
A Middleware Approach for Combining Heterogeneous Data Sources –
Integration of Generic Query and Predefined Function Access

Klaudia Hergula
DaimlerChrysler AG

Research and Technology (Dept. FT3/EK)
P.O. Box 2360, D-89013 Ulm

klaudia.hergula@DaimlerChrysler.com

Theo Ḧarder
University of Kaiserslautern

Dept. of Computer Science (AG DBIS)
P.O. Box 3049, D-67653 Kaiserslautern

haerder@informatik.uni-kl.de

Abstract

With the emergence of so-called application systems
which encapsulate databases and their applications, pure
data integration using, for example, a federated database
system is not possible anymore. Instead, access via prede-
fined functions is the only way to get data from an applica-
tion system. As a result, the combination of generic query
as well as predefined function access is needed in order to
integrate heterogeneous data sources. In this paper, we fo-
cus on a middleware approach supporting this novel and
extended kind of integration. Starting with the overall ar-
chitecture, we explain the functionality and cooperation of
its core components: a federated database system (FDBS)
and a workflow management system (WfMS). Afterwards,
we concentrate on the key problems of function integration
by discussing query execution planning, precedence control
of function execution, and parameter handling. In this con-
text, we develop a lightweight description language based
on XML for the global-to-local mapping of functions. In
addition, we consider some important aspects of the execu-
tion model focusing on the interaction of the FDBS and the
WfMS as well as the support of distributed transactions.

1. Motivation

Nowadays, most enterprises have to deal with heteroge-
neous system environments where different hardware com-
ponents, network and operating systems, database systems
(DBS), as well as applications are used to cover the whole
life cycle of a product. In recent years, many research
projects focused on various aspects of heterogeneity where
interoperability between heterogeneous database systems
was a key issue. As a result, researchers have developed
concepts and prototypes of so-called federated database
systems (FDBS) and multidatabase systems to integrate

databases with different data models and weakly overlap-
ping DB schemas. In the meantime, commercial products,
so-called database gateways or database middleware [13],
are already available. Accordingly, powerful solutions for
specific aspects of database integration exist even if there
are still open questions [6, 16].

But the database environment is changing now. While
many enterprises had selected ‘their’ database system and
designed their tailored DB schema in the past, they are
now confronted with databases being delivered within pack-
aged software. In such cases, the database system and the
related application are integrated, and an application pro-
gramming interface, the so-called API, is the only way to
access the data. Thus, a (generic) database interface is not
supported anymore. In the following, we call systems re-
alizing such an encapsulation conceptapplication systems.
Frequently used application systems are, for example, PDM
(product data management) systems like SAP R/3 [14],
Metaphase [15] or ENOVIAVPM [3]. In the case of SAP, it
is not possible for the application code to directly access by
means of SQL the data stored in some relational database.
Instead, SAP provides so-called BAPIs (BusinessAPIs) by
which the user can access the data via predefined functions.
Similar to these commercial products, the enterprises often
implement their own proprietary software solutions which
can also be accessed by APIs only. Such approaches ac-
count for the fact that checking of integrity constraints as
well as monitoring of security (authorization) are realized in
the application code instead of using the database system’s
functionality. Often, conceptual schemas are not existing
and expressive names are missing in order to save run time
thereby enhancing the performance of the application. To
avoid that changes in the DB schema may violate the con-
sistency, integrity, and protection of the data, data access
and invocation of functionality is allowed via APIs only.

As a consequence, pure data integration is not possible
anymore, since traditional DBSs have to be accessed using a

generic query language (SQL) whereas application systems
only provide data access via predefined functions. Instead,
a combined approach of data and function access has to be
achieved. Such scenarios can be encountered in many prac-
tical and/or legacy applications.

In the remainder of this paper, we present a middleware
approach to integrate both data and functions. Starting from
current integration approaches, we develop in Sect. 2 vari-
ous requirements for functions to be integrated. In Sect. 3,
we give an overview of our integration architecture intro-
ducing its major components. Afterwards, we focus on the
integration of predefined function access and introduce the
plan generation model and a mapping language based on
XML to describe the function mapping in Sect. 4. The cor-
responding plan execution model is presented in Sect. 5, de-
scribing the software modules and their cooperation in more
detail. After considering related work in Sect. 6, we finally
summarize our ideas and give an outlook on future work in
Sect. 7.

