
Recovery in Multidatabase Systems

Angelo Brayner

Federal University of Ceara

brayner@lia.ufc.br

Theo H�arder
University of Kaiserslautern

haerder@informatik.uni-kl.de

Abstract

A multidatabase consists of a collection of autonomous local databases. Systems used to manage
multidatabases are called multidatabase systems (MDBSs). In such a system, global transactions are
executed under the control of the MDBS. Independently, local transactions are submitted directly
to a local DBS (LDBS) by local applications. An MDBS should provide a mechanism to globally
manage transactions. However, global transactions are long-living and involve operations on multiple
and autonomous local databases. Moreover, MDBSs do not have any information about the existence
and execution order of local transactions. Thus, conventional approaches to manage transactions
are unsuitable for MDBSs. In this paper, we address the reliability problem in MDBSs. For this
purpose, we propose two types of protocols for making MDBSs resilient to failures. One type of
protocol should enforce that, when a given global transaction completes its execution, it has the same
state (committed or aborted) at every site it has run. The other type determines the actions to be
triggered after failures in a multidatabase environment. These protocols can reduce the frequency of
global transaction undo after the occurrence of failures, and make the MDBS able to deal with failures
which may occur in a multidatabase environment.

1 Introduction

An MDBS integrates a set of autonomous and heterogeneous local DBSs. In turn, each local DBS

consists of a local DBMS and a database. Users can access information from multiple sources through

global transactions. Operations belonging to global transactions are executed by local DBMSs. Besides

global transactions, there exist local transactions in a multidatabase environment. Local transactions

result from the execution of local applications. Such applications are typically pre-existing with regard

to the integration realized by MDBSs.

A computer system is subject to failures. Such failures may provoke loss of information. Hence,

MDBSs should be able to react in failure situations in order to restore the multidatabase to a consistent

state, without human intervention, that is, automatically. However, ensuring reliability in MDBSs is a

very complex task. First of all, more types of failures may occur in MDBSs (e.g., a communication failure

which can isolate a local DBS from the MDBS) than in centralized DBMSs. Second, in MDBSs, there

is a tradeo� between preserving local autonomy and providing an e�cient global recovery mechanism.

Since several existing DBMSs do not support the two-phase commit (2PC) protocol [3, 14], we have to

assume that such a protocol can not be used when designing a recovery mechanism for MDBSs.

In order to make transaction processing in MDBSs resilient to failures, two types of protocols are

required. One type of protocol should enforce that, when a given global transaction completes its

execution, it has the same state (committed or aborted) at every site it has run. Such protocols ensure

what we call commit atomicity. They are called commit protocols. The other type of protocols, denoted

recovery protocols, determines the actions to be triggered after failures in a multidatabase environment.

In this work, we will describe a commit and a recovery strategy. They can be implemented to

ensure transaction processing reliability in an MDBS which does not use a 2PC protocol. The proposed

commit strategy guarantees commit atomicity. In turn, the recovery strategy, denoted ReMT (Recovering

Multidatabase Transactions), enables the MDBS to deal with the speci�c failures in multidatabase

environments. Our proposal is suitable to a wide variety of multidatabase applications, such as CAD,

CASE, GIS and WFMS.

This paper is structured as follows. In the next section, a reference architecture for an MDBS is

presented. In Section 3 the most critical failures which may occur in a multidatabase environment will

MDBS

n

n

Global Transaction
ManagerGlobal

Transaction Interface

Global
Transactions

Global
Recovery Manager

Global
Log

Global
Scheduler

Server Log Server Log

Local
Transactions

DBMS

Database

Database System

Database

DBMS

Local
Transactions

Database System 1 (DBS 1) (n)DBS

SUB i1 SUB j1 SUB in SUB jn

 1

Ti Tj

Figure 1: A model for MDBS with recovery support.

be described. Moreover, we will discuss and analyze the problems which arise when these failures happen.

A logging strategy is then provided in Section 4. A protocol for ensuring commit atomicity is described

and analyzed in Section 5. Thereafter, a recovery strategy for recovering from failures in MDBSs is

presented in Section 6. Section 7 concludes this paper.

2 The Multidatabase System Model

The architecture of an MDBS basically consists of the Global Transaction Manager (GTM), a set of

Interface Servers (servers, for short), and multiple LDBSs. To each LDBS, there is an associated server.

An LDBS consists of a DBMS and at least one database. The GTM comprises three modules: Global

Transaction Interface (GTI), Global Scheduler (GS), and Global Recovery Manager (GRM). An MDBS

architecture is depicted in Figure 1.

Users interact with the local DBMS (LDBMS) by means of transactions. Two classes of transactions

are supported in a multidatabase environment:

� Local transactions which are transactions executed by an LDBMS outside the control of the

MDBS and

� Global transactions which comprise transactions submitted by the MDBS to LDBMSs. Global

transactions may be executed in more than one local system. Thus, we de�ne a global transaction

Gi as a set of subsequences fsubi;1, subi;2, subi;3, : : :, subi;mg where each subi;k is executed at

the local system ldbsk as an ordinary local transaction.

We will assume that, after a subsequence SUBi;k of a global transaction Gi ends its execution at the

local system LDBSk, objects updated by this subsequence may be viewed by other global transactions

or local transactions. This represents an attractive property, since local resources are not locked during

long periods of time on behalf of global transactions [6].

Local autonomy is a key property presented by multidatabase technology. For that reason, we

consider the following facets of autonomy: (i) by joining a DBS to an MDBS, no modi�cation in the

DBMS software should be made and (ii) the LDBMS has full control over the processing of transactions

which it executes. This means, the LDBMS can unilaterally abort a transaction at any time, even when

the MDBS has already decided to commit the corresponding global transaction.

Unfortunately we have to give up some aspects of local autonomy, in order to provide a global

recovery mechanism with a higher degree of applicability than the existing proposals. For that reason,

we relax local autonomy in the following way:

1. After executing the analysis pass of the recovery procedures from local system failures, the LDBMS

passes on to the MDBS information about loser transactions1.

2. After an LDBMS completes the recovery actions for local system failures, the interface server

associated with the local system assumes the control of the recovery processing. The server then

starts to execute recovery actions for subsequences which were considered losers by the LDBMS.

