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Abstract. Web caching keeps single Web objects ready somewhere in
caches in the user-to-server path, whereas database caching uses full-
fledged database management systems as caches to adaptively maintain
sets of records from a remote database and to evaluate queries on them.
Using so-called cache groups, we introduce the new concept of constraint-
based database caching. These cache groups are constructed from param-
eterized cache constraints, and their use is based on the key concepts of
value and domain completeness. We show how cache constraints affect
the correctness of query evaluations in the cache and which optimiza-
tions they allow. Cache groups supporting practical applications must
exhibit controllable load behavior for which we identify necessary con-
ditions. For such safe cache groups, the cost trade-off for record loading
and predicate evaluation saving has to be observed during their design.
Therefore, we analyze their load overhead and propose a population es-
timation algorithm to be used for a cache group advisor.

1 Introduction

Transactional Web applications (TWAs) in various domains (often called e*-
applications) dramatically grow in number and complexity. At the same time,
each application faces increasing demands regarding data volumes and workloads
to be processed efficiently. In such situations, caching is a proven concept to
improve response time and scalability of the applications as well as to minimize
communication delays in wide-area networks. For this reason, a broad spectrum
of techniques has emerged in recent years to keep static Web objects (like HTML
pages, XML fragments, or images) in caches in the user-to-server path (client-
side caches, proxies of various types, CDNs).

As the TWAs must deliver more and more dynamic and frequently updated
content, this so-called Web caching [9,11] should be complemented by techniques
that are aware of the consistency and completeness requirements of cached data
(whose source is dynamically changed in backend databases) and that, at the
same time, adaptively respond to changing workloads. Attempts targeting these
objectives are called database caching, for which several different solutions have
been proposed in recent years [2,3,4]. Currently many database vendors are de-
veloping prototype systems or are just extending their current products [8,10].
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Fig. 1. Database caching for Web applications

What is the technical challenge of all these approaches? When user requests
require responses to be assembled from static and dynamic contents somewhere
in a Web cache, the dynamic portion is generated by a remote application server,
which in turn asks the backend DB server for up-to-date information, thus caus-
ing substantial latency. An obvious reaction to this performance problem is the
migration of application servers to data centers closer to the users: Figure 1 il-
lustrates that clients select one of the replicated Web servers “close” to them in
order to minimize its response time. This optimization is amplified if the asso-
ciated application servers can instantly provide the expected data – frequently
indicated by geographical contexts. But the displacement of application servers
to the edge of the Web alone is not sufficient; conversely it would dramatically
degrade the efficiency of DB support because of the frequent round trips to the
then remote backend DB server. As a consequence, primarily used data should be
kept close to the application servers in so-called DB caches. A flexible solution
should not only support database caching at mid-tier nodes of central enter-
prise infrastructures [10], but also at edge servers of content delivery networks
or remote data centers.

Another important aspect of a practical solution is to achieve full cache trans-
parency for the applications, i. e., modifications of the application programming
interface are not tolerated. Such a property gives the cache manager the choice
at run time to process a query locally or to send it to the backend DB server,
e. g., to comply with strict consistency requirements. Cache transparency typi-
cally requires that each DB object is represented only once in a cache and that
it exhibits the same properties (name, type, etc.) as in the backend.

The use of SQL implies another challenge because of its declarative and
set-oriented nature. This means that, to be useful, the cache manager has to
guarantee that queries can be processed in the DB cache, i. e., the sets of records
(of various types) satisfying the corresponding predicates – denoted as predicate
extensions – must be completely in the cache. This completeness condition, the
so-called predicate completeness, ensures that the query evaluation semantics is
equivalent to the one provided by the backend.

A federated query facility [2,8] allows cooperative predicate evaluation by
multiple DB servers. This property is very important for cache use, because
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local evaluation of some (partial) predicate can be complemented by the work of
the backend DB server on other (partial) predicates whose extensions are not in
the cache. Hence, in the following we refer to predicates meaning their portions
to be evaluated in the cache.

