
, etc.,
more
bjects
ts of-
ver,

manip-
ent
hnol-
ted
nal
as
tly,
id-

in: Proc. 18th British National Conference on Databases (BNCOD 2001),
Oxford, July 2001, Advances in Databases, Read, B. (Ed.), LNCS 2097,
Springer, pp. 89-104
The Real Benefits of Object-Relational DB-Technology
for Object-Oriented Software Development

Weiping Zhang, Norbert Ritter

University of Kaiserslautern, Germany
P.O. Box 3049, 67653 Kaiserslautern

{wpzhang, ritter}@informatik.uni-kl.de

Abstract: Object-oriented programming languages (OOPLs like C++, Java, etc.)
have established themselves in the development of complex software systems for
more than a decade. With the integration of object-oriented concepts, object-rela-
tional database management systems (ORDBMSs) aim at supporting new genera-
tion software systems better and more efficiently. Facing the situation that
nowadays more and more software development teams use OOPLs ‘on top of’
(O)RDBMSs, i. e., access (object-)relational databases from applications devel-
oped in OOPLs, this paper reports on our investigations on assessing the contribu-
tion of object-relational database technology to object-oriented software
development. First, a conceptual examination shows that there is still a considera-
ble gap between the object-relational paradigm (as represented by the SQL:1999
standard) and the object-oriented paradigm. Second, empirical studies (performed
by using our new benchmark approach) point at mechanisms, which are not part of
SQL:1999 but would allow to reduce the mentioned gap. Thus, we encourage the
integration of such mechanisms, e. g., support for navigation and complex objects
(structured query results), into ORDBMSs in order to be really beneficial for new
generation software systems.

1 Motivation

Object-oriented programming languages (OOPLs), such as C++, Java, SmallTalk
have established themselves in the development of complex software system for
than a decade. Both, the structure of these systems as well as the structure of o
managed by these systems have become very complex. Object-oriented concep
fered by OOPLs are well suited for managing complex structured objects. Howe
there are additional requirements, such as persistence and transaction-protected
ulation, which can only be fulfilled efficiently by integrating a database managem
system (DBMS). Consequently, database technology becomes one of the core tec
ogies of modern software systems. In times of the ‘breakthrough’ of object-orien
system development, two kinds of DBMSs were of practical relevance: relatio
DBMSs (RDBMSs) and object-oriented DBMSs (OODBMSs). Using OODBMSs h
proved inefficient/inflexible for reasons we cannot go into in this paper. Consequen
OODBMS did not gain wide acceptance [5], and, therefore, will not be further cons
ered in this paper.

nce
uc-
scrip-
this

timi-
tem

pping
Such

the
Ss)
[20,

, be-
[20,

e gap
and
the
in

nted
ould
ect-

to-
ping
o as-
s the
ly re-
cus

rre-
rage

lows.
odel
nding
ap-

results
ional
ve-
cts by
ts of
plex
n 6.
Using an RDBMS, on one hand, requires to overcome the well known impeda
mismatch [5, 13], i. e., performing the non-trivial task of mapping complex object str
tures and navigational data processing (at the OOPL layer) to the set-oriented, de
tive query language (SQL92), which supports just a simple, flat data model. Despite
considerable mapping overhead, mature RDBMS technology (index structures, op
zation, integrity control, etc.), on the other hand, contributes to keep the overall sys
performance acceptable. Several commercial systems [2, 12, 14, 15, 17, 19] ma
object-oriented structures onto the relational data model are currently available.
systems are often referred to asPersistent Object System built on Relation(shortly:
POS).

The object-relational wave [22] in database technology has decisively reduced
gap between RDBMSs and OOPLs. Although object-relational DBMSs (ORDBM
are able to (internally) manage object-oriented structures (see data definition part in
21]), the required seamless coupling of OOPLs and ORDBMSs is not yet possible
cause (as in SQL92) results of SQL:1999 queries (see data manipulation part in
21]) are rather (sets of data) tuples than (desired sets of) objects. In summary, th
between OOPLs and ORDBMSs can be traced back to a whole bunch of modelling
operational aspects, as we will detail in the following sections. Furthermore,
SQL:1999 standard and the commercially available ORDBMSs differ very much
their object-oriented features. Thus, it is by no means clear, how a given object-orie
design can be mapped to a given ORDBMS (most) efficiently, or which features sh
be offered by ORDBMSs in general in order to enable an efficient mapping of obj
oriented structures, respectively.

Our long-term objective is to influence the further development of ORDBMSs
wards a better support of object-oriented software development (minimal map
overhead). Thus, we have proposed a new benchmark approach in [26] allowing t
sess a given ORDBMS by taking into account both, its own performance as well a
required mapping overhead. Furthermore, [26] presents basic comparisons of pure
lational and object-relational mappings. This paper goes beyond [26] in that the fo
is to point up new directions of ORDBMS development, which, as is proved by co
sponding empirical examinations, object-oriented software development can leve
from and, therefore, should be further pursued. Thus, this paper is structured as fol
A conceptual examination (section 2) outlines how the object-relational data m
(standardized by SQL:1999) corresponds to OOPLs. Section 3 discusses correspo
mapping rules. Afterwards, section 4 gives a brief introduction into our benchmark
proach needed to interpret the measurement results detailed in section 5. These
show that object-oriented software development can leverage from object-relat
technology (in comparison to purely relational technology), but that further impro
ments can be reached by a better support of navigational access (retrieving obje
object identifiers) and appropriate mechanisms for retrieving complex structured se
objects. We propose to admit corresponding mechanisms for navigation and com
object support to future versions of the SQL:1999 standard as concluded in sectio

igm,
age

ith a
, we
999

t. its
lass
s
is ei-
-
ding

nged
sses

how

-
sion

s pre-
f
ured
butes

rding

r-

ports
s. In
r

2 Conceptual Consideration

There is a multiplicity of object data models, for example ODMG [9], UML [24], COM
[2], C++ and Java. All these models support the basic concepts of the OO parad
however, there are certain differences. Independently from the modelling langu
used in the OO software development (e. g., UML), SQL:1999 must be coupled w
concrete OOPL. In accordance to their overall relevance and conceptual vicinity
concentrate on the object model of C++ and ODMG and compare it with the SQL:1
standard [11, 20, 21].