During the execution of these actions, no local transaction can be submitted to the restarted

DBMS.

3. An interface server can obtain the information about the state (e.g., active or committed) of a

subsequence running at the local DBS.

4. Each LDBMS implements the two-phase locking (2PL) protocol [9] in order to enforce local seria-

lizability.

Since failures are spread throughout an MDBS (see Section 3), we have decided to distribute the

recovery actions among the GTM and servers. By doing this, we optimize the recovery process. This is

because each component can perform recovery actions without interfering in the processing of components

which were not involved in failures.

We assume that every local DBMS provides an e�cient recovery component. However, a local

recovery component does not perform recovery actions on behalf of the GTM or servers. When servers

or the GTM need to execute recovery actions at a local system, these actions must be submitted to the

local system as local transactions.

In Figure 1, we present a model for an MDBS. The components which provide recovery actions are

shadowed. In order to perform recovery procedures, the GTM and the servers need to access information,

called log data or log records, stored in two di�erent types of log �les: global log and server log. Thus, in

an MDBS, we have a global log �le and several server log �les, one for each server de�ned for the MDBS.

These two types of log �les are stored in non-volatile memory and represent a sequence of log records.

Of course, each local DBMS has a log �le. Due to local autonomy, only the LDBMS can manipulate the

local log �le.

3 Failures in an MDBS

Each component of an MDBS can fail indenpendently, this implies that more types of failures may occur

in MDBSs than in centralized DBMSs. We categorize the most critical failures which may occur in a

multidatabase environment as follows:

Transaction Failures. A particular global transaction may fail (abort). A transaction abort can

be caused by a decision of the GTM (for example, it can be involved in a global deadlock) or can

be requested by the transaction itself. When a global transaction fails, its e�ect should be, somehow,

undone at each local database on which it has executed update operations. Recall that we have made the

following assumption, after a subsequence SUBi;k ends its execution at a local system, objects updated

by this subsequence may be viewed by other global transactions or local transactions. Hence, if a global

1Transactions which do not have reached their commit points before the failure.

transaction Gi (to which SUBi;k belongs) aborts, we can not restore the state of the local database

which existed before the execution of SUBi;k. The recovery mechanism must be able to overcome this

problem. A particular subsequence of a global transaction may also abort. Several reasons may cause

such aborts. However, there are two situations of subsequence aborts which should be handled in a

di�erent manner:

1. A subsequence is aborted on behalf of the LDBMS. This can happen, for instance, when the

LDBMS recognizes that the subsequence is involved in a local deadlock;

2. A subsequence decides to abort. When the subsequence identi�es some internal error condition

(e.g., violation of some integrity constraints or bad input), it aborts its execution.

Local System Failures. LDBSs reside in di�erent and autonomous computer systems (sites). When

the contents of the main memory of the computer system in which a particular LDBS resides are lost or

corrupted (due to operating system or hardware faults), we say that the local system has failed. When a

local system LDBSk is restarted after a failure, the local DBMS of LDBSk should be capable to restore

the most recent transaction-consistent state of the local database [15]. The local recovery actions are

performed outside the control of the GTM. The MDBS should provide a strategy to guarantee commit

atomicity of global transactions which have performed operations at the failed site.

Server Failures. Servers act as interfaces between an MDBS and the LDBSs. When a server associated

to a local system LDBSk fails, subsequences of global transactions submitted to LDBSk can not be

executed, although the site of LDBSk is in operation. We assume that the GTM can identify that a

given server is not in operation.

GTM Failures. Such a failure can be caused by a bug in the GTM code, a hardware failure or an opera-

ting system fault at the site at which the GTM is running. A failed and restarting GTM should execute

recovery actions to guarantee that the local DBMSs reect the e�ects of committed subsequences, al-

though the respective global transactions have not yet been committed. In order to provide this feature,

the GRMmust avoid to undo global transactions which were not committed when the failure has occured.

Communication Failures. The components of an MDBS are interconnected via communication links.

These links are also subject to failures. Typically, such failures break the communication among some of

the components of an MDBS. For instance, the link between a local system and a server may be broken.

In such a situation, the local system and the server will continue to work correctly. Notwithstanding,

this can lead the local system to abort the execution of some subsequences (which are being executed at

the local system) by timeout.

4 Logging Strategy

A key goal of our recovery strategy is to reduce the frequency of global transaction undo after the

occurrence of failures. For that reason, we need to save more information in the log �les than it is

recorded in centralized databases. In this section, we describe what type of information and how it is

stored in the log �les.

4.1 Global Logging Method

The GRM writes log records for each operation of a global transaction in the global log �le. In addition,

the GRM forces a log record for the application's state to the global log �le whenever a subsequence

initiates its operation.

The information about the application's state must be given by the application itself, since the GRM

has no knowledge about it. The GRM can obtain this information using the following strategy. When

the GRM receives a begin-of-subsequence operation (see Section 5), it can require the application to

which the subsequence belongs to generate an installation point2. The application then generates the

installation point and sends it to the GRM. Thereafter, the GRM forces a log record for the installation

point to the global log �le.

A log record of the global log �le contains the following �elds:

� LSN (Log Sequence Number). An integer which uniquely identi�es a log record. The LSN increases

monotonically.

� LRT (Log Record Type). An array of characters which identi�es the type of the record. The

possible values for an LRT are:

{ BOT (Begin Of Transaction). The log record describes the begin of a global transaction.

{ BOS (Begin Of Subsequence). The log record describes the begin of a subsequence belonging

to the global transaction TRID.

{ DBO (Database Operation). The log record contains information about a read or write

operation executed by SUBID. The �eld LRC contains the information about the type of the

operation (read or write) and on which database object the operation is executed.

{ IP (Installation Point). It records the execution state of the application when a subsequence

SUBID initiates its execution.

{ ST (State). The log record contains information about the state of a global transaction TRID.

In this case, the �eld SUBID is empty. It can also indicate the state of a subsequence SUBID

belonging to the global transaction TRID. We postpone the discussion about the states of

global transactions and subsequences until Section 6.

