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Abstract
In face of the complex requirements of advanced applications, extended-relational or object-relational database
management systems (ORDBMSs) enjoy now more and more popularity due to their promise to overcome the
deficiencies of both object-oriented and relational DBMSs. However, object-relational data models (ORDMs) and
their supporting technologies are far from mature. Particularly, while data relationships play a very important role
in application domains, they are still not well considered by the new database technology. The main purpose of this
work is to outline how accurate relationship semantics can be captured from the real world and supported in the
setting of ORDBMSs. We present our prototype ORIENT which facilitates the explicit specification as well as the
automatic maintenance of relationship semantics. The prototype is implemented and integrated in an underlying
DBMS, so that all our proposals and extensions can be put into practical use.
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1 Introduction

The support of complex information systems is a tremendous challenge placing many new
requirements on DBMSs. Some of these advanced requirements cannot be met by either purely
relational or purely OO technologies alone. Correspondingly, much work has been done or is
ongoing to combine these two technologies. The overall goal is to effectively model and manip-
ulate complex data and to use OO technologies for application development without losing the
benefits of SQL and all the traditional database services. Therefore, upcoming ORDBMSs [2, 4,
5, 14, 19] attract more and more attention from both the research and the commercial realms.

While the enhanced flexibility and extensibility of ORDBMSs are certainly appreciated, the user
is also confronted with increasing complexity. Data modeling, as a fundamental issue of DB-
centered application development, deserves reconsideration in the new setting. In particular, data
structures and operations are extensively supported by object-relational database (ORDB)
technology, especially through user-defined types (UDTs) and user-defined functions (UDFs),
whereas data relationships and their inherent characteristics are not well addressed. In addition
to value-based symmetric relationship representations through primary/foreign keys (PK/FKs)
and referential integrity, object-relational row types and reference types allow more flexible
modeling of unidirectional relationships [2]. However, they are only based on simple refer-
encing/dereferencing mechanisms that do not reflect rich semantics. Consequently, a lot of
requirements such as refined cardinalities and automatic control of abstraction concepts cannot
be modeled in a straightforward way and, hence, must be realized by application logic.

Some proposals or standards have taken relationship semantics and relationship services into
account, such as PCTE [7], EXPRESS [6], and OMG Relationship Service [13]. They are,
however, not DB-oriented, mostly aiming at special domains, and only rudimentally supported
by existing systems. Besides, there have also been some efforts to extend OO models with
explicit relationships, such as [1, 8, 12, 18]. These efforts are restricted either to simplified
relationships (e. g., binary relationships with a few semantic properties) or to specialized
relationships (e. g., aggregation). In the database area, the Entity-Relationship Model [3]
includes relationships as a key concept. Further developments have led to a broad spectrum of



refinements (e. g., [15]) handling abstraction concepts and several semantic properties such as
cardinality. However, these models are rarely supported by existing DBMSs.

Therefore, we believe that the general problem of specifying and maintaining relationship
semantics still deserves detailed attention. Most importantly, this work should lead to practical
results through integration with promising and widely available data models such as the current
ORDMs. With the primary goal to provide enhanced support of relationship semantics on one
hand and to exploit the expressiveness and extensibility of ORDBMSs on the other, we are
carrying out a project to develop ORIENT (Object-based Relationship Integration
ENvironmenT). This prototype facilitates explicit specification as well as automatic control of
relationship semantics, thereby hiding implementation details from the user.

We will present this work by addressing issues w.r.t. modeling, specification, implementation,
and integration into the underlying DBMS. Sect. 2 gives a brief overview of the basic modeling
concepts in ORDMs, investigates their potentials as well as shortcomings in supporting relation-
ships, and then proposes our idea of ORIENT. In Sect. 3, complex relationship semantics is
analyzed and summarized. As a result, we develop an SQL-like declarative language OrientSQL
for relationship specification and manipulation. Sect. 4 introduces the DBMS-exterior compo-
nents of ORIENT, while Sect. 5 deals with the DBMS-interior extensions to achieve our goal.
Finally, we conclude the paper in Sect. 6 with an outlook on the future work.

2 ORDMs and relationship support

In this section, we introduce the new modeling concepts of ORDMs and discuss what they lack
for supporting semantically rich relationships. Then, we will outline the basic idea of ORIENT.

2.1   Object-relational modeling concepts

From the viewpoint of data modeling, ORDMs are very attractive since they offer a broad
spectrum of constructs to handle complex data.

