Global Semantic Serializability: An Approach to
Increase Concurrency in Multidatabase Systems

Angelo Brayner' and Theo Hirder?

! University of Fortaleza - UNIFOR, Dept. of Computer Science
60811-341 Fortaleza - Brazil
brayner@unifor.br
2 University of Kaiserslautern, Dept. of Computer Science
D-67653 Kaiserslautern - Germany
haerder@informatik.uni-kl.de

Abstract. In this work, we present a new approach to control concur-
rency in multidatabase systems. The proposed approach is based on the
use of semantic knowledge to relax the notion of absolute transaction
atomicity. Supported by this new concept of atomicity, we propose a
new correctness criterion, denoted global semantic serializability, for the
execution of concurrent transactions, which provides a high degree of
inter-transaction parallelism, ensures consistency of the local databases
and preserves autonomy of local databases. Our proposal can also be
used to increase concurrency in systems for integrating web data sources
based on a mediator mechanism. Two concurrency control protocols we
have developed are described.

1 Introduction

A multidatabase consists of a collection of autonomous databases, called
local databases (LDBs). A key characteristic of local databases is that
they were created independently and in an uncoordinated way without
considering the possibility that they might be somehow integrated in the
future. Systems used to manage multidatabases are called multidatabase
systems (MDBSs). An MDBS should provide full database functionality
and is built on top of multiple DBSs, called local DBSs (LDBSs), each of
which operates autonomously. Local autonomy is a key feature of MDBS
technology. The multidatabase approach provides inter-operability among
multiple autonomous databases without attempting to integrate them by
means of a single global schema [12].

A global application can access and update objects located in multiple
databases by means of global transactions. In order to avoid inconsisten-
cies, while allowing concurrent updates across multiple databases, MDBSs
should provide a mechanism to control globally the concurrent access to
local data.

Since the early seventies the concurrency control problem in a mul-
tiuser environment has been widely explored. In 1976, Eswaran et al. [8]
proposed a model which introduces the concept of transaction. This model
adopts a correctness criterion for the execution of concurrent transac-
tions, called serializability, based on transaction atomicity. Serializability
gives the illusion that the execution of a transaction is carried out in an
isolated fashion without interference or interleaving from steps of other
transactions. In other words, serializability gives the illusion that each
transaction is executed as an atomic action. For that reason, we say that
a transaction represents an atomic unit.

However, the nature and requirements of transaction processing in a
multidatabase environment are quite different from those in conventional
applications. Multidatabase transactions involve operations on multiple
and autonomous local databases. Accordingly, they are relatively long-
living. In addition, two different types of transactions may be executed
in an MDBS context, global and local transactions. Although global and
local transactions coexist, MDBSs do not have any information about the
existence and execution order of local transactions due to local autonomy
requirements. On the other hand, serializability requires knowledge of the
execution order of all active transactions.

Therefore, the conventional concurrency control model is unsuited to
MDBSs. To provide higher degree of inter-transaction parallelism in a
multidatabase environment, new transaction models are needed, espe-
cially models that exploit multidatabase application semantics in order
to relax serializability as a correctness criterion. Several researchers have
started to extend serializability. However, the published solutions (as we
will show in Section 3) either sacrifice local autonomy or support a low
degree of parallelism.

The main motivation of this work is to provide an efficient solution to
the concurrency control problem in multidatabase systems. We propose
a new transaction model, denoted GS-serializability, for synchronizing
transactions in an MDBS environment. The proposed model supports a
high degree of parallelism among global transactions, ensures consistency
of the local databases and preserves local autonomy of the local DBMSs.

This work is structured as follows. Section 2 describes a model and ref-
erence architecture of MDBSs. Moreover, a running example which we use
to illustrate definitions is presented. Some of the most important models
for transaction processing in MDBSs are surveyed in Section 3. The new
transaction model is presented in Section 4. Some realization aspects and
the use of our approach in mediator based-systems are also discussed. In

Section 5, two concurrency control protocols, each of which implementing
a different approach to ensure GS-serializability, are outlined. Section 6
concludes this paper.

