
taDOM: A Tailored Synchronization Concept
with Tunable Lock Granularity for the DOM API

Michael P. Haustein, Theo Härder

University of Kaiserslautern
P.O. Box 3049, Kaiserslautern, Germany
{haustein, haerder}@informatik.uni-kl.de

Abstract. Storing, querying, and updating XML documents in multi-user envi-
ronments requires data processing guarded by a transactional context to assure the
well-known ACID properties, particularly with regard to isolate concurrent trans-
actions.
In this paper, we introduce the taDOM tree, an extended data model which con-
siders organization of both attribute nodes and node values in a new way and al-
lows fine-grained lock acquisition for XML documents. For this reason, we de-
sign a tailored lock concept using a combination of node locks, navigation locks,
and logical locks in order to synchronize concurrent accesses to XML documents
via the DOM API. Our synchronization concept supports user-driven tunable
lock granularity and lock escalation to reduce the frequency of lock requests both
aiming at enhanced transaction throughput. Therefore, the taDOM tree and the re-
lated lock modes are adjusted to the specific properties of the DOM API.

1 Introduction

The use of the extensible markup language XML [1] for electronic data interchange
leads to an enormous growth of the number and size of files keeping semi-structured
XML data. In contrast, only structured data is managed by relational or object-relational
database systems ((O)RDBMSs) so far. In order to allow combined processing of XML
and relational data in an efficient way, it is indispensable to maintain XML documents
in these database systems, too. On the other hand, (O)RDBMSs run transactions as their
unit of control thereby guaranteeing the well-known ACID properties [2] which greatly
improve the overall consistency, reliability and robustness of data management. As a
consequence, managing XML documents by an (O)RDBMS also provides transactional
properties for semi-structured data. Nevertheless, to accomplish effective and efficient
processing for such documents, the control of their traversal and manipulation opera-
tions has to be adjusted to the transaction demands.
Different approaches to store XML documents in a relational database system and their
performance characteristics are discussed in detail in [10], [11], and [12]. As a major
issue, the ways XML documents are stored in a relational database lead to different syn-
chronization problems. If an XML document is contained in a single CLOB attribute,
locking may only take place at the document level. In contrast, if an XML document is
shredded and stored across several tables, insertion of a new XML element may also
affect a large part of the document (and even other documents). Insertion of a new XML
element often results in several insert operations to relational database tables (depend-

ing on the shredding algorithm). Due to inadequate synchronization mechanisms, many
database systems lock each of the affected tables entirely to prevent phantoms. Hence,
such a crude method causes locking of document fragments by accident, even of unre-
lated documents which are shredded to those tables.
While efficient mechanisms are only available for the data side, combined processing
of XML and relational data inside a relational database system requires such mecha-
nisms also for the document side, that is, a native storage format with tailored lock
mechanisms for XML documents in the first place.
After having succeeded to store XML data within an (O)RDBMS in a native way equi-
table to relational data, we can immediately exploit the mature transactional concepts
for atomicity, consistency, and durability. However, this is not true for transaction iso-
lation. Since the structure of XML documents widely differs from the one of records
and tables, we need a new concept to synchronize concurrent accesses to XML docu-
ments to provide for acceptable transaction performance.
Our primary objective is to develop a mechanism for concurrency control of semi-struc-
tured data where the properties of the document access interface are explicitly taken into
account. For this reason, we refer to the DOM API [3] in order to query, traverse, and
update XML documents stored in a database (see Section 2). In Section 3, we introduce
the taDOM tree, a data model to represent XML documents. The structure and node
types of the taDOM tree are specifically tailored to the properties of the DOM API.
Based on the taDOM tree, we present in Section 4 an adjusted lock concept to synchro-
nize concurrent accesses to XML data. Since the DOM API provides both, methods to
traverse XML documents node-by-node and methods to apply simple queries, we use,
in addition to node locks, a combination of navigation locks for the edges connecting
the nodes, and logical locks in order to prevent phantoms. Our concept supports tunable

rbook

r title author pricer r

¡
year
id

¡

r lastr first/T
/T /T

/T
rbook

r title author pricer r

¡
year

id
¡

r last r first/T
/T /T

/T
authorr

r last r first

/T /T

authorr

r last r first

/T /T

rbook

r title editor pricer r

¡
year

id
¡

r last r first/T
/T /T

/Traffiliation

/T

bibr

r
¡

/
Element Node
Attribute Node

Text Node

Figure 1: A sample DOM tree

p Document

p

lock granularity and tunable lock escalation which can be independently specified for
each document. Finally, in sections 5 and 6, we give a brief overview of related work
about XML synchronization and wrap up with conclusions and some aspects of future
work.