2 Constraint-based Database Caching

We take a look at the concepts developed and realized in the DBCache project
[2] and explore the underlying ideas. This work has lead us to a class of tech-
niques which we term constraint-based database caching [7]. In particular, we an-
alyze techniques which support the evaluation of specific PSJ queries (projection-
selection-join queries) in the cache.

For the specification of cache contents, we refer to a particular approach
called cache groups. In short, a cache group is a collection of related cache ta-
bles. Cache constraints defined on and between them determine the records of
the corresponding backend tables that have to be kept in the cache. The tech-
nique does not rely on the specification of static predicates: The constraints are
parameterized, which makes this specification adaptive; it is completed when the
parameters are instantiated by values of so-called cache keys. An “instantiated
constraint” then corresponds to a predicate and, when the constraint is satisfied
– i. e., all related records have been loaded – the predicate extension delivers
correct answers to eligible queries.

The key idea of constraint-based caching is to start with very simple base
predicates (here equality predicates) and to extend them by other types of pred-
icates (equi-join predicates in our case) in a constructive way, such that cache
maintenance can always guarantee the presence of the corresponding predicate
extensions in the cache. Hence, there are no or only simple decidability prob-
lems whether a complete predicate evaluation can be performed. Only a simple
probe query is required in the cache at run time to determine the availability
of eligible predicate extensions. Furthermore, because all columns of the corre-
sponding backend tables are kept in the cache, all project operations possible in
the backend can also be performed in the cache thereby enabling PSJ queries.
Since full DB functionality is available, the results of these queries can further
be refined by operations like group-by, having, or order-by.

2.1 How Do Cache Groups Work?

As introduced above, a cache group is a collection of related cache tables. For
simplicity, the names of tables and columns are identical in the cache and in the
backend DB. Considering a cache table S, we denote by SB its corresponding
backend table, by S.c a column c of S. Note, a cache usually contains only
subsets of records pertaining to a small fraction of backend tables. Its primary
task is to support query processing for TWAs which typically contain up to 3
or 4 joins [2]. Hence, we expect the number of cache tables – featuring a high
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degree of reference locality – to be in the order of 10 or less, even if the backend
DB consists of hundreds of tables.

If we want to be able to evaluate a given predicate in the cache, we must keep
a collection of records in the cache tables such that the completeness condition
for the predicate is satisfied. For simple equality predicates like S.c = v this
completeness condition takes the shape of value completeness.

Definition 1 (Value completeness, VC). A value v is said to be value com-
plete in a column S.c if and only if all records of σc=vSB are in S.

If we know that a value v is value complete in a column S.c, we can correctly
evaluate S.c = v, because all rows from the corresponding backend table SB that
carry that value are in the cache. But how do we know that v is value complete?
This is easy if we maintain domain completeness of specific table columns.

Definition 2 (Domain completeness, DC). A column S.c is said to be do-
main complete (DC) if and only if all values v in S.c are value complete.

Given a domain-complete column S.c, if a probe query confirms that value v
is in S.c (a single record suffices), we can be sure that v is value complete and
thus evaluate S.c = v in the cache. Note that unique (U) columns of a cache
table (defined by SQL constraints “unique” or “primary key” in the backend
DB schema) are DC per se (implicit domain completeness). Non-unique (NU)
columns in contrast need extra enforcement of DC.

So far, we can evaluate only equality predicates, i. e., simplest selection
queries, in the cache. To enhance such queries with equi-join predicates, we
introduce referential cache constraints (RCCs), which guarantee the correctness
of equi-joins between cache tables. Such RCCs are specified between two cache
table columns: a source column S.a and a target column T.b. The tables S and T
need not be different, not even the columns themselves.

Definition 3 (Referential cache constraint, RCC). RCC S.a → T.b be-
tween columns S.a and T.b is satisfied if and only if all values v in S.a are value
complete in T.b.

RCC S.a → T.b ensures that, whenever we find a record s in S, all join
partners of s with respect to S.a = T.b are in T . Note, the RCC alone does not
allow us to correctly perform this join in the cache: Many rows of SB that have
join partners in TB may be missing from S. But using an equality predicate on
a DC column S.c as an “anchor”, we can restrict this join to records that exist
in the cache: RCC S.a→ T.b expands the predicate extension of S.c = x to the
predicate extension of (S.c = x and S.a = T.b). In this way, DC columns serve
as entry points for queries.