• In addition to the basic data types of the relational data model, they provide new built-in types
such as large objects (LOBs) that are useful for supporting, e. g., multimedia data types.

• Moreover, the user is allowed to define his own data types (UDTs) tailored for specific appli-
cations.
- Distinct data types, the most basic form of UDTs, facilitate the strong typing mechanism.
- Abstract data types (ADTs) encapsulate internal structure and type-specific behavior (UDFs).
- Unnamed row types are used to represent nested structures, whereas named row types are used

to define types of rows in tables and thus, make it possible for tables to profit from object
properties.

• Different other facilities provide a flexible way to organize complex data structures.
- Reference types represent inter-object connections in a direct way and make queries through

reference paths more compact than throughJOINs based on PK/FK pairs.
- Collection data types allow to comprise zero or more elements of built-in data types, UDTs,

or collection types, thus, providing a powerful facility for type construction.
- Inheritance (single as well as multiple), which enables natural variations among types/tables,

is supported through types/table hierarchies.

• All these new concepts can be used wherever basic built-in data types can be used, e. g., as at-
tribute types in UDTs, as parameter types in functions or procedures, and as domain types for
table columns.



These conceptual building blocks promise to easily manage a variety of information that would
be very difficult to handle using traditional tables (see [22] for detailed modeling examples and
evaluation). Therefore, the ORDB technology is generally considered to be more suitable for
applications with complex requirements on data modeling and processing. Below we elaborate
on how well ORDMs meet the demanding requirements of relationship modeling.

2.2   Relationship support in ORDMs

With the new extensions, ORDMs offer various alternatives to model data relationships, which
reflect different levels of semantic expressiveness and convenience.

2.2.1   Basic constructs

Like relational data models, ORDMs
represent value-based symmetric relation-
ships using PK/FK pairs. The semantics of
this construct can be further enriched through
referential integrity and referential actions,
which will be discussed in the next subsection.

A more direct and flexible way of modeling
structurally linked data in ORDMs is through
row objects and object references [2].
Relationships can be described as references
to instances of other row types. Queries against such constructs can be issued by means of the
referencing operator “.” and dereferencing operator “->” as shown in Fig. 1.

The example is taken from the application scenario to be introduced in Sect. 3.1. The set operator
IN is employed, since the (1:m)-relationship betweenprogram andmodule is defined through the
multivalued referencing attributeinclude1.

The referencing/dereferencing mechanism does not, however, exhibit any semantic properties.
Complex application-desired semantics must be explicitly modeled in terms of operational
constructs and enforced by application logic.

2.2.2   Auxiliary means

Relational systems as well as their object-relational successors define the valid states of data by
integrity constraints including column constraints (NOT NULL, unique, check), table constraints
(unique, referential, check), domain constraints, and assertions. Among them, NOT NULL,
unique constraints (UNIQUE, PRIMARY KEY) and referential integrity constraints with refer-
ential actions (CASCADE, SET NULL, etc.) can be used to govern simple semantics between
referencing and referenced tables. Since they are tailored to the needs of simple, value-based
relationships, they are unsuitable for maintaining richer and more general semantics such as
composition and sharability (cf. Sect. 3.2).

ORDBMSs also provide database triggers [21]. However, using pure SQL triggers for our
purpose has two disadvantages. Firstly, an SQL-only solution lacks expressiveness for managing
complex relationships. Secondly, a trigger is associated to a particular table. As a consequence,
the semantics of a given relationship is split in n sets of triggers (with n being the number of
relationship participants), revealing rather low conceptual clarity.

1. Note that collection types can be of great use to represent (1:n)- and (m:n)-relationships.

Query: Find all programs that include modules designed by Smith.

DML: SELECT *

Fig. 1 SQL3 referencing/dereferencing mechanism

WHERE FOR SOME m IN p.include (m->designer=‘Smith’)
FROM program p

DDL: CREATE ROW TYPEprogram_t (
p_nameCHAR (20),
includeSET (REF (module_t)),
......);

CREATE TABLE programOF program_t;
CREATE ROW TYPEmodule_t (

m_nameCHAR (20),
designerCHAR (30),
......);

CREATE TABLEmoduleOF module_t;



Alternatively, stored procedures can be used to ensure semantic properties. Nevertheless, the
stored procedure language, an extended SQL with minor program control logic, is still not
expressive enough for our purpose.