2 DOM API
The DOM API [3] provides a tree-based view to traverse and update XML documents.
Elements and attributes of the document are represented as nodes of a directed acyclic
graph (DAG). To illustrate the DOM tree, we consider a small XML fragment depicted
in Figure 2, which is a modified version of the bib.xml document in [4]. The document
contains a list of three books where each book contains the two attributes year and id
and is described by title, price, author, and editor, respectively.
Figure 1 shows the corresponding DOM tree which represents the structure of the XML
fragment defined in Figure 2. The outer element (in this case the <bib> element) is al-
ways assigned to a document node. Nested elements in the XML document are connect-
ed with edges in the DOM tree. Attributes are assigned to elements; they can be queried
by their names. Attribute values and text values between opening and closing element
tags in the document are stored in attribute nodes or text nodes (connected to the ele-
ment nodes), respectively.
A set of standardized methods al-
lows the traversal of the graph
node-by-node along edges, insert-
ing or deleting nodes, as well as up-
dating node values. Additionally,
there exist some methods to apply
simple queries to the XML docu-
ment. For these reasons, we distin-
guish navigational access, update
access, and query access when
characterizing the methods of the
DOM API.
Navigational access is provided by
methods such as getAttributes(),
getFirstChild(), getNextSibling() ,
or getParentNode(). The DOM
API allows by invoking these and
other methods to build a list of all
attributes or all child nodes of a
node, to navigate to the parent
node, to the previous or next sibling
node, and to the first or last child
node. Methods such as insertBefore(...), removeChild(...) , setNodeValue(...) , or setAt-
tribute (...) support updating XML documents. These methods allow to insert new
nodes, remove or replace child nodes, set new node values, and set or remove attributes
via the DOM API.

Figure 2: Example of an XML fragment

<bib>
<book year="1994" id=“1“>

<title>TCP/IP Illustrated</title>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
<price> 65.95</price>

</book>
<book year="2000" id=“2“>

<title>Data on the Web</title>
<author>

<last>Abiteboul</last>
<first>Serge</first>

</author>
<author>

<last>Buneman</last>
<first>Peter</first>

</author>
<author>

<last>Suciu</last>
<first>Dan</first>

</author>
<price>39.95</price>

</book>
<book year="1999" bid=“3“>

<title>The Economics of...</title>
<editor>

<last>Gerbarg</last>
<first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<price>129.95</price>

</book>
</bib>

Furthermore, simple queries for XML attributes or XML elements are provided by
methods such as getElementById(...), getElementsByTagName(...) , or hasAttribute(...).
Hence, an element referenced by an ID attribute or a set of elements qualified by their
name can be queried.
When the DOM API is initialized for an XML document, the document is parsed and
the DOM tree for the entire document is composed in main memory. While this ap-
proach provides f or fast data access (after initialization), it is a very memory-consuming
solution. To give a hint for the required order of magnitude, an XML document of 20
MB may consume up to 400 MB main memory [14]. In order to reduce this enormous
memory consumption, some parsers ([15]) offer the option deferred DOM , a processing
mode which loads the required nodes into memory on demand.
The current version of the DOM API is designed for single user environments. If mul-
tiple users open the same XML file, a local DOM tree is constructed for each user, lead-
ing to a potentially high degree of replication. On the other hand, a local DOM tree is
not affected by modifications of its replicas, even if their update operations are in the
committed state. Modifications can only be propagated to the stored XML document by
simply overwriting the entire file. Of course, this proceeding leads to the loss of all up-
dates which have been performed by concurrent users, even if their updates only affect
non-overlapping sub-trees.
In contrast, Persistent DOM from Infonyte-DB ([16]) maps the DOM tree to a com-
pressed binary file representation and provides concurrent access to the file with guar-
anteed atomicity and durability properties, but no support for the isolation and, in turn,
for the consistency aspects. Any updates (committed or not) are immediately visible to
all concurrent users which makes the individual user responsible for his view to the doc-
ument and for the overall consistency of the XML file.
To improve this highly undesirable situation, a centralized and application-independent
isolation mechanism is mandatory for the DOM API. First of all, we need a data model
preserving the DOM interface properties, but allows for efficient lock acquisition and
concurrent operations in addition. For this purpose, we introduce a suitable data model
in the form of the taDOM tree in the next section.