2. Requirements

In the following, we will examine the requirements to be
met by extending data access of generic queries to the ex-
ecution of predefined functions. We reveal the various de-
mands by following the processing steps of a query. Start-
ing at the client side and the given interface we observe the
following difficulties the middleware has to cope with.
Interface to the client applications:

There are various possibilities to provide an appropriate
client interface for generic query and/or predefined function
requests. They may range from graphical user interfaces
offering rich specification tools to conventional call inter-
faces requiring the input of linear query syntax. No matter
how the queries are actually specified, they have to be trans-
formed in an intermediate representation as a starting point
for query evaluation. Obviously, there are two basic alter-
natives. Either, the access interface explicitly offers func-
tions like methods of an object or stored procedures in an
object-relational approach. Or, the functions are completely
hidden behind a generic query. For instance, the function
get blue cars could be replaced by the SQL querySELECT
* FROM all cars WHERE color = blue . Hence,
the realized solution is dependent on the executive engine
(e. g. a DBMS) as well as the anticipated interface at the
client side, for example, visual query symbols or text fields
for an explicit query input.
Query evaluation planning:

The result of query decomposition (performed in the
FDBS) is an operator graph which embodies the overall
query execution plan (QEP) including precedence relation-
ships for the access of the participating data sources. In
order to start with the query decomposition, the available

functionality of the data sources (wrapper functionality) has
to be known. For example, it is important to know whether a
data source offers only sequential access to all objects (e. g.
via a scan) or whether it accepts predicates for selective data
access or even result order specification for sorted data de-
livery.

Query processing in the middleware:
Depending on the chosen alternative the query processor

of the middleware must be able to extract those parts of a
query which are issued as predefined functions of the inte-
grated data sources. The selected query fragments have to
be sent to the corresponding system components they can
cope with.

Interfaces to the sources:
The middleware has to implement interfaces to the data

sources to be integrated. These interfaces must overcome
the heterogeneities of communication protocols as well
as the heterogeneities regarding programming languages.
Since the results are typically returned in different formats,
the interfaces should translate them into the reference data
model which is used inside the middleware. In addition,
the middleware must be able to deal with the differences
of error handling performed by the individual data sources.
In summary, the middleware has to provide a homogeneous
view across heterogeneous and distributed application inter-
faces.

Write access:
Another difficult issue even in the case of pure data in-

tegration is distributed write access to heterogeneous data
sources. Support of a distributed transaction management is
needed to guarantee the ACID principles [5]. Unfortunately,
most of the integrated application systems are not able to
participate in a distributed transaction processing protocol
(two-phase commit protocol), since they do not support a
‘precommit’ state. So the middleware has to provide an-
other solution, e. g. the definition of compensation actions.

Dependencies between/within application systems:
A global function may consist of several local functions

which have to be called in a predefined order. In addition,
the result of a local function may be used as input for an-
other local function. So the middleware must be able to
process a predefined execution order and to provide the re-
quired parameter values.

How should these requirements be mapped to a system
architecture? As the key issue of our approach, we com-
bine the services of a federated database system to provide
data integration with the services of a workflow manage-
ment system to handle platform and communication hetero-
geneities as well as precedence control of the overall pro-
cessing. In the following sections, we will detail our ap-
proach and will also consider how well the listed require-
ments are met by our integration architecture.

3. Overall Architecture

This section gives an overview of our integration archi-
tecture and its components. We will propose a three-tier ar-
chitecture with an FDBS and a WfMS constituting the core
components.

The global applications providing graphical data access
interfaces comprise the upper tier. The data elements to be
combined are stored in different data sources managed in
the bottom tier. These data sources can be composed of
several types as described in Sect. 1, e. g. database servers
and application systems. The goal of our integration archi-
tecture is to enable the global applications to transparently
access the data sources, no matter if they can be accessed
by means of SQL or functions.

