at any situation

Sn Sn+1

transaction

tool run
error

correction
8
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in the rule processing where a relevant decision is to be made he/she may be
to provide (at least hints for) the right decision. For situations where the actual
termediate) state provides enough information to deduce Sn+1, the reasoning possi-

bilities of (E)CA rules may be used without user intervention.

So, the usage of ECA rules is promising in this area. However, the task of a g
design of the required rule sets remains a difficult part during the integration of to
into the framework as well as during the definition of a specific designflow.

4.4 Using ECA Rules to Pre-Plan Cooperation

The CONCORD model (see Sect. 3) introduces DAs (design activities) as exp
operational units serving for the processing of design tasks or sub-tasks. Since d
tasks usually cannot be completely pre-planned but require designer’s creativity
associate designers with DAs, who are working together with the designflow sys
in order to fulfill the corresponding design tasks. One possible way of coopera
between designers working on different design tasks is the exchange of prelimi
but in some application-specific sense meaningful design data among desig
This can be performed by granting cooperating designers access to certain p

design-object states2. Here, people may see a further potential application area
ECA rules. A simple example could be the following:

ON end-of-integrationtest(module)
IF success(integrationtest(module))
DO PERMIT (DA1, DA2, module, derivation-access)

This rule specifies an application-specific, cooperative-access control: as soon a
considered DA reaches a certain design state a certain kind of access (derivat
new versions) to a certain design object state is (automatically) granted to a co
ating DA. From our point of view, ECA rules may be used to pre-plan coopera
actions, but they are not especially suited to support this feature. Here, again, th
age of rules does not agree with the original ideas of rule processing. An altern
approach is to associate cooperation operations with design transitions, e.g. wi
script. This alternative is at least as adequate as the exploitation of ECA rules.

A similar situation is given, when the designer associated with a DA wants to
rules to handle dynamic requests from other DAs, which often occur asynchrono
to her/his design work. An example could be the following: when a request fro
certain cooperating DA comes in and the corresponding design state has al
been reached, the requested access is automatically granted without asking t
signer. Here, again, ECA rules may be helpful, because they provide an intuitive
natural way of specifying reactions, but it is obvious that we are not considering
actual rule process, because a single event is handled by a single rule.

2. This is only one in a variety of cooperation control mechanisms provided by the CON
CORD model [26].
9
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4.5 ECA Rules Handling Inter-Task Dependencies

A problem inherent to task-splitting (cf. DA hierarchy, Sect. 3) is to take care t
the partial solutions will fit together and that it will be possible that their integrati
will establish a consistent solution of the corresponding overall problem. In the
erature, inter-task-dependencies have been addressed and several types of int
dependencies have been defined [1, 22, 7, 9]. For example, in [22] state depe
cies are handled by special rules. The following rule is an example, allowing DA
start processing as soon as DA1 succeeds:

ON DA1 reached final state
IF (success(DA1.ouput)) AND (outval > 5)
DO DA2.input := DA1.output, ENABLE(DA2);

This type of dependencies can only be regarded in application areas, where
splitting and workflow specification can completely be done in advance. Since
sign applications do not allow a complete pre-planning of task-splitting (and co
sponding designflow-specifications), such rules could just be applied in special
es. Handling these cases by rules, however, would result in describing (parts o
process by using ECA rules, but this is not adequate as already argued in Sec
We prefer to handle such constraints explicitly within a script, or dynamica
through issuing delegation operations (creating sub-DAs, Sect. 3).

Besides process controlling aspects, inter-task dependencies also pertain desi
ject properties, i.e. design quality. Dependencies between design object states o
ling DAs may become obvious already during the specification of the correspon
tasks and designflows. Furthermore, it is often possible to specify correction ac
for the case that certain conditions are not fulfilled. A simple example could be
following. Two DAs are created to design a module each. Both DAs have deriva
access to a sub-module, which has to be used by each of the modules to be de
by the DAs. Now, so-calledrendezvous pointscan be defined for the two DAs. A
rendezvous point refers to single design states in the designflow specification
each of the DAs. A specified rendezvous point is handled by the system by bloc
the DA which firstly reaches the corresponding design state until the other DA
have also reached their respective states. Reaching this situation creates an ev
that a rule can test dependencies between the design object states of the cons
DAs. There are several ways of correcting detected inconsistencies. On one han
signers can be informed and it can be left to them to start repair actions. On the
hand, a rule process can initiate these repair actions. Here, we have a similar situ
as the one discussed in Sect. 4.3, and the same reasons apply for ECA rules be
adequate mechanism to repair inconsistencies.

4.6 ECA Rules to Implement ‘Correct’ Cooperation

Looking for further application areas for rules in design, people could mind expl
ing rules to specify correctness criteria for cooperation. In the literature, many
10
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vanced transaction models ([10] gives a good overview) are proposed and new
proaches try to provide frameworks for the specification of relaxed/extended tr
action models [7, 16, 3, 17, 23]. Some of them, e.g. [17], consider ACID transact
as building blocks and exploit rules to express dependencies between transac
others, e.g. [3, 23], provide primitives of transaction management and allow
specification of relaxed correctness criteria. These approaches, even those exp
rules as specification mechanism, are well suited to specify extended transa
mechanisms for special environments. This means that specialists for transa
management use these concepts to specify the transactional model and the ap
tion programmer just has to be aware of the (newly specified) transaction mana
interface.

