
On Realizing Transformation Independence in Open,
Distributed Multimedia Information Systems

Ulrich Marder

University of Kaiserslautern
Dept. of Computer Science

P. O. Box 3049
D-67653 Kaiserslautern

Germany
marder@informatik.uni-kl.de

Abstract. In this article, we present our efforts1 on realizing transformation in-
dependence in open, extensible, and highly distributed multimedia information
systems. The main focus is on the abstract data and processing model called
VirtualMedia which provides to application developers a kind of ’metaprogram-
ming’ interface for multimedia processing. In particular, we describe how trans-
formation requests are represented and processed, exploiting semantic equiva-
lence relations on filter graphs and redundant materialization, finally yielding
instantiatable plans for materializing the requested media object(s) at the client.
The article concludes with a brief outlook on future research objectives.

1 Introduction

About a decade ago, at the eve of the internet’s success story, the concept of metacom-
puting was invented [15]. The basic idea behind metacomputing is that distributed
computing resources interconnected by high-bandwidth local or wide area networks
could be integrated, thus appearing as one large high-performance (meta-) computer.
The first metacomputers were built more or less ad-hoc and/or were designed for spe-
cial applications of high-performance computing, e. g. numerical simulations for
weather prediction or cosmological research. From these beginnings, more general-
purpose metacomputing environments have emerged [3], which are already applied
for building geographical information systems (GIS) and, hence, are most probably
also beneficial for the construction of open, distributed multimedia information sys-
tems (MMIS).

The general architecture of metacomputing environments is peer-to-peer. That
means, in principle each node can be both client and server, which leads to a highly
scalable system architecture enabling global information systems with possibly thou-

1 This work is supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Son-
derforschungsbereich (SFB) 501 "Development of Large Systems with Generic Methods".



sands or even millions of peers. Obviously, such an architecture also raises questions,
e. g., concerning availability, robustness, or security. We will, however, not discuss ar-
chitectural issues of peer-to-peer systems in this article. Instead, we turn to the prob-
lem of programming (peer-to-peer) metacomputers efficiently, especially for multime-
dia processing in MMIS. The key question here is: how can we exploit the potential
power of a metacomputer without exactly knowing which computing resources will be
available at run-time and where they will be available? The most general answer to
this question is that metacomputers require a kind of ’metaprogramming’. In this arti-
cle, we will look at how this metaprogramming could be realized for multimedia proc-
essing—an area in which most programmers are still used to “thinking in bits and
bytes”.

In [3] a service-based approach to metacomputing is pursued, where the notion of a
service is borrowed from middleware standards like CORBA. We believe that this
quite reasonable approach is still too low-level for the application developers, since
they have to be concerned with tasks like locating services matching their application
semantics, organizing the (media) data flow between services, deciding on remote ma-
terialization of media objects, and so on. Instead, all this inconvenience should be
managed, controlled, and optimized by a (high-level) media object service, leaving
only the provision of sheer application semantics to the (meta-) programmer. This
principle has been formerly introduced as transformation independence [9].

The rest of the article is organized as follows. Section 2 briefly summarizes the
transformation independence abstraction. Then, section 3 will demonstrate how trans-
formation requests are represented in our VirtualMedia approach. Section 4 presents
an outline of the VirtualMedia model and section 5 concludes this article with some
prospects on future work and research issues.

2 Transformation Independence

The notion of transformation independence was actually an outcome of our former
work on realizing so-calledMedia-specific Abstract Data Types (MADT) in a distrib-
uted computing environment [7, 12]. In what follows, we give a brief summary of our
introduction to the transformation independence abstraction presented in [9] (detailed
descriptions in English are provided in [10, 11]).

The MADT concept's main objective was introducing new (DBMS-) data types for
media objects that provide the same abstractions as traditional 'built-in' data types. To
achieve this, it would not suffice to merely encapsulate the data. Rather, it is necessary
to superimpose the internal structure of the data by an adequate logical structure and
then define the operations of the data type on that logical structure. One advantage of
this concept is, that the semantics of the data types are explicitly and unambiguously
determined by their logical structure (and the operations thereon). However, different
multimedia applications prefer different physical media formats. Therefore, we have
to solve the problem of mapping media semantics efficiently onto varying physical
representations of the media, which is roughly what we now call transformation inde-
pendence. 