The middle tier, the so-called integration server, consists
of two essential components: an FDBS realizing the data
integration, and a WfMS invoking and controlling the ac-
cess to predefined functions. The applied workflow is a
production workflow, i. e., it represents a highly automated
process and integrates heterogeneous and autonomous ap-
plication systems [11]. The global applications can access
the integration server via an object-relational interface con-
necting them to the FDBS. The FDBS evaluates the global
queries and functions and activates the WfMS if necessary.
The interface connecting the FDBS and the WfMS may be
realized in three different ways:
• by means of a wrapper according to the draft of

SQL/MED (Database Language SQL – Part 9: Manage-
ment of External Data, [9]);

• by implementing user-defined functions (UDF) as table
functions, i. e., the UDF is used in the from clause of an
SQL query;

• by calling the WfMS via stored procedures.
In every alternative, the result data derived by the work-

flow engine is kept using tables (relations) inside the FDBS.
We will call such dataabstract table queues(ATQs) in the
following. The activated workflow engine realizes the func-
tion integration by calling the local functions of the inte-
grated application systems as specified in the given work-
flow process. After completion the retrieved data is returned
to the FDBS where it is subject to further processing (com-
bination with other ATQs, output preparation, etc.).

Next, we will examine the roles the FDBS and WfMS
may play in the architecture. We can outline a spectrum of
possible constellations with the following extremes:
• Pure FDBS solution: The FDBS realizes both the gen-

eric data access and the predefined function calls. In
this case, the application systems are accessed by wrap-
pers which have to be provided for each application sys-
tem. This solution allows to translate the heterogeneous
ATQs derived from the heterogeneous data sources into
a homogeneous data view very early, namely as a view

of the FDBS data model. This means that we can take
advantage of the whole functionality provided by the
FDBS, above all its optimization capability and the sup-
ported operations to select, combine, and transform the
retrieved data (e. g. projections, joins etc.). In addition,
the query processing is very flexible since the queries can
be processed dynamically at run time. Unfortunately, a
separate wrapper for each application system has to be
implemented to hide the existing heterogeneities.

• Pure WfMS solution: Considering the WfMS alterna-
tive, all data sources – application systems as well as
databases – are accessed by the WfMS. This approach
offers the advantage that the access to the heterogeneous
systems is transparent to the developer of the integration
server, since the WfMS deals with the heterogeneities
concerning the communication protocols and interfaces.
On the other hand, the processing of global requests is
absolutely static because the workflow process has to be
completely defined at build-time. Therefore, the only
dynamical aspects in the run-time component are those
concerning reactions to events.

Using both the FDBS and the WfMS, we want to explore
a solution between the extremes outlined above. In the re-
maining sections, we assume that the WfMS is connected
to the FDBS via a UDF used as table function which re-
turns the workflow results as an ATQ. Further details will
be given in Sect. 5.

In order to make clear how a global query is processed
by the middleware, we illustrate each step separately (see
Fig. 1). Starting with a global query (step1©) the FDBS’s
query processor has to evaluate which parts of the query
can be processed by which data source (step2©). Those
parts concerning functions are handed over to the UDF (step
3©) which calls the WfMS (step4©). The workflow engine
chooses the corresponding workflow process and executes
the appropriate function calls (step5©). The results are re-
turned to the FDBS as ATQs. The other parts of the global
query are processed by the FDBS, i. e., the query is divided
into the appropriate SQL subqueries for the data sources
(step 6©). The returned results are then further processed by
the query processor and merged to the global result.1

All issues of query processing in the FDBS are well ex-
plored [2, 12]. Therefore, we will focus on the new aspects
of our integration architecture. How can we smoothly inte-
grate predefined function calls into the overall processing of
an FDBS? For this purpose, we develop a description lan-
guage by which the mapping of global functions to local
ones can be specified. Afterwards, we present the execu-
tion model which finally realizes the integration of generic
query and predefined function access.

1In particular, UDFs represent a proven mechanism available in object-
relational DBMS. Our initial prototyping approach uses UDFs and is based
on DB2 UDB and MQ Workflow.

Workflow

SQL Functions

Query

Processing

FDBS
WfMS

API

M

I

D

D

L

E

W

A

R

E

U
D

F

API

�

�

�

�

�
�

Figure 1. Integration architecture.