Finally, UDFs permit to combine the capabilities of SQL with those of an external programming
language. As a result, the expressive power of UDFs is considerably higher than that of pure SQL
constructs. However, in contrast to triggers, UDFs do not exhibit active properties. Though it is
feasible to embed particular object references with rich semantics in UDFs, this solution is
neither intuitive nor adequate concerning the way how such “embedded” object references have
to be employed in SQL statements.

2.3   ORIENT

The previous discussion indicates that uniform and concise relationship support is missing in
current ORDMs. To remedy this deficiency, we have designed a general framework ORIENT
(Object-based Relationship Integration ENvironmenT). The framework extends SQL to
OrientSQL that includes separate relationship-oriented statements. Besides declarative specifi-
cations, ORIENT also facilitates a graphical user interface to enhance the design convenience.
The graphical schema editor OrientDraw helps the user to define Entity/Semantic Relationship
(ESR) diagrams, which are built on the basis of the ER model with additional constructs to
emphasize and exhibit refined relationship semantics. The ESR diagrams are then transformed
to corresponding OrientSQL specifications through the schema translator OrientMap.

Our goal is not only explicit definition but also automatic control of semantics. For this purpose,
OrientGen, a precompiler for OrientSQL, produces internal processing constructs as well as
metadata for managing the specified relationships.

Most importantly, our enhanced relationship support
must not influence the usual way in which data are
accessed, queried, and manipulated. Hence, we preserve
the SQL3 referencing/dereferencing mechanism as well
as DML operations and endow them with new meaning
in the presence of internal constructs and complex
semantics. This can only be achieved through low-level
supports from the underlying DBMS, whose internal
processing is therefore extended or overloaded.

Fig. 2 gives an architectural overview of ORIENT. In the
following section, we will introduce the formalism of
OrientSQL that lays the boundary line of our whole work.

3 A framework for relationship semantics

As the basis for the OrientSQL
definition, the semantic properties of
complex relationships will be briefly
outlined. Some of these properties
have been (partly) analyzed by
related work such as [1, 8, 9, 18]. We
summarize them to give a full view
of our framework for capturing and
manipulating relationship semantics.
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OrientSQL
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Fig. 2 ORIENT architecture
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3.1   Application scenario

We take an example from a software repository environment. An application program consists
of modules, a module, in turn, is made up of functions and procedures. All these constituents are
represented as components in the repository. All software components are further divided into
packages according to the specifications they realize. Programs and modules may be continu-
ously under evolvement. Changes in programs/modules may produce new versions. The dated
version might be archived for future reference. The scenario is illustrated in Fig. 3 with ER-like
notations.

3.2   Overview of relationship semantics

Complex relationship semantics can be seen as superposition of the following fundamental
properties of either structural or operational nature.

3.2.1   Structural properties

• Composition: This property determines how the participants involved in a relationship cohere.
In some relationships such asconsist-of, there is a composition owner, from which operations
affecting the whole relationship are propagated to other participants.

• Sharability: This property denotes whether an object can participate in one or more relation-
ships with another object at a higher level. For example, if a function or a procedure belong to
only one module, then they are non-sharable inconsist-of, otherwise, they are sharable.

• Degree: Relationships may be binary, ternary, or of higher degree.

• Cardinality: The cardinality restricts the number of related objects and can be further refined
with a pair of values as [min, max], i. e., the minimum and the maximum number of objects that
participate in a given relationship instance.

3.2.2   Operational properties

• Existence dependency: Existence dependency characterizes whether an object can exist inde-
pendently or requires the existence of related objects. To govern this property, certain insertion
or deletion operations should automatically incur actions on related objects.

• Transitivity: Besides the operations necessary to ensure existence dependencies, there are (oth-
er) database operations that must be executed transitively across complex relationships. For in-
stance, selections at the aggregate level are propagated to the part level. Moreover, this transi-
tivity may be of heterogeneous nature sinceUPDATE, DELETE, INSERT operations may lead to oth-
er operations. As an example, them-derivedrelationship embodies the semantics that any
modification of a module should result in the creation of a new module (version).

Thus, operational properties specify actually consecutive actions that an operation on the partic-
ipant arouses. Below, we outlines some of the semantics w.r.t. different database operations.

• Deletion propagation
- Isolated Deletion (ID): The deletion of an object has no consequence on other objects.
- Mandatory Deletion (MD): Upon deletion of an object, its dependent objects are also

deleted, even though they may be involved in other relationships.
- Conditional Deletion (CD): Upon deletion of an object, its dependent objects are also

deleted, if they do not participate in other relationships.
- Restricted Deletion (RD): The deletion of an object is rejected if one of its dependent objects

exists. Only all related objects (e. g., an aggregate with its parts) as a whole may be deleted.



