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1. Introduction
In large software development projects shared databases support cooperation of developers and reuse o

Facing complex application requirements and new database technology the development of a correspondi

base application is a difficult task. In order to simplify this task, our project1 aims at generating the database schem
and an object-oriented database application programming interface (API) from a graphically specified UML m
[1][5]. This position paper deals with some very important aspects of our approach: the UML repository (Se
exploitation of OCL constraints for preserving consistency of both UML models and application data (Sect. 3
corresponding tool support (Sect. 4).

2. UML Repository
Our UML repository is based on the UML meta-model [2] and is implemented by exploiting an object-rela

al database management system (ORDBMS) [6]. Although we cannot detail this aspect due to space limi
we want to mention that the enhanced type system, the powerful SQL facilities and the extensibility featu
ORDBMS have proven to be very helpful for our purposes. The UML repository manages UML models whic
taken by a generator as input for automatically creating major parts of the database application (e. g., DB s
and API). For that purpose we mapped the (logical) UML metamodel to a concrete DB schema (DB schema
UML repository). Furthermore, we mapped OCL [3] invariants defined in the UML meta-model for UML mo

ling elements to SQL constraints2. This way, we preserve the consistency of UML models stored within the rep
itory. Often, constraints exploit user-defined routines (UDRs), the SQL interface of an ORDBMS may be ext
by. The current implementation only supports manipulating UML models via the SQL interface, but we inte
additionally provide an API which is compliant to the UML CORBAfacility Interface Definition [4].

3. Exploitation of OCL
As already mentioned, we specify and check demands on UML models managed by the UML reposito

using OCL constraints. This not only holds forinvariantsspecified in [2] to enforce validity of UML models but
also fordesign guidelines, which must be enforced on UML models in order to provide valid input to the (appli
tion) generator. As an example, assume that your team is developing in Java. Java does not support multip
itance. Thus, UML models which are supposed to be mapped to Java must not exploit multiple inheritan
corresponding OCL constraint, restricting the number of superclasses for each specified class to at most
given in Fig. 1. In our repository this OCL constraint is mapped to the SQL constraint given in Fig. 2.

Following this approach, OCL can serve as a powerful tool for both, en-
forcing preciseness of UML models in general and enforcing design guide-
lines. The latter are crucial in our approach for guiding users through the
process of developing data management services.

Additionally to checking UML models (by in-
variants and design guidelines, see above), OCL
constraints are used in our approach to maintain
consistency of application data. The difference to
the purposes mentioned so far is that OCL con-
straints expressing application-specific consistency
demands are part of the model expected as input by
the (application) generator. Nevertheless, these constraints are to be mapped to SQL constraints as well.

4. Mapping OCL constraints
In order to relieve developers and, consequently, support automatic mapping of OCL constraints (expr

invariants, design guidelines, or application-specific consistency constraints; see above), we provide an O
SQL compiler.

1. Subproject A3Supporting Software Engineering Processes by Object-Relational Database Technologyof the Sonderfor-
schungsbereich 501Development of Large Systems with Generic Methods, funded by the German Science Foundation.
2. More precisely, we mapped OCL constraints to SQL predicates, which can be used in SQL constraints, trigge
WHERE clauses.

context  GeneralizableElement inv:
self.generalization->size <= 1

Fig 1: OCL Constraint

CHECK NOT EXISTS ( SELECT *
FROM generalizable_element_vi ge
WHERE 1 >= (SELECT count(*)

FROM generalization_vi g
WHERE g.child = ge.id ) )

Fig 2: SQL Constraint
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After parsing the OCL con-
straint, an intermediate representa-
tion, called translation graph, is
created. The translation graph is a
directed, acyclic graph consisting
two kinds of nodes, translation
nodes and meta-data nodes. While
translation nodes implement the
SQL code generation algorithm,
meta-data nodes provide needed in-
formation regarding the UML mod-
el and its mapping to the database
schema. Fig. 3 illustrates a sample
translation graph (translation nodes
correspond to operator names written in bold letters). This graph results from parsing the constraint given in

The translation process is based on SQL templates and construction rules, implemented by the operato
ciated with the translation nodes. Fig. 4 shows the SQL template associated with theForAll node. Its parameters,
enclosed by “$” in Fig. 4, are represented in the translation graph (Fig. 3) by subnodes (SetNode, VariableNode,
PredicateNode), each providing an SQL fragment needed to construct the SQL (search) expression resultin
the translation process. Meta-data needed to create SQL fragments is delivered by meta-data nodes. As an
consider theAllInstance node in Fig. 3. Its input is given by an instance of the meta-class “Class” representin
meta-data about the class named “GeneralizableElement”.

We have to admit that there are some OCL constructs which are
difficult to map, e. g., the generic iterator operator. So far, we do
not allow to use such operators in OCL constraints. We think, how-
ever, that the extensibility features of ORDBMS will help us to fix
this problem.

5. Conclusions
In this position paper we reported on our UML repository, which is based on the UML metamodel and ma

UML models, which, in turn, are taken as input by a generator automatically creating parts of a database a
tion, e. g. the DB schema. The UML repository is implemented by using an ORDBMS and the DB schema res
from the generation process is meant to be an ORDBMS schema, either. This approach allows us to use O
both, checking validity of UML models (invariants specified in [2] and design guidelines) and maintaining
sistency of application data. Hence, our approach provides a foundation for rigorous modelling and auto
model analysis.

Currently, we are developing a compiler allowing to map OCL constraints to SQL constraints. Its first ve
only allows to map invariants and design guidelines, which are to be checked on UML models and, therefo
related to the database schema corresponding to the UML meta-model. The next version is planned to acc
straints specified against arbitrary, application-specific database schemas, in order to be able to enforce app
data consistency.

So far, we did not consider any performance issues. Certainly, the SQL constraints created by our comp
a challenge for every DBMS optimizer. Note that the sample constraint given in Fig. 2 is heavily simplifie
clarity purposes. Thus, generation of efficient SQL constraints will be a major issue of future work.

Finally, we want to mention that our efforts in mapping UML/OCL to an ORDBMS interface representing
ture semantics gave us the opportunity to gain lot of experience about UML/OCL and to learn much about
ficiencies and weaknesses.
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ForAll ( SetNode, VariableNode, PredicateNode )

Class( Package, String )

AllInstances ( Class ) GreaterEqual ( ObjectNode, ObjectNode )

Size( SetNode )

ProjectCollection ( ObjectNode, AssociationEnd )

AssociationEnd( Association, String )

“GeneralizableElement”

Package( String )

“main”

Variable (“self”)

Integer( “1” )

Fig 3: Translation Graph (extract)

NOT EXISTS(
SELECT *
FROM ( $SetNode$ ) AS $VariableNode$
WHERE NOT ( $PredicateNode$ ) )

Fig 4: SQL-Template
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