2.1 Modelling Aspects

Object Orientation in OOPL . The conceptobjectrepresents the foundation of the OO
paradigm. An object is the encapsulation of data representing a semantic unit w. r.
structures/values and its behaviour. It conforms to a particular class [16]. In fact, a c
implements an object type (classification) which is characterized by a name as well a
a set of attributes and methods. Each attribute conforms to a certain data type and
ther single-valued or set-valued (collection types). Furthermore, a data type can be sca
lar (e. g., integer, boolean, string, etc.) or complex. In the latter case correspon
values can be references (association) or objects of other classes (aggregation) so that
complex structures can be modelled. A class may implement methods (behaviour)
which can be invoked in order to change the object’s state. Classes may be arra
within class hierarchies. A class inherits structures and behaviour from its supercla
(inheritance), but may refine these definitions (specialization). Due to space restric-
tions we do not give a more detailed description of the OO paradigm, but discuss
the OR data model conforms to OO concepts.

Object Orientation in SQL:1999. While the relational data model (SQL2) did not sup
port semantic modelling concepts sufficiently, in SQL:1999 the fundamental exten
supporting object-orientation is the structureduser-defined data type(UDT, [11]).
UDTs, which can be considered as object types, can be treated in the same way a
defined data types (built-in data types). Consequently, similarly to the type system o
OOPLs the type system of SQL:1999 is extensible. UDTs may be complex struct
and, therefore, may not only contain predefined data types but also set-valued attri
(collection types) and even other UDTs (aggregation) or references (associations). Ob-
viously, UDTs are comparable to the classes of the OO paradigm. However, acco
to the SQL:1999 standard a UDT must be associated with a table. The notion oftyped
table, also referred to asobject table, allows to persistently manage instances of a ce
tain UDT within a table. Each tuple of such a table represents an instance (object) of a
particular UDT and is identified by a unique object identifier (OID) which can be sys-
tem-generated or user-defined. Besides instantiable UDTs, SQL:1999 also sup
non-instantiable UDTs, which conforms to the notion of abstract classes in OOPL
addition, UDTs may have methods (behaviour) which are either system-generated o

cial-

orts
ue
cap-
own

ne op-

nav-
tems.
lfil

s in-
ently

viga-
cli-
tly
irect
it-

w

implemented by users. They may participate in type hierarchies, in which more spe
ized types (subtypes) inherit structure and behaviour from more general types (super-
types), but may specialize corresponding definitions. Thus, SQL:1999 supp
polymorphism and substitutability, however, multiple-inheritance is not supported. D
to the association of UDTs with tables (see above) SQL:1999 does not support en
sulation and, consequently, there is nothing like the degree of encapsulation kn
from OOPL (public, protected, private).

2.2 Operational Aspects

Beside the fundamental modelling aspects discussed so far, we also have to exami
erational aspects in order to figure out theconceptual distanceadequately. The follow-
ing aspects are most relevant to our consideration:

Descriptive Queries vs. Navigational Processing. While OOPL processing is inher-
ently navigational, SQL supports a set-oriented, descriptive query language. Both
igational and set-oriented query processing are important to modern software sys
Therefore, ORDBMSs should also directly facilitate navigational processing to fu
this requirement of OO applications.Direct support of navigational accessby the
DBMS would mean that a database object referred to by its OID can be provided a
stance of an OOPL class. However, to the best of our knowledge none of the curr
available ORDBMSs directly supports this notion of navigation.

A naive coupling of
OOPLs with descriptive
SQL requires to issue one
or several corresponding
SQL queries (see Fig. 1) to
the database for processing
a dereferencing operation,
e. g. GetObject(Ref), and
retrieving the requested ob-
ject from the database serv-
er. Such a processing
scheme will surely lead to a
bad runtime behaviour of the entire system, since the costs of transforming a na
tional operation to SQL queries, of evaluating these queries in the DBS, and of the
ent/server communication can be very high. Obviously, the lack of DB APIs in direc
supporting navigational access impairs the system efficiency badly. Thus, either d
support for navigation1 must be provided or efficient prefetching mechanisms explo

1. In section 5 we will see that one of the commercially available ORDBMS provides
some basic means for a direct access to objects by OIDs. Measurement results sho
that this is at least a step into the right direction.

Fig. 1: Bottleneck between OOPL and ORDBMS

OOPL

ORDBMS

Navigation:

Descriptive Query Language
SQL:1999

Select * From ...
Where OID = ‘...’;

GetObject(Ref)

Bottleneck Transformation
Copy

OR-Object

OO-Object

eSQL

CLI

round-

p-
lex
d pre-
rat-
asic
MS)
ples
t is
veral
uage
lex
ts in-
of di-

m ex-

hav-
these
DFs

aran-
ay be
nteg-
tical-
the
ere-
con-

digm
the
ss, in
yer.
, on

,

ing set-oriented database access and, thereby, reducing the number of database
trips must be applied in order to effectively couple OOPLs with ORDBMSs.

Structured Query Results. As already mentioned several times before, OOPLs su
port complex structured object types, especially by the possibility of nesting comp
data types as well as using collection types and references. We have also mentione
viously that these facilities of modelling complex structured objects have been integ
ed into SQL by the SQL:1999 standard. Unfortunately, because of the traditional b
concepts of SQL, complex structures (actually supported both in OOPL and ORDB
get lost at the DBMS interface, since only (sets of) simply structured, flat data tu
can be retrieved. Therefore, if we want to couple an OOPL with an (O)RDBMS, i
necessary to separately retrieve simple fragments of complex objects by issuing se
SQL queries, and then rebuild complex object structures at the programming lang
level (see Fig. 1). The mentioned problem even gets worse, if not individual comp
objects, but complex structures (object graphs) containing numerous related objec
terconnected by object references are to be selected as units. Obviously, the lack
rect support for complex structured objects at the DB API reveals abottleneckbetween
the two paradigms (see Fig. 1), and prevents new generation software systems fro
ploiting the potential power of ORDBMSs most effectively.