• Insertion propagation
- Isolated Insertion (II): The insertion of an object has no consequence on other objects.
- Conditional Insertion (CI): Upon insertion of an object, the relationship is established to

existing dependent objects, and absent objects are represented with placeholders (stubs).
- Restricted Insertion (RI): Before the insertion of an object, all dependent objects must be

available in the database for establishing the relationship. Otherwise, the insertion is denied.

• Select propagation
- Isolated Selection (IS): The selection of an object returns only this object.
- Mandatory Selection (MS): The selection of an object returns this object and all the

associated objects.
- Conditional Selection (CS): The selection of an object returns this object and only those

associated objects in the given relationship.

Update as well as heterogeneous propagation semantics are also important in real-world applica-
tions and can be refined in a similar way. A more thorough survey can be found in [17].

3.3   OrientSQL

In accordance to SQL, the important aspects of the
proposed language are genericity and completeness.
Due to space limitation, we can only cover a few
examples of OrientSQL. The whole specification
syntax (BNF) and explanation can be found in [17].

3.3.1   Relationship definition

New relationship types are defined throughCREATE

RELATIONSHIP statement. Takingconsist-of in Fig. 3
as example, Fig. 4 shows its definition with specific
semantics (generated through OrientMap,
cf. Sect. 4.2).

First of all, in our model, relationships can be organized into hierarchies. This can be explained
by the observation that on one hand, there are generic, reusable relationship types such as
aggregation[9], and on the other hand, relationships may be tailored to specific applications. The
relationshipconsist-of reflects that a module is composed of functions and procedures. In fact, it
is a special kind of the abstraction conceptaggregation[9] which specifies that the aggregate and
all its parts exist as a whole and can be addressed collectively using a high-level query.

By the definition, each relationship type is given a name and possesses a number of participants.
Structural and operational semantics is specified w.r.t. each participant. Structurally,module
plays a special role as composition owner with cardinality [1,1], whereasprocedure andfunction
are non-sharable participants with cardinality [1,10] and [0,10], respectively. As to operational
semantics, selection is propagated from the composition owner (module) to all participants (CS),
and the deletion of a module causes the deletion of the procedures and functions included in it
(MD). A module cannot be constituted without a sufficient number of components (RI), which
requires the use of theINSERT BLOCK statement to build the whole relationship among all partic-
ipants consistently (cf. Sect. 3.3.2). In contrast, procedures or functions can be inserted even
though the module that should consist of them does not exist yet. In this case, the relationship is
established with a stub as placeholder for the absent module (CI).

Fig. 4 Relationship definition



Note, in ORDMs, a single row type can be reused to define various tables [22]. For the sake of
precise modeling, it is sometimes sensible to restrict a relationship to certain tables. Assume, for
example, there are several tables corresponding to the samemoduletype, the relationshipconsist-
of can be limited to the tablemodule-project1. The SCOPE definition is provided for this purpose.

3.3.2   Relationship manipulation

Instead of introducing the manipulation mechanism of OrientSQL, we will only mention several
special issues occurring in the new context.

Referencing/dereferencing

The basis of all operations w.r.t. data
relationships is the traversal through
complex structures. Since OrientSQL
enriches SQL3 references with
semantics, the referencing/derefer-
encing mechanism should also be
expanded correspondingly. That
means, the referencing operator “.”
should facilitate the traversal path from one participant to another in a given relationship, and the
dereferencing operator “->” can resolve the referenced content correctly. We will explain this
issue through two simple queries as in Fig. 5.

In the first query, the relationship name (realize) to be accessed is used like a referencing attribute
in a native SQL3 statement. This is becauserealize is a binary relationship betweenpackage and
specification, and thus, will cause no ambiguity by referencing/dereferencing. On the contrary,
the second example uses a ternary relationshipconsist-of. To correctly access the attribute
language in function viaconsist-of, the explicit indication of the participantfunction is necessary,
sincelanguage also occurs inprocedure.

Relationship designation

Since each participant may be involved in more than
one relationship and each relationship may possess
special selection semantics, it is sometimes necessary
to designate a certain relationship (e. g.,realize) in
SELECT. As a result, the selection semantics is
restricted in the designated relationship (cf. Fig. 6).