� LRC (Log Record Content). An array of characters which contains information depending on the

value of LRT. For example, if the value of LRT is `IP', then the LRC contains information about

the initial execution state of a subsequence.

� TRID (Transaction IDenti�er). An integer which identi�es the global transaction whose information

is stored in the log record.

� SUBID (SUBsequence IDenti�er). An integer which identi�es the subsequence belonging to the

global transaction TRID.

Therefore, the global log contains information about the execution of global transactions and their

subsequences. Furthermore, the global log stores the initial execution state of each subsequence (for

example, initial values of local variables in the program that execute the subsequence) of a multidatabase

transaction.

4.2 Logging Protocol in Servers

Each server log contains information about subsequences executed at a particular LDBS. This informa-

tion provides the necessary support to the server for performing recovery actions after server failures,

local systems failures and communication failures.

A server generates a log record for each operation of a subsequence as well as a log record for the

application state whenever a subsequence initiates its operation. The information about the application's

state is forwarded by the GTM, when it submits a begin-of-subsequence operation to the server. The

server forces these records to the server log �le immediately. A server log record has the same structure

of global log record.

2An installation point (also called application checkpoint) reects the state of an application which should be saved in

non-volatile memory [20].

5 Strategy for Ensuring Commit Atomicity

When the GTM receives a commit operation for a global transaction, it must ensure that every subse-

quences belonging to the global transaction is locally committed. If this is not possible for some reason,

the entire global transaction must be aborted. For that reason, the GTM of an MDBS should implement

a protocol, denoted commit protocol, for ensuring the atomicity of commit operations.

In order to ensure commit atomicity for multidatabase transactions, we propose the following strategy.

The last operation of every subsequence of a particular global transaction Gi must be a local commit

operation. We denote such an operation with lci;k, where k represents the LDBS in which the subsequence

should be committed. A local commit operation within a subsequence means that the e�ect of the

subsequence should be reected in the local database. Besides this, locks held by the subsequence are

released.

When the GTM (see Figure 1), more precisely the GS, receives a local commit operation (lci;k)

from a global transaction Gi to commit a given subsequence SUBi;k, it submits this operation to the

appropriate server, which in turn converts the lci;k operation into an ordinary commit operation to be

executed by the LDBMS.

If the subsequence SUBi;k is successfully committed, the server sends a message to the GS reporting

this fact. The server then generates a log record for SUBi;k, where the �elds LRT and LRC contain

`ST' and `locally-committed', respectively. After that, the server saves this record in the server log �le.

When the GS receives the message sent by the server, the GS forwards this information to the GRM. In

turn, the GRM forces to the global log �le a log record for SUBi;k. For this log record, the contents of

LRT and LRC are 'ST' and 'locally-committed', respectively. In such a situation, we say that the global

transaction Gi is locally-committed at that particular site (LDBSk).

However, due to local autonomy, local DBMSs can unilaterally abort subsequences, even after the

server has submitted commit operations for subsequences. In this case, the server forces to the server log

a record with the information that the subsequence was aborted. After that, it sends a message to the

GS indicating that the subsequence was aborted. The GS forwards this information to the GRM which,

in turn, generates a log record containing the information that the subsequence was aborted. In the

meantime, the server executes some recovery actions in order to avoid that the entire global transaction

has to be aborted. These actions correspond to the recovery strategy we propose for subsequence failures.

This strategy is described in the next section.

When the GS receives a commit operation (c) from a global transaction Gi, it sends a commit request

to the GRM. The GRM veri�es in the global log whether all subsequences belonging to Gi have been

locally committed. With the knowledge that every subsequence of Gi has already been committed, the

global transaction can be globally committed.

It is important to notice that, hereafter, we will consider that a global transaction contains the

following types of operations:

� Database operation. It represents an action which should be executed on a database object. A

database operation can be read or write operation;

� Control operation. It represents an action which is not executed on database objects. Control

operations can be classi�ed as initiation or termination operations. A global initiation operation,

denoted BOT, represents the fact that a new transaction is beginning its execution. A local initia-

tion operation, denoted BOSi;k, indicates that a new subsequence SUBi;k belonging to the global

transaction Gi is beginning its execution. The counterpart of initiation operations are termination

operations. Local termination operations are used to represent a local commit (for short, lc) or an

abort (la) to be executed for a particular subsequence. Global termination operations reect the

fact that the execution of a given global transaction is either successfully terminated, represented

by a global commit operation (c), or abnormally interrupted, indicated by a global abort operation

(a).

A local commit operation executed by a subsequence SUB
i;k

reects the fact that operations of the

global transaction G
i
can be locally committed by local system LDBSk . Moreover, locks held by G

i
at

each site can be released.

6 ReMT - A Recovery Strategy for MDBSs

As already mentioned, reliability in MDBSs requires the design of two di�erent types of protocols: com-

mit and recovery protocols. In Section 5, we have described a commit protocol which enforces commit

atomicity of global transactions. In this section, we will present a strategy, called ReMT, for recovering

multidatabase consistency after failures, without human intervention. In MDBSs, recovering multidata-

base consistency has a twofold meaning. First, for global transaction aborts, recovering multidatabase

consistency means to undo the e�ects of locally committed subsequences belonging to the aborted global

transactions from a semantic point of view. In addition, the e�ects of transactions which have accessed

objects updated by aborted global transactions should be preserved (recall that, after the last operation

of a subsequence, all locks held by the subsequence are released). For the other types of failures, recove-

ring multidatabase consistency means to restore the most recent global transaction-consistent state. We

say that a multidatabase is in a global transaction-consistent state, if all local DBMSs reect the e�ects

of locally-committed subsequences.

The ReMT strategy consists of a collection of recovery protocols which are distributed among the

components of an MDBS. Hence, some of them are performed by the GRM, some by the servers and some

are provided by the LDBMSs. We assume that every participating LDBMS provides its own recovery

mechanism. Local recovery mechanisms should be able to restore the most recent transaction-consistent

state [15] of local databases after local failures.

For each type of failure described in Section 3, we propose a speci�c recovery scheme.