3 taDOM Tree

Synchronizing concurrent accesses to XML documents calls for an appropriate logical
representation of XML documents which supports fine-grained lock acquisition. To this
end, we have developed the taDOM tree, an extension of the XML tree representation
of the DOM (see Section 2). To illustrate its construction principles, we again consider
the small XML fragment depicted in Figure 2.
Figure 3 shows the corresponding taDOM tree which represents the structure of the
XML fragment. In order to construct such a taDOM tree, we introduce two new node
types: attribute root and string. These new node types only appear within the taDOM
tree—the logical representation of the XML document.
As far as synchronization is concerned, locks on the taDOM tree are always acquired
transparently by a lock manager component introduced in Section 4. This proceeding

guarantees that the behavior of the DOM API will not change from the users point of
view.
The top of the taDOM tree consists of the document node, followed by the <bib> ele-
ment—the outer element of the document. For such a document node, a root lock can
be acquired which controls access to the entire document or arbitrary parts.
In contrast to a DOM tree in Figure 1, attribute nodes are not directly connected to the
element nodes. Instead an attribute root is connected to each element and organizes the
attributes of the corresponding element as descendant nodes. Such attribute roots are in-
troduced to support synchronization of the getAttributes() method in an efficient way.

Fi
gu

re
 3

: A
 sa

m
pl

e
ta

D
O

M
 tr

ee

5
5

r
bo

ok

r
tit

le
au

th
or

pr
ic

e
r

r
l

¡
ye

ar
id

¡
r

la
st
r

fir
st

/T
/T
/T

/T
51

99
4

1
5

T
C

P
/IP

...
5

S
te

ve
ns

W
.

5
5

65
.9

5
5

r
bo

ok

r
tit

le
au

th
or

pr
ic

e
r

r
l

¡
ye

ar
id

¡
r

la
st
r

fir
st

/T
/T
/T

/T
5

20
00

2
D

at
a

o.
..

39
.9

5
5

au
th

or
r

r
la

st
r

fir
st

/T
/T

au
th

or
r

r
la

st
r

fir
st

/T
/T

5A
bi

te
b.

..
S

er
ge

B
un

em
...

P
et

er
S

uc
io

D
an

5
5
5
5
5

r
bo

ok

r
tit

le
ed

ito
r

pr
ic

e
r

r
l

¡
ye

ar
id

¡
r

la
st
r

fir
st

/T
/T
/T

/T
5

19
99

G
er

ba
rg

D
ar

cy
5
5

12
9.

95
5

5
3
5T

he
 E

...
r

af
fil

ia
tio

n

/T C
IT

I
5

p

bi
b

r

p r l ¡ /T 5

D
oc

um
en

t
E

le
m

en
t N

od
e

A
ttr

ib
ut

e
R

oo
t

A
ttr

ib
ut

e
N

od
e

T
ex

t N
od

e

S
tr

in
g

N
od

e

l

l
l

l
l

l
l

l
l

l
l

l

l
l

l

l
l

l
l

l
l

l
l

In order to build a (frequently requested) NamedNodeMap containing all attributes of
an element, only a single lock has to be acquired for the attribute root thereby enabling
shared access to all attributes. Section 4.1 gives a detailed example for that procedure.
In the taDOM tree, XML elements are represented by element nodes and XML at-
tributes by attribute nodes. The text within elements is handled by text nodes whereas
the actual values of text nodes or attribute nodes are stored in string nodes. The exist-
ence of a string node is hidden to the taDOM API users. The users read or update values
as usual by method invocations on the attribute or text nodes, but reading or updating a
node value causes an implicit lock acquisition on the corresponding string node. This
proceeding makes sense, because the DOM API request for an element or attribute does
only return an element node or an attribute node, but not the value of such an node. To
get the actual value of a node, the method getValue() or getData() has to be invoked.
Only when such a method is executed, the actual node values (string nodes) have to be
locked.
When a taDOM tree is constructed in the way described, lock granularity can be pro-
vided even for string nodes and, therefore, our concept enables maximal concurrency
for DOM API accesses. An example for maximal concurrency is the following. Assume
transaction T1 builds an attribute list and reads all attributes of the first <book> element
in Figure 3. Then T1 requests the value of the attribute id. Note, although transaction T1
already operates at the attribute value level, another transaction T2 should be able to up-
date the value of the attribute year in the same element. This access should be possible,
because, so far, T1 only has information about the existence of all attributes and not
about all their values.