Relationship insert

Except for some special cases in which the initial
state of a relationship instance can be automatically
established (such as the creation of new versions), the
connection of associated participants has to be
explicitly issued by the user. To this end, theINSERT INTO

RELATIONSHIP statement is provided as some kind of
“multi-connect” construct. A new instance can be
added to the relationshipconsist-of (cf. Fig. 7) using
the following statement, wherem1, f1, f2, f3, p1, p2 are all participant OIDs.

INSERT INTO RELATIONSHIP consist-of (module, function, procedure)VALUES (m1, {f1,f2,f3}, {p1,p2})

Query 1: Find all packages that realize a specification issued by PCTE.

Fig. 5 OrientSQL referencing/dereferencing mechanism

OrientSQL: SELECT *

WHERE p.realize -> issuer = ‘PCTE’
FROM package p

Query 2: Find all modules that consist of functions written in JAVA.

OrientSQL: SELECT *

WHERE m.consist-of (function) -> language = ‘JAVA’
FROM module m

Fig. 6 Relationship designation

Query: Find all specifications that are involved in

OrientSQL: SELECT *

WHERE s.issuer = ‘PCTE’

FROM specification (realize) s

relationship realize and issued by PCTE.

Fig. 7 Schema/instance-level relationship
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Insert block

In case that all associated participants already exist, the creation of a relationship can be accom-
plished through a singleINSERT INTO RELATIONSHIPstatement. Instead, multiple native SQL
INSERT operations for the participants are needed in combination with theINSERT INTO

RELATIONSHIPstatement. According to various insertion semantics (cf. Sect. 3.2.2), a relationship
instance can sometimes be constructed without certain participants (according toConditional
Insertion), while sometimes it can be added only upon existence of all the participants (e. g., to
ensureRestricted Insertion). In the latter case, all necessaryINSERT operations should be
executed together. To facilitate the consistency of multi-connections among relationship partic-
ipants, we provide an explicitINSERT BLOCKmechanism.

An insert block is delimited by two statements (BEGIN

INSERTION BLOCK andEND INSERTION BLOCK) which
group several operations required to build a
relationship. Operations defined in an insert block
include not onlyINSERT INTO RELATIONSHIPbut also
native SQLINSERT statements. The use of an insert
block will delay the checking of the insertion
semantics of single operations until the end of the
insert block when all relevant operations are executed. Note, an insert block differs from a usual
database transaction in thatUPDATE andDELETE operations are not allowed in an insert block, and
therefore, if the insertion of any participant violates the relationship semantics, what has to be
undone are only insertion operations inside this block. As an example, the insert block defined
in Fig. 8 establishes aconsist-of instance with semantics defined in Fig. 4.

So far, we have presented the framework for relationship specification and for manipulation
considering specified semantics. Subsequently, we concentrate on the supporting measures that
are implemented partly on top of DBMSs and partly inside DBMSs.

4 DBMS-exterior components

As illustrated in Fig. 2 (cf. Sect. 2.3), the DBMS-exterior components include the graphical
schema editor OrientDraw, the schema translator OrientMap, and the precompiler OrientGen.

4.1   OrientDraw

OrientDraw provides an easy-to-use design interface. It keeps the basic ER constructs: rectangles
for entity types, diamonds for relationship types, and ovals for attributes. Generalization/special-
ization relationships are illustrated by bold arrows linking the sub-entities to the super-entity.
Different line drawings are used according to various structural properties of relationships (e. g.,
composition and sharability). Moreover, refined cardinalities can be attached to connection lines.
As to operational semantics, each line can be marked with the operation names that need to be
propagated from the composition owner to other participants or vice versa. And existence depen-
dencies are indicated through colored lines between two participants and labeled with specific
meaning such asCI (cf. Fig. 9).

To improve the clarity and readability of the diagram layout, the user may hide some descriptions
such as attributes and operational semantics, which can then be displayed in separate diagrams.
Besides, our implementation leaves it up to the user to adjust the diagram according to his
preference.

BEGIN INSERTION BLOCK // the beginning of insert block

INSERT INTO function ... // usual SQL statement

// other essential operations

INSERT INTO RELATIONSHIPconsist-of

END INSERTION BLOCK // the end of insert block

VALUES (m1, {p1, p2}, {f1, f2})
// establishing relationship

Fig. 8 An insert block



Standard manipulations are available through pull-down menus. The “Specification” menu
contains the usual operations to e. g., open, save, and delete a specification. The “Create” menu
offers the possibility to define new entities and new relationships. The “Special” menu provides
some special facilities, such as showing the relationship hierarchy, choosing JDBC Driver
properties, and calling OrientMap to generate OrientSQL definitions. The “Options” menu
contains purely graphical options such as changing the layout. The “Info” menu opens the dialog
window to document the information about the user, databases, and schema specifications.