6.1 Transaction Failures

As seen before, we identify di�erent kinds of transaction failures which may occur in a multidatabase

environment. Each of them can be dealt with in a di�erent manner. First, a particular global transaction

may fail. This can be caused by a decision of the GTM or can be requested by the transaction itself.

Second, a given subsequence of a global transaction may fail.

In the following, we will propose recovery procedures to cope with failures of global transactions and

subsequences.

6.1.1 Global Transaction Failures

A global transaction failure may occur for two reasons. The abort can be requested by the transaction

or it occurs on behalf of the MDBS. The GTM can identify the reason which has caused the abort. This

is because the GTM receives an abort operation from the transaction, whenever the abort is required

by the transaction.

We have observed that the recovery protocol for global transaction failures can be optimized if the

following design decision is used: speci�c recovery actions should be de�ned for each situation in which a

global transaction abort occurs. Therefore, we have designed recovery actions which should be triggered

when the global transaction requires the abort, and recovery actions for coping with aborts which occur

on behalf of the MDBS.

Aborts Required by Transactions

Since we assume that updates of a global transaction Gi may be viewed by other transactions, we can

not restore the database state which existed before the execution Gi, if Gi aborts. This implies that

the standard transaction undo [15] action can not be used in such a situation. However, the e�ects of a

global transaction must be somehow removed from the database, if it aborts.

For that reason, we need a more adequate recovery paradigm for such an abort scenario. This new

recovery paradigm should primarily focus on the fact that the e�ects of transactions which have accessed

the objects updated by an aborted global transaction Gi and database consistency should be preserved,

when removing the e�ects of Gi from the database. The key to this new recovery paradigm is the notion

of compensating transactions [10, 17, 18].

A compensating transaction CT \undoes" the e�ect of a particular transaction T from a semantic

point of view. That means, CT does not restore the physical database state which existed before the

execution of the transaction T . The compensation guarantees that a consistent (in the sense that all

integrity constraints are preserved) database state is established based on semantic information, which

is application-speci�c.

By de�nition, a compensating transaction CTi should be associated with a transaction Ti and may

only be executed within the context of Ti. That means that the existence of CTi depends on Ti. In

other words, CTi may only be executed, if Ti has been executed before. Hence, CTi must be serialized

after Ti. We will assume that persistence of compensation is guaranteed, that is, once the compensating

action has been started, it is completed successfully.

For our purpose the concept of compensation is realized as follows. For a given transaction Gi con-

sisting of subsequences SUBi;1, SUBi;2, : : :, SUBi;n, a global compensating transaction CTi is de�ned,

which in turn consists of a collection of local compensating transactions CTi;k, 0 < k � n. Each local

compensating transaction CTi;k is associated to the corresponding subsequence SUBi;k of transaction

Gi. Of course, CTi;k must be performed at the same local site as does SUBi;k and must be serialized

after SUBi;k.

Now, we are in a position to describe the recovery strategy for aborts required by transactions. When

the GS receives an abort request from a global transaction Gi, the GS forwards this operation to the

GRM. The GRM reads the global log in order to identify which subsequences of Gi are still active.

For each active subsequence, the GRM sends a local abort operation to the servers responsible for the

execution of the subsequence. The GRM then waits for an acknowledgment from these servers con�rming

that the subsequences were aborted. After that, the GRM triggers the corresponding local compensating

transactions for every subsequence which has already been locally committed. This information can be

retrieved from the global log �le. Operations of the compensating transactions are scheduled by the GS.

Therefore, the execution of local compensating transactions will undo the e�ect of committed subse-

quences from a semantic point of view.

Since we have assumed that the LDBMSs implement 2PL to enforce local serializability, the com-

pensation mechanism described above satis�es the following requirement. A particular transaction T

(subsequence or local transaction) running at a local system either views a database state reecting the

e�ects of an updating subsequence SUBi;k or it accesses a state produced by the compensating tran-

saction of SUBi;k, namely CTi;k. In other words, T can not access objects updated by SUBi;k and by

CTi;k. Such a constraint is required for preserving local database consistency.

Thus far, we have assumed that the e�ect of any transaction can be removed from the database

by means of a compensating transaction. However, not all transactions are compensatable. There are

some actions, classi�ed by Gray as real actions [12], which present the following property: once they are

done, they can not be undone anymore. For some of these actions, the user does not know how they

can be compensated, that is, the semantic of such compensating transactions is unknow. For instance,

the action �ring a missile can not be undone. Moreover, the semantic of a compensating transaction for

this action can not be de�ned. For that reason, we say that transactions involving such real actions are

not compensatable.

In order to overcome this problem, we propose the following mechanism. The execution of local

commit operations for non-compensatable subsequences should be delayed until the GTM receives a

commit for the global transaction containing the non-compensatable subsequences. This mechanism

requires that the following two conditions are satis�ed.

First, the user should specify which subsequences of a global transaction are non-compensatable3.

3When it is not speci�ed that a subsequence is non-compensatable, it is assumed that the subsequence is compensatable.

This is a reasonable requirement, since our recovery strategy relies on a compensation mechanism. This

latter mechanism presumes that the user de�nes compensation transactions, when he or she is designing

transactions. Hence, the user can identify at this point, which subsequences of a global transaction may

not be compensatable.

Second, the information identifying which subsequences are non-compensatable should be made avai-

lable to the GTM. For instance, the GTM can be designed to receive this information as an input

parameter of subsequences.

The procedure of delaying the execution of local commit operations for non-compensatable subse-

quences can be realized according to the following protocol:

1. When the GTM receives the �rst operation of a particular subsequence, it must identify whether

the subsequence is compensatable. If the subsequence is non-compensatable, the GTM saves this

information in the log record of the subsequence. The log record should be stored in the global log

�le.

2. If the GTM receives a local commit operation for a non-compensatable subsequence, it marks the

log record of the subsequence stored in the global log with a ag. This ag captures the information

that the local commit operation for the subsequence can be processed when the global transaction

is to be committed.

3. Whenever the GTM receives a commit operation for a given global transaction Gi, it veri�es in

the global log if there are local commit operations to be processed for subsequences of Gi. This

can be realized by reading the log records of all subsequences belonging to Gi.