4. Plan Generation Model

After having presented the overall architecture, we now
concentrate on a descriptive model to support the plan gen-
eration for global-to-local function mapping. Before de-
scribing the mapping itself we have a look on the tasks to be
performed in a function mapping. First of all, the engine im-
plementing the mapping must be able to call the local func-
tions of the application systems. If there are dependencies
between the local functions, a predefined execution order
must be followed. Calling a function the engine must pro-
vide the required input parameters, that is, the parameters’
data types have to be checked and value conversions must
be carried out if necessary. Moreover, we have to cope with
(n:m)-mappings regarding the parameters. In such cases,
the parameters have to be adjusted by, for instance, merging
or dividing them. Getting the output parameters returned
by the local functions, the WfMS has to handle intermedi-
ate results which either are used as input for a local function
or have to be transformed into the corresponding ATQ for
the FDBS. Aside from these parameter-specific issues, the
integration server must cope with different error codes and
events returned by the application systems.

In order to be able to perform the described tasks, several
types of information are needed. First, knowledge about the
application systems to be integrated is required. Second,
the global functions and the mapping itself must be defined.
Moreover, the FDBS must know the input parameters for
the UDFs and the resulting ATQs, because it has to translate
and optimize the global query as well as to prepare the over-
all QEP. Focusing on the access to predefined functions the

FDBS has to know which data may be retrieved via which
ATQs. In addition, it must take into account the capabil-
ities of the engine generating the ATQs, i. e. the WfMS.
Does it only support a scan of the integrated data source,
or is it possible to delegate operations like projections or
selections? Or is it even possible to request a specific re-
sult order? Based on this information, the query processor
optimizes and transforms the global query and, finally, gen-
erates a decomposable plan for the query execution. Those
parts defined as a workflow schema will then be executed
by the WfMS as a workflow instance.

In the following, we develop a mapping description
which consists of two description documents based on
XML (Extensible Markup Language, [20]): one illustrat-
ing the sources to be integrated and the other specifying the
mapping to be performed. Since our intention is to keep
the description as independent as possible from the imple-
mentation, the descriptions are not explicitly designed for
the use with an FDBS and a WfMS. Moreover, access to
the functions will be realized separately from the data in-
tegration, so we focus on the functions only. Thus, what
we describe is a mapping between existing local functions
and global ones which represent a kind of view on the lo-
cal functions. In our architecture, the global functions serve
as ATQs for the UDFs within the FDBS. After having ex-
plained how these descriptions look like, we additionally
show to what extent the descriptions can be generated and
where the interaction of the user is still needed.

4.1. System Description

The first part of our description contains information
about the application systems to be integrated. Since the
integration server resp. the WfMS realizes the access to
the application systems, it is necessary to provide the re-
quired facts about the available functions and their signa-
tures. Moreover, the location, i. e. the machine where the
application system runs, the communication protocol and
the executable program are essential items. Each applica-
tion system is described in a single document which can be
stored in a kind of repository. Since we want to use XML
for the system descriptions we have to specify a DTD defin-
ing their structure. Examples can be found in [8].

Using the system description as metadata, the integration
server should be able to call the functions of an application
system and to handle the parameters without requiring fur-
ther information.

In addition, we specify the global functions which should
be provided in the global API in a separate XML document.
These global functions can then be called by the global ap-
plications when connected to the integration server. After
having completed the system description, the specification
of the mapping itself can take place.

4.2. Mapping Specification

The next step in our descriptive model is the definition
of the mapping language. The basic idea is to describe the
mapping from global to local functions from their param-
eters’ point of view by specifying dependencies between
the parameters. Assume that there are no dependencies be-
tween the global functions, we can describe the mapping
for each global function separately. Proceeding this way the
complete mapping may be represented as a directed acyclic
graph as illustrated in Fig. 2.

concat(in1, in2, out1)

Fg(in1, in2, out1, out2)

f1(in1, out1)

f2(in1, in2, out1)

f3(in1, out1)

a b dependency “a influences b”

Figure 2. Mapping description by means of
dependencies.

In this graph, the function mapping from one global
functionFg to three local functionsf1, f2, andf3 is spec-
ified. Since the WfMS processes the function calls and re-
turns the result for the FDBS, the global functionFg rep-
resents the result of the workflow process. The input ofFg

is represented as the parametersin1 andin2, the output as
out1 andout2. The input ofFg is used as input for the lo-
cal functionsf1 andf2. The output of the local functions
is then mapped to a global output parameter (e.g. fromf2

to Fg) or is used as input for another local function (e.g.
from f1 to f2). In addition, the functionconcatis needed
to concatenate the results off2 andf3 returning the value
for the output parameterout2 of Fg. The UDF finally has
to transform the resulting list into an ATQ for the FDBS.