More specifically, transformation independence can be characterized as a way of
generally specifying the semantics of (arbitrarily complex) media transformations
while abstracting from places of execution, execution sequences (of atomic opera-
tions), and persistence considerations (i. e., how, when, where, and how long to store
media data in the database which can be generated by applying operations to other me-
dia data). The key concepts of transformation independence are graph-based media
transformations, transformation request resolution, redundant materialization, and dis-
tributed filter instantiation [11]. In the following sections, we will describe how the
first three are realized in the VirtualMedia project.

There is currently no system known to be truly realizing transformation independ-
ence. We will, however, shortly mention some important approaches to solve (at least
some of) the problems that we believe transformation independence will solve.

The concept of Enhanced Abstract Data Types (E-ADT) [16], which has been real-
ized in the ORDBMS prototype Predator, provides a solution regarding the optimiza-
tion of composite operations (transformation requests in our terminology). In particu-
lar, the E-ADT approach requires such transformation requests being specified (or in-
terpreted, respectively) in a descriptive manner, thus enabling semantic optimization
(e. g., permutation or replacement of operations). The salient feature of the E-ADT ap-
proach—its tight and elegant integration with traditional relational database technol-
ogy—, however, also seems to prevent considering more advanced optimization
strategies like cross-media optimization or optimization-driven materialization. Fur-
ther, neither format independence nor the irreversibility problem are addressed.

Within the AMOS project at GMD IPSI a concept calledpresentation independ-
ence has been developed [14]. This abstraction aims at optimizing pre-orchestrated
presentations for differently equipped clients. The QoS of such a presentation auto-
matically adapts to the client’s facilities at run-time. There are, however, no opera-
tions for ad-hoc creation or modification of presentations. Thus, the physical data in-
dependence provided is kind of 'static' (besides being dedicated to presentation only). 

Commercial ORDBMSs (available, e. g., from Informix, IBM, and Oracle) are ex-
tensible by defining and implementingUser-defined Types (UDT) and User-defined
Routines (UDR). This mechanism is also extensively used to enhance those systems
with media data types (for some examples see [5], [6]). While the vast majority of
these media extensions do not provide physical data independence, two exceptions
from this rule should be pointed out: (1) In [4] a continuous media DataBlade provid-
ing device independence, location transparency, and presentation independence is de-
scribed, and (2) [17] presents a DB2 Extender for images providing format independ-
ence where materialization is controlled through cost-based optimization. 

3 Transformation Requests in VirtualMedia

The VirtualMedia project is targeted at realizing transformation independence in a dis-
tributed, heterogeneous MMIS (e. g. Web-based) in the first place. Generally, Virtu-
alMedia is conceived as a framework providing an environment for distributed proc-
essing and persistent storage of media objects of any type. Any media processing serv-



ice or storage server conforming to the VirtualMedia (metaprogramming) model could
be plugged into this framework. In particular, VirtualMedia addresses API, data
model(s), architecture, DBMS-integration, optimization, protocol, visualization, and
interoperability issues. However, the following introduction mainly focuses on API,
data model, and optimization concepts.

3.1 VirtualMedia Descriptor

In VirtualMedia, transformation requests are sent to a server to access so-called virtual
media objects (VMO). According to the transformation independence abstraction,
only semantics, logical structure, and general media type information on VMOs may
be exposed to the clients. Hence, VirtualMedia uses a kind of media description lan-
guage suited for specifying media transformations at this abstraction level. This so-
called VirtualMedia Markup Language (VMML) [11] is based on XML.

In VMML a transformation request is called a VirtualMedia Descriptor (VMD). A
VMD contains descriptions of source-MOs and of target-MOs (also called client-
VMOs). If the source-MOs are DBMS-managed VMOs, specifying a reference (exter-
nal database ID) is usually sufficient. This reference, however, may be accompanied
by a media signature to enforce certain type, quality, or content properties of the MO.
The description of a client-VMO contains two mandatory parts, the media signature
and a transformation specification. If the client-VMO is to be materialized at the client
its signature must provide at least complete type information. The transformation
specification must at least reference one of the source-MOs from which the client-
VMO should be derived. Additionally, operations on the MO(s) can be specified. All
required input-MOs of these operations must be bound either to one of the source-
MOs or to an output-MO of another operation or transformation. If there are multiple
operations on the same MO, it is assumed that all these operations can be performed in
any sequence order. 