Concrete specifications are supported through context-sensitive pop-up menus, with which
various structural and semantic aspects of entities and relationships can be defined and edited.

Fig. 9 illustrates several windows of OrientDraw used to model the example in Sect. 3.1:

• The “OrientDraw” main window display the ESR diagram.

• The “Notation” window exhibits the symbolic conventions of the basic ESR constructs.

• The “Relationship List” window shows all the relationships, in which an entity is involved.

• The “Semantic Operation Overview” window displays all the specified operational semantics
of a selected relationship type.

• Several dialog windows such as “Participant Specification” and “Semantic Operation Specifi-
cation” allow various specifications w.r.t. entities and relationships.

4.2   OrientMap

OrientMap works in two main stages to translate ESR schemas into OrientSQL schemas. In the
first stage, SQL3 schemas w.r.t. entity types, inheritance, as well as attributes are generated. With
the expressiveness of ORDMs, this mapping process can be well conducted. For example:

Fig. 9 OrientDraw windows



• Entity types in an ESR diagram can be mapped into named row types (with corresponding ta-
bles).

• Generalization/specialization can be defined as inheritance hierarchies between row types (ta-
bles).

• Attributes can be either of built-in types or of UDTs.

• Identifying attributes can be represented using the OID mechanism or primary keys.

• Multivalued attributes can be expressed using collection data types constructors.

• Composite attributes can be described using (unnamed) row types.

In the second stage, OrientMap enriches the schema with OrientSQL statements, so that semantic
relationships can be covered. In Fig. 9 we have displayed the design result using OrientDraw.
OrientMap transforms this graphical representation into OrientSQL specification partly illus-
trated in Fig. 4 (cf. Sect. 3.3.1).

In addition to OrientSQL schema, OrientMap also produces metadata that contain information
on the ESR schema, the OrientSQL schema, and the mapping of these two schemas. The
metadata are essential for supporting later modifications and extensions.

4.3   OrientGen

As precompiler for OrientSQL, OrientGen generates metadata and internal constructs useful for
the system to process and manage data according to specified relationship semantics.

The metadata are organized in two levels of system catalogs: The type-level catalogs contain
information about relationship types (relationships), about the semantics specified between two
participants (references), as well as the semantics valid for single participants (participants). And
for each relationship type, separate instance-level catalogs describe the connections and
semantics of the relationship instances. We refer readers to [17] for details about ORIENT
system catalogs. Below, we will introduce internal relationship constructs produced by
OrientGen. Declarative OrientSQL specifications are transformed into internal implementations
with a user-transparent process roughly illustrated in Fig. 10.

At first, a separate internal construct (relationship object,❶ in Fig. 10) is defined as organiza-
tional framework for describing, processing, as well as maintaining a relationship. In the relation-
ships with composition semantics such asconsist-of, objects may play different roles. Moreover,
there can be more than one participant in an n-ary relationship. Taking all these into consider-
ation, the relationship object is multi-connected to its associated participants (❷ in Fig. 10).

Owner/Participant

Fig. 10 Internal relationship construct
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Then, in the presence of the internal relationship constructs, the logical connections between the
participating objects must be resolved through path mediation methods (❸ in Fig. 10), so that it
is possible to traverse from one participant to another. This builds the basis for overloading the
referencing/dereferencing mechanism.

To maintain specified semantics (❹ in Fig. 10), functional extensions are necessary. The data
manipulation operations will be controlled by internal constructs. Here we distinguish between
operations issued against relationship participants and operations issued against relationship
connections. In the former case, ORIENT’s data processing components (➎ in Fig. 10) will take
the place of the regular DBMS data processing (➏ in Fig. 10). By doing this, we leave normal
DML statements untouched. In the latter case, ORIENT’s specific relationship processing (❼ in
Fig. 10) will come into play.

Points❸-❼ in Fig. 10 imply extensions to the DBMS internals and will be further explained in
the next section.

5 DBMS-interior components

DBMS-interior extensions are indispensable for two purposes: to let the system automatically
control the relationship semantics and to let the user access databases in the usual way.