Domain completeness of a column S.c is equivalent to an RCC S.c→ S.c, a
so-called self-RCC on its defining column S.c. By specifying such a self-RCC,
the DBA can enforce domain completeness of S.c and thus create an entry point
for query evaluation explicitly.
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How do the records that constitute a predicate extension get into the cache?
And how are these predicate extensions actually chosen? For these tasks, we
introduce the second kind of cache constraint, the so-called cache key.

Definition 4 (Cache key). A cache key column S.k is always kept domain
complete. Only values in πkSB initiate cache loading when they are referenced
by user queries.

You can imagine that the specification of a cache key includes a self-RCC;
similar to it, a cache key can always be used as an entry point. (In both cases
the columns get explicitly domain complete.) But in addition, a cache key serves
as a filling point for a distinguished root table R (the only table in a cache group
that contains cache keys) and – via the (paths of) RCCs specified between R
and related cache tables – for the member tables of the cache group. Whenever
a query references a particular cache key value that is not in the cache, the
backend DB must evaluate this query. But as a consequence of this cache miss
attributed to a cache key, the cache manager satisfies the value completeness for
the missing cache key value by fetching all required records from the backend and
loading them into the cache table R (thus keeping the cache key column domain
complete). To satisfy the RCCs, the member tables of the cache group are loaded
in a similar way (details are provided in [2]). Hence, a reference to a cache key
value x serves as something like an indicator that, in the immediate future,
locality of reference is expected on the predicate extension determined by x.
Cache keys therefore carry information about the future workload and sensitively
influence caching performance. Hence, DBAs must select them carefully1.

2.2 Types of RCCs and Their Use in Cache Groups

Depending on the types of the source and target columns, we classify RCCs as
(1 : 1), (1 : n), (n : 1), and (n : m) and denote them as follows:

– U→ U or U→ NU: member constraint (MC)
– NU→ U: owner constraint (OC)
– NU→ NU: cross constraint (XC).

Using RCCs we implicitly introduce something like a value-based table model
intended to support queries. Despite similarities, MCs and OCs are not identi-
cal to the PK/FK (primary key/foreign key) relationships in the backend DB:
Those can be used for join processing symmetrically, RCCs only in the specified
direction. XCs have no counterparts at all. Because a high fraction of all SQL
join queries refers exclusively to PK/FK relationships – they represent real-world
relationships captured by the DB design –, almost all RCCs are expected to be
of type MC or OC; accordingly XCs and multiple RCCs ending on a NU column
seem to be rare.
1 Low-selectivity cache key columns may cause cache filling actions involving huge sets

of records never used later. It may therefore be necessary to control the use of cache
key values with stop-word or recommendation lists.
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Fig. 2. Cache group OP for order processing

Assume a cache group OP with tables C,O, and P and cache key C.t, formed
by C.a → O.b and O.c → P.d, where C.a and P.d are U columns and C.t,
O.b and O.c are NU columns (Fig. 2). In a common real-world situation, C,O,
and P could correspond to backend DB tables Customer, Order and Product.
Hence, both RCCs would typically characterize PK/FK relationships that will be
used for join processing in the cache. Additional RCCs, for example, C.t→ O.b
or O.c → C.n, are conceivable; such RCCs, however, have no counterparts in
the backend DB schema and, when used for a cross join of C and O, their
contributions to the query semantics remain in the user’s responsibility.

As we know, if a probing operation on some domain-complete column T.c
identifies value x, we can use T.c as an entry point for evaluating T.c = x. Now,
any enhancement of this predicate with equi-join predicates is allowed if these
predicates correspond to RCCs reachable from cache table T .

Assume, we find ‘gold’ in C.t (of cache group OP), then the predicate (C.t =
‘gold’ and C.a = O.b and O.c = P.d) can be processed in the cache correctly. Be-
cause the predicate extension (with all columns of all cache tables) is completely
accessible, any column may be specified for output. Of course, a correct predicate
can be refined by “and-ing” additional selection terms (referring to cache table
columns) to it; e. g. (C.t = ‘gold’ and O.e > 42 and C.n like ‘Smi%’ and . . . ).