Note, if we consider the parameters and their dependen-
cies, we can derive a directed acyclic graph where the pa-
rameters represent the nodes and the dependencies represent
the edges. Right to that point, the definition of the execution
order of the source functions is still missing. However, we
do not have to define it explicitly if we refer to graph the-
ory. A topological sort of the directed acyclic graph delivers
a possible execution order. Since the dependencies define a
partial order on the parameters, multiple topological sort or-
ders are possible. This indicates that some parameters are
independent and the functions can be processed in parallel.
As a result, we are able to represent the parameter mapping
as well as the execution order of the source functions in a
coherent way.

So far, our approach only covers the case in which both
systems are congruent w. r. t. parameter identifiers and data
types. We still miss information needed to overcome the
heterogeneities, e. g. operations concerning the parameters
like converting their data types or combining them. Such
operations are considered as functions and can be embedded
in the mapping description (compare the functionconcatin
Fig. 2). Thus, the representation remains homogeneous.

For the mapping language, we describe the dependency
graph by enumerating the involved nodes, that is the func-
tion parameters, and the edges between them, that is the
dependencies. In our approach, we use the current working
draft of the linking language XLink (XML Linking Lan-
guage, [21]). This linking mechanism extends the well-
known link concept of HTML. In our paper, we will not
explain the whole functionality of XLink, but consider the
relevant parts for the mapping only. We make use of so-
called extended links which allow the linking of any number
of XML documents. What is so special about it is the fact
that the linked documents don’t need to provide an outgo-
ing link. Hence, in our case we can define links between the
parameters specified in the single system descriptions. An
extended link consists of so-called locators and arcs where
the locators define the participating sources and the arcs de-
fine the traversal behavior.

To describe the dependencies between the parameters,
we use the extended link concept representing parameters
as locators and dependencies as arcs. The DTD for the map-
ping description is shown in Fig 3. Here we can sketch only
the basic idea, the full details can be found in [8].

<!ELEMENT function_map (node, dependency+)>
<!ATTLIST function_map

xmlns:xlink CDATA #FIXED "http://..."
xlink:type (sim|ext|loc|arc) #FIXED "ext">

<!ELEMENT node EMPTY>
<!ATTLIST node

xmlns:xlink CDATA #FIXED "http://..."
xlink:type (sim|ext|loc|arc) #FIXED "loc"
id ID #REQUIRED
xlink:href CDATA #REQUIRED>

<!ELEMENT dependency EMPTY>
<!ATTLIST dependency

xmlns:xlink CDATA #FIXED "http://..."
xlink:type (sim|ext|loc|arc) #FIXED "arc"
from IDREF #REQUIRED
to IDREF #REQUIRED>

Figure 3. DTD for the mapping description.

Using these documents (system descriptions and map-
ping specification) as input, an appropriate engine is now
able to process the integration of the predefined functions.

4.3. User Interaction and Automatic Generation

Going through the mapping specification process step
by step, we discuss which parts need user interaction and

which can be generated automatically to some extent. The
basis for the mapping specification are the system descrip-
tions which, at best, are written down by the developers of
the application systems. There are two possibilities: Either,
there already exists a kind of repository where the appli-
cation systems are described. In this favorable, but unlikely
case, the descriptions have to be transformed into the appro-
priate XML document only. Or, there is no formal descrip-
tion yet, so the user has to describe the application system
as an XML document. In any case, the user must define the
API containing the global functions besides the description
of the application systems.

When the system descriptions are completed, the user
specifies the function mapping. This mapping specification
as well as the system descriptions are then used as input
for the build-time component of the WfMS. Based on the
provided information a workflow process is built up within
the build-time tool. The user can now determine further
workflow-specific details. Based on this workflow process
the build-time component generates the corresponding de-
scription which is given in the workflow process defini-
tion language (WPDL, [19]). This workflow process def-
inition can then be used as input for the run-time compo-
nent of a WfMS. In addition, the WPDL specification is au-
tomatically mapped to our XML-based mapping language
generating an XML document. The description process is
completed with the resulting XML document containing the
mapping specification.