5.1   OrientSQL processing

SQL statements are processed in relational DBMSs
through several steps [10]. In the first step, a
syntactic and semantic analysis is carried out. For
the statements without search conditions, such as
DDL statements, appropriate DBMS internal primi-
tives will be called to handle these statements. For
the statements with search conditions, such as DML
queries, several other tasks, such as normalization of
the transformed queries, are also performed during
this phase. As a result, internal representations of the
queries are generated for further processing. Subse-
quently, an algebra graph is constructed for optimi-
zation purposes. By replacing logical operators with
physical operators, this algebra graph is then
rewritten and transformed to an execution plan.
Finally, the executable code for the plan is produced
with invocations of DBMS processing primitives.

OrientSQL statements are performed in a similar
fashion. Fig. 11 illustrates the steps proceeded by
various system components with the ORIENT
extensions:

• As an extension of the DBMS parser, ORIENT Parser checks the syntactic and semantic cor-
rectness of new OrientSQL statements (e. g.,CREATE RELATIONSHIP).

• In order to correctly deal withSELECT and path expressions in the presence of the new relation-
ship semantics and constructs, the corresponding part of the DBMS parser is overloaded by
ORIENT. Moreover, ORIENT Path Manager is responsible for traversals via relationships, i. e.,
queries with the referencing and dereferencing operators (cf. Sect. 5.2).

OrientSQL statements

Syntax checker Semantics checker
ORIENT Parser

DBMS Parser

ORIENT Path Manager

Post-parser processing

Compiler

DBMS Function Manager

Optimizer

Executor

ORIENT Primitives

DBMS Primitives

ORIENT Function Manager

DML statements DDL statements

DBMS components ORIENT extensions

Fig. 11 OrientSQL processing



• The DBMS component that dispatches the statements with or without search conditions is ex-
tended with ORIENT Function Manager to cover new-added statements.

• Most of the ORIENT extensions are related to processing primitives. New primitives are real-
ized from scratch for supporting the new statements such asINSERT INTO RELATIONSHIP, whereas
existing DBMS primitives that handleSELECT, INSERT, DELETE, andUPDATEare overloaded with
those taking refined relationship semantics into account. While the algorithms of these process-
ing primitives are described in [17], we will outline below some special problems encountered.

5.2   Overloading referencing/dereferencing

As we have seen in Sect. 3.3.2, OrientSQL
lets the SQL3 referencing/dereferencing
mechanism continue to work as defined by
SQL3. To achieve this, the only reasonable
solution is to rewrite the internal operators.

In Fig. 12, referencing frompackage to
specification and the corresponding deref-
erencing ofp.specification wherep stands
for package are overloaded to resolve the
logical connection betweenpackage and
specification through relationshiprealize.
An important auxiliary data structure is the
resolution table. Based on theresolution
table, the processing of referencing/deref-
erencing can determine that a referencing
attribute (realize) from a referencing type (package) to a referenced type (specification) is
augmented with an internal relationship construct (realize, names other than that of the original
referencing attribute are also allowed). The attributereferenced scope is useful in the case that
the relationship is restricted to certain tables of the referenced type. With the help of all these, the
referencing/dereferencing mechanism can be employed to issue OrientSQL queries like in Fig. 5.

5.3   Semantics control

Special attention should also be
paid to another two issues. The
first is that semantics control
measures for complex structures
should not be taken in isolation.
Database operations can affect
entire relationship hierarchies.
As an example, Fig. 13 illus-
trates two situations. In Fig. 13a,
with the Conditional Deletion
semantics from module to
program, the deletion of a
module (m1) causes the deletion
of the dependent functions (f1,
f2) and procedures (r1) as well as
the corresponding relationship.
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With theMandatory Deletion semantics, however, the deletion ofm1 will lead to not only the
deletion of its own functions and procedures but also the deletion of the program that includes
m1, which, in turn, results in the deletion of other modules (together with their functions and
procedures) included in this program. The whole propagation area is shown in Fig. 13b.

The second is about transaction mechanisms. The realization of relationship semantics requires
proper transaction logic, especially in complex structures. Conventional flat transactions are not
sufficient in the case of, e. g., implementing insert blocks. Since SQL only guarantees statement
atomicity, the most effective way to provide the desired behavior for insert blocks is the use of
nested transactions [11]. When the deferred consistency checks do not reveal a violation of the
specified semantics, the block concept just behaves like a pair of SQL statementsSET

CONSTRAINTS DEFERRED/IMMEDIATE on a set of related constraints. While in case of a consistency
conflict, the subtransaction bracketing the insert block is rolled back thereby providing adequate
failure handling semantics.

5.4   Integration with DBMS

In the following, we will elaborate why we have chosen the current implementation platform and
which modification or augmentation is performed to this platform.