4 Synchronization of Document Access

So far, we have only explained the newly introduced node types and how individual ac-
cess to them can be improved. In a concurrent environment, all accesses to XML doc-
uments via the DOM API have to be synchronized using appropriate protocols. To fa-
cilitate our approach, we classify the related access methods in navigational access,
update access, and query access (see Section 2).
In all cases, accessing a node within the taDOM tree requires the acquisition of a lock
for the corresponding node. This procedure is described in Section 4.1. Maintaining
locks, granting and declining lock requests have to be managed by a lock manager com-
ponent. This component is also responsible for lock granularity and lock escalation
management considered in Section 4.2.
When an XML document has to be traversed by means of navigational methods, the use
of the navigation paths needs strict synchronization. This means, a sequence of naviga-
tional method calls must always obtain the same sequence of result nodes. To support
this demand, we present so-called navigation locks in Section 4.3. Furthermore, query
access methods also need strict synchronization to accomplish the well-known repeat-
able read property. For example, the method getElementsByTagName() should always
yield the same node list within a transactional context. This means the insertion of a new
element node with a specified tagname must be blocked if a concurrent transaction has
already built a node list containing all existing nodes with this tagname. This demand

and the existence of update methods can be facilitated by logical locks which are ex-
plained in Section 4.4.

4.1 Node Locks

While traversing or modifying an
XML document, a transaction
has to acquire a lock for each
node before accessing it. The
currently accessed node will be
called working node in the fol-
lowing. Its lock mode depends on
the type of access to be per-
formed. Since the DOM API not
only supports navigation starting
from the document root, but also
allows jumps „out of the blue“ to
an arbitrary node within the doc-
ument, locks must be acquired in
either case for the sequence of nodes from the document root downwards to the working
node. According to the principles of multi-granularity (or hierarchical) locking
schemes, such intention locks communicate a transaction‘s processing needs to concur-
rent transactions. In particular, they prevent that a sub-tree S can be locked in a mode
incompatible to locks already granted to S or sub-trees of S. Figure 4 gives an overview
of the compatibility matrix for the lock modes defined as an extension of the well-
known DAG locking ([5]). The effects of the different lock modes can be sketched as
follows:

• The NR mode (node read) is requested for read access to the working node. There-
fore, for each node from the document root downwards to the working node, a NR
lock has to be acquired. Note, the NR mode only locks the specified node, but not
any descendant nodes.

• The LR mode (level read) locks an entire level of nodes in the taDOM tree for shared
access. For example, the method getChildNodes() , called for the working node, only
requires an LR lock on the working node and not a number of single NR locks for
all child nodes. In the same way, an LR lock, requested for an attribute root, locks
all attributes for the getAttributes() method.

• To access an entire sub-tree of nodes (specified by the working node as the sub-tree
root) in read mode, the SR mode (sub-tree read) is requested for the working node.
In that case, the entire sub-tree is granted for shared access. Since the sub-tree can
be determined by the user, this lock mode enables flexible concurrency control with
tunable granularity.

• To modify the working node (updating contents or deleting the entire node with its
sub-tree), an X lock (exclusive) is acquired for the working node. It implies the re-
quest of a CX lock (child exclusive) for its parent node and an IX lock (intent exclu-

Figure 4: Compatibility matrix for lock modes

- IX NR CX LR SR U X

IX + + + + + - - -

NR + + + + + + - -

CX + + + + - - - -

LR + + + - + + - -

SR + - + - + + - -

U + + + + + + - -

X + - - - - - - -

sive) for its ancestor nodes up to the document node. The CX lock for a node indi-
cates the existence of an X lock for an arbitrary direct-child node whereas the IX
lock indicates an X lock for a node located somewhere in the sub-tree. This varying
behavior of the CX and IX locks is achieved by the compatibility of the IX and LR
locks, and the incompatibility of the CX and LR locks.

• A U lock supports read with (potential) subsequent write access and prevents grant-
ing further R locks for the same object. A U lock can be converted to an X lock after
the release of the existing read locks or back to an R lock if no update action is need-
ed. It solves the problem of using a too restrictive mode when the necessity of write
access is value-dependent.