Effectively, a (successfully verified) VMD describes a directed acyclic graph
(DAG). Source MOs become start nodes, operations become intermediate nodes, and
client-VMOs usually become end nodes of this graph. The edges are derived from the
(explicit or implicit) binding of source- or output-MOs to input-MOs or client-VMOs.
Thus, this graph structure is a suitable internal model for describing any media trans-
formation requested through VMDs.

3.2 Filter Graphs

Modeling and realizing the processing (i. e. transformation) of media objects through
filter graphs is a probably well-known principle (see, e. g., [1] and [2]). However, to
our knowledge it has never been applied to build an abstract media transformation
concept.

Like our transformation requests, filter graphs are also DAGs. The start nodes of
the graph are media sources (media objects stored in the database or anywhere else,
maybe even live media sources) and the end nodes are media sinks (most often client



applications or the database). The intermediate nodes are media filters, the basic op-
erations forming a media transformation, while the edges of the graph represent media
streams flowing from one filter (or media source) to another filter (or media sink).

It is easy to define an isomorphism between the graph representation of VMDs and
filter graphs. This, however, would not correctly reflect the semantic relationship be-
tween the both. A filter graph specifies an instantiatable media transformation
whereas a VMD describes a virtual media transformation (thus, we could call the cor-
responding graph a virtual filter graph). By ’instantiatable’ we mean that each media
source is a materialization, each filter has an implementation, and all input data for-
mats meet the respective requirements. Hence, if we assume that for each source ob-
ject in a VMD exists at least one materialization and for each operation exists at least
one implementation, then the conclusion is that for this VMD exist ng[0..'] semanti-
cally equivalent filter graphs2. Consequently, VirtualMedia’s main optimization prob-
lem is finding the cost-optimal instantiatable filter graph for a given VMD (if one ex-
ists).

To support the transformation of request graphs into instantiatable filter graphs an
integrated filter graph model is introduced. Such a VirtualMedia filter graph may con-
tain both virtual elements and real (or instantiatable) elements: materializations
(MOm), VMOs with external ids (visible database objects), client-VMOs (specified
through a transformation request), and filters (virtual and instantiatable).

4 The VirtualMedia Model

VirtualMedia provides a model for automatically transforming a virtual filter graph
into an instantiatable filter graph (also called a transformation prescript graph). As
demonstrated in [11], we have identified the following rule classes to be considered in
this model: 

Implementation selection. Rules that find filters implementing the semantics of a
given virtual filter.

Type/format adaptation. Rules which resolve type or other signature mismatches
between subsequent (virtual or instantiatable) filters.

Semantic optimization. Rules that exploit knowledge of semantic relationships be-
tween filters (e. g., reversibility or permutability relations).

Materialization selection/rejection. Rules that exclude materializations from being
used as source objects. Additionally, rules are needed for selecting materializations
that should be added to (or removed from) materialization graphs.

Each of these rules either adds, removes, or replaces nodes of a VirtualMedia
graph. Hence, in order to assure that applying a rule always preserves the semantics of
the transformation request, an appropriate formal model describing the VirtualMedia
semantics has been specified. However, due to space limitations we only sketch this
specification in the following subsections.

2 The ' is due to the possibility of periodic repetition of semantically neutral subgraphs. Of
course, this case is kind of pathologic and usually avoidable in practice.



4.1 Data Model for Media Objects and Filters

An object-oriented data model describing media object types and media filter types is
defined. The MO part of the model does not define a (traditional) media type hierar-
chy. Instead, all attributes of an MO like main type, subtype, encoding, and further op-
tional characteristics are modeled as properties which may be dynamically assigned to
MOs as a signature. Assignment of contradictory properties may be prevented by de-
fining appropriate constraints. We believe that this approach is more flexible and ex-
tensible than a type hierarchy built on inheritance and, thus, better supports the frame-
work character of VirtualMedia.

