
Towards a Component-based n-Tier C/S-Architecture

Hans-Peter Steiert
Department of Computer Science, University of Kaiserslautern, P. O. Box 3049

D-67653 Kaiserslautern, Germany

Phone: +49 631 205 3279

e-mail: steiert@informatik.uni-kl.de

Abstract:

The world of C/S computing is changing fast. In times of global competition the companies require busi-

ness information systems (BIS) supporting global computing in the internet. As internet applications are

much more complex than conventional BIS new architectures must be developed. Additionally, new de-

velopment methods (component-based system design), new middleware (CORBA, Java RMI, message-

oriented middleware), and new database technology (object-relational database systems) have become

applicable in the enterprise mainstream. Conventional client/server architectural models do not cope

well with these new trends. This paper introduces a logical architecture for modern BIS as well as an

implementation architecture exploiting the new technologies.

Topic:

Architectural Styles and Patterns





Towards a Component-based n-Tier C/S-Architecture

Hans-Peter Steiert

Department of Computer Science, University of Kaiserslautern, P. O. Box 3049,

D-67653 Kaiserslautern, Germany

Phone: +49 631 205 3279

e-mail: steiert@informatik.uni-kl.de

Abstract:
The world of C/S computing is changing fast. In times of global competition the companies require business infor-

mation systems (BIS) supporting global computing in the internet. As internet applications are much more complex

than conventional BIS new architectures must be developed. Additionally, new development methods (compo-

nent-based system design), new middleware (CORBA, Java RMI, message-oriented middleware), and new data-

base technology (object-relational database systems) have become applicable in the enterprise mainstream.

Conventional client/server architectural models do not cope well with these new trends. This paper introduces a

logical architecture for modern BIS as well as a implementation architectureexploiting the new technologies.

1 Introduction
Compared to the degree of heterogeneity and complexity of Internet applications the typical environ-

ments of conventional business information systems (BIS) have been quite simple. To support, for ex-

ample, location independent access or, even, electronic commerce the services of BISs have to be

globally accessible through the Inter-/Intranet. While conventional BIS, based on TP-Monitors and da-

tabase technology, are able to fulfil the key requirements of mission critical systems (reliability, stability,

availability, scalability, maintainability) current client/server systems often suffer from these crucial fea-

tures [Ed98, Co98].

The challenge of global computing comes along with a set of new requirements, new development meth-

ods and new technology:

First, access to next generation BIS is not any longer limited to the local network. Customers and sup-

pliers using mobile clients or a simple WWW browser must be able to use business functions via Inter-

net.

Second, the use of prefabricated components will become more important, leading to shorter develop-

ment times and easier customizing (componentware) [Sz97]. Also, object-oriented design methods are

widely accepted today in order to cope with the complexity of current software systems.

Third, new technology has become applicable in the enterprise mainstream. Communication middleware

like CORBA [OMG97, OHE97], Java RMI [Sun98] or MOM (message-oriented middleware) [BHM90]

provides an infrastructure supporting the cooperation of heterogeneous components. Additionally, in the

field of database management systems (DBMS) so called object-relational DBMS (ORDBMS) are to ap-

pear at the market [St96]. Their extensibility features allow for integrating application logic into the da-

tabase engine.

In this position paper, we want to introduce a refined architectural model for C/S systems related but not

limited to BIS (Section 4). We will give a short introduction into the logical architecture of a BIS (Sec-

tion 2) and will discuss the pros and cons of actual implementation architectures (Section 3). Finally,

Section 5 concludes the paper.

2 Logical Architecture of a BIS
Object-oriented software engineering (OOSE) approaches traditionally have focused on object-oriented



programming and object-oriented data modelling [Bo94]. Nowadays, system design in the large takes

also advantage of object-oriented design principles. The idea ofcomponentware is to build systems us-

ing prefabricated objects, which provide the needed functionality, and a communication infrastructure,

as for example CORBA, which serves as the clue. This may be seen as an incarnation of the object-ori-

ented design principles of modularity, encapsulation and separation of concerns at a higher level of ab-

straction.