Following this protocol, we ensure that the e�ects of non-compensatable subsequences are reected in

the local databases only when the global transaction is to be committed. This eliminates the possibility

of undoing the e�ect of such subsequences.

Unfortunately, this mechanism has the following disadvantage. Locks held by non-compensatable

subsequences can only be released when the global transaction completes its execution.

Another drawback of the compensation approach is the speci�cation of compensating transactions for

interactive transactions as, for instance, design activities. As a solution for overcoming such a problem,

we propose the following strategy.

When an interactive global transaction G has to be aborted and G has some locally committed

subsequences, the GTM reads the global log �le in order to identify which subsequences of G were

already locally committed. After that, the GTM noti�es the user that the e�ects of some subsequences

of G must be \manually" undone. The GRM informs which subsequences should be undone and what

operations these subsequences have executed. Moreover, the GRM informs the user on which objects

these operations have been performed.

The user then starts another transaction in order to undo the e�ect of such subsequences. Objects

updated by these subsequences may have been viewed by other global transactions. For that reason, the

user must know which global transactions have read these objects. With this knowledge the user can

notify other designers that the values of the objects x,y,z they have read (the GRM has provided this

information) are invalid.

Aborts on Behalf of the MDBS

Usually, such aborts occur when global transactions are involved in deadlocks. Deadlocks are provoked

by transactions trying to access the same objects with conicting locks. Committed subsequences have

already released their locks. Besides this, they are not competing for locks anymore. Hence, operations

of such subsequences can neither provoke nor be involved in deadlocks.

This observation has an important impact in designing recovery actions to cope with transaction

aborts required by the MDBS. It is not necessary to abort entire global transactions to resolve deadlock

situations. Aborting active subsequences is su�cient. However, we need to replay the execution of

the aborted subsequences in order to ensure commit atomicity. This implies that new results may be

produced by the resubmission of the subsequences. In such a situation, the user must be noti�ed that

the subsequences were aborted and, for that reason, they must be replayed, which may produce di�erent

results from those he/she has already received. With this knowledge, the user can decide to accept the

new results or to abort the entire global transaction.

Observe that, if the original values read by the failed subsequences were not communicated to other

subsequences (those reads may be invalid), the resubmission of the aborted subsequences will produce

no inconsistency in the execution of entire global transaction. Such a requirement is reasonable in a

multidatabase environment.

Based on these observations, we propose the following strategy for dealing with global transaction

aborts which occur on behalf of the MDBS.

When the GTM (or another component of the MDBS) decides to abort a transaction Gi, the GRM

must be informed that Gi has to be aborted. When the GRM receives this signal, it veri�es in the

global log which subsequences of Gi are still active. For each active subsequence, the GRM sends a

local abort operation to the servers (through the GS, of course) responsible for the submission of these

subsequences to the local systems. In the meantime, the GRM waits for an acknowledgment from

the servers con�rming the local aborts of the subsequences. Furthermore, the GRM sends to the user

responsible for the execution of Gi the noti�cation informing that some subsequences of Gi have to be

aborted and they will be replayed. The GRM is able to inform the user which operations have to be re-

executed. The user can then decide to wait for the resubmission of the aborted subsequences or to abort

the entire global transaction. If the user decides to abort the entire global transaction, the process of

replaying the subsequences is cancelled and the recovery protocol for global transaction failure requested

by the transaction is triggered. Otherwise, the recovery protocol for global transaction aborts which

occur on behalf of the MDBS goes on as described below.

When the GRM has received the acknowledgments that the subsequences were aborted in the local

DBMSs, the GRM starts to replay the execution of each aborted subsequence SUBi;k. For that pur-

pose, the GRM must read from the global log �le the log record which contains information about the

installation point of each subsequence to be replayed. This record can be identi�ed by the �elds SUBID

and LRT. Observe that LRT must have the value `IP'.

6.1.2 Subsequence Failures

As mentioned before, a subsequence of a particular global transaction may abort for many reasons.

However, there are two situations of subsequence aborts which should be handled in a di�erent manner.

The �rst situation is when the subsequence is aborted on behalf of the local DBMS. The second situation

is when the subsequence decides to abort its execution. In this section, we describe a recovery method

to deal with these two subsequence abort situations.

Aborts on Behalf of the Local DBMS

Typically, DBMSs decide to abort subsequences, when such subsequences are involved in local deadlocks.

After such aborts, the e�ect of failed subsequences are undone by the LDBMSs. Locks held by the

aborted subsequences are released. As soon as the server recognizes that a particular subsequence has

been aborted by the local DBMS, the server reads the server log �le and retrieves the log records of

the aborted subsequence. The server stores a new log record for the subsequence with LRT=`ST' in the

server log �le. Moreover, the server sends a message to the GTM reporting that the subsequence has

been aborted by the LDBMS. The GRM forces a record log of the failed subsequence to the global log

�le. By doing this, the new state of the subsequence is stored in the global log �le as well.

After that, the server forces a log record with the new state of the subsequence to the server log and

starts the resubmission of the aborted subsequence. As already seen, new results may be produced by

such a resubmission. However, we propose a noti�cation mechanism which gives the user the necessary

support to decide for accepting the new results or for aborting the entire global transaction.

It is important to notice here that a given subsequence SUBi;k belonging to a global transaction Gi

may have more than one log record with LRT=`ST' (in each log �le) during the execution of Gi. For

such a subsequence, only the last record with LRT=`ST' should be considered.

Aborts Required by Subsequences

When the subsequence identi�es some internal error condition (e.g., violation of some integrity constraints

or bad input), it aborts its execution. Sometimes the resubmission of the subsequence is su�cient to

overcome the error situation. However, we can not guarantee that the subsequence will be committed

after being resubmitted a certain number of times. This is because the abort is caused when some

internal error condition occurs (e.g. division by 0). Hence, it is impossible to predict whether or not

the same problem will occur in a repeated execution of the subsequence. In this case, the solution is to

abort the complete global transaction. The user or the GTM should be able to make such a decision.

Observe that, when an internal error occurs, it is necessary that the subsequence reads new values

(new input) and produces new results in order to overcome the internal error condition. Based on this

observation, we propose the following actions for dealing with aborts required by subsequences.