5. Plan Execution Model

In the following, we will describe the executive compo-
nents of our architecture which realize the combined query
and function access. As shown in Sect. 3, the integration
server consists of two engines processing the global queries
together. Since the required functionality to be provided
by the FDBS is known from several approaches regarding
algebra graphs and heterogeneous plan generation we will
not go into this topic in further detail, but refer the interested
reader to [17]. Instead, we will concentrate on the workflow
run-time component, the connection between the FDBS and
the WfMS, and finally have a look on the available support
for distributed updates.

5.1. Workflow Run-Time Component

As described in the previous sections, the run-time com-
ponent of the WfMS represents the executive engine for our
function mapping. Based on the process description gen-
erated by the build-time component, the workflow engine
takes the input parameters of the FDBS and starts calling
the appropriate functions in the specified order. It also guar-
antees transparent access to the different platforms which

includes heterogeneous communication protocols, different
operation systems, and the varying representations of the
data types in different programming languages. In addi-
tion, it must be able to cope with different kinds of error
handling, e. g. exceptions or return codes. Unfortunately,
most WfMSs do not support data type mapping like casts
from integer to real. However, this functionality is needed,
since the output parameter of one local function is often
mapped to another function’s input parameter of different
data type. So we add another system to our architecture
– we will call it the helper system – which provides those
functions needed for the conversion of data types. More-
over, the helper system may also contain functions likecon-
cat introduced in Sect. 4.

5.2. UDFs Building the Bridge Between Relations
and Functions

The implementation of the UDF is one of the most chal-
lenging parts in our architecture, since it has to represent
a bridge between two systems supporting different repre-
sentations of data. As we know, the FDBS stores its data
in relations whereas the WfMS supports basic and semi-
complex data types. So the UDF has to transform the
results returned by the WfMS into corresponding ATQs
for the FDBS. Considering a global function, the UDF
has to provide the input parameter values for the WfMS
and, in the opposite direction, the output parameter val-
ues for the FDBS. Each UDF creates for the correspond-
ing global function an ATQ containing the output parame-
ters as its attributes. For our example, the global function
Fg(in1, in2, out1, out2) is represented as the relationFg

containing the attributesout1 andout2. The input parame-
ters are still used as input parameters for our table function.
The global function is then translated to the following SQL
query:

SELECT out1, out2
FROM TABLE (Fg(in1, in2)) as Fg

As a result of the heterogeneous plan generation, the
FDBS calls the UDF with the given input parameter val-
ues. The UDF then starts the workflow engine providing
the values as input for the workflow process. After success-
ful execution the resulting output is transformed to an ATQ
containing the attributes listed in the select clause.

5.3. Transaction Management

Write access to data sources adds difficult problems to
our integration architecture. The following issues have to
be solved:
• When integrating data sources with overlapping

schemas, dependencies between the sources may arise.
In that case, integrity checks over several data sources

have to be realized. Therefore, a kind of global integrity
control is needed.

• Another issue arises from creating global data objects by
bringing together data extracts of several data sources.
Often, these global objects are the result of views.
Therefore, the well-known problems regarding updat-
able views may occur.

• The most important point when supporting updates is
to guarantee the consistency of the data by providing a
transaction management. In our case, we even need a
kind of heterogeneous transaction management in order
to be able to support distributed updates over heteroge-
neous data sources.

Here we only want to sketch some aspects related to
transaction management.

If we want to support distributed updates in our integra-
tion server a distributed transaction management has to be
provided. However, a distributed transaction management
may be realized only if the participating systems support a
two-phase commit protocol (2PC). We can expect such a
functionality from most of the DBSs, whereas application
systems are usually not designed to support a 2PC. As a
result, we have to consider two points:

• How do we realize a distributed transaction management
for the integration server, i. e. the WfMS?

• When the WfMS also does not support a 2PC protocol,
how can we provide distributed transaction processing
within the FDBS given the WfMS participates and con-
trols the precedence flow of processing?

Analyzing the first problem, a conventional transaction
management cannot be realized due to the missing 2PC sup-
port by the application systems. If we are not able, however,
to initiate a rollback in the integrated systems we have to
apply compensations. This means that we have to specify
a compensation function for every function called by the
WfMS. In the case that a participating system fails in a dis-
tributed update, the compensation functions have to be ex-
ecuted for those systems which have already finished their
work successfully. This idea has been introduced in [10] for
workflow systems and is called the concept of compensa-
tion spheres. A compensation sphere may consist of trans-
actional as well as non-transactional activities. When map-
ping a global function to a workflow process, all activities
contained establish a compensation sphere and, thus, a new
kind of unit of work. As a result, we are able to support
distributed updates.