We consider the architecture of modern information systems consisting of three layers (Figure 1). The

base layer providesbusiness objects (BO) combining enterprise data and application independent object

behavior. Together with the data management layer, used to store data persistently, this layer is often

calleddata layer. Theapplication layer incorporates application logic into the system. It offersbusi-

ness functions (BF) which are mapped to usually several operations on BOs.Workflows combine ele-

mentary business functions to more complex business functions. Thepresentation layer incorporates

the user interfaces (UI) to present output information and, in turn, to route input parameters as well as

user actions to the application layer.

Following the lessons learned in OOSE, dependencies between presentation layer, application layer and

data layer should be avoided in order to achieve flexibility, extensibility and reuse. In the following we

want to consider the mentioned layers in a little more detail.

2.1 Data Management
The key features of a BIS depend on the

data management layer, which is the foun-

dation for reliability, stability, availability

and scalability. Today’s database manage-

ment systems are known to meet these re-

quirements. Additionally, the concept of

ACID transactions [HR83] with their clear

and simple failure model provide a solid

base for the higher layers and allow to

build reliable systems. The main task of

the data management layer is to store data

and to protect it against failures and incon-

sistencies.

2.2 Business Objects
BOs provide a certain degree of abstraction for the higher levels. They hide all details of storing the state

persistently, as for example the mapping of objects to relations or the use of one or several databases and

external information systems. Hence, BOs may also be used to integrate legacy systems, which means

they encapsulate heterogeneity if necessary. Manipulation of BOs is performed through defined inter-

faces, which ensures consistent state transitions.

2.3 Business Functions
While BOs are the smallest domain-specific building blocks, they are still application-independent. BFs

integrate business logic into the system. They group together semantically interrelated state transitions

of (several) BOs in an application-dependent manner. Hence, a BF provides an abstraction from state

transitions of single BOs to a consistent sequence of state transitions usually concerning several BOs. A

Workflows

Business Functions

Business Objects

Data Management

User Interfaces

A
p

p
lic

at
io

n
L

ay
er

D
at

a 
L

ay
er

P
re

se
n

ta
ti

o
n

L
ay

er

Figure 1: Architecture of a Business Information System



set of BFs and their related BOs can be used to establish a component, which may be (re)used in other

BIS or exchanged if new customers have different needs. To use a BF as a part of the interface for a

strictly encapsulated component it has to provide specific functionality and, additionally, a assured qual-

ity of service, as for example atomicity of the state transitions.

2.4 Workflow Layer
In order to use components in a flexible manner, the control flow of the business logic should be isolated

from the functionality. Therefore, the Workflow Objects (WfO) control both the execution of business

transactions involving more than one BF and the control flow between different components.

WfO also coordinate the work of the users engaged in the business transaction. Thus, the WfO need to

manage organizational data like employees and business rules.

As reliability is a key feature of a BIS, a WfO is also responsible for application recovery in case of a

failure. Workflows need to be restarted after a crash (forward recovery) and in the case of business con-

ditions have changed compensation of previous steps may be necessary (backward recovery).

Note that workflows may cross department boundaries as well as combine activities of separate organi-

zations. Hence, the workflow layer is the backbone of the BIS cluing together the different components

of a highly distributed system.

2.5 Presentation Layer
Users should be able to access a modern BIS from different places all around the world using mobile

clients, simple WWW browsers or their desktop PC. Therefore, different user interfaces need to be sup-

ported at the presentation layer, which all access the same application functionality. In order to support

all these types of access to the BFs, the application layer should be strongly separated from the presen-

tation layer. Furthermore, the requirement to provide access to other information systems leads to a

strong separation of UI and application logic.

3 Today’s Client/Server Architectures
The logical architecture of a BIS presented above can be mapped to an implementation architecture in

different ways. Here we restrict our discussion to the state of the art of C/S systems. A bunch of proper-

ties may be used to rank C/S systems but we want to concentrate on development technology, implemen-

tation technology, expected performance and scalability, enabling for Web-based access and

maintainability [ED97].