When the subsequence decides to abort its execution, an explicit abort operation is submitted to

the GS, which in turn sends this operation to the GRM. The GRM then writes a new log record with

LRT=`ST' for the subsequence in order to reect its new state. Thereafter, the GRM forwards the abort

operation to the server. In turn, the server forces a log record with the new state of the subsequence to

the server log and submits the abort operation to the LDBMS. After the subsequence is aborted by the

LDBMS, the GTM resubmits the aborted subsequence to the LDBMS.

6.2 Local System Failures

Local DBSs reside in heterogeneous and autonomous computer systems (sites). When a system failure

occurs at a particular site, we assume that the LDBMS is able to perform recovery actions in order to

restore the most recent transaction-consistent state. These actions are executed outside the control of

the MDBS. After an LDBMS completes the recovery actions, the interface server assumes the control of

the recovery processing. While the server is executing its recovery actions, no local transaction can be

submitted to the restarted DBMS.

Before describing the strategy for recovering from local system failures, we need to de�ne the states

of a subsequence in a given server. A subsequence may present four di�erent states in a server. A

subsequence is said to be active, when no termination operation for the subsequence has been submitted

to the local DBMS by the server. When the server submits a commit operation, the subsequence

enters the to-be-committed state. If the commit operation submitted by the server has been successfully

executed by the local DBMS, the subsequences enters the locally-committed state. When the subsequence

aborts, it enters the locally-aborted state. Figure 2 illustrates the states of a subsequence in servers.

to-be-committed

locally-committed

locally-aborted

active

Figure 2: States of a particular subsequence in a server.

After the server recognizes that the local system has failed, it waits for an acknowledgment of the

local system reporting that the local recovery actions were completed. The server then starts to execute

its recovery actions. These actions consist of an analysis pass and a redo pass over the server log �le.

The analysis pass reads the server log sequentially in order to identify subsequences which were active or

to-be-committed before the occurrence of the failure. For each subsequence which was to-be-committed,

the server veri�es if this subsequence was considered a loser transaction by the local DBMS (recall that

we are assuming that the server can obtain this information). The e�ects of such subsequences were

undone during the execution of the local recovery actions. The analysis pass builds a table, denoted AST

(active subsequence table) which contains SUBID and LSN of the �rst log record of subsequences whose

e�ects were undone by the local recovery actions. At the end of the analysis pass, the server knows for

which subsequences it has to rebuild the e�ects in the local database.

The redo pass starts from the minimum of the LSN in the table constructed during the analysis pass.

The server scans the server log. The write operations are resubmitted to the local DBMS whenever the

log scan encounters a write-operation log record for a subsequence in the table AST. By doing this, the

e�ects of such subsequences are deterministically rebuilt in the local database. This is because no local

transactions are executed until the server has completed its recovery actions.

When the server completes the execution of the redo pass, it sends a message to the local DBMS

reporting this fact. The local DBMS can then resume the execution of local transactions.

Note that, when a local system fails, the global lock manager does not release the locks held by

subsequences executed in the failed system.

6.3 GTM Failures

Such failures can be caused by a bug in the GTM code, a hardware failure or an operating system fault

at the site where the GTM is running. A failed and restarting GTM should execute recovery actions to

guarantee that LDBMSs reect the e�ects of committed subsequences, although the respective global

transactions have not yet been committed. This implies that the GRM must avoid to undo global

transactions which were not committed when the failure has occured.

A particular subsequence at the GTM's site may present one of the following states: active, to-be-

committed, committed or aborted. It is important to notice here that a global transaction presents

only the active, committed or aborted states. In order to avoid to undo global transactions after GTM

failures, the GRM must manage information about global-transaction and subsequence states as follows.

A subsequence is said to be active, when the GRM receives a message from the GS reporting that a

local initiation operation (BOS) for that subsequence has arrived. This information is then stored in the

global log by the GRM. When the GS receives a local commit operation, it forwards this operation to the

GRM. In turn, the GRM saves an information in the global log to reect the new state (to-be-committed)

of the subsequence. If the GRM receives an acknowledgment indicating that the local commit operation

has been executed successfully by the local DBMS, it updates the information about the state of the

subsequence. This is necessary, because the subsequence has passed to the committed state. When the

subsequence aborts, it enters the aborted state and, thereby, the global log should be updated.

Observe that a particular subsequence may present di�erent states at the GTM's site and in the

server. To illustrate this fact, consider that the GS has received an lc operation for a subsequence

SUBi;k. The GS forwards this operation to the GRM, which in turn saves the information that SUBi;k

has passed to the to-be-committed state. However, at this moment, SUBi;k is active with regard to the

server.

When an initiation operation for a given transaction Gi arrives at the GS, it informs the GRM that

an initiation operation for Gi has arrived. The GRM, in turn, records the information that Gi is active

in the global log. When all subsequences of Gi have reached the committed state and a global commit

operation for Gi has arrived, Gi enters the committed state. When a global abort operation is received,

the GRM saves this fact by storing the information that the transaction has entered the aborted state.

Now, we are in a position to describe recovery actions for GTM failures. We will consider that global

applications run at clients which interact with the GTM. Thus, global applications and the MDBS run

in a client-server environment. We will assume that, when a GTM failure occurs, the execution of global

applications is interrupted at the clients, but not aborted.

GTM restart consists of an analysis pass and and a redo pass over the global log �le. During the

analysis pass, the GRM scans all log records until the end of the log and builds a table, denoted AST

(active subsequence table), which has the same structure as the table used for recovering from local

system failures (see Section 6.2).

The redo pass consists of the following actions. The GRM sends to the GS all operations of sub-

sequences in the table AST. By doing this, the execution scenario (for the active subsequences) which

existed before the failure is recreated. For instance, the global lock table is recreated. This is possible,

because the global log �le represents the execution history of global transactions. After the redo pass

is completed, the execution of global applications (which has been interrupted at the clients) can be

resumed.