The filter part of the data model describes both virtual filters and instantiatable (im-
plemented) filters. A filter is characterized by its functional and non-functional prop-
erties. The functional properties are defined as a set of input and output signatures.
These signatures are interpreted differently depending on the filter being virtual or in-
stantiatable. If a virtual filter specifies input or output signatures, these are considered
being part of its semantics. If an instantiatable filter specifies input or output signa-
tures it specifies requirements on actual input-MOs and assertions on actual output-
MOs. That means, a filter implementing a virtual filter is not required to specify ’com-
patible’ signatures. To give an example: Let the virtual filter F say its input should be
audio, then we could imagine an implementation of F accepting video as input (but, of
course, affecting only the audio part).

By non-functional filter properties we mean features like resource consumption,
computational complexity, or quality degradation coefficients. Considering such prop-
erties during transformation request resolution sounds quite reasonable. How this
should be realized, however, has not yet been examined in detail. Whether there exist
meaningful non-functional properties of virtual filters that are to be modeled and con-
sidered by graph transformation rules, is also still an open question.

4.2 Semantic Equivalence Relations 

All graph transformation rules are derived from a number of equivalence relations
concerning (sets of) filters and MO-signatures. Most of these equivalence relations are
explicitly modeled as relations within the object-oriented schema, while some may
also be expressed in equational form.

Notice that how ever we constitute our data model and equivalence relations they
will probably not conform to any application’s semantics. This is because such an ab-
stract model will probably not consider each possible media property an application
might depend on. Hence, an application programmer should be aware of this model
and the equivalences it defines in order to avoid erroneous transformation requests.
Since application neutrality is a major objective of VirtualMedia, only equivalences
are defined on which the majority of applications could agree.

Semantic Neutrality Classifying a filter as being semantically neutral means it
may (in principle) be inserted anywhere in a VirtualMedia graph (or removed) without
changing the semantics of the graph. Obviously, putting all the format conversion fil-



ters in this equivalence class is crucial for automatic format adaptations to work. Actu-
ally, the formal VirtualMedia model defines several different context-sensitive (with
respect to media signatures) varieties of semantic neutrality, e. g. quality neutrality
(strong) and content neutrality (weak). 

Semantic Reversibility Some filter operations are reversible by corresponding in-
verse filters. This means, connecting a reversible filter with its inverse filter yields a
semantically neutral filter pair. Hence, if such a pair occurs in a VirtualMedia graph it
may be removed safely. At first glance, inserting such a pair does not appear to make
much sense. An important exception, however, is the composition and decomposition
of multiple-stream MOs, which is discussed below.

Semantic Permutability If the sequence in which two filters are applied to an MO
does not matter, they are permutable without changing the graph semantics. Besides
being stated a priori, permutability may also be stated ad hoc in a transformation re-
quest: A single transformation can contain several operations on the same source. If
there are no specified input/output dependencies between these operations, they are
considered permutable. Instead of permuting such permutable filters it is also possible
to merge them in a multiple-filter node (super-filter), thus deferring the decision on
the actual sequence to instantiation time.

(De-)Composition Semantics Filters that compose or decompose multiple-stream
MOs work without information loss (by definition). That means, e. g., that a decom-
pose-filter must not only provide all the single streams but also the synchronization in-
formation. Thus, compose- and decompose-filters are reversible. Since no information
gets lost they are also kind of semantically neutral. 

The semantic reversibility of (de)compose-filters can be exploited for applying fil-
ters to single streams of a multiple-stream MO. Thus, the definition of reversibility is
generalized in a sense that all other filters (i. e., not only neutral filters) are allowed in-
between a decompose/compose pair which is newly inserted into a VirtualMedia
graph. In the case of a multiple-filter node with a multiple-stream input the filters in
this node may be applicable to different streams of the multiple-stream MO (depend-
ing on their signature). Since the filters are classified as permutable there are no se-
mantic dependencies between them. Hence, it is possible to split the multiple-filter
node when it gets embraced by a decompose/compose pair.

Semantic Assimilation The semantic equivalence between a virtual filter and a
possible implementation of this filter is called semantic assimilation. The implementa-
tion of a virtual filter XV consists of an instantiatable filter XI implementing the seman-
tics of XV and an arbitrary number of additional filters. The additional filters may be
located before and after XI. They must either be semantically neutral or, otherwise, a
filter Y before XI must be followed by its inverse Y –1 after XI where (Y, Y –1) conform
to the generalized reversibility semantics. An implementation is called complete if (1)
all filters are instantiatable, and (2) the signature distance between start and end point
of all edges is zero. 