Object Behaviour. Of course, the operational aspects also encompass the object be
iour implemented in the database. Because of special implementational aspects
methods (UDFs) can almost exclusively be executed at the server side, or, if these U
or special client-invokable pendants are executed at the client side, it cannot be gu
teed that these pendants perform the original semantics. For example, there m
complex dependencies between UDFs and integrity constraints, e. g., referential i
rity constraints and triggers, which are implemented by using SQL and are automa
ly ensured by the DBMS. Thus, it is almost impossible to support calling UDFs at
OOPL level in the same (‘natural’) way as usually object methods can be called. Th
fore, we do not consider a mapping of object methods in this paper and restrict our
siderations to navigational and set-oriented access.2

3 Mapping Rules

In the previous section, we outlined the conceptual distance between the OO para
and SQL:1999. Considering an individual ORDBMS, its OO features determine
overhead which has at least to be spent in order to bridge this distance. Neverthele
theory there is an entire spectrum of possibilities to design the required mapping la
On one hand, it depends on how ’natural’ coding in the OOPL has to remain, and

2. At this point, we want to mention that there are some more aspects of ORDBMSs
which OO applications may benefit from, but which cannot be captured in this paper,
e. g., facilities for integrating external data sources into database processing.

point
g to
ndent
egree

pec-
by

Ss
Since
t ref-
t them
y be
class
ros

ails),
ercial

y
rela-
nce

we
out-
uired
hout
f the
the
les,
tand-

ab-

ID.
map-
aps
rit-
the other hand, on how far the OO features are to be exploited. Regarding the first
(‘natural’ coding), we demand that the programmer must not be burdened by havin
take data management aspects into account. Thus, programming must be indepe
of the database as well as the mapping layer design. Regarding the second point (d
of exploiting OO features), we want to outline the two extremes of the mentioned s
trum, i. e., pure relational mapping and full exploitation of the OO features offered
the considered ORDBMS3.

Pure Relational Mapping. As mentioned before, there are several commercial PO
mapping OO structures to relational tables. Objects are represented by table rows.
RDBMSs do not support set-valued attributes, user-defined data types, and objec
erences, additional tables are required to store corresponding data and to connec
with the corresponding class tables via foreign keys [1]. Thus, several tables, ma
required to map a given class. Principally, there are several ways of representing a
hierarchy in the relational model, comprehensively discussed in [8]. After studying p
and cons, we decided to use the horizontal partitioning approach (see [8] for det
since it provides good performance in most cases, and is also used in most comm
POSs [2, 12].

Object-Relational Mapping. Exploiting the OO features of ORDBMSs is commonl
argued to be more promising [3], but the real benefits in comparison to the pure
tional mapping are not very well studied yet. This paper will give some performa
evaluations later on.

Before outlining general mapping rules exploiting OO features of ORDBMSs,
have to re-emphasize the following point. Our benchmark approach, which will be
lined in the subsequent section, assesses a certain ORDBMS by taking the req
mapping overhead into account. In order to be fair, the mapping layer used throug
the measurements must be designed in an optimal way w. r. t. the capabilities o
ORDBMS considered. Therefore, the design of the mapping layer may differ with
ORDBMSs to be assessed. In the following, we just outline general mapping ru
which are based on the SQL:1999 concepts, in order to provide some basic unders
ing on how a mapping layer can be designed.

A C++ class maps to a UDT in SQL:1999. Non-instantiable UDTs correspond to
stract C++ classes. A UDT is associated with exactly one table (typed table) to initialize
its instances. Each tuple in this table represents a persistent instance (object) of a par-
ticular class and is associated with a system-generated OID. Embedded objects (aggre-
gation) entirely belong to their top-level object and, therefore, do not own an O
Extents are mapped to the list constructor of C++ STL. Keys are managed at the
ping layer by applying the map constructor of C++ STL. A C++ class hierarchy m
to a hierarchy of structured UDTs. However, SQL:1999 only supports single-inhe

3. Note, SQL:1999 and the commercially available ORDBMSs differ very much in
their OO features, as we will see in the subsequent sections of this paper.

nces
ces, a
ec-
and
ts de-
r per-
on
ed

RD-
ceed

OO
e op-
tance
nfig-

ore
t and
tailed
the

sys-
MSs
ectly
, the
very

ese
ent.

archi-
uired
tions
2]),
opose
(incl.
get
, e. g.,
our
ance so that multi-inheritance has to be simulated at the mapping layer. SQL refere
are mapped to C++ pointers. Since SQL:1999 does not support diametric referen
relationship type is broken down into two separate primary-key/foreign-key conn
tions and the mapping layer maintains the referential integrity. Except for mutator
observer methods, which are generated by the mapping layer w. r. t. the constrain
fined in the user database schema, object behaviour is not yet considered in ou
formance investigation. Navigation is supported by offering the functi
GetObject(Ref)which, in the case that the DB API does not directly support OID-bas
object fetching, is implicitly transformed into an SQL query.

After having discussed (modelling and operational) discrepancies between O
BMSs and OOPLs as well as the mapping rules needed to bridge the gap, we pro
with our performance evaluations.

4 Performance Evaluation

Our discussion in section 2 shows that there is only a small difference between the
and OR paradigms w. r. t. modelling aspects, but a considerable distance w. r. t. th
erational aspects and the application semantics. In order to further evaluate this dis
as well as to quantify the overhead required for bridging this gap, we propose a co
urable benchmark approach [18, 26].