Figure 5 shows a cutout of the
taDOM tree depicted in Fig-
ure 3 and illustrates the result
of lock request sequences for
the following example : Trans-
action T1 starts modifying the
value Peter and, therefore, ac-
quires an X lock for the corre-
sponding string node. This ac-
tion implies the acquisition of
the CX and IX locks for all
preceding nodes up to the root
by the lock manager compo-
nent. Simultaneously, transac-
tion T2 intends to delete the
entire <author> node which includes the string Peter. Therefore, T2 has to acquire an
X lock for the corresponding <author> node. This request, however, is declined be-
cause of the existing IX lock of T1 and results in the request for a U lock instead in order
to prevent further locks of read transactions. Meanwhile, transaction T3 generates a list
of all book titles and requests an LR lock for the <bib> node to obtain read access to
all child nodes. Note, LR enables access to all direct child nodes without the need to
perform a lock acquisition operation for each child. Then for each <book> node, the
paths downwards to the title strings are locked by means of NR locks.

4.2 Tunable node lock granularity and lock escalation

Both the SR lock, which locks an entire sub-tree in the taDOM tree in shared mode, and
the X lock, which locks an entire sub-tree exclusively, enable tunable lock granularity
and lock escalation for shared and exclusive locks, respectively. The combined use of
them improves operational throughput because, due to lock escalation, the number of
lock requests can be reduced enormously and, due to fine-tuned lock granularity, trans-
action concurrency may be increased.
To tune the lock granularity of nodes for each document, the parameter lock depth is
introduced. Lock depth describes the lock granularity by means of the number of node
levels (starting from the document node) on which locks are to be held. If a lock is re-

Figure 5: Node locks on the taDOM tree

rbook rbook

authorr

r last r first

/T /T
55

rbook

p
bibr

Bunem. Peter

r title

/T
TCP/IP...5

r title

/T
Data o...

r title

/T
5The E...5

X1

CX1

IX1

IX 1

IX1

IX1

IX1

U2

NR2

NR2

NR2

LR3

NR3

NR3

NR3

NR3

NR3

NR 3

NR3

NR3

NR 3

NR3

quested for a node whose path length to the document root is greater than the lock depth,
only a SR lock for the ancestor node belonging to the lock-depth level is requested. In
this way, nodes at deeper levels than indicated by lock depth are locked in shared mode
using SR locks on nodes at the lock-depth level. This allows a transaction to traverse a
large document fragment in read mode without acquiring any additional node locks. In
the same way, several X locks can be merged to a single X lock at a higher level.
Figure 6 shows the locked ta-
DOM tree cutout of Figure 5
where the effect of the lock-
depth parameter is illustrat-
ed. With lock depth equal to
3, the NR locks of transac-
tion T3 beneath the <title>
nodes are replaced by SR
locks for the <title> nodes
because the <title> nodes re-
side in node level 3 in this ex-
ample. The IX, CX, and X
locks of transaction T1 be-
neath the <author> node are
replaced by an X lock for the
<author> node. As a prerequisite, this X lock requires a CX lock for the ancestor
<book> node and IX locks for the <bib> node and the document root as described by
the acquisition protocol of X locks in Section 4.1.
In a similar way, lock escalation can be realized. To tune the lock escalation, we intro-
duce two parameters, the escalation threshold and the escalation depth . The lock man-
ager component scans the taDOM tree at prespecified intervals. If the manager detects
a sub-tree in which the number of locked nodes of a transaction exceeds the percentage
threshold value defined by the escalation threshold, the locks held are replaced with a
suitable lock at the sub-tree root, if possible. Read and write locks are replaced by SR
and X locks, respectively. This replacement procedure is the same as described above
for the tunable lock granularity. The escalation depth defines the maximal sub-tree
depth from the leaves of a taDOM tree to the scanned sub-tree root.
Obviously, there is certainly a trade-off to be observed for lock escalation. On the one
hand, lock escalation decreases concurrency of read and write transactions, but, on the
other hand, a reduction of the number of held locks and of lock acquisition operations
is achieved saving lock management overhead.