2 The Multidatabase System Model

An MDBS integrates a set of pre-existing and autonomous local DBSs.
In turn, each local DBS consists of a local DBMS and a database. Users
interact with the local DBMS by means of transactions. Two classes of
transactions are supported in a multidatabase environment:

e Local transactions which are transactions executed by a local DBMS

outside the control of the MDBS and . .
e Global transactions which comprise transactions submitted by the

MDBS to local DBMSs. A global transaction G; consists of a set of
subsequences {SUB; 1, SUB; 2, SUB; 3, ..., SUB; ,} where each SUB; j is
executed at LDBSy as an ordinary (local) transaction.
Observe that the notion of global transaction reflects the fact that

subsequences are executed at different sites, which usually do not have
direct communication.
Formally, An MDBS consists of:

1. a set LD={LDBS;, LDBSs, ..., LDBS,,} of local database systems
where m > 1;
2. aset L={L1, Lg, ..., Ly} of local transactions where each Lj repre-

sents the set of local transactions executed at the local system LDBSy,

with 0 < £ < m; and
3. a set G={G1, Ga, ..., G} of global transactions.

Operations belonging to global transactions are executed by local
DBMSs. Local transactions result from the execution of local applica-
tions. Henceforth, a global transaction will be denoted by G and a local
transaction by L.

A Iocal schedule S, models the execution of several interleaved opera-
tions belonging to local and global transactions performed at a particular
local system LDBS. A global schedule S¢, on the other hand, models the
execution of all operations executed by global and local transactions on
the multidatabase.

The architecture of an MDBS basically consists of the Global Trans-
action Manager (GTM), a set of Interface Servers (servers, for short), and
multiple local DBSs. To each local DBS, there is an associated server. A
local DBS consists of a DBMS and at least one database. The GTM com-
prises three modules: Global Transaction Interface (GTT), Global Scheduler
(GS), and Global Recovery Manager (GRM). An MDBS architecture is
depicted in Figure 1.

Global

T Transactions T

: [Global Transaction |
: Global Manager :

Transaction Interface !

|

I

|

: |

: Global Global |
MDBS : Scheduler Recovery Manager |.
: |
' e
Global |-
Log 1

L ———_ ___i

o
d
... .
Local __ Local
Transactions 4 Transactions

DBMS

| i1/ \Ti |
| |
| |
| |
| |
[XX J
| |
[i T e N R
| | [etz]
| |
||
| |
\ |

DBMS

O
ot .
&

Fig.1. A model for MDBS.

3 Related Work

As already said, the conventional concurrency control model is unsuited
to the MDBS technology. For that reason, several researchers started to
extend the conventional transaction model or the concurrency control
protocols based on serializability.

Du and Elmagarmid propose in [7] the quasi serializability model for
the transaction processing in multidatabase environments. This model is
based on the assumption that update actions executed by global transac-
tions on objects of a particular local database never depend in any way
on the values of objects stored in other databases, which were previously
read by the same transaction.

A global schedule S¢ is said to be quasi serial if (i) all local schedules
are serializable and (%) global transactions in S¢ are executed serially
such that for any two global transactions G; and G the following is valid:
if G; precedes G in S¢, then all G;’s operations precede G'j’s operations
in all local schedules in which both transactions appear. In [7], it is shown
that quasi serial schedules preserve multidatabase consistency.

The class of correct schedules is broadened by the notion of quasi
serializable schedules. A global schedule is quasi serializable if it is conflict
equivalent to a quasi serial schedule. In order to identify quasi serializable
schedules, a graph-based method is proposed. The key idea of this method
is to construct a directed graph, denoted quasi serialization graph (QSG),
for a global schedule. In a QSG for a global schedule S (QSG(S%)) the
nodes represent the global transactions in S&. The edges of a QSG reflect
direct and indirect conflicts among global transactions. A global schedule
S% is quasi serializable if QSG(S%) is acyclic and all local schedules are
conflict serializable.

This model relaxes global serializability. However, it still requires seri-
alizable execution of global transactions. Quasi serializability suffers addi-
tionally from the following problem. As seen, information about indirect
conflicts among global transactions is needed in order to construct quasi
serialization graphs. Indirect conflicts are provoked by the execution of
local transactions. Only local systems have knowledge about the existence
of local transactions. Consequently, information about indirect conflicts
can only be provided by local systems. Hence, a GTM implementing quasi
serializability presumes that local systems will provide information about
local transactions. Clearly, such information flow (local system to global
system) violates local autonomy. Recall that local autonomy is a key prop-
erty in MDBS technology.

Mehrotra et al. [13] propose the two level serializability (2LSR) model
which , according to the authors, relaxes global serializability. This model
is based on the following assumptions:

e At each local database there are two types of stored data: Local data

and global data.
e Local transactions may not modify global data. Hence, local transac-

tions are restricted to execute write operations only on local data.
Considering the assumptions above, Mehrotra et al. define that a
global schedule S¢ is 2LSR if all local schedules are conflict serializable
and the execution of global transactions in S¢ is serializable.