6.4 Server Failures

Servers act as interfaces between an MDBS and the LDBSs. From a transaction processing standpoint,

their primary function is to control the submission of sequences of operations belonging to global tran-

sactions to the local DBMS. Thus, when a server associated to a local system LDBSk fails, subsequences

of global transactions submitted to LDBSk can not be executed, although LDBSk is still operational.

We assume that the GTM can identify when a given server has failed.

The protocol for handling server failures is the following:

1. When the GTM recognizes that a server has failed, it aborts the execution of all active subsequen-

ces which were being executed in the failed server. Log records (with LRT=`ST') for the aborted

subsequences are forced to the global log �le in order to store the information that these subse-

quences have passed from the active to the aborted state. Moreover, the GTM stops submitting

operations to that server. In order to decide what kind of recovery actions should be performed

for to-be-committed subsequences, the GTM must wait until the server has been restarted, since

the GTM must know whether the subsequence was successfully committed by the local DBMS.

2. After the server is restarted, it should trigger the following recovery procedures:

(a) The server log is sequentially read. For each subsequence which was active immediately before

the occurrence of the failure, the server sends an abort operation to the local DBMS. If the

subsequence was to-be-committed, the server may query the external interface of the local

DBMS in order to know whether or not the subsequence was successfully committed by the

local DBMS. The server then forwards this information to the GTM.

(b) The server log must be updated. For instance, if a particular to-be-committed subsequence

was aborted by the local DBMS before the occurrence of the failure, the server writes a record

in the server log �le in order to capture this information.

(c) After the server log is read and updated, the server sends a message to the GTM informing

that it is in operation.

3. When the GRM receives a message from the server reporting that it is operational, the GRM replays

the aborted subsequences. After that, the recovery procedure for server failure is completed.

6.5 Communication Failures

The components of an MDBS are interconnected via communication links. Typically, communication

failures break the communication among some of the components of an MDBS. According to Figure 2,

there may be two types of communication links in MDBSs. One type of link, which we call Server-LDBS

link, connects servers to local systems. If the interface servers are not integrated with the GTM, that is,

each server resides at a di�erent site from the GTM site, the other type of link connects the GTM to

servers. Such a communication link is denoted GTM-Server link. We propose di�erent recovery strategies

for handling failures in each type of communication link.

In order to enable MDBSs to cope with communication failures, the following requirement must be

satis�ed. Each server in an MDBS must know the timeout period of the local DBMS with which the

server is associated. We also assume that each server has its own timeout period and this timeout period

is larger than the timeout period of the respective local DBMS.

Failures in Server-LDBS links

In such failures, the link between a particular local system and a server is broken. The local system

and the server will continue to work correctly. Such a situation can lead the local system to abort the

execution of some subsequences (which are being executed at the local system) by timeout.

For coping with communication failures between a server and a local system, we propose the following

strategy.

If the communication link is reestablished before the timeout period of the local DBMS is reached,

no recovery action is necessary. This is because no subsequence was aborted by timeout.

In the case that the communication link is reestablished after the timeout period of the local DBMS is

reached, but before the timeout period of the server, the following recovery actions should be performed

by the server:

1. The server scans the server log �le. During the scan process, the following recovery actions should

be performed.

(a) For each subsequence which was active before the occurrence of the failure, the server exe-

cutes recovery actions, since such subsequences were aborted by the LDBMS by timeout.

These recovery actions are the same as those which should be performed for recovering from

subsequence failures required by LDBMSs (see Section 6.1).

(b) If the subsequence was to-be-committed, the server may query the external interface of the

LDBMS in order to know whether the subsequence was successfully committed. In this case,

the server performs actions to con�rm the fact that the subsequence was committed (for

instance, log records with LRT=`ST' must be forced to the server log and global log �les).

Otherwise, it considers the subsequence as locally aborted and performs actions for recovering

from subsequence failures required by LDBMSs.

If the timeout period of the server is reached before the communication link is reestablished, the

server sends a message to the GTM reporting that it can not process subsequences anymore. After that,

the GTM aborts the execution of all subsequences which were being executed in the failed server. Log

records for the aborted subsequences are stored in the global log �le with their new state (aborted). The

GTM stops submitting operations to that server. If the communication link is reestablished before the

timeout period of the GTM is reached, recovery actions for recovering from server failures are executed.

If the timeout period of the GTM is reached before the Server-LDBS link is reestablished, the global

log �le is sequentially read. For each global transaction which has submitted a subsequence to the

server whose Server-DBMS link is broken, the subsequence's log record with LRT=`ST' is read. If the

subsequence is active or to-be-committed, the GRM aborts the global transaction. In this case, recovery

actions for global transaction recovery should be triggered.

Observe that a subsequence which was submitted to the server with a broken Server-LDBS link and

has a to-be-committed state in the global log may have been committed by the local DBMS. In this case,

after the link is reestablished, the server must be able to query the external interface of the LDBMS to

know whether or not the subsequence was successfully committed. If the subsequence was committed, a

compensating transaction for such a subsequence should be executed.

Failures in GTM-Server links

Of course, such a failure has only to be considered, if it is assumed that the interface servers reside at

di�erent sites from the GTM's site.

When a failure in the GTM-Server link occurs, the link between the GTM and a server is broken.

In order to enable MDBSs to cope with failures in GTM-Server links, we propose the strategy described

below.

Without loss of generality, consider that the link between the GTM and the server Serverk is broken.

Serverk is associated with local system LDBSk. If the communication link is reestablished after the

timeout period of LDBSk is reached, but before the timeout period of the server, the following actions

are performed:

� The server log is sequentially read.

1. For each subsequence which was active before the failure, the server executes recovery actions

for subsequence failures required by local DBMSs, since such transactions were aborted by

the local DBMS (timeout).

2. If the subsequence was to-be-committed, the server may query the external interface of the

local DBMS in order to know whether the subsequence was committed. In this case, the

server performs the actions to reect the fact that the subsequence was locally committed.

Otherwise, it performs actions for recovering from subsequence failures required by local

DBMSs.

If the link is reestablished after the timeout period of Serverk, but before the timeout period of the

GTM is reached, actions for recovering from server failures are started.