The second issue we have to cope with is the fact that
the WfMS itself does not support a precommit state to the
outside. As a consequence, the FDBS cannot process a dis-
tributed update across the DBMSs and the WfMS. As long
as there is only one source not supporting the 2PC there is
another possibility to realize a distributed transaction. In

that case, the FDBS sends a prepare-to-commit to the par-
ticipating sources except for the non-transactional source,
i. e. the WfMS. After all sources have sent their ready-to-
commit, the FDBS starts the WfMS with its piece of work.
Now, the result of the WfMS is decisive for the whole trans-
action. If it succeeds, a commit is sent to all the other
sources. If the WfMS fails, the FDBS forwards an abort
to the databases. Thus, we can guarantee the consistency of
our data.

Comparing our approach with the requirements de-
scribed in Sect. 2, we have proposed the following solu-
tions. In the client interface, global functions are hidden
behind SQL queries which are processed by the FDBS. Its
query processor has to forward those parts of the global
query to the WfMS which concern the predefined function
access. The correct execution of the local functions is then
realized by the workflow engine. In addition, it manages the
heterogeneous interfaces to the integrated sources and keeps
them transparent to other middleware components. Regard-
ing distributed updates we propose to apply the concept of
compensation spheres.

6. Related Work

Many approaches to support the integration of functions
in addition to the integration of data choose object-oriented
concepts [1, 4, 7, 17]. Such techniques enable the descrip-
tion of the structural characteristics of a source as well as
the behavior of the instances by means of the definition of
methods and functions. These approaches follow up the op-
erational mapping apart from the structural mapping of the
pure data integration. The operational mapping defines cor-
respondences between operations on different levels. The
operational integration then extends the application area of
integration from the reuse of data to the reuse of data and
application software. The referenced approaches do not
provide a general methodology comparable to [16] for the
schema integration. Instead, all the platform heterogeneities
are solved in the proprietary implementations of the global
functions. Furthermore, there are no or just a few means for
the modeling of semantics in the global schema. However,
more complete and declarative specifications may facilitate
the process of integration and contribute to the understand-
ing of the system and function dependencies.

Another approach is presented in [18]. The concept
of megaprogramming considers the composition of com-
ponents provided by heterogeneous, autonomous, and dis-
tributed software modules as methods, the so-called meg-
amodules. The goal is to compose the methods in order
to develop new applications and, at the same time, to keep
the autonomy of the software modules. Megaprogram-
ming focuses on the horizontal integration, i. e. combin-
ing components rather than realizing an integrated access to

the selected functionality of the integrated source systems
whereas our approach strives for a vertical integration. In
addition, the possible scenario, in which various schemas of
the source systems may overlap, and the arising dependen-
cies are not considered. Also, a query language is missing,
since the modules are only used to develop new applica-
tions. Thus, a flexible interaction of the user is not possible.

7. Summary and Outlook

In this paper, we have presented an approach for the inte-
gration of heterogeneous data sources accessible via generic
queries or predefined functions. The consideration of pre-
defined functions has been motivated by current system en-
vironments where databases and applications are encapsu-
lated providing an API with functions instead of a DB in-
terface. After having described the requirements an appro-
priate solution should meet, we have introduced our inte-
gration architecture. It is based on two core components:
an FDBS realizing the data integration and a WfMS imple-
menting the predefined function access. The combination
of both engines is realized by UDFs representing the results
of function calls as relations within the FDBS. Moreover,
we have divided our approach into a plan generation and
a plan execution model. Focusing on the predefined func-
tion access, a description language has been developed for
the function mapping. This language is based on XML and
describes the mapping by means of dependencies between
function parameters. Our intention is to keep the descrip-
tion language simple, lightweight, and, especially, indepen-
dent of the implementation. Considering the plan execu-
tion model, we have presented solutions for the connection
between the FDBS and the WfMS and the support for dis-
tributed transaction management.