4.3 Navigation Locks

So far, we have discussed optimization issues for locks where the object to be accessed
was specified in some declarative way (for example, with a key value or a predicate).
In addition, the DOM API also provides for methods which enable the traversal of XML
documents where the access is specified relative to the working node (see Section 2). In
such cases, synchronizing a navigation path means that a sequence of navigational
method calls or modification (IUD) operations—starting at a known node within the ta-

Figure 6: Coarse-grained node locks with lock depth 3

rbook rbook

authorr

r last r first

/T /T
55

rbook

p
bibr

Bunem. Peter

r title

/T
TCP/IP...5

r title

/T
Data o...

r title

/T
5The E...5

X 1

CX1

IX1

IX1

U2

NR2

NR2

NR2

LR3

NR3

SR3 SR3

SR3

DOM tree—must always yield the same sequence of result nodes within a transaction.
Hence, a path of nodes within the document evaluated by a transaction must be protect-
ed against modifications of concurrent transactions. For this reason, we introduce vir-
tual navigation edges and corresponding navigation locks for element and text nodes
within the taDOM tree.

While navigating through an XML document and traversing the navigation edges, a
transaction has to request a lock for each edge. To support such traversals efficiently,
we offer the ER, EU, and EX lock modes which correspond to the well-known R/U/X
locks for relational records or tables ([5], [6]). Their use observing the compatibilities
shown in Figure 7 can be summarized as follows:

• An ER lock (edge read) is
acquired, before an edge
is traversed in read mode.
For example, such an ac-
quisition may happen by
calling the getNextSib-
ling() or getFirstChildN-
ode() method for the
nextSiblingEdge or the
firstChildEdge, respec-
tively.

• An EX lock (edge exclu-
sive) is requested, before
an edge is modified. It
may occur when nodes
are deleted or inserted. For all edges, affected by the modification operation, EX
locks are acquired, before the navigation edges are redirected to their new target
nodes.

• The EU lock for edge updates eases the starvation problem of write transactions as
described in Section 4.1.

Figure 8 illustrates an example where navigation locks on virtual navigation edges are
acquired. Transaction T1 starts at the <bib> node and reads three times the first child
node (this means the node sequence <bib>, <book>, <title>, <text>) in order to get
the string value of the first book title. Then T1 determines the next sibling node of the

Figure 7: Virtual navigation edges and compatibility matrix for navigation locks

- ER EU EX

ER + + - -

EU + + - -

EX + - - -

prevSiblingEdge nextSiblingEdge

firstChildEdge lastChildEdge

rbook rbook

authorr

r last r first

/T /T
55

rbook

p
bibr

Bunem. Peter

r title

/T
TCP/IP...5

rtitle

/T
Data o...

r title

/T
5The E...5

ER1

ER1

ER1

ER1 ER1

ER1

ER1

ER1 ER1

EX 2EX2

Figure 8: Navigation locks on the taDOM tree

current <book> node and repeats twice the first-child method to get the title of the sec-
ond book. Now for this example the requested book is located, and T1 finally gets the
next sibling of the current <title> node which is an <author> node. As you can see, the
synchronization concept allows another transaction T2 to concurrently insert a new
book by acquiring two EX locks for the sibling edges of the last two <book> nodes.

4.4 Logical Locks

The DOM API also provides the methods getElementsByTagName(...) and getElement-
ById(...) to get elements by their tag names or by an Id attribute. The method hasAt-
tribute(...) checks the existence of an attribute specified by its name. Read access to
XML documents using these methods requires prevention of the phantom anomaly.
Phantoms confusing read transactions
may occur by insertions of concurrent
transactions. As feasible in hierarchi-
cal (multi-granularity) locking
schemes, we can prevent phantoms in
our hierarchical data model for XML
documents by using coarser lock gran-
ules. A definite disadvantage, coarse
lock granules can enhance lock con-
flicts or deadlock situations. Especial-
ly, the getElementById(...) method,
which can be invoked only for the doc-
ument node, would always cause a
read lock for the entire document.
Since this is highly undesirable, we in-
troduce a refined concept —so-called logical locks—to prevent phantoms.
To extend our synchronization concept by logical locks we introduce three lock tables
which maintain the requested locks as illustrated in Figure 9. While the effects of node
locks and navigation locks could be conveniently demonstrated using taDOM tree rep-
resentations, the situation here is more complex and requires three separate tables for
its description. Lock compatibility inside each table is handled by the conventional
R/U/X compatibility matrix.
Table LocksTagnameQuery maintains the logical locks for element name requests. Ex-
ecution of the method getElementsByTagName(...) requires an R lock for the corre-
sponding transaction, tag name, and node ID of the node the method was invoked for.
This ensures that the result node set of that method call does not change, because inser-
tion of new nodes requires an X locks for the corresponding tag names in table Locks-
TagnameQuery. Deletion of nodes is still protected by node locks introduced in Section
4.1.
Table LocksAttributeQuery synchronizes the execution of hasAttribute(...) queries. The
result (true or false) must not change within a transaction. This requires the acquisition
of an R lock for the corresponding queried attribute name before getting the result. The
other way around, inserting new attributes requires an X lock for the new attribute name