Remind, we do not consider OODBMSs, but ORDBMSs, because we more and m
have to face the situation that people are using OOPLs for software developmen
(O)RDBMSs for data management purposes so that there is a need for a more de
examination of the efficiency of possible coupling mechanisms. Consequently,
OO7-Benchmark [5] representing an important standard for benchmarking OO
tems, is not appropriate for our purposes. The performance of RDBMSs or ORDB
has traditionally been evaluated in isolation by applying a standard benchmark dir
at the DBMS interface. Sample benchmarks [8] are the Wisconsin benchmark [3]
TPC benchmark [23] as well as the Bucky benchmark [6]. These benchmarks are
suitable for comparing different DBMSs with each other [8]. However, none of th
benchmarks helps to assess the contributions of a DBMS to OO software developm
Consequently, these other approaches do not take the typical application server
tecture and the fact that the DBMS capabilities determine the overhead of the req
application/mapping layer into account. Furthermore, data types as well as opera
of the applications we consider may differ significantly (double-edged sword [6, 2
so that a standard benchmark can not cover the entire spectrum. Therefore, we pr
an open, configurable benchmark system allowing to examine the entire system
mapping layer) w. r. t. to its typical applications. Such a system will also help us to
results transcending those reported on in this paper (see succeeding sections)
more detailed examinations of navigational support. In the following, we outline
first prototype. Further details can be found in [1, 26].

ware
our
of a
pe.
the

hierar-
cial
ated
s (see
e in-
ot re-
ons/
query
also
ount
ent
ding
fter-

ap-
stem
par-
4.1 Benchmark System

An open, configurable
benchmark system is not
necessarily difficult to be
applied, as our approach
proves. Indeed, our cur-
rent prototype offers 3
predefined configura-
tions, which w. r. t. data-
base size are small,
mediumandlarge in order
to be sufficiently scalable.
Both, structures (data type
and type hierarchies) as
well as complexity of data
in the 3 standard configu-
rations are determined in
cooperation with one of the leading software vendors for business standard soft
and, thus, represent a wide spectrum of typical application domains. In addition,
benchmark system can be simply configured according to the particular properties
concrete application. Fig. 2 gives an overview of the architecture of our prototy
Among other possibilities, users can directly control the generation process of
benchmark database, e. g., specify the database size, the complexity of the class
chy and the complexity of the individual objects, in order to take care that the spe
requirements of the application in mind are taken into account. After having gener
the benchmark database the user may select from a given set of query template
section 4.2 for further details) and indicate how many times each template is to b
stantiated. New query templates can be easily added, if the existing templates do n
flect application characteristics sufficiently. Based on these user selecti
specifications the load generator creates a set of queries which is passed to the
executor, which, in turn, serves as a kind of driver for measurements. Users can
specify which kinds of measurement data are to be collected by the system, i. e., am
of time spent at the DB or the mapping layer for query transformation, or the time sp
for SQL query evaluation, data loading, and/or result set construction. Correspon
values are collected by the data collector during execution of the query set and a
wards stored in the DBS for further evaluations.

As explained in more detail in [1, 26], the special challenges of this benchmark
proach are, on one hand, to properly take into account the requirements of OO sy
development, and, on the other hand, to guarantee an optimal mapping w. r. t. the
ticular capabilities of an individual ORDBMS.

ORDBMS

CLI
C++ Wrapper

Query Executer

Query specification

Object

Data

Data
Generator

Load
Generator

Benchmark parameters

SQL:1999

Collector

Fig. 2: Architecture of the benchmark system

Query
Templates Additional Query Templates

Management

POS API

M
ap

pi
ng

 L
ay

er

M
at

ad
at

a
M

an
ag

em
en

t

Q
ue

ry
P

ro
ce

ss
or

e fol-

ing

idge
erent

the

pical
any.
tions
nal

ble
can
fer-
y tem-

era-
ional
OR-

bute.
hen

s
pes.
Ss.

port
egree

i-
ssing

s

4.2 Benchmark and Measurements

In order to get a complete performance evaluation, we concentrate on answering th
lowing questions:

1. Which performance gains offer ORDBMSs in comparison to RDBMSs regard
their usage in OO software development?

2. Which additional overhead has to be spent at the mapping layer in order to br
the gap between the OO and OR paradigms and how does it behave facing diff
query types?

3. To which extent is the system performance influenced by the capabilities of
(O)RDBMS API?

In order to be able to answer the first two questions, we have selected a set of ty
benchmarking queries according to a long-term study of a leading software comp
These queries represent a wide spectrum of typical operations in the target applica
of ORDBMSs. We have compared a purely relational mapping with an object-relatio
one (by means of exploiting its OO modelling power) by using a currently availa
commercial ORDBMS. This way we ‘measured’ how OO software development
leverage from the OO extensions offered by ORDBMSs (e. g., structured UDTs, re
ences, etc.). The operations considered for that purpose are implemented as quer
plates and grouped in following categories:

Navigation operations: Navigation operations, such asGetObject(OID), are not di-
rectly supported by almost all currently available ORDBMSs. Considering such op
tions helps us to assess the performance of ORDBMSs in supporting navigat
processing. We hope that corresponding results ‘help’ ORDBMS vendors to make
DBMSs as efficient as OODBMSs are in this concern.

Queries with simple predicates on scalar attributes:Queries of this category have
simple predicates just containing a single comparison operation on a scalar attri
This group mainly serves to provide a performance baseline that can be helpful w
interpreting results of more complex queries.

Queries with predicates on UDTs:This group contains queries with simple predicate
(a single comparison operation) on attributes of structured, non-atomic data ty
Thus, it mainly serves for assessing the efficiency of mapping UDTs to (O)RDBM

Queries with predicates on set-valued attributes:This group contains queries with
simple predicates (a single IN operation) on nested sets. ORDBMSs directly sup
set-valued data types. In the relational mapping, several tables (according to the d
of nesting), which are connected by primary/foreign-keys, are necessary.