In [2] we show that the 2LSR model represents, in fact, the applica-
tion of the notion of predicatewise serializability [10, 11] to multidatabase
systems.

Since 2LSR is based on the notion of predicatewise serializability it
inherits a serious shortcoming from the later model. 2LSR schedules may
violate constraints. In [5] and [14] some examples are shown to illustrate
this fact. Additionally, the 2LSR model presents the following two short-
comings. First, 2LSR assumes that objects in local databases are divided

in local and global objects. Such an assumption represents a violation of
local design autonomy since local database schemes should be modified in
order to reflect the database division in local and global objects. Second,
2LSR requires that local transactions do not modify global objects. This
strong restriction violates local execution autonomy.

The key problem for controlling concurrency in MDBS stems from
the fact that global systems can not identify the serialization order of
multidatabase transactions executed by local DBMSs. Georgakopoulos et
al. [9] propose a strategy, denoted ticket method, to determine this order
with the advantage that local systems do not need to give any information
about the serialization order of transactions executing locally.

The basic idea of the ticket method is to force conflicts among mul-
tidatabase transactions. This is realized by the use of a special database
object called ticket. Only one ticket is required per local system, and
tickets may be accessed only by global transactions. Moreover, each sub-
sequence of a global transaction executing at a local system must read
the ticket value (r(t)), increment it (¢ - ¢+ 1), and update the new value
into the local database (w(t)). The ticket method presumes that all local
DBMSs ensure serializability and support prepare-to-commit operations.

Note that global transactions conflict when they try to access tickets.
Such conflicts make it possible to determine the relative serialization order
of subsequences of multidatabase transactions at each LDBS.

The ticket method requires that all global transactions access tick-
ets. This may create a “hot spot” at the local database. Moreover, local
database schemes should be altered in order to represent tickets. Some
mechanism should be implemented at the local systems in order to ensure
that only global transactions access tickets. Such requirements violate lo-
cal autonomy.

4 The GS&-serializability Model

4.1 Basic Concepts

An MDBS integrates a collection of “pre-existing” local databases. Such
local databases were created independently and in an uncoordinated way
without considering that they will be integrated sometime in the future.
For that reason, it is reasonable to see a multidatabase as a collection of
disjoint sets of objects, each of which representing a single local database.
We call those disjoint sets of objects semantic units. It is also reasonable
to assume that the result of an update action executed by a global transac-
tion on an object belonging to a particular semantic unit does not depend

on the values of objects belonging to other semantic units which are pre-
viously read by the same transaction. Based on this semantic knowledge,
we relax the notion of absolute transaction atomicity in order to provide
a high degree of transaction concurrency in an MDBS environment. In
our approach, a global transaction may consist of more than one atomic
unit.

Before formalizing the notion of semantic units, we need to specify
an additional concept denoted depends-on. This concept stems from the
dependence relation between the (final) result of an updating operation
on an object z and the value of another object y. We say that an object
x depends-on an object y, if and only if the result of at least one update
operation on z in any program (that accesses z and y) is a function of
(i.e. is depending on) a value of y read in the same program. The set of
all objects on which = depends is called depends-on-set(x).

Definition 1. Let DB be a database. We say that SU;, 0 < i < n, are
semantic units of DB, iff
(1) DB= ;- SU;,
(i) V1 < i,j <n,i#j : SU;\SU; =0, and
(iii) (Vo € SU;,y € SUj,i # j) = (v ¢depends-on-set(y)) A
(y ¢depends-on-set(x)) o

Intuitively, condition (iii) of Definition 1 reflects the idea that updates
on objects of a semantic unit only depend on values of objects of the same
semantic unit.

A transaction (global or local) is modeled as a finite sequence of read
and write operations on database objects, where each object belongs to a
particular semantic unit. We use r;(z) (w;(z)) to represent a read (write)
operation executed by a transaction T; on a database object z. The set of
operations executed by T; is represented by OP(T;). In turn, OPg, (T;)
represents the set of operations belonging to 7; which are executed on
objects of the semantic unit SU,. Note that OP;, (T;) € OP(T;). It is
assumed that the execution of a transaction preserves database consis-
tency if it runs isolated from other transactions.