3 Cache Group Design and Analysis

At this point, we know how to configure a cache group by specifying the partici-
pating tables, the RCCs connecting them, and the cache keys, which initiate the
population of the cache group. We can use domain-complete columns as entry
points to obtain correct query results for eligible query predicates. Is this all we
need to know to design and to effectively make use of cache groups?

On the one hand, a cache group should enable as flexible use for predicate
evaluation as possible: We should not leave any entry point or RCC unexploited.
This requires that we know about all of them, not just about those we specified
explicitly. On the other hand, we want to design safe cache groups which exhibit
controllable load behavior.

Definition 5 (Reachability graph). A reachability graph γ is a directed graph
implicitly defined for a cache group G. It has G’s tables and RCCs as nodes and
edges. γ is composed by starting from G’s root table and following all RCCs
transitively thereby connecting all reachable tables (as nodes of γ).
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Definition 6 (Paths and cycles). A path in a reachability graph starts at a
source table and ends at a sink table. It connects a collection of cache tables via
a sequence of RCCs. No RCC may appear twice in a path. A cycle is a path that
starts and ends at the same table.

Definition 7 (Homogeneous and heterogeneous cycles). A cycle is homo-
geneous, if only a single column per table is involved, heterogeneous otherwise.

Heterogeneous RCC cycles can lead to excessive population of cache groups
primarily caused by recursive filling actions. Such “dangerous” load behavior
must clearly be identified and prevented.

3.1 Entry Points for Query Evaluation

So far, we have argued that a cache table column can be tested and used by an
equality predicate correctly only if it is domain complete. But how do we know
that? Of course, cache table columns that carry either a self-RCC or a cache key
(i. e., at least all filling points) are explicitly domain complete; columns of type U
are implicitly domain complete. Cache-supported query evaluation gains much
more flexibility and power, if we can correctly decide that other cache columns
are domain complete as well.

Let us refer again to OP . Because C.a → O.b is the only RCC that in-
duces filling of O, we know that O.b is domain complete (denoted as induced
domain completeness). Hence, we can correctly evaluate the query predicate
(O.b = y and O.c = P.d) if we encounter value y in O.b – in addition to
(C.a = x and C.a = O.b and O.c = P.d) if value x is in C.a.

Note, additional RCCs ending in O.b would not destroy the DC of O.b, though
any additional RCC ending in a column different from O.b would do2: Assume an
additional RCC ending in O.e induces a new value v, which implies the insertion
of σe=vOB into O – just a single record o. Now a new value w of o.b, so far
not present in O.b, may appear, but all other records of σb=wOB fail to do so.
For this reason, a cache table filled by RCCs (or cache keys) on more than one
column cannot have an induced DC column. This means that induced DC is
context dependent ; in contrast to explicit or implicit DC (i. e., DC of cache key,
self-RCC, or U columns), it can be lost when a cache group configuration is
modified. This leads us to the following definition:

Definition 8 (Induced domain completeness). A cache table column is in-
duced domain complete, if it is the only column of a cache table filled2 via one
or more RCCs or via a cache key definition.

Let us summarize our findings concerning the population of cache tables and
the domain completeness of their columns: A cache table T can be filled via
cache key columns or RCCs ending in one or more of its columns. A column
2 We must distinguish between RCCs that only reach a column and RCCs that fill it:

RCCs that never cause any record to be loaded (e. g., a self-RCC on a U column) do
not disturb induced DC. How to effectively classify an arbitrary RCC is unsettled.
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of T can be domain complete due to specifications in the backend (implicitly:
U columns), due to specifications in the cache (explicitly: cache keys, self-RCCs),
or as a result of the interaction of specified items (induced).

Analogous to extra DC columns, one can discover optimization RCCs in a
cache group, i. e., RCCs that have not been specified, but hold in the given
context. For example, in OP the (optimization) RCC O.b → C.a allows an
additional join direction.