4.3 Considerations on Graph Transformation Algorithms

All graph transformation rules can be derived from the equivalence relations defined
in the previous section. Obviously, these rules are applicable to drive the transforma-
tion of a VirtualMedia graph in very different directions, some of which will probably
not lead to an acceptable result. What constitutes an acceptable result, however, may
be defined in various ways, e. g.:
1. A complete implementation of the client’s transformation request.
2. A complete implementation, optimized according to one of the following criteria:

resource consumption (min.), delivery latency (min.), perceivable quality (max.).
(This list may still be extended.)

3. A complete implementation with multidimensional optimization (two or more of
the criteria listed above).

Generally, the number of transformation rules applicable to any given graph lies be-
tween 0 and n. Hence, we may start by selecting rules according to a breadth-first or
depth-first search algorithm, resulting in a search graph with VirtualMedia graphs as
nodes and rules as edges. Breadth-first search will find a solution to (1) if one exists.
If no solution exists, breadth-first search might not terminate, because infinite
branches may exist in the search graph. This infinite search space is due to our rules
allowing unlimited growth of VirtualMedia graphs in principle. Thus, depth-first
search might not even terminate when a solution exists. 

It is, however, possible to define a cost function based on signature distance which
behaves always monotonic on the path from the request graph to the solution graph.
Then an A*-like heuristic search algorithm could be applied to find a solution to (1)
quite efficiently. It is not clear, yet, whether the monotony criterion can always be met
if we try to solve (2) or (3) this way. This will have to be investigated in future work. 

Finally, notice that a divide-and-conquer approach (dynamic programming) is not
applicable because of the context-sensitivity of most of the rules. That means, combin-
ing optimal solutions of subproblems (i. e., subgraphs of the request graph) does not
(generally) yield an optimal solution of the global problem. Thus, the dynamic pro-
gramming preconditions are not met.

4.4 VirtualMedia in Metacomputing Environments

In metacomputing environments like DISCWorld [3] instantiatable media filters could
be realized (e. g., wrapped) as services which may be provided by any (or at least
some) peer. Supporting VirtualMedia’s request resolution concept additionally re-
quires a query mechanism for finding media filter services that match the semantics of
a given virtual filter. Finally, it must be possible to link the media filters by establish-
ing (high-bandwidth) data channels between them. Unlike other metacomputing envi-
ronments, DISCWorld addresses these both requirements, too. Thus, VirtualMedia
could provide a high-level API for distributed multimedia computing being transpar-
ently mapped to such an environment. This mapping process includes some additional
opportunities for optimization to be considered in the future.



5 Conclusions

In this paper, we propose VirtualMedia as an approach to realize transformation inde-
pendence in open (e. g., web-based) MMIS. VirtualMedia solves the irreversibility
problem3 [9] by establishing a layer of virtual media objects which applications may
unrestrictedly manipulate. We adopt the filter graph model to represent virtual media
objects as transformation graphs. Semantic equivalence relations defined for such Vir-
tualMedia graphs allow for transforming request graphs into (instantiatable) prescript
graphs while applying different optimization strategies like materialization or cost-
based evaluation of semantically equivalent graphs.

The VirtualMedia graph transformation and optimization algorithm will continue
being the main objective of our work in the near future. Besides that, ongoing research
also focuses on the refinement of several other aspects of the VirtualMedia concept
and on the exploration of several open questions. Of particular interest are the follow-
ing aspects, to name a few:
ù Enhancing the data model with, e. g., hierarchical structures (explicit subgraphs) or

a template concept (parameterized client-VMOs).
ù Development of a reference architecture for a VirtualMedia service based on

ORDBMS technology, metacomputing environments and VirtualMedia compatible
media servers like Memo.real [8].

ù Integrating adaptive QoS (feedback-controlled) and interaction (including interac-
tive filters).

ù Several API issues, e. g. improvement of the XML-based VirtualMedia markup
language and consideration of non-functional properties as part of signatures.