Figure 9: Lock tables for logical locks

LocksTagnameQuery

TAID lock scopeNID tagname

... R/U/X

LocksAttributeQuery

TAID lock NID attribute

... R/U/X

LocksIDQuery

TAID lock ID

... R/U/X ...

in table LocksAttributeQuery . Also deletion of an attribute requires an X lock for the
attribute name, because the hasAttribute(...) method just returns the result true or false
and does not call for an R lock on the corresponding attribute node.
Table LocksIDQuery maintains logical locks for ID attributes. Since search for ID at-
tributes is only supported at the document level, we do not consider a scope node ID in
that lock table. In the same manner as in table LocksAttributeQuery, searching, insert-
ing, and deleting of attributes requires R or X locks, respectively.
Insertion of sub-trees (specified by
the root node) in the taDOM tree re-
quires the traversal of the entire sub-
tree, before the actual insert operation
can be performed. For each element
found in the sub-tree, an X lock has to
be acquired in table LocksTagname-
Query, and, for each ID attribute, an
X lock in table LocksIDQuery. This is
necessary, because the insertion of
new elements and attributes can vio-
late the repeatable read property for
result node lists which have been filled with the getElementById(...) or getElement-
ByTagName(...) methods.
Figure 10 illustrates some example contents of the logical lock tables. We consider
again the XML fragment of Figure 2. At first, transaction T1 is searching for an element
with ID=2, then searching for an element with ID=4. Transaction T2 is searching for all
<last> nodes downwards from a <book> node with an assumed node ID 4711.
After having acquired the locks, another transaction T3 is blocked when it attempts to
insert a new node with ID=4 or to add a new <author> node with included <last> node
to the <book> node with node ID 4711, because such an operation requires requesting
X locks which cannot be granted. The insertion of a new <last> node is also forbidden
in the entire sub-tree with root node ID 4711.
This example points up that lock compatibility also has to regard overlapping scopes.
This means that inserting a new node requires acquisition of logical X locks for the tag
name of the new node in table LocksTagnameQuery for each node from the document
node downwards to the parent node of the new node. The deletion of existing nodes is
already synchronized with read locks held by transactions accessing the nodes.

5 Related Work

So far, there are relatively few publications on synchronizing query and update access
to XML documents. In [9], transactional synchronization for XML data in client/server
web applications is realized by means of a check-in/check-out concept. User-defined
XML fragments of stored XML documents are checked out and processed at the client
side where the read and write sets of the operations are logged. Before invoking the
check-in procedure, read and write sets are validated against the original document
stored in the server. Upon success, the changes are propagated, whereas upon failure,

Figure 10: Sample content of logical lock tables

LocksTagnameQuery

TAID lock scopeNID tagname

2 R 4711 last

LocksIDQuery

TAID lock ID

1 R 2

1 R 4

the client has to decide whether to discard its own changes or to overwrite the changes
of other clients. Lam et al. [13] discuss synchronization for mobile XML data with re-
spect to handheld clients which query XML fragments by XQL. The authors present an
efficient mechanism to determine whether two XQL expressions overlap. If a conflict
is detected, a resolution algorithm is applied. Hehner et al. [8] discuss, also based on the
DOM API, several isolation protocols (both pessimistic and optimistic) for XML data-
bases. Node locks are not acquired in a hierarchical context, and lock granularity is
fixed for each protocol. The ID lookup problem (getElementById() method) as well as
jumps to arbitrary nodes within an XML document are not discussed in detail. XM-
LTM, an efficient transaction management for XML documents, is presented in [7]
where XML documents are stored in relational databases having special XML exten-
sions and an additional transaction manager. The authors also apply a combination of
hierarchical lock acquisition and logical locks. Since XMLTM does not support a spe-
cific query interface, locks to synchronize navigational operations are not coped with.
They do not consider varying l ock granularities, but consider reducing the degree of iso-
lation. Performance measurements with an implementation on IBM DB2 using the
XML extender are presented. Both [7] and [8] do not treat attribute nodes in a special
way or discuss lock escalation to increase data throughput.