3.2 Safeness of Cache Groups

It is unreasonable to accept all conceivable cache group configurations, because
cache misses on cache key columns may provoke unforeseeable load operations.
Although the cache can be populated asynchronously to the transaction ob-
serving the cache miss, avoiding a burden on its response time, uncontrolled
loading is undesirable: Substantial extra work, which can hardly be estimated,
may be required by the frontend and backend DB servers, which will influence
the transaction throughput in heavy workload situations.

Specific cache group configurations may even exhibit a recursive loading be-
havior that jeopardizes their caching performance. Once cache filling is initiated,
the enforcement of cache constraints may require multiple phases of record load-
ing. Such behavior typically occurs, when two NU-DC columns a and b of a
cache table X must be maintained. A set of values appears in a, for which X is
loaded with the corresponding records of XB to keep column a domain complete.
These records populate b with a set of (new) values that have to be made value
complete, which possibly introduces new values into a again. As a result, a and
b may receive new values in a recursive way.

Cache groups are called safe if no recursive load behavior is possible. Upon
a cache key miss, we want the initiated cache loading to stop after a single pass
of filling operations through the tables of the cache group.

Obviously, recursive loading requires that there is a cyclic structure among
the specified RCCs (remember, every cache key also contains an RCC). Simple
examples show that there are not only unsafe RCC cycles, but also safe ones
(consider a homogeneous cycle) [2,7]. We analyzed cycles in detail and derived
safeness conditions for cache group configurations. These conditions are more
sophisticated than a simple exclusion of pairs of NU-DC columns (as sketched
above), because the mutual introduction of new values can span several tables
and can also be neutralized by compensating effects. Nevertheless the safeness
conditions can be stated as a single rule that requires the designer of a cache
group to inspect all contained cycles for certain patterns of U and NU columns.

4 Loading Behavior of Cache Groups

So far, we have discussed the correctness and safeness conditions of cache groups.
To analyze the loading behavior, we will derive a simple quantitative cost model.
It is aimed at estimating the approximate cost (depending on column selectivities
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and RCCs specified) for the population of a cache group caused by a single cache
key value.

4.1 Model Assumptions

For quantitative modeling, we generally assume uniform value distribution in
columns and stochastic independence between columns (i. e., the standard as-
sumptions of query processing). Each column of a cache table T inherits the
cardinality of the corresponding column of backend table TB. Hence, T.j has
cardinality cT.j (i. e., it has up to cT.j distinct values). We define the selectiv-
ity of column T.j to be sT.j = 1/cT.j . Thus, the smaller the value sT.j , i. e.,
the larger the value cT.j , the higher is the column selectivity. For example, if T
contains NT records, an equality predicate on T.j qualifies NT · sT.j = NT /cT.j
records (1 ≤ cT.j ≤ NT ) implying that NULL values are excluded.

When nT records are filled into a table T , e. g., to satisfy a cache constraint on
a given column T.i, how many distinct values d are entered into a stochastically
independent column T.j? The result for the boundary values is obvious: If T.j is
unique, d = nT , and if the cardinality of T.j is 1, d = 1. In general, an accurate
determination of d demands for a stochastic model which evaluates the expected
number of distinct values of T.j [12]. In abstract terms: Given natural numbers
N, c, n (1 ≤ c ≤ N,n ≤ N), what is the expected number d of colors when n balls
are drawn without replacement from a bucket with N balls. These balls occur
in c different colors and are uniformly distributed, i. e., there are N/c balls per
color. The following model, which we have derived for the sketched situation, is
used throughout the paper and referenced by f(N, c, n):

d = f(N, c, n) = c ·
(

1−
(

N −N/c
n

)

/

(

N

n

))

.

In frequent situations, more than one record set is independently filled into
table T . Instead of computing the sum of the various set sizes, we could im-
prove our population estimation by modeling such situations of a combination
of events. Then the expected size nT of T ’s population induced by m indepen-
dent cache constraints could be calculated with the following considerations. If
A1, . . . , Am are m events, what is the probability of the event that at least one
among the m Aj occurs. In symbols, this event is A1...m = A1∪A2∪· · ·∪Am. It is
not sufficient to know the probabilities of the individual events Aj , but we must
have complete information concerning all possible overlaps. Fortunately, due to
the stochastic-independence assumption, we can easily compute for each pair
(i, j), each triple (i, j, l), etc., the probability of events Ai ∩Aj or Ai ∩Aj ∩Al,
etc. Furthermore, we can compose our formula iteratively, thereby computing the
probabilities of the following events [5]: (A1 ∪A2), (A12 ∪A3), (A123 ∪A4), . . . .