If the timeout period of the GTM is reached before the link is reestablished, the GRM reads the global

log in order to identify active global transactions which have submitted a subsequence to Serverk whose

link with the GTM is broken. For each global transaction satisfying this condition, the GRM veri�es

the state of the subsequence submitted to Serverk. If the subsequence was active or to-be-committed,

the GRM aborts the global transaction. Recovery actions for global transaction recovery should be

triggered. A subsequence which has a to-be-committed state in the global log may have been committed

by the local DBMS. In this case, after the communication link is reestablished, the server must be

able to query the external interface of the LDBMS in order to know whether or not the subsequence

was successfully committed. If the subsequence was committed, a compensating transaction for such a

subsequence should be executed.

7 Conclusions

In this paper, we have presented strategies to guarantee reliability in the transaction processing in

MDBSs. In order to describe these strategies, we have �rst categorized and analyzed the critical failures

which may occur in a multidatabase environment.

We have then proposed an extended model for an MDBS architecture which provides the necessary

support for the execution of recovery actions after failures. A key feature of this architecture is that it

makes viable the distribution of recovery actions among the diverse components of an MDBS. By doing

this, we optimize the recovery process, since each component can perform recovery actions without

interfering in the processing of components which were not involved in failures.

Furthermore, we have proposed a commit protocol. The main goal of this protocol is to ensure that,

when a global transaction ends its execution, it presents the same state (committed or aborted) at every

site it has run.

Finally, we have described recovery actions to cope with failures we have classi�ed in this work. The

recovery strategy, denoted ReMT, consists of a collection of recovery protocols, which are distributed

among the components of an MDBS.

The key advantages of the ReMT strategy are:

� It can reduce the frequency of global transaction undo after the occurrence of failures, and

� it is able to deal with several types of failures which may occur in a multidatabase environment.

Although it seems to be obvious that a recovery mechanism for an MDBS should have these pro-

perties, most of the existing MDBSs (prototypes or commercial products) are not capable to achieve

them. For instance, MYRIAD (University of Minnesota), MERMAID (Unisys Corporation), Pegasus

(Hewlett-Packard) do not provide these properties. In [4], the reader �nds a detailed discussion about

existing MDBSs.

References

[1] �Ozsu, M. T. and Valduriez, P. Distributed Database Systems: Where Are We Now? IEEE

Computer, 24(8):68{78, August 1991.

[2] Alonso, R., Garcia-Molina, H., Salem, K. Concurrency control and recovery for global procedures

in federated database systems. A quartely bulletin of the Computer Society of the IEEE technical

comittee on Data Engineering, 10(3), 1987.

[3] Bernstein, P. A., Hadzilacos, V. and Goodman, N. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

[4] Bouguettaya, A., Benatallah, B. and Elmagarmid, A. Interconnecting Heterogeneous Information

Systems. Kluwer Academic Publishers, 1998.

[5] Brayner, A. Transaction Management in Multidatabase Systems. PhD thesis, University of Kaisers-

lautern, Germany, 1999.

[6] Brayner, A., H�arder, T. and Ritter, N. Semantic Serializability: A Correctness Criterion for Proces-

sing Transactions in Advanced Database Applications. Data & Knowledge Engineering, 31(1):1{24,

1999.

[7] Breitbart, Y., Garcia-Molina, H., Silberschatz, A. Overview of multidatabase transaction manage-

ment. The VLDB Journal, (2):181{239, 1992.

[8] Elmagarmid, A. K., Jing, J., Kim, W. and Bukhres, O. Global Committability in Multidatabase

Systems. IEEE Transactions on Knowledge and Data Engineering, 8(5):816{824, October 1996.

[9] Eswaran, K.P., Gray, J.N., Lorie, R.A. and Traiger, I.L. The Notions of Consistency and Predicate

Locks in a Database System. Communications of the ACM, 19(11):624{633, November 1976.

[10] Garcia-Molina, H. and Salem, K. . SAGAS. In Proceedings of the ACM SIGMOD Conference, pages

249{259, 1987.

[11] Gray, J. and Reuter, A. Transaction Processing: Concepts and Techniques. Morgan-Kaufmann,

1993.

[12] Gray, J.N. The Transaction Concept: Virtues and Limitations. In Proceedings of the 7th Interna-

tional Conference on VLDB, pages 144{154, 1981.

[13] Hadzilacos, V. A Theory of Reliability in Database Systems. Journal of the ACM, 35:121{145,

1988.

[14] H�arder, T. and Rahm, E. Database Systems: Implementation Concepts and Techniques (In Ger-

man). Springer-Verlag, 1999.

[15] H�arder, T. and Reuter, A. Principles of Transaction-Oriented Database Recovery. Computing

Surveys, 15(4):287{317, 1983. Reprinted in: Readings in Database Systems, Third Edition M.

Stonebraker, J. Hellerstein (eds.), Morgan Kaufmann Publishers, March 1998.

[16] H�arder, T. and Rothermel, K. Concepts for Transaction Recovery in Nested Transactions. In

Proceedings of the ACM SIGMOD Conference, pages 239{248, 1987.

[17] Korth, H. F., Levy, E. and Silberschatz, A. A Formal Approach to Recovery by Compensating

Transactions. In Proceedings of the 16th International Conference on VLDB, pages 95{106, 1990.

[18] Levy, E., Korth, H. F. and Silberschatz, A. An Optmistic Commit Protocol for Distributed Tran-

saction Management. In Proceedings of the 1991 ACM SIGMOD Conference, pages 88{97, May

1991.

[19] Litwin, W., Mark, L. and Roussopoulos, N. Interoperability of Multiple Autonomous Databases.

Computing Surveys, 22(3):267{293, 1990.

[20] Lomet, D. and Weikum, G. E�cient Transparent Application Recovery In Client-Server Systems.

In Proceedings of the 1998 ACM SIGMOD Conference, 1998.

[21] Schek, H. J., Weikum, G. and Ye, H. Towards a Uni�ed Theory of Concurrency Control and

Recovery. In Proceedings of the ACM Symposium on PODS, pages 300{311, 1993.

[22] Sheth, A. P. and Larson, J. A. Federated Database Systems for Managing Distributed, Heteroge-

neous, and Autonomous Databases. Computing Surveys, 22(3):183{236, 1990.