3.1 Fat Client
In a C/S architecture leading to fat clients, presentation and application layer are associated with the cli-

ent side and a database server is used to store the data (2-tier).

One of the advantages of this approach is ease of system development. Any development method and

any implementation technology can be used as long as access to a database server is provided. The de-

cision for a particular technology can consider the skills of the developers, strategic partnerships and

costs for tools and education. Unfortunately, these systems tend to perform badly and do not scale. BFs

must be supplied with data by the server and results must be propagated back (data shipping), leading to

a lot of network traffic. In a multi-user environment with many concurrent clients, inter-transaction cach-

ing is not advisable, because of high conflict rates. Additionally, the server has to manage a lot of re-

source-consuming client connections and therefore will not scale. Furthermore, the fat client approach

is not useful w. r. t. the WWW, because a lot of application code and data needs to be transferred to the

client. Last but not least, maintenance is difficult, since a large number of clients must be serviced.



3.2 Fat Server
In contrast to the fat client approach in a fat server architecture all application logic has been integrated

into the (database) server. Only the presentation remains on the client (2-tier).

Development of server applications is a hard task. The functional programming style does not allow to

exploit the advantages of object-oriented development methods at all. Additionally, tools and technolo-

gy of the particular database vendor must be used, because of the proprietary implementation technolo-

gy. Hence, developers need special skills. Also, large parts of the system need to be reimplemented, if

more than one platform is to be supported.

On the other hand, this approach promises to provide better performance. Only function calls and small

result sets are transferred between client and server, which is called function shipping, or, more exactly,

function request shipping (FRS). The application is able to take advantage of the properties of modern

database servers leading to a reliable system. However, fat servers must also manage a lot of connec-

tions, which limits scalability. WWW integration is easy, since clients are “thin” and WWW-clients be-

have as every other client. This architecture is easy to maintain, because everything is concentrated at a

single service point.

3.3 Application Server
The application server approach tries to combine the advantages of the architectures discussed above:

Thin clients accessing a server via function calls, a DBMS-vendor independent technology for applica-

tion development, performance and scalability of database servers, easy integration into the WWW, and

low maintenance costs. This goal is reached by using application servers as a middle tier between client

and server (3-tier). Usually, the middle tier covers the business object layer, the business function layer

and the workflow layer.

From the database server’s point of view an application server is a database client. Hence, object-orient-

ed design methods as well as every implementation technology providing appropriate database access

may be used. However, application servers are difficult to implement. They must be able to support

many clients and, therefore, they have to run either replicated (under the control of a TP-Monitor for load

balancing [GR93]) or must be multithreaded themselves so that parallelism can be exploited.

The application server brings together data and functions at the middle tier in order to achieve high per-

formance. Specialized application servers are able to take advantage of inter-transaction caches by using

semantic knowledge. Even cache coherency protocols reducing database accesses may be feasible as far

as the number of servers stays small. Thus, the business logic at the application server is accessed by

clients via FRS while the application server itself loads the data from the database.

In application server architectures thin clients are used, allowing for easy integration of WWW-client

support. Maintenance is less complex than in fat client environments, because there are just a few service

points.

4 Cooperative Components
In Section 1 we have already mentioned that the world of C/S computing is in change because of new

requirements, new development methods and new technology. Global computing comes along with

higher complexity, a higher degree of heterogeneity and raising communication costs. Object-oriented

design methods may be able to cope with the complexity of developing such systems and corresponding

tools may help managing them. Also, heterogeneity may be bridged using an adequate technology as a

communication infrastructure, for instance CORBA. However, performance of a C/S system depends

very much upon a well chosen architecture reducing communication costs for FRS and data shipping.



Hence, in this position paper we want to concentrate on enhancing the simple C/S architectural models

in order to cope with the new challenges of a highly distributed and heterogeneous transaction process-

ing environment.

The architectural models discussed in Section 3 do not cope well with these new trends. In the world of

componentware the simple 2/3-tier models are too static. The idea of a monolithic block of application

logic completely implemented in a single tier does not fit into the concept of cooperative components,

where the application logic is partitioned into several components. Additionally, the conventional C/S

architectural models consider only one or two C/S relationships, while component-based systems come

along with much more complex relationships.