Queries with path predicates:This group contains queries evaluating simple pred
cates after path traversals. These queries allow to evaluate the efficiency of proce
dereferencing operations (path traversals) in ORDBMSs.

Queries with complex predicates: Queries of this group contain complex predicate
challenging both query transformation as well as query optimization.

-
es as
llows
ce).
e ad-

s of
iga-
n two
ore

orting

nd
d
busi-
. We
time
d re-

lient/
time
ysing
suing
t. It

, how
ntly.

ap-
in-

-

e

Queries on the class hierarchy:While all other queries exclusively deliver direct in
stances of a single queried class, queries of this group deliver transitive instanc
well. Predicates conform to those of the second category. This group of queries a
to evaluate the efficiency of the ORDBMS in handling class hierarchies (inheritan
The comparison with the relational mapping has been expected to demonstrate th
vantages of ORDBMSs.

The third question posed at the beginning of this section deals with the capabilitie
the DB interface especially w. r. t. support for complex structured objects and nav
tional access. In order to examine these aspects, we performed measurements o
different (commercially successful) ORDBMSs. One of these systems offers the m
traditional interface, whereas the second one provides some basic means of supp
complex structures objects.

We performed our measurements4 on a benchmarking database with 100 classes a
250000 instances (configurationmedium). In order to use a representatively structure
class hierarchy, we studied typical application scenarios of a renowned vendor of
ness standard software and parameterized our population algorithm accordingly
measured the database time (DB time) and the total system time (TS time). The DB
of SQL queries is the time elapsed between delegating the queries to the DBMS an
ceiving back the results (open cursors, traverse iterators). It includes the time for c
server communication, the time for evaluating the queries within the DBS and the
for loading the complete result sets. This has to be taken into account, when anal
the measurement results. The TS time is defined as the total elapsed time from is
a query operation at the OOPL level until having received the complete result se
contains the time spent within the mapping layer as well as the DB time.

We think that these 3 questions have to be answered before we can think about
OR technology can be improved in order to support OOPLs better and more efficie
In the following section, we report on our measurement results.

5 Measurement Results and Observations

5.1 ORDBMS vs. RDBMS

In the first test series, we have compared a purely relational mapping with an OR m
ping by using one of the leading currently available commercial ORDBMSs. This

4. All experiments in this paper use commodity software. The hardware and the soft
ware configurations are left unspecified, to avoid the usual legal and competitive
problems with publishing performance numbers for commercial products. All per-
formance measurements are averages of multiple trials, with more trials for higher
variance measurements. For each DBMS tested, we put much effort in optimization
(e.g., indexes) and mapping layer design in order to achieve the best performanc
possible.

s in

nts,

one
y de-
es to
ng a
iva-
vestigation aims at quantifying the benefits of OO extensions offered by ORDBMS
more detail.

Fig. 3 illustrates the
measurement results.
Due to space restric-
tions, it is not possible
to analyse all results in
detail. It can be ob-
served that the OR
mapping outperforms
the purely relational
mapping in all query
categories. Although
the OR mapping
shows only tiny ad-
vantages in retrieving
small result sets, it
provides performance
gains of up to 40% in
retrieving large result
sets, or processing
queries on class hierar-
chies. The reasons are
twofold. First, the OO
features provided by
the ORDBMS contrib-
ute to keep the com-
plexity of the mapping
layer low (better query
evaluation strategy,
less overhead for syn-
thesizing the result set)
and to reduce client/
server communication
(less queries). Second,
the implementation of the ORDBMS (we used) enables performance improveme
(even) if using OO extensions.

In the purely relational case, it is not possible to map a (complex) class to exactly
table. Mapping set-valued attributes, aggregations and (m:n)-relationships properl
mands several tables interconnected by primary/foreign keys. This, in turn, requir
pose several SQL queries in order to perform one query at the OOPL level implyi
higher DB time and higher communication costs. Compared to a semantically equ

S
y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
 (

S
e

c
.)

RDBMS

RDBMS

RDBMS

ORDBMS

ORDBMS

ORDBMS

Simple queries on scalar attributes with different selectivity

Queries on user-defined data types (UDTs)

Queries on the class hierarchy (inclusive transitive instances)

Total System Time

DB Time

Fig. 3: Measurement Results I

Total System Time

DB Time

Result Set CardinalityResult Set Cardinality

S
y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
 (

S
e

c
.)

S
y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
 (

S
e

c
.)

S
y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
 (

S
e

c
.)

S
y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
 (

S
e

c
.)

S
y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
 (

S
e

c
.)

Total System Time

DB Time

Total System Time

DB Time

Total System Time

DB Time

Total System Time

DB Time

Result Set CardinalityResult Set Cardinality

Result Set CardinalityResult Set Cardinality

econ-
tem

uch
e tai-

costs
tively
ably
e com-
tional
ed in
ur ex-
ean-

ely
, ob-
s very
ide).
gy is
ide of
sing
ving

ystem
the
lent OR mapping, the more expensive query transformation and the necessary r
struction of object structures in the pure relational mapping reduce the sys
efficiency additionally. This effect can even be reinforced if further OR features s
as function-based indexing or index structures over class hierarchies, which can b
lored to OO applications, are used in order to further improve the OR mapping.

Since in our measurements both client and server ran on the same machine, the
of communication between the database server and the mapping layer are rela
small. It is to be expected that a distributed client/server architecture will consider
enlarge the difference between these measurement results. Furthermore, the mor
plex the data structures, the more additional overhead is to be expected in the rela
mapping. As reported in former measurements [6, 25], some OR systems perform
some cases even worse than semantically equivalent relational systems. Due to o
aminations, we think that this statement has to be revised and ORDBMSs, in the m
time, have obviously become more and more mature.