6 Conclusion and Future Work

Synchronizing concurrent access to XML documents is an important practical problem.
So far, only few extensions exist in commercial database systems which poorly support
concurrent document processing primarily due to coarse-grained locking. On the other
hand, concurrent XML processing has not received much attention in the scientific
world yet.
In our paper, we have first presented the taDOM tree, an extended data model of the
DOM representation of XML documents. The taDOM tree provides lock acquisition at
very fine-grained levels. Based on the taDOM tree, we have introduced a concept of
combined node locks, navigation locks, and logical locks (and their compatibilities) to
synchronize concurrent access tailored to the DOM API. Node locks are acquired for
the actual nodes of the taDOM tree , whereas navigation locks are acquired on virtual
navigation edges to synchronize operations on the navigation paths. In addition, logical
locks are introduced to prevent the phantom problem. The combination of the three lock
types not only provides isolation for transaction processing with the DOM API, but also
offers rich options to enhance transaction concurrency, for example, tunable lock gran-
ularity and lock escalation in order to increase throughput. Whether our concept is ex-
pressive enough to synchronize non-navigational APIs (like XQuery which works on
node collections)—only by u sing node locks and logical locks—is part of future work.
Our next step is a system implementation in order to evaluate the synchronization con-
cept and the locking behavior for different workloads. We plan to explore the effects on
concurrency and performance for varying lock granularities and lock escalation thres-
holds. Future steps include the conjunction of XML synchronization with native XML
storage methods and joined transactional processing of XML and relational data. Such

a combined processing asks for t he extension of the synchronization concept to provide
the isolation property also for collection-based query languages like XQuery.

References

[1] World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (2nd Ed.). W3C Rec-
ommendation (Oct. 2000)

[2] T. Härder and A. Reuter. Principles of Transaction-Oriented Database Recovery. ACM Com-

puting S urveys 15(4), (Dec. 1983) 287-317

[3] World Wide Web Consortium . Document Object Model (DOM) Level 2 Core Specification,
Version 1. W3C Recommendation (Nov. 2000)

[4] World Wide Web Consortium . XML Query Use Cases . W3C Working Draft (Nov. 2002)

[5] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers Inc. (1993)

[6] T. Härder and E. Rahm. Dat abase Systems—Concepts and Techniques of Implementation. (in
German) Springer (2001)

[7] T. Grabs, K. Böhm and H.-J. Schek. XMLTM: Efficient Transaction Management for XML
Documents . Proc. 11th Int . Conference on Information and Knowledge Management, McLean,
Virginia, USA (Nov. 2002) 142-152

[8] S. Helmer, C.-C. Kanne, and G. Moerkotte. Isolation in XML Bases . Int. Report, Faculty of
Mathematics and Comp . Science, Univ . of Mannheim, Germany, Volume 15 (2001)

[9] S. Böttcher and A. Türling. Transaction Synchronization for XML Data in Client-Server Web
Applications . Proc. Workshop on Web Databases, Annual Conf. of the German and Austrian
Computer Societies , Vienna (2001) 388-395

[10] D. Florescu, D. Kossmann . A Performance Evaluation of Alternative Mapping Schemes for
Storing XML Data in a Relational Database . Rapport de Recherche, No. 3680, INRIA, Roc-
quencourt, France (1999)

[11] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang. Storing
and Querying Ordered XML Using a Relational Database System. P roc. ACM SIGMOD, Madi-
son, Wisconsin (June 2002) 204-215

[12] M. Yoshikawa and T. Amagasa. XRel—A Path-Based Approach to Storage and Retrieval of
XML Documents using Relational Databases . ACM Transactions on Internet Technology 1(1),
(Aug. 2001) 110-141

[13] F. Lam, N. Lam, and R. Wong. Efficient Synchronization for Mobile XML Data. Proc. 11th Int.
Conference on Information and Knowledge Management, McLean, Virginia, USA (Nov. 2002)
153-160

[14] T. Tesch, P. Fankhauser, and T. Weitzel. Scalable processing of XML with Infonyte-DB .
Wirtschaftsinformatik -Zeitschrift 44(5) (in German), (2002) 469-475

[15] The Apache XML Project. Xerces2 Java Parser.
http://xml.apache.org/xerces2-j/index.html.

[16] Infonyte-DB Version 3.0.0. User Manual and Programmers Guide. http://www.infonyte.com.