This abstract model for the combination of events can easily be applied to
our problem of determining the number of distinct records when independent
record sets are filled into a table. By multiplying the (filling) probabilities with
table cardinality NT , we immediately yield nT1...m as the number of distinct
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records for m overlapping record sets. If nT1 and nT2 records are to be filled
independently into table T , nT12 is the number of records actually loaded, etc.:

nT12 = nT1 + nT2 − nT1 · nT2/NT ,

nT123 = nT12 + nT3 − nT12 · nT3/NT ,

nT1234 = nT123 + nT4 − nT123 · nT4/NT , . . .

The rationale of our somewhat simplified estimation model, the calculation
of average record populations in cache tables, is considered to be a great help for
cache group design, e. g., when applied by a cache group advisor. A model refine-
ment is only possible at the expense of substantially increased model complexity.
The actual value distributions in columns and the size of record sets induced by
RCCs (equivalently, (intermediate) join results) could be approached more accu-
rately by introducing histograms, describing the frequency of individual values
or of values belonging to value ranges, and join selectivities.2 This would require
additional and more accurate statistical data for cache tables and cache groups
which is, due to its dynamic nature, hard to derive and to maintain.

4.2 Effective Cache Keys and Applicable RCCs

To keep the population model simple, but at the same time as accurate as
possible, we need the “right” concepts. As argued in the following, two essential
concepts for the population estimation of a cache group G are applicable RCC
and effective cache key.

Any filling action in a cache group is path-dependent and depends on the type
of RCC traversed. For example, an optimization RCC does not change G’s filling
and need therefore not be considered for G’s population estimation. (In Fig. 3,
Q.e → O.a and V.g → O.a would be such optimization RCCs.) Otherwise, we
would have to deal with MC → OC cycles (the reverse owner constraint for an
already traversed member constraint) adding unnecessary complexity. In Fig. 3,
all four RCCs shown are applicable for the population estimation.

Conversely, if a reverse member constraint is specified explicitly, this RCC is
considered a design error. The resulting homogeneous cycle would only lead to
excessive load situations without benefiting the transaction’s queries.

When more than one cache key is specified for a root table, we can always
reduce such a set of cache keys to a single effective cache key (ck eff) as far as cost
estimations for the filling process are concerned.3 ck eff is the only non-unique
cache key, if any; otherwise, it is any unique cache key. When O.a and O.k are
defined as cache keys in Fig. 3, then O.k is the effective one.
2 However, this would only improve certain situations. Since values in a column, dis-

tributed according to a histogram, are used in RCCs which enforce the filling of
these values in columns of other tables, the model complexity seems to be very hard
to control.

3 Consider two cache keys, T.u unique and T.n non-unique. If a value of u causes a
cache miss, the single qualified record is loaded into the cache. The new value of
T.n has to be made value complete which determines the set of records to be loaded
(except in the case of a NULL value in T.n, which we exclude from our estimations).
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The column ck eff determines the number nS of records to be loaded into
the root table S upon any cache miss, which is caused by probing an equality
predicate on a cache key column of S. Furthermore, it guarantees that domain
completeness for all cache key columns of S is satisfied after loading these nS
records. In fact, for the computation of nS , only the cardinality of the ck eff

column matters (together with NS , the cardinality of SB). Therefore, we always
deal with ck eff in the following.

A computation step considers a source table S – for the initial step, the root
table –, an applicable RCC R, and a target table T . Given NS and NT , the
expected filling size nT of T enforced by R can be derived from nS and from the
cardinalities of the columns connected by R. In a subsequent step, table T may
become the new source table S′, and an outgoing RCC together with its target
table T ′ is selected as the component under consideration.