5.2 Performance Characteristics of the Mapping Layer

In order to character-
ize the performance of
the mapping layer ade-
quately, we have in-
vestigated simple
queries with different
selectivity. The results
are presented in Fig. 4.
As already mentioned
in section 2, the DB
APIs of almost all cur-
rently available ORD-
BMSs do not support
navigational access directly. Hence, a navigational operation, such asGetObject(Ref),
must be transformed to a database query (SQL:1999), such as "Select * From... Where
OID = Ref", by the mapping layer. Such a query strategy, especially when intensiv
dealing with navigational operations as usually required by most OO applications
viously leads to high processing overhead spent in the database system as well a
high communication costs (over 70% of the entire system time, Fig. 4, left-hand s
The (probably not very astonishing) observation is that the traditional query strate
not adequate for supporting navigational access. As we can see at the right-hand s
Fig. 4, the DB time of set-oriented queries shows only a slight ascent with increa
result sets, while the additional mapping overhead increases rapidly. When retrie
1250 objects, the time spent at the mapping layer even exceeds 86% of the total s
time (see Fig. 4, right-hand side). This observation can be explained as follows. In

S
ys

te
m

 R
es

po
ns

e
T

im
e

(S
ec

.)

72%
DB Time

28%
POS Time

1

1

DB Time

Total System Time

Result Set CardinalityORDBMS

Mapping Layer (POS)

OOPL
86

%
M

ap
pi

ng
 L

ay
er

 (
P

O
S

)

Fig. 4: Measurement Results II

suc-
d ac-
rom
nd,

in an
con-
This
en-

In or-
sup-

ided.
the

uch

sibil-
f C

and,
ism
ation
rt for
b-
ate.

an be
early days of ORDBMSs, these systems comparable to RDBMSs were not very
cessful in supporting navigational access, but excellent in processing set-oriente
cess (as they are still today). Unfortunately, OO applications can hardly benefit f
this advantage, because the ORDBMS API is ‘inherited’ from traditional RDBMSs a
therefore, still only supports simple, flat data. In lack of anextensibleDB API which
may generically support complex data types defined by the user, complex objects
ORDBMS have to be first ‘disassembled’ into scalar values, and afterwards re
structed (at the mapping layer) to objects of a certain class in the particular OOPL.
kind of overhead gets dramatic with increasing result set cardinality and impairs the
tire system efficiency significantly.

Regarding these measurement results, we can draw the following conclusions.
der to be able to support navigational access better, the ORDB API should directly
port navigational operations likeGetObject(Ref), so that the costs of transforming
navigational operations to SQL queries and for evaluating these queries can be avo
Furthermore, it should also support the notion of complex objects directly and offer
possibility of retrieving complex objects as units. According to our examinations, s
improvements can increase the entire system efficiency by up to 400%.

5.3 Support for Complex Objects

As already mentioned before,
the lack of direct support for
complex objects and navigation-
al access at the DB API level ex-
tremely impairs the overall
system efficiency. Fortunately,
a leading ORDBMS vendor al-
ready offers an extended call
level interface, which, as we can
see later in this section, directly
supports navigational access as
well as retrieval of complex ob-
jects as units, and, in addition,
even retrieval of complex object graphs as units. Navigation is enabled by the pos
ity of autonomously retrieving complex structured objects (by OID) as instances o
structures. This simplifies the mapping to OOPLs, such as C++, considerably
therefore, is undoubtedly the first step into the right direction, although this mechan
does not yet support the actually wanted seamless coupling (transparent transform
from a database object to an instance of an OOPL class). The mentioned suppo
complex objects at the level of the DB API allows to directly retrieve a complex o
ject’s data from the database into the main memory by specifying its OID or a predic
Therefore, the expensive query processing strategy described in section 5.2 c

S
ys

te
m

a
R

es
po

ns
e

T
im

e
(S

ec
.)

Result Set Cardinality

Total System Time
DB Time

ORDBMS

OOPL
Mapping
Layer

Fig. 5: Measurement Results III

ormed
n. To
com-
ction
lex
ad-

ty of
sults

iga-

onal

(ob-
. 6b
this
ieval
y of
esult

, is
efined
ch as
to be
sly

nd
avoided. Remind that the measurements described in section 5.2 have been perf
on an ORDBMS that does not possess a DB API as the one described in this sectio
show the importance of and the corresponding demand on a suitable support for
plex objects at the DB API level, we repeated the measurements described in se
5.2 on the ORDBMS referred to in this section and providing the mentioned comp
object support at its API. Fig. 5 illustrates the measurement results. Obviously, the
ditional overhead spent at the mapping layer is now independent from the cardinali
the query result sets. Thus, the direct support of complex objects at the DB API re
in a clear performance gain (up to 400%).

The direct support for
navigational access at the
DB API level mentioned in
this section, allowing to di-
rectly access objects by
calling a function likeGet-
Object(Ref), avoids expen-
sive processes (query
transformation, data types
conversion and object re-
construction). This obvi-
ously contributes to
improve performance sig-
nificantly. Fig. 6a shows a
comparison between a
query strategy (transforming a navigational operation to an SQL query) and a nav
tional strategy (directly calling aGetObject(OID)function at the DB API). The advan-
tages of the navigational strategy are obvious. With a direct support of navigati
access the entire system efficiency increases by approximately 200%.

OO applications often want a set of objects interconnected by object references
ject graph) to be retrieved completely within just a single database interaction. Fig
shows a comparison of two strategies for retrieving complex object graphs. In
measurement, we used the ORDBMS directly supporting navigation as well as retr
of complex object graphs. It can be seen clearly that strategy I exploiting the abilit
retrieving object graphs exhibits a performance gain of about 100% already at a r
set cardinality of 13 objects.

The design of a new DB API, which directly supports complex structured objects
by no means an easy job and requires generic design methods, because user-d
data types can be arbitrarily structured, e. g., contain other complex data types, su
UDTs, references and set-valued attributes. Furthermore, a DB API has always
multi-lingual requiring to support all common programming languages simultaneou
and, therefore, making it very difficult to offer the best of both worlds (DBMSs a
OOPLs) without any compromises.