There is not much knowledge whether or not the specification mechanisms us
the above approaches can also be used in the design area to specify cooperat
our opinion, however, the concepts in defining allowed patterns of cooperation m
be similar to those used to specify designflows. For that reasons, rules do not
to be adequate for specifying any kind of cooperation (see discussion in Sect. 

4.7 ECA Rules Performing Notifications

Due to the inherent complexity and the high dynamics of design problems it is
quently not possible to specify automatic reactions to all situations that may o
w.r.t. cooperation. For being able to handle such cases, a notification concept is
essary. We distinguish two classes of notifications. The first class contains noti
tions which are initiated automatically by the designflow management system.
is feasible for example, if access rights for meaningful design object states
changed (e.g. withdrawn). The second class contains notifications which are wa
and, therefore, especially specified by the designer. For example a designer m
want to be informed, when a cooperating DA reaches a certain state.

The mentioned situations, in which notifications are helpful, can be addresse
special events. Thus, the following situations can be considered as special eve
DA is created or terminated; a DA reaches a new design state; specifications
designflow specifications, are changed; design objects are manipulated in a ce
way, etc. Notifying designers about these situations can easily be handled by
simple rules. We just need EA rules, where the action is simply given by sendi
notification to the corresponding designer. Although we do not have a typical si
tion for rule processing, EA rules are a natural and intuitive mechanism for the
signer to specify wanted notifications.

4.8 Using ECA Rules to Maintain Design Data Consistency

As already mentioned several times, the ACID principle protecting the executio
design tools provides basic consistency for design data. At the higher levels o
CONCORD model (see Sect.3), we have a more application-specific notion of
11
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sistency concerning the quality of design data which is to be stepwise improved
the design goal is reached. To assure stepwise improvement, or to prevent wo
ing, respectively, the usage of rules can be considered. This usage, however, w
lead to the problems discussed in Sect. 4.1 (implicit modeling of design states)
cluding the data driven approach (using ECA rules in the way mentioned in S
4.1), maintaining design data consistency just means enforcing special assertio
that no rules are needed.

5 Conclusions

The main goal of this paper was to examine the potentials ofactiveDBMS (ECA
rules) in design environments. The presented, somewhat abstract models were
ed to guide the discussion. As a conclusion, we can classify the examined applic
areas into three groups.

For a first group of applications, ECA rules do not provide an adequate support.
ECA paradigm may be used as asupportingmechanism but is inadequate when use
without a ‘surrounding’ model which guides the rule development as well as the
processing. This is especially valid for the areas ‘design-process description’ (S
4.1) and ‘achieving application-specific design-data consistency’ (Sect. 4.8) but
holds for ‘handling inter-task dependencies’ (Sect. 4.6) as far as ordering of tas
concerned.

Some of the discussed areas are indifferent w.r.t. the application of ECA rules;
possible to use rules, but there are no striking arguments in favor for them (‘des
process implementation’ (Sect. 4.2) and ‘pre-planning cooperation’ (Sect. 4.4))

The promising fields for the application of ECA rules in a design environme
‘achieving flexible error correction’ (Sect. 4.3), ‘performing notifications’ (Sec
4.7) and ‘handling inter-task dependencies’ (Sect. 4.6), share some common ch
teristics:

• The area requires flexibility and dynamic adaptability.
In general, production rules are used in application areas where high flexibilit
required and new knowledge, arising during run-time, has to be incorporated
namically (e.g. changing the rule base). A sample area is handling inter-task
pendencies concerning design-data quality (see Sect. 4.6). Here, constrain
tween design data of different tasks must be enforced.

• The overall set of rules can be structured in dependence on some application
ented model.
In order to gain control over the set of rules it is crucial to follow an applicatio
oriented approach. For example, to achieve a flexible error correction, as
cussed in Sect. 4.3, a single transition specification must be supplemented
special set of rules handling the error correction for that transition. In this w
the overall set of rules can be structured and the subset of rules, which are en
at the same time, becomes (or remains) manageable.
12
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• The execution of rules does not change (design) data or can be guided by th
signer.
Facing the complexity of the application area and the difficulties inherent to
processing of rule sets, the execution of rules has to be safe in some sense. W
a design environment, we think a guarantee of ‘safeness’ cannot be provide
tomatically. Hence, either rules are not allowed to change the data (e.g. noti
tions only) or unclear situations are to be solved by the designer (rules includ
teractive parts) and not through a ‘clever’ resolution mechanism.

Furthermore, different applications stress different parts of ECA rules: While fle
ble control of tool results requires more or less CA rules, cooperation can bette
supported by EA rules. Hence, it is questionable whether or not an integrated
guage is really helpful, especially in cases where CA rules are needed which ha
be modeled by a bunch of ECA rules (generating rules for all ‘condition-changi
events). Nevertheless the areas of promising usage of ECA rules have to be exp
further. Questions to be answered are:

• Which events are required?
Due to the complexity of design and/or the various cooperation strategies, c
plex events will be necessary. Hence, an adequate event language for desig
vironments has to be developed or a general purpose event language (e.g. [6
has to be adjusted to a specific design domain.

• How to structure rule sets?
The sets of rules is structured by means of a designflow specification. How la
will the error correcting rule sets grow? Will they remain manageable?

Finding answers to these questions are subject to further research. The applicat
ECA rules within the CONCORD design environment and the corresponding ev
ation has to be carried out on the basis of a research prototype.
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