A transaction T is denoted module-structured if its operations are
grouped into subsequences, called modules, such that each module rep-
resents an atomic unit of 7. Intuitively, a module-structured transaction
represents a sequence of modules where each module encompasses oper-
ations on objects of only one semantic unit. Further, the operations on
objects of a semantic unit appear in only one module. For example, the
following transaction may be characterized as being module-structured:

module

A

TAlice = Z’Alice (E)wAlice (F)JrAlice (P)wAlice (U)wAlice (V)

-~

module

Observe that the modules of a module-structured transaction are in
fact atomic units. Here it is important to note that the notion of module-
structured transactions reflects a transaction property. In other words,
by means of this notion, we want to capture the fact that some transac-
tions present a serial execution of atomic units without interleavings of
operations belonging to different atomic units. It does not mean that our
model requires that transactions should be partitioned into smaller pieces
as proposed in [16].

Two schedules S; and Sy over the set 7= {T1,T5,---,T,} of trans-
actions are said to be equivalent, denoted Sy ~ 5o, if for any conflicting
operations p € OP(T;) and ¢ € OP(T}), the following condition holds:
if p <g, ¢, then p <g, q. Observe that equivalent schedules produce the
same effect on the database if they are executed on the same initial state.

Next, we define the concept of projection of a schedule on a set of
transactions. Let S be a schedule over a set GUL of transactions where G
and L are disjoint sets of transactions. A projection P of S on the set G
is a schedule for which the following conditions must hold:

(1) P only contains operations of transactions belonging to set G

(2) Vp,q € OP(P) = p,q € OP(S)

(3) Vp,q € OP(S"),p<pqep<sq.

4.2 Correct Execution of Concurrent Transactions in MDBSs

In this section, we characterize correct schedules in our model. First, we
define a standard for schedule correctness, denoted global semantically se-
rial schedules (GS-serial schedules, for short). Thereafter, we characterize
schedules which produce the same effect on the database as a semantically
serial one.

4.2.1 (GS-serial Schedules

Definition 2. Let SY = UP Sy be a global schedule over a set T= GUL
of global and local transactions and P the projection of S on G. The
global schedule S is said to be GS-serial if:
(1) each local schedule Sy is serializable and
(2) for each G; in P, G; is module-structured and there is no interleav-
ing within a module of G;, for all modules in G; (i.e., interleavings
are only allowed between two modules of a transaction).

We use GS.Serial to denote the class of all GS-serial schedules over
a given set of transactions. o

Intuitively, the latter condition of Definition 2 enforces that in a
GS-serial schedule the projection of S¢ on G represents, in fact, a se-
rial execution of modules belonging to multiple global transactions. This
implies, the interleaving granularity for global transactions in a GS-serial
schedule is a module.

Theorem 1. A GS-serial schedule preserves multidatabase consistency.
Proof. Let S¢ be a GS-serial schedule whose operations are performed
on objects of a multidatabase MDZB.

Case 1. Inconsistencies are caused by the execution of local schedules.
Without loss of generality, suppose that inconsistencies are produced by
the local schedule S}, at local database LDBj. This is impossible, since,
by Definition 2, each local schedule is serializable. Hence, the execution of
every local schedule preserves database consistency, as was to be proved.
Case 2. Inconsistencies are caused by the execution of P.

Without loss of generality, consider that the inconsistency results from
operations executed on objects of semantic unit SU, C MDB. By as-
sumption, the execution of P represents a serial execution of modules
(second item of Definition 2). Hence, the execution of operations on ob-
jects of SU, in P represents a serial execution of modules belonging to
different transactions. Consequently, inconsistencies on objects of SU,
must have been produced by some module of a transaction in (recall
that there is no interleaving within a module). Thus, the inconsistency
must have been caused by the execution of some global transaction in P.
This is a contradiction because, by assumption, a transaction preserves
database consistency. So, P cannot produce an inconsistent state. That
is, P preserves database consistency, as was to be proved. o

4.2.2 (GS-serializable Schedules

So far, we have considered only GS-serial schedules as being “safe”. How-
ever, there are schedules which are not GS-serial, but yield the same effect
on the multidatabase as a GS-serial one. That means, such schedules en-
sure multidatabase consistency and thereby may be considered as being
“safe”, too. Hence, we can broaden the class of safe schedules in our model
and include these schedules.