Furthermore, the 2/3-tier models do not cope with the new generation of relational DBMS. ORDBMS

allow for more complex data structures and the integration of object behavior as user-defined functions

(UDF) into the DBMS kernel. Hence, system performance may increase, if complex predicates involv-

ing method calls are evaluated by the DBMS instead in the middle tier.

We want to overcome these

drawbacks by enhancing the

simple 2/3-tier models to-

wards a n-tier C/S architec-

ture of cooperative

components (Figure 2). In

our, architectural model there

are still three tiers: First, a

client-tier, which serves as

the front-end and comes

along with the presentation

logic. Second, the middle-tier

with a set of components act-

ing as specialized application

servers and, third, the

DBMS-tier, where the data-

base servers reside. In con-

trast to the conventional models, the application logic is not exclusively contained in one tier. Instead,

every tier is populated with components and every component may include parts of the application logic.

The components are divided into five layer, according to the logical architecture of a BIS introduced in

Section 2 (presentation, application layer, business objects, data services, database server). A workflow

layer is not considered, because workflow management may either be part of the application layer or pro-

vided by a separate component. The data management layer is refined into two layers, a data service lay-

er and the DBMS itself. Functionality in the data service layer may reach from the pure API of the

DBMS to a main memory database system providing the whole database functionality in that compo-

nent. Mapping functionality to bridge the impedance between an object model and the data model of the

DBMS including the mapping of methods to UDFs is also implemented in this layer. According to our

logical architecture, the application layer implements the BFs and the business object layer manages

BOs. In this architecture, the C/S relationships between the tiers are refined to relationships between

components, more precisly they are refined to relationships between the layers of the components. Also,

the architecture allows for consideration of C/S relationships between components at the same layer.

Presentation

Application
Layer

Business
Objects

Data
Services

Application
Layer

Business
Objects

Data
Services

Application
Layer

Business
Objects

Data
Services

Application
Layer

Business
Objects

Data
Services

Presentation

DBMS

ORDBMS

Presentation

Client-Tier

Client

Middle-Tier

Application
Server

DBMS-Server-Tier

Figure 2: Component-based N-Tier Architecture



Examining C/S relationships

The refinement of C/S relationships allows for a closer look upon the cooperation at the different layers.

In the application layer, BFs, implementing large-grained application logic, are executed. Hence, FRS

is used for the cooperation between components. In contrast to BFs the methods provided at the interface

of a BO are much more fine-grained. So, accessing a BO’s methods via FRS tends to high communica-

tion costs, because of the overhead of the communication protocol. If a BO is referenced more than once

during BF-processing, migration or replication and caching of objects may be useful. Note that this kind

of object shipping is a extension of data shipping. Object shipping means to exchange the state and the

behavior of an object between two components, while data shipping means only to transfer the object’s

state. Usually, the code implementing object behavior does not change at run time and is invariant for

all instances of a particular class. Hence, a component needs not to migrate code more than once. It can

be cached in a component and afterward exchanging the object’s state is sufficient.

Although object shipping is the desired approach, data shipping is often necessary, because object ship-

ping is not adequately supported today. Only Java allows for dynamically transferring both, the object’s

state and the code implementing it’s behavior. This requires either all components being implemented

in Java or the integration of a Java virtual machine into a component (which is already planned by data-

base vendors of ORDMBS). CORBA allows the exchange of object states between heterogeneous plat-

forms and applications implemented in different programming languages but not the exchange of code.

So, CORBA does only support data shipping and an implementation of the behavior must already exist

in every component. Data shipping occurs at the data service layer.

Flexible C/S computing

The idea of cooperative components implementing application logic and BOs at every tier makes the

system much more flexible but, in turn, the design much more complex. Now, a designer has to decide

in which components a particular BF is to be implemented and where the BOs have to reside.