References

1. Candan, K. S., Subrahmanian, V. S., Venkat Rangan, P.: Towards a Theory of Colla-
borative Multimedia. In: Proc. IEEE International Conference on Multimedia Computing
and Systems (Hiroshima, Japan, June 96), 1996.

2. Dingeldein, D.: Multimedia interactions and how they can be realized. In: Proc. Int. Conf.
on Multimedia Computing and Networking, 1995.

3. Hawick, K., A., James, H., A., Silis, A., J. et al.: DISCWorld: An Environment for Service-
Based Metacomputing. In: Future Generation Computer Systems, 15 (5–6), 1999,
pp. 623–635.

4. Hollfelder, S., Schmidt, F., Hemmje, M., Aberer, K., Steinmetz, A.: Transparent Integration
of Continuous Media Support into a Multimedia DBMS. In: Proc. Int. Workshop on Issues
and Applications of Database Technology (Berlin, Germany, July 6–9), 1998.

5. Informix Digital Media Solutions: The Emerging Industry Standard for Information Man-
agement. Informix White Paper, Informix Software, Inc., 1997.

6. Informix Video Foundation DataBlade Module. User’s Guide Version 1.1. Informix Press,
June 1997.

7. Käckenhoff, R., Merten, D., Meyer-Wegener, K.: MOSS as Multimedia Object Server –
Extended Summary. In: Steinmetz, R., (ed.): Multimedia: Advanced Teleservices and High

3 Making irreversible media transformations persistent without sacrificing application neutral-
ity.



Speed Communication Architectures, Proc. 2nd Int. Workshop IWACA ’94, (Heidelberg,
Sept. 26–28), Lecture Notes in Computer Science vol. 868, Berlin: Springer-Verlag, 1994,
pp. 413–425. 

8. Lindner, W., Berthold, H., Binkowski, F., Heuer, A., Meyer-Wegener, K.: Enabling hyper-
media videos in multimedia database systems coupled with realtime media servers. In: Proc.
IDEAS 2000 (Yokohama, Japan, 18.-20. Sept.), Sept. 2000.

9. Marder, U.: Medienspezifische Datentypen für objekt-relationale DBMS: Abstraktionen
und Konzepte. In: Proc. 8. GI-Fachtagung "Datenbanksysteme in Büro, Technik und Wis-
senschaft" BTW '99 (Freiburg, March 1–3, 1999), Ed. A. P. Buchmann, Springer-Verlag,
Berlin 1999, pp. 210-231.

10. Marder, U.: Towards a Universal Media Server. SFB-Report 03/2000, SFB 501, University
of Kaiserslautern, Feb. 2000, 19 pages.

11. Marder, U.: Transformation Independence in Multimedia Database Systems. SFB-Report
11/2000, SFB 501 University of Kaiserslautern, Nov. 2000, 24 pages.

12. Marder, U., Robbert, G.: The KANGAROO Project. In: Proc. 3rd Int. Workshop on Multi-
media Information Systems (Como, Italy, Sept. 25–27), 1997, pp. 154–158.

13. Prückler, T., Schrefl, M.: An Architecture of a Hypermedia DBMS Supporting Physical
Data Independence. In: Proc. 9th ERCIM Database Research Group Workshop on Multi-
media Database Systems (Darmstadt, Germany, March 18–19), 1996.

14. Rakow, T., Klas, W., Neuhold, E.: Abstractions for Multimedia Database Systems. In: Proc.
2nd Int. Workshop on Multimedia Information Systems (West Point, New York, USA, Sept.
26–28), 1996.

15. Smarr, L., Catlett, C. E.: Metacomputing. In: Comm. ACM, Vol. 35 No. 6, June 1992,
pp. 44–52.

16. Seshadri, P.: Enhanced abstract data types in object-relational databases. In: The VLDB
Journal Vol. 7 No. 3, Berlin, Heidelberg: Springer-Verlag, Aug. 1998, pp. 130–140.

17. Wagner, M., Holland, S., Kießling, W.: Towards Self-tuning Multimedia Delivery for Ad-
vanced Internet Services. In: Proc. 1st Int. Workshop on Multimedia Intelligent Storage and
Retrieval Management (MISRM'99) in conjunction with ACM Multimedia Conference, Or-
lando, Florida, Oct. 1999.