Definition 3. A global schedule S¢ = UJ Sy over a set T= GUL of
global and local transactions is said to be GS-serializable if and only if

(1) each local schedule Sy is serializable and

(2) the projection P of S¢ on G is equivalent to the projection Pys of
a GS-serial schedule Sy, over T

We denote the class of all GS-serializable as GS.SR. o

Intuitively, Definition 3 ensures that a global schedule S¢ over a set
T is GS-serializable if and only if it is equivalent to a GS-serial schedule
over T.

Another important benefit of GS-serializability is that we can deter-
mine whether a global schedule is GS-serializable by verifying the acyclic-
ity of a directed graph, called semantic serialization graph (S.SG).

Definition 4. Let SY = UJ" Sy be a global schedule over a set T= GUL
of global and local transactions and P the projection of S on G. The
Semantic Serialization Graph for P is a directed graph SeSG(P) = (N, E).
The set N of nodes represents the transactions in G, i.e., N =G. The set
FE represents labeled edges of the form G; 5T Gj, where:

° Gi,Gj € N and

e there are two operations p € OP(G;),q € OP(G), p <p ¢, on an

object of the semantic unit SU, which are in conflict.
o

Lemma 1. If a schedule S¢ = UpL Sk is GS-serial, then the Semantic
Serialization Graph for the projection P of S¢ on G is acyclic.

Proof. Let S¢ € GS.Serial be a schedule over the set 7= GUL of global
and local transactions, where G = {G1,Gs,...,Gy,}. By condition 2 of
Definition 2, the projection P of S over G represents a serial execution
of modules of each transaction G; € G, 0 < ¢ < n. Suppose, by way
of contradiction, that S.SG(P) is cyclic and, without loss of generality,

the cycle has the following form: G Uy G Uy ... 50y G;. Tt follows
from this that the module of GG; which represents the operations of G;
on objects of the semantic unit SU, is interleaved by some operations of
Gj, a contradiction, by assumption, S satisfies condition 2 of Definition
2. Therefore, S.SG(P) is acyclic, as was to be proved. o

Theorem 2. A global schedule S¢ = UL Sk over a set T= GUL of
global and local transactions is gs-serializable if and only if:
1. the serialization graph (see [1]) for each local schedule Si, 0 < k < m,,
18 acyclic, and
2. the semantic serialization graph for the projection of S¢ on set G of
global transactions is acyclic.

Sketch of Proof.

Condition 1. By Definition 3, a schedule is gs-serializable if each local
schedule Sy is serializable. In [1], it is shown that a schedule is serializ-
able if and only if its serialization graph is acyclic. Hence, the serialization
graph for each local schedule S}, is acyclic.

Condition 2. (“—”) In a GS-serializable schedule, the projection of S¢
on G is equivalent to a GS-serial schedule. By Lemma 1, the semantic
serialization graph for the projection of a GS-serial schedule Se® on set
G is acyclic. Since S¢ is equivalent to Se® (a GS-serial schedule), the
semantic serialization graph for the projection of S¢ on set G is acyclic,
too.

(“—") Consider that the semantic serialization graph S.SG(P) for the
projection of S on set G contains edges with label SU,, and it is acyclic.
Thus, we may topologically sort it by edges with label SU,,. However, for
this topological sort, instead of considering a transaction G; as a node,
we consider only the module of G;, which contains the operations of G;
over objects of the semantic unit SU,. As a result of this “modified”
topological sort, we obtain a serial execution of modules of transactions
in G, where this serial execution contains operations on objects of the
semantic unit SU,. If we repeat this process “recursively” for each label
in S.SG(P), we obtain a serial execution of modules of all global trans-
actions in G. Moreover, there is no interleaving within each module. We
have, thus, a GS-serial schedule (by Def. 2) which we call S, over the
set G of global transactions. Since the projections P of SG on set G and
Pys of S on G have the same set of operations and order the conflict
operations in the same way, they are equivalent. Therefore, by Definition
3, 8¢ is GS-serializable, as was to be proved. o

Theorem 2 has a very important practical impact. If we assume that
all participating local DBMSs enforce syntactic serializability, we only
need to verify the acyclicity of the semantic serialization graph for the
execution of global transactions. This is a quite reasonable assumption,
since all existing database systems implement serializability. Hence, we
can apply this strategy to control concurrency in a multidatabase system.

Remark 1. Let M be a multidatabase system, where:
(1)all participating local DBMSs enforce serializability as local correct-

_ness criterion for schedules and) o)
(ii)the GTM of M implements semantic serializability to synchronize

global transactions.