Fig. 6: Measurement Results IV

Result Set Cardinality

Q
u

e
ry

N
av

ig
at

io
n

I: direct support for
complex object graphs

II: without direct support of
complex object graphs

a) b)

S
ys

te
m

a
R

es
po

ns
e

T
im

e
(S

ec
.)

S
ys

te
m

a
R

es
po

ns
e

T
im

e
(S

ec
.)

their
Ss
nted

nted
e two

over-
f the
ons
rting
e op-
p-

t for

of an
RD-

g the
taken
y our
re and
per-
ast
ther

d ex-
ntial
ted,
ori-
nal
sys-

l way.
ara-

ting
sy to
t be
tive-

r, the
and

ble
ort-

con-
ls, our
6 Conclusions and Outlook

In this paper, we have emphasized the importance of assessing ORDBMSs w. r. t.
capabilities of supporting OOPLs. We have first qualitatively considered ORDBM
and OOPLs regarding modelling and operational aspects relevant for object-orie
software development. As the object-relational (SQL:1999) and the object-orie
data model are essentially coming together, the operational distance between thes
paradigms is still considerable so that an additional mapping layer is necessary to
come this gap. Regrettably, such an additional layer impairs the performance o
overall system considerably. Additionally, we performed quantitative examinati
(measurements) in order to assess ORDBMSs in their capabilities of suppo
OOPLs. Indirectly, these measurements are supposed to contribute to promoting th
timal utilization of currently available ORDBMSs in object-oriented system develo
ment and to guide the future development of ORDBMSs in a way that the suppor
OOPLs is improved.

Regarding our performance examinations, we have motivated the necessity
open, configurable benchmark approach, because not only the performance of O
BMSs themselves but also the additional overhead, which is necessary for bridgin
conceptual and operational distance between ORDBMSs and OOPLs, have to be
into account and, therefore, properly characterized. It has been clearly illustrated b
performance measurements that object-relational database technology gets mo
more mature, not only conceptually (data model, query processing), but also w. r. t.
formance. The model facilities contribute to keep the mapping layer ‘thin’ in contr
to RDBMSs. This, on one hand, reduces the implementation efforts, and, on the o
hand, increases the entire system efficiency. Despite the available object-oriente
tensions, which entail an unambiguous gain in comparison to RDBMSs, the pote
benefit of object-relational database technology in our opinion is not yet exhaus
since the traditional DB API is so far not capable of successfully supporting object-
ented principles. The DB API of almost all ORDBMSs still can not support navigatio
operations and complex object structures directly so that new generation software
tems can not take advantage of object-relational database technology in an optima
It can be called the ‘bottleneck’ between the object-relational and object-oriented p
digms. Our examinations have shown clearly that a new DB API directly suppor
navigational operations and complex objects is necessary. Obviously, it is not ea
equip ORDBMSs with such a new interface. For example, such an interface mus
multi-lingual. For answering the question, how user-defined data types can be effec
ly represented at the OOPL level, further research efforts are required. Altogethe
problem of a seamless and effective mapping of SQL:1999 to OOPLs, such as C++
Java, has to be worked on further. Our future work will mainly be looking for possi
solutions. Furthermore, we plan intensive studies of ORDBMS capabilities for supp
ing navigational access, because ORDBMSs are still behind OODBMSs in this
cern. Generally, after having characterized the performance aspects in more detai

per-

P.:
lua-

-

s-

.E.,

ing

n

s

long-term objective is to develop applicable concepts contributing to increase the
formance of ORDBMSs.

References

1. Bernhard, R., Flehmig, M., Mahdoui, A., Ritter, N., Steiert, H.-P., Zhang, W.
“Building a Persistent Class System on top of (O)RDBMS - Concepts and Eva
tions”, Internal Report, University of Kaiserslautern, 1999

2. Bernstein, P.A., Harry, B., Sanders, P.J., Shutt, D., Zander, J.: “The Microsoft Re-
pository”, Proc. VLDB Conf., 1997, pp. 3-12

3. Bernstein, P.A., Pal, S., Shutt, D.: “Context-Based Prefetch for Implementing Ob
jects on Relations”, Proc. VLDB Conf., 1999, pp. 327-338

4. Bitton, D., DeWitt, D.J., Turbyfill, C.: “Benchmarking Database Systems: A Sy
tematic Approach”, Proc. VLDB Conf., 1983, pp. 8-19

5. Carey, M.J., DeWitt, D.J.: “Of Objects and Databases: A Decade of Turmoil”,
Proc. VLDB Conf., 1996, pp. 3-14

6. Carey, M.J., DeWitt, D.J., Naughton, J.F., Asgarian, M., Brown, P., Gehrke, J
Shah, D.N.: “The Bucky Object-Relational Benchmark”, Proc. VLDB Conf., 1996,
pp. 135-146

7. Carey, M.J., DeWitt, D.J., Kant, C., Naughton, J.F.: “A Status Report on the OO7
OODBMS Benchmarking Effort”, Proc. ACM OOPSLA, 1994, pp. 414-426

8. Carey, M.J., Doole, D., Mattos, N.M.: “O-O, What Have They Done to DB2?”,
Proc. 1999 25th. VLDB Conf., pp. 542-553

9. Cattell, R.G.G., Barry, D., Bartels, D., et al: “The Object Database Stand-
ard:ODMG 2.0”, Morgan-Kaufman Publishers, San Mateo, 1997

10. Gray, J.: “The Benchmark Handbook for Database and Transaction Process
Systems”, Morgen Kaufmann Publishers, San Mateo, CA, USA, 2nd Ed., 1993

11. Gulutzan, P., Pelzer, T.: “SQL-99 Complete, Really”, R&D Publications, 1999

12. Keller, A., Jensen, R., Agrawal, S.: “Persistence Software: Bridging Object-Ori-
ented Programming and Relational Database”, Proc. ACM SIGMOD Conf., 1993,
pp. 523-528