At the moment, the presented mapping language is very
rudimentary. Therefore, we are currently refining it, try-
ing to exploit the whole functionality of XML as well as
related standards and drafts. Furthermore, we will evalu-
ate the performance of the WfMS. If the results meet our
expectations we have to analyze the connecting alternatives
between FDBS and WfMS in greater detail. If not, alterna-
tives for the plan execution model will be developed.

References

[1] E. Bertino, M. Negri., and L. Sbattella. An Overview of
the Comandos Integration System. In O. A. Bukhres and
A. K. Elmagarmid, editors,Object-Oriented Multidatabase
Systems, pages 379–422. Prentice Hall, 1995.

[2] B. Czejdo, M. Rusinkiewicz, and D. W. Embley. An Ap-
proach to Schema Integration and Query Formulation in
Federated Database Systems. InProc. 3rd Int. Conf. on Data
Engineering (ICDE’87), pages 477–484, 1987.

[3] Enovia Corp. ENOVIAVPM. http://www.enovia.com/solu-
tions/html/edesvpmoverview.htm, 2000.

[4] R. Gagliardi, M. Caneve, and G. Oldano. An Operational
Approach to the Integration of Distributed Heterogeneous
Environments. InDatabases: Theory, Design, and Applica-
tions, pages 110–124, 1991. Postconference publication of
PARBASE-90, 1st Int. Conf. on Databases, Parallel Archi-
tectures and their Applications.

[5] T. Härder and A. Reuter. Principles of Transaction Oriented
Database Recovery.ACM Computing Surveys, 15(4):287–
317, 1983.

[6] T. Härder, G. Sauter, and J. Thomas. The Intrinsic Prob-
lems of Structural Heterogeneity and an Approach to their
Solution.VLDB Journal, 8(1):25–43, 1999.

[7] M. Härtig and K. R. Dittrich. An Object-Oriented Integra-
tion Framework for Building Heterogeneous Database Sys-
tems. InProc. IFIP DS-5 Conf. on Semantics in Interopera-
ble Database Systems, pages 33–53, Australia, 1992.

[8] K. Hergula. A Mapping Language for the Integration of
Functions. Technical Report, DaimlerChrysler AG, 2000.

[9] ISO/IEC. Database Language SQL – Part 9: SQL/MED,
November 1999. Final Committee Draft.

[10] F. Leymann. Supporting Business Transactions via Par-
tial Backward Recovery in Workflow Management Systems.
In Proc. of the German Conference BTW’95, pages 51–70,
Berlin, 1995.

[11] F. Leymann and D. Roller.Production Workflow: Concepts
and Techniques. Prentice Hall, 2000.

[12] W. Meng and C. Yu. Query Processing in Multidatabase
Systems. In W. Kim, editor,Modern Database Systems: The
Object Model, Interoperability, and Beyond, pages 551–572.
Edison Wesley, 1995.

[13] F. F. Rezende and K. Hergula. The Heterogeneity Problem
and Middleware Technology: Experiences with and Perfor-
mance of Database Gateways. InProc. 24th Int. Conf. on
Very Large Data Bases (VLDB’98), pages 146–157, New
York, August 1998.

[14] SAP AG. SAP R/3. http://www.sap.com/solutions/r3/, 2000.
[15] SDRC Corporation. Metaphase. http://www.sdrc.com/nav/

software-services/metaphase/, 2000.
[16] A. P. Sheth and J. A. Larson. Federated Database Systems

for Managing Distributed, Heterogeneous, and Autonomous
Databases.ACM Computing Surveys, 22(3):183–236, 1990.

[17] M. Tork Roth and P. M. Schwarz. Dont Scrap It, Wrap It!
A Wrapper Architecture for Legacy Data Sources. InProc.
23th Int. Conf. on Very Large Data Bases (VLDB’97), pages
266–275, Athens, 1997.

[18] G. Wiederhold, P. Wegner, and S. Ceri. Towards Megapro-
gramming.Communications on ACM, 35(11):89–99, 1992.

[19] Workflow Management Coalition. Interface 1: Process Def-
inition Interchange Process Model, October 1999. Version
1.1.

[20] World Wide Web Consortium. Extensible Markup Language
(XML) 1.0. http://www.w3.org/TR/REC-xml, 1998. W3C
Recommendation.

[21] World Wide Web Consortium. XML Linking Language
(XLink). http://www.w3.org/TR/xlink, 1999. W3C Working
Draft.