Consider a schedule S over a set GUL of global and local transactions.
Furthermore, the operations of S¢ are executed by M. The schedule

Sarar represents the projection of S on set G. The acyclicity of the
graph S.SG(SgTar) is the necessary and sufficient condition to determine
whether or not S is gs-serializable (correct). o

Remark 1 ensures that the transaction manager component of an
MDBS can determine the correctness of global schedules without receiv-
ing any kind of information from the local systems. That means, a GTM
implementing gs-serializability does preserve local autonomy. Recall that
some of the proposals examined in Section 3 violate local autonomy.

Ezample 1. Consider a global schedule S¢ which is executed in a multi-
database application. The execution scenario for S¢ is depicted in Figure 2.

G atice = TGatice (E)wGAlice (U)wGAlice (F)

G ronn =TCronn (E)wGJohn (E)wGJohn (Z)

Ly =rL,(U)re,(2)

SLDB51 =TGronn (E)wGJohn (BE)rG atice (B)WG 4. (F)

SLDBS2 = WG 4y (UL, (U)rL, (Z)wGJohn (%)

S = TG ronn (E)wGJohn (E)rG asice (B)WG 411, (U)rLy (U)we .. (F)Tey (Z)wGJohn (Z)
Sarn = TG ronn (B)WE s onn ()T 45 (B)WE e (U)WE 45 (Fwa, o, (Z)

Fig. 2. Execution scenario of Example 1.

By Definition, S¢ = Siops, Y Sipes, The projection of SY on the set
of global transactions is represented in Figure 2 by the schedule S, .
By Theorem 2, the global scheduler S is correct, since the semantic
is acyclic (Figure 3) and the serialization
and S contain no cycles.

serialization graph for S,
graphs for the local schedules S

LDBS; LDBSy

SULps,

qo“a/\.(é\nce

Fig. 3. Semantic serialization graph for the schedule S.,,.

However, if we had assumed that the two local systems of the mul-
tidatabase application of Figure 2 enforce serializability, we could have
considered Remark 1. In this case, only the acyclicity of S.SG(Sar)

had to be verified. This procedure had already indicated that the global
schedule S¢ is correct, without violating local autonomy. Observe that
S¢ is not quasi serializable.

Schedule S“ could also not be produced by concurrency control mech-
anisms implementing the ticket method (TM) or altruistic locking (AL)
[15] protocols. That is because S is not executed in a serializable fashion.

o

Figure 4 depicts the relationship between the class of GS-serializable
schedules and some classes of schedules.

™

AL

CSR

QSR

GSeSerial GSeSA

Fig. 4. Relationship among different classes of schedules.

In order to show that the class of QSR schedules is a subset of GS. SR,
consider the schedule S¢ depicted in Figure 2. As seen in Example 1, S¢
does not belong to the class of QSR schedules. However, S¢ is an ele-
ment of GS.SR. This implies, GS.SR \ QSR # (). Recall that a schedule
S belongs to the class QSR if the global transactions in S are executed
in a serializable fashion. Schedules belonging to GS.SR do not necessar-
ily present a serializable execution of their global transactions, since gs-
serializability relaxes classical serializability. Therefore, QSR C GS.SR.

4.3 Realization Aspects

In order to implement GS-serializability for controlling concurrency in
MDBSs, each participating local database should be defined as a seman-
tic unit. Hence, the acquisition of information about the precise locality
of database objects is a key question for using GS-serializability in the
multidatabase technology. However, such a problem is already addressed
by MDBSs, since global systems must identify where global operations
are to be performed.

Alternatively, we propose a mechanism which enables the GTM to
automatically identify the location of database objects and thereby to
identify the correct specification of semantic units. The basic principle of
this mechanism is to use the component Data Dictionary of the MDBS
architecture depicted in Figure 1. By doing this, sufficient information
about local databases can be stored in the data dictionary. This informa-
tion may be used by the GTM, more specifically by the GTI, in order
to determine where each global operation should be executed. The GTI
may forward this information to the GS. Such an information flow will
give the GS the sufficient and necessary support to correctly determine
the semantic units and their corresponding database objects.

Note that the process for identifying semantic units is realized without
intervention of users, all is performed automatically.

4.4 Extending the Notion of Semantic Units in MDBSs

The notion of semantic unit is flexible enough to allow that two or more
local databases can be logically grouped in order to represent a single
semantic unit, without violating local autonomy of each local system.
By “logically”, we mean that only the GTM should be aware of such a
representation. It is not necessary to physically join neither the databases
nor the database systems.