A static separation of business logic may not be sufficient. Assume a complex predicate including meth-

od calls, which is needed to be evaluated by the presentation logic, by specialized application servers, as

well as by the database server. The system designer should provide such application logic at all three

tiers in order to be able to route a function call to the component with the lowest execution costs. In a

transaction processing environment factors relevant for this decision are the costs to access BOs, to make

their state durable at the end of a transaction and to synchronize concurrent access.

We have already discussed that either objects must migrate to the component or their methods must be

called via FRS. Which alternative to choose depends on costs for object migration, communication and

reference locality.

In transaction processing environments the object’s state has to be stored persistently in the database at

the end of a transaction. Hence, not only run-time costs for object migration or FRS have to be consid-

ered in the decision, but also the costs of propagating a changed object’s state to the database server at

the end of the transaction.

If several components access the same BO, it may be replicated in several caches. So, cache coherency

protocols are needed to ensure access to the current state of an object. Furthermore, access to BOs must

be synchronized so that the isolation property of transactions is not violated. Cache coherency as well as

synchronization will lead to expensive communication, if a lot of replicates exist, which has to be con-

sidered if objects are accessed by remote components.



5 Conclusions
The world of C/S computing is changing fast. New technologies, as the Internet, CORBA and ORD-

BMS, allow for development of highly distributed BIS. In times of global competition the companies

require BIS, supporting their world wide trading partnerships. As the Internet is a much more complex

computing environment, a more detailed architectural model of C/S systems is needed.

Conventional 2/3-tier architectures are not sufficient to cope with the complexity of modern BIS. The

implementations based on these architectural models lack on flexibility needed to perform well in all

scenarios appearing in new C/S applications. Therefore, we introduced a logical view upon modern BIS

(Section 2), seperating five layers of functionality, every layer providing an abstraction leading towards

a component-based system, whereas a workflow layer is used to coordinate the cooperation of different

components. We have also provided a refinement of the conventional 2/3-tier architectural model of C/

S systems (Section 4) which overcomes the strict separation of functionality in two or three tiers. Instead,

we presented a model of cooperative components, whereas each component consists of 3 to 5 layers it-

self. This allows for a much more detailed consideration of the application scenarios, the C/S relation-

ships and their impact to system performance. Both models can serve as a foundation for analysing the

needs of modern applications in C/S environment.

Literature

BHM90 P. A. Bernstein, M. Hsu, B. Mann: “Implementing Recoverable Requests Using Queues”
Proc. ACM SIGMOD, 1990

Bo94 G. Booch: “Object Oriented Analysis and Design with Applications”
The Benjamin/Cummings Publishing Compony Inc., 1994

Co98 E. E. Cobb: “Issues when making object middleware scalable”
MiddlewareSpectra, May 1998

ED97 J.Edwards, D. DeVoe: “3-Tier Client/Server At Work”
John Wiley & Sons, Inc., 1997

Ed98 J. Edwards: “Let’s Get Serious about Distributed Objects”
Distributed Computing, February 1998

GR93 J. Gray, A. Reuter: “Transaction Processing: Concepts and Techniques”
Morgan Kaufmann Publishers Inc., 1993

HR83 T. Härder, A. Reuter: “Principles of Transaction Oriented Database Recovery”
ACM Computing Surveys, Vol. 15, No. 4, 1983

OHE96 R. Orfali, D. Harkey, J. Edwards: “The Essential Client/Server Survival Guide”
John Wiley & Sons, Inc., 1996

OHE97 R. Orfali, D. Harkey, J. Edwards: “Instant Corba”
John Wiley & Sons, Inc., 1997

OMG97 OMG: “The Common Object Reques Broker: Architecture and Specification”
Revision 2.0, July 1995, Updated July 1996, Object Management Group, formal document 97-
02-25, http://www.omg.org

St96 M. Stonebraker: “Object-Relational DBMSs - The Next Great Wave”
Morgan Kaufmann Publishers, Inc., 1996

Sun98 Sun Microsystems, Inc: “RMI - Remote Method Invocation”
Available at: http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi, March 1998

Sz97 C. Szyperski: “Component Software”
Addison Wesley Longman, Ltd., 1997