5.4.1   Platform consideration

Our ultimate goal is to enrich DBMSs with dedicated relationship semantics. To a large extent,
the increasing impact of the ORDB technology stems from its extensibility. DataBlades
(Informix [5]), DataCartridges (Oracle 8 [14]), or Extenders (IBM DB2 [4]) are the most
prominent examples of extended packages provided by many ORDBMS vendors or third-party
developers. In contrast to classical extensions for specific application domains by defining a
supplementary layer on top of the DBMS core, the object-relational approach results in a closer
integration of the new functionality with the existing DBMS features. Such an extension
philosophy exactly conforms to the idea of ORIENT — to add features to the user interface of a
DBMS by providing new functionality which is integrated into the DBMS core engine.

Closer investigations have shown, however, that the extensibility is still not sufficient in order to
provide valuable aid for implementing ORIENT. Generally, the “low-level” extension code is
targeted to operations (e. g., input, output, casts, and error handling) on new-defined data types.
No change of the DBMS internals is possible.

As we have seen from the previous discussion, to leave the referencing/dereferencing mechanism
and the syntax of DML operations (SELECT, INSERT, etc.) untouched, we have to attack the DBMS
core. For these reasons, we decided to take PostgreSQL [16] as the baseline of our prototype.
Although PostgreSQL is not a full-fledged product yet, it includes some important OR features
such as UDTs, UDFs, inheritance, and SQL. More importantly, as a public domain DBMS, it
permits to access and change the source code for achieving a deep integration.

5.5   DBMS extensions

Fig. 14 outlines the DBMS-interior architecture of ORIENT with extensions to various
functional components ofPostgres Backend.

• Parser:Postgres Parser is extended withORIENT Syntax Checker (cf. Fig. 11) andORIENT
Semantics Checker (cf. Fig. 11), as well asORIENT Path Manager (cf. Fig. 11).

• Traffic Cop:Traffic Cop is the main component ofPostgres Backend. It coordinates the parser,



the optimizer, and the executor. Moreover, system internal primitives are called directly by
Traffic Cop to process the statements without search conditions (“simple commands”). There-
fore, this is the place whereFunction Manager in Fig. 11 plays its role.

• Executor:Postgres Executor is extended by ORIENT with two groups of primitives:Function
Primitives such asExecRetrieve (), ExecAppend (), ExecReplace (), and ExecDelete ()are
adapted to control relationship semantics during processing data retrieval or modification.Re-
lationship Primitives such asExecInsertIntoRelationship (), ExecUpdateRelationship (), and
ExecDeleteFromRelationship ()are added to handle relationship manipulation.

• Access Methods:Postgres Access Methods
contain the low-level routines to manage
the access of data objects. Also included in
this component isPostgres Transaction
System, which is extended to guarantee the
data consistency in the new context.

• Utilities: Postgres Utilities consist of dif-
ferent routines, among whichError Re-
porting Routinesare most relevant to ORI-
ENT, and thus are considered by our im-
plementation.

Moreover, PostgreSQL is extensible due to
its catalog-driven nature. In order to manage
ORIENT’s metadata that are necessary for
relationship handling and semantics control,
we have extendedPostgres System Catalogs
with several new tables such as
pg_relationships, pg_references, and
pg_participants.

6 Conclusion

The ORDB technology aims at an evolution of the relational data model towards object orien-
tation and, therefore, promises better support for advanced applications as compared to the
conventional relational database technology. However, modeling and processing complex data
relationships with the object-relational approach remains cumbersome and error-prone. In this
work, we have addressed the enrichment of relationship semantics in conformance with the
object-relational paradigm of SQL3. We have provided a framework that captures and maintains
semantically rich relationships in a straightforward and concise way. To this end, we have intro-
duced not only a set of adequate concepts but also discussed the realization of the prototype,
ORIENT, for automatic and transparent semantics control. While the extensions to the DBMS
core are realized in C, all the DBMS-exterior components are implemented using Java and
communicate with PostgreSQL ([16]) through JDBC (Java Database Connectivity Packet) to
store their metadata.

As to the future work, we will continue to complete ORIENT’s functionality. To increase the
applicability of ORIENT, schema evolution w.r.t. relationship definitions has to be considered.
In addition, an appropriate query interface should also be provided in order to achieve our goal,
i. e., handling data relationships in a controlled way. We will employ ORIENT in developing
real-world applications, thereby demonstrating the feasibility of our approach.
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