Specifying more than one local database as a single semantic unit
enables our transaction-processing model to synchronize transactions in
MDBSs which have the following characteristics:

(i) Data replication. Some MDBSs may contain objects replicated in more
than one local database. In this case, the local databases containing

replicated data should be grouped in a semantic unit;
(71) Global constraints. Constraints which span more than one local

database are called global constraints. In this case, local databases
containing objects referred in a global constraint should determine a
semantic unit.

4.5 Increasing Concurrency in Mediator-based Systems

Mediator-based systems have been widely used to integrate heterogeneous
web data sources. In such systems, wrappers are responsible for convert-
ing local data into a common model. In turn, a mediator provides an
integrated view over the data exported by wrappers.

The integrated view can be either virtual or materialized. In the vir-
tual approach, queries submitted to the mediator are decomposed into
sub-queries, which are executed on the local web data sources. In other

words, queries submitted to the mediator represent global transactions.
A global transaction consist of a set of subsequences, where each subse-
quence corresponds to a subquery executed at a local web source as an
ordinary (local) transaction.

In order to implement GS-serializability to control concurrency in
mediator-based systems (for integrating web data sources), each web
source can be defined as a semantic unit. Since the mediator provides
an integrated view of web data, the mediator can automatically identify
the location of database objects and thereby identify the correct specifi-
cation of semantic units.

5 Concurrency Control Protocols
5.1 Semantic Locking (SeL)

The s.L protocol associates a lock to each database object. Three types
of locks are supported: read-only, write and update locks. A transaction
accesses an object if and only if a lock can be associated to the object on
behalf of the transaction. Another key characteristic presented by the S.L
protocol is to implement the two-phase property of the conventional 2PL
protocol. However, it uses another granularity for realizing the two-phase
property. In the 2PL protocol, this granularity is a transaction, since
once a transaction has released a lock it may not obtain another lock.
In the s.L protocol, the granularity is represented by the subsequence of
operations on objects of one local database. This implies, locks held by a
global transaction GG on objects of local database LD By may be released
after the last operation of G on objects of LD By.

Therefore, the s.L protocol guarantees that locks may be released
by a global transaction before they complete their executions. This prop-
erty increases the concurrency among global transactions. Moreover, local
DBMSs do not need to hold locks on local resources on behalf of global
(and remote) transactions for a long period of time. Additionally, the s.L
protocol presents the following benefits. First, it reduces the frequency of
deadlocks caused by lock conversions. Second, it implements a variable
granularity locking strategy. Multiple lockable units support that concur-
rency may be enhanced by fine granularity, or locking overhead may be
reduced by coarse granularity.

5.2 The S.SG Checking Protocol

The protocol, denoted S.SGC, is based on a similar strategy which is used
by the conventional serialization graph testing protocol [6]: the dynamic

monitoring and management of an always acyclic conflict graph. In con-
trast to the classical serialization graph testing, an S,SGC protocol exploits
semantic knowledge provided by the notion of semantic units.

The graph maintained by the S,SGC protocol is called semantic conflict
graph (SC-graph). It is constructed according to the same rules used to
construct a semantic serialization graph (Definition 4). Hence, nodes of
the SC-graph represent transactions and edges reflect conflicts between
transactions. Notwithstanding, a SC-graph differs from semantic serial-
ization graphs in two aspects. First, not all committed transactions must
be represented. Second, not all conflicts must be represented as an edge
of the SC-graph. That is because, in some cases, nodes and edges may be
“safely” removed from the SC-graph. Later we will show how this can be
done.

The protocol works as follows. When a global scheduler (GS) using
the S.sGC protocol starts running, the SC-graph is created as an empty
graph. As soon as the scheduler receives the first operation of a new
transaction (begin-transaction) G;, a node representing this transaction
is inserted in SC-graph. For each operation p;(z) € OP(G;) which the
GS receives, it checks if there is a conflicting operation ¢;(z) € OP(G})
which has already been scheduled. If an operation ¢;(z) has already been

scheduled, the scheduler inserts an edge of the form G SUL—D>Bk G;, where
x is an object belonging to the semantic unit SUzpp,. In fact, z is an
object of the local database LD By,.

Thereafter, the GS verifies if the new edge introduces a cycle in the
SC-graph. In the affirmative case, the GS rejects the operation p;(z),
undoes the effect of operations of the subsequence SUB; j, and removes

the edge G SUL—D>Bk G; from SC-graph. Otherwise, p;(z) is accepted and
submitted to the corresponding server.