13. Mahnke, W., Steiert, H.-P.: “The Application Protential of ORDBMS in the Desig
Environments“, Proc. CAD 2000, Berlin, pp. 219-239 (in German)

14. Ontos Business Data Server,http://www.ontos.com

15. Poet Object Server, POET Software, POET SQL Object Factory,http://poet.com/

16. Rao, B.R.: “Object-oriented Databases: Technology, Applications, and Product”,
McGraw-Hill, New York, 1994

17. RogueWave Software, DBTools.h++,
http://www.roguewav3e.com/products/dbtools/

ring,

me-

tion

1.0,

ky

-

18. Schreiber, H.: “JUSTITIA: A Generic Benchmark for the OODBMS Selection”, Int.
Conference on Data and Knowledge Systems in Manufacturing and Enginee
Tokyio, 1994

19. Scheller, T.: “Functionality of the Class System in System R/3”, Function Descrip-
tion, Version 0.9, SAP, Dec. 1997

20. SQL99: ANSI/ISO/IEC 9075-1-1999 Database Launguages SQL Part 1 Fra
work

21. SQL99: ANSI/ISO/IEC 9075-2-1999 Database Languages SQL Part 2 Founda

22. Stonebraker, M., Brown, P., Moor, D.: “Object-relational DBMSs - The Next
Wave”, Morgan Kaufmann, 2nd Ed., 1998

23. TPC: Transaction Processing Performance Council, Standard Specification
May 1995,http://www.tpc.org

24. UML, Rational Software Corp. Unified Modeling Language,
http://www.rational.com/

25. Zhang, W.P.: “Evaluation of the First Generation ORDBMSs by Using Buc
Benchmark” Internal Report, University of Kaiserslautern, 1998

26. Zhang, W.P., Ritter, N.: “Measuring the Contribution of (O)RDBMS to Object-Ori
ented Software Development”, Proc. IDEAS 2000, pp. 243-249

	1 Motivation
	2 Conceptual Consideration
	2.1 Modelling Aspects
	2.2 Operational Aspects

	3 Mapping Rules
	4 Performance Evaluation
	4.1 Benchmark System
	4.2 Benchmark and Measurements
	1. Which performance gains offer ORDBMSs in comparison to RDBMSs regarding their usage in OO soft...
	2. Which additional overhead has to be spent at the mapping layer in order to bridge the gap betw...
	3. To which extent is the system performance influenced by the capabilities of the (O)RDBMS API?

	5 Measurement Results and Observations
	5.1 ORDBMS vs. RDBMS
	5.2 Performance Characteristics of the Mapping Layer
	5.3 Support for Complex Objects

	6 Conclusions and Outlook
	1. Bernhard, R., Flehmig, M., Mahdoui, A., Ritter, N., Steiert, H.-P., Zhang, W.P.: “Building a P...
	2. Bernstein, P.A., Harry, B., Sanders, P.J., Shutt, D., Zander, J.: “The Microsoft Repository”, ...
	3. Bernstein, P.A., Pal, S., Shutt, D.: “Context-Based Prefetch for Implementing Objects on Relat...
	4. Bitton, D., DeWitt, D.J., Turbyfill, C.: “Benchmarking Database Systems: A Systematic Approach...
	5. Carey, M.J., DeWitt, D.J.: “Of Objects and Databases: A Decade of Turmoil”, Proc. VLDB Conf., ...
	6. Carey, M.J., DeWitt, D.J., Naughton, J.F., Asgarian, M., Brown, P., Gehrke, J.E., Shah, D.N.: ...
	7. Carey, M.J., DeWitt, D.J., Kant, C., Naughton, J.F.: “A Status Report on the OO7 OODBMS Benchm...
	8. Carey, M.J., Doole, D., Mattos, N.M.: “O-O, What Have They Done to DB2?”, Proc. 1999 25th. VLD...
	9. Cattell, R.G.G., Barry, D., Bartels, D., et al: “The Object Database Standard:ODMG 2.0”, Morga...
	10. Gray, J.: “The Benchmark Handbook for Database and Transaction Processing Systems”, Morgen Ka...
	11. Gulutzan, P., Pelzer, T.: “SQL-99 Complete, Really”, R&D Publications, 1999
	12. Keller, A., Jensen, R., Agrawal, S.: “Persistence Software: Bridging Object-Oriented Programm...
	13. Mahnke, W., Steiert, H.-P.: “The Application Protential of ORDBMS in the Design Environments“...
	14. Ontos Business Data Server, http://www.ontos.com
	15. Poet Object Server, POET Software, POET SQL Object Factory, http://poet.com/
	16. Rao, B.R.: “Object-oriented Databases: Technology, Applications, and Products”, McGraw-Hill, ...
	17. RogueWave Software, DBTools.h++, http://www.roguewav3e.com/products/dbtools/
	18. Schreiber, H.: “JUSTITIA: A Generic Benchmark for the OODBMS Selection”, Int. Conference on D...
	19. Scheller, T.: “Functionality of the Class System in System R/3”, Function Description, Versio...
	20. SQL99: ANSI/ISO/IEC 9075-1-1999 Database Launguages SQL Part 1 Framework
	21. SQL99: ANSI/ISO/IEC 9075-2-1999 Database Languages SQL Part 2 Foundation
	22. Stonebraker, M., Brown, P., Moor, D.: “Object-relational DBMSs - The Next Wave”, Morgan Kaufm...
	23. TPC: Transaction Processing Performance Council, Standard Specification 1.0, May 1995, http:/...
	24. UML, Rational Software Corp. Unified Modeling Language, http://www.rational.com/
	25. Zhang, W.P.: “Evaluation of the First Generation ORDBMSs by Using Bucky Benchmark” Internal R...
	26. Zhang, W.P., Ritter, N.: “Measuring the Contribution of (O)RDBMS to Object-Oriented Software ...