If the global scheduler identifies a cycle in the SC-graph, only opera-
tions belonging to the atomic unit whose operation provokes the cycle are
to be rolled back. It is not necessary to abort the entire global transaction.

6 Conclusions

In order to fulfil the requirements of transaction processing in MDBSs we
have introduced a new transaction processing model. The key principle
behind the proposed model is the use of semantic knowledge which is cap-
tured by means of the notion of semantic units. By means of the concept
of semantic units, absolute transaction atomicity can be relaxed. Sup-
ported by this new notion of atomicity we have proposed a new correct-

ness criterion, denoted GS-serializability, for the execution of concurrent
transactions in MDBSs. We have shown that GS-serializability enforces
multidatabase consistency, provides a high degree of inter-transaction par-
allelism, while preserving local autonomy (since it does not require any
information about the execution of global transactions at the local sys-
tems). The notion of semantic units can be extended to allow two or more
local databases to determine a single semantic unit.

Finally, two concurrency control protocols based on GS-serializability
were described. Although we have already developed a recovery mecha-
nism for MDBSs using GS-serializability (we refer the reader to [3]), we
are aware that we have to investigate further on this direction. We are
now working on the problem of global deadlock detection and resolution.

References

1. Bernstein, P. A., Hadzilacos, V. and Goodman, N. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, 1987.

2. Brayner, A. Transaction Management in Multidatabase Systems. Shaker-Verlag,
1999.

3. Brayner, A. and Harder, T. Recovery in multidatabase systems. In Procedings of
XIV Brazilian Symposium on Databases (SBBD 99), 1999.

4. Brayner, A., Harder, T. and Ritter, N. Semantic Serializability: A Correctness
Criterion for Processing Transactions in Advanced Database Applications. Data
& Knowledge Engineering, 31(1):1-24, 1999.

5. Breitbart, Y., Garcia-Molina, H., Silberschatz, A. Overview of multidatabase trans-
action management. The VLDB Journal, (2):181-239, 1992.

6. Casanova, M. A. The Concurrency Problem of Database Systems. In Lectures
Notes in Computer Science, number 116. Springer-Verlag, 1981.

7. Du, W. and Elmagarmid, A. K. Quasi Serializability: a Correctness Criterion for
Global Concurrency Control in InterBase. In Proceedings of the 15th International
Conference on VLDB, pages 347-355, Amsterdam, 1989.

8. Eswaran, K.P., Gray, J.N., Lorie, R.A. and Traiger, I.L. The Notions of Consis-
tency and Predicate Locks in a Database System. Communications of the ACM,
19(11):624-633, November 1976.

9. Georgakopoulos, D., Rusinkiewicz, M. and Sheth, A. Using Tickets to Enforce the
Serializability of Multidatabase Transactions. IEEE Transactions on Knowledge
and Data Engineering, 6(1):1-15, February 1993.

10. Korth, H. F. and Speegle, G. D. Formal Model of Correctness Without Serializ-
ability. In Proceedings of ACM SIGMOD Conference, pages 379-386, 1988.

11. Korth, H. F. and Speegle, G. D. Formal Aspects of Concurrency Control in Long-
Duration Transaction Systems Using The NT/PV Model. ACM Transactions on
Database Systems, 19(3):492-535, September 1994.

12. Litwin, W., Mark, L. and Roussopoulos, N. Interoperability of Multiple Au-
tonomous Databases. Computing Surveys, 22(3):267-293, 1990.

13. Mehrotra, S., Rastogi, R., S., Korth, H. and Silberschatz, A. Non-serializable
Executions in heterogeneous distributed database systems. In Proceedings of the

14.

15.

16.

First International Conference on Parallel and Distributed Information Systems,
1991.

Rastogi, R., Mehrotra, S., Breitbart, Y., Korth, H. and Silberschatz, A. On Cor-
rectness of Non-serializable Executions. In Proceedings of the SIGMOD PODS,
pages 97-108, 1993.

Salem, K., Garcia-Molina, H. and Shands, J. Altruistic Locking. ACM Transac-
tions on Database Systems, 19(1):117-165, March 1994.

Shasha, D., Simon, E. and Valduirez, P. Simple Rational Guidance for Chopping
Up Transactions. In Proceedings of 1992 ACM SIGMOD Conference, pages 298
307, 1992.