4.3 Population Estimation – A Simple Example

To derive a general scheme of cache group filling, the basic step and its quan-
titative description can be studied using the situation illustrated in Fig. 3. It
covers the essential column and RCC types: O.k labels a NU (effective) cache
key, whereas O.a and O.b denote U and NU (non-domain-complete) columns.

In the following, a new value v of cache key O.k is assumed to be filled into
cache table O, enforcing the load of nO.k records of type O to guarantee DC of
O.k. Because O.a is unique, the number of new O.a values is nO.k. But what is
the number nO.b of O.b values that appear in the cache as a consequence of v?
Furthermore, how many records of types Q, V , and P have to be loaded to
satisfy the RCCs O.a→ Q.e, O.a→ V.g, and O.b→ P.c?

Of course, when a column is unique, its cardinality is equal to the num-
ber of records in the corresponding backend table, e. g., cO.a = NO. Using
the uniform-value-distribution assumption, we can immediately compute nO =
nO.k = NO/cO.k, which is the number of records of type O to be loaded. The
computation of nO.b is much more difficult and requires additional thoughts
which led to our model f(N, c, n). Hence, by substituting nO.b for d and NO,
cO.b, and nO in f(N, c, n), we can compute nO.b = f(NO, cO.b, nO).4

4 The formula for f(NO, cO.b, nO) is only one possible option. If available, any other
(possibly more efficiently computable) approximation could act as a substitute.
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A fundamental difficulty prohibits the more accurate approximation of the
case where both O.k and O.b are non-unique. All the nO.b values computed by
our formula become effective for the first O.k value only. In a subsequent filling
initiated by a newO.k value v′, someO.b values qualified by v′ may already reside
in the root table, and, therefore, only neff ≤ nO.b values may trigger further
fillings via RCCs. A more accurate approximation would require to consider the
filling history of the cache group which seems to be impractical and is definitely
beyond the rationale of our estimation model. Moreover, this case does not seem
so important to justify additional model complexity. Therefore, we always put
up an inequality relation in formulas where nO.b is involved: neff ≤ nO.b =
f(NO, cO.b, nO).

In case of a unique source column O.a of an RCC (i. e., a membership con-
straint), always all nO.a = nO values are new and lead to the loading of the
corresponding values in the target column of the participating table (let’s say
Q or V ). Hence, always nQ (nV ) records of type Q (V ) are to be filled into
the cache table Q (V ): nQ = nO · NQ/cQ.e (nV = nO · NV /cV.g). In case of a
non-unique source column O.b of an RCC (i. e., an OC or XC), all nO.b ≤ nO
values are assuredly new only when O is empty. In general, some of these values
may already have been brought into the cache table by a previously referenced
O.k value. Therefore, the resulting cache load for the target table P can only be
estimated by nP1 ≤ nO.b ·NP /cP.c = f(NO, cO.b, nO) ·NP /cP.c.

As indicated in Fig. 3, P is reached by an additional RCC loading path
O.a→ V.g, V.h→ P.d, the contribution of which has to be approximated. Ac-
cording to our assumptions, nV records cause d = f(NV , cV.h, nV ) different
values to be loaded into V.h, which, in turn, need d different owner records in
P . Because there are already records in P loaded via O.b → P.c, we may en-
counter some of these owner records there. Hence, we can expect nP = nP1 +
nP2 − nP1 · nP2/NP records to be loaded into P where nP2 = f(NV , cV.h, nV ) ·
NP /cP.d = f(NV , cV.h, nV ).

4.4 General Scheme for a Single Evaluation Step

After having discussed, by referring to the example in Fig. 3, the various param-
eters influencing the filling of a cache group caused by a single cache key value,
we can generalize our notation and summarize our findings. In the following, we
use S and T for source and target table, or for a table in general. Compiled in
Tab. 1, we have derived a general schema for determining the cache table filling
of a single evaluation step i. There we assess the effects of a single RCC R of
a given type U/NU → U/NU.5 Initiated by nS records filled into S, the listed
value nT is the expected size of the record set that is to be filled into T to satisfy
RCC R. For the initial step (i = 1), nS is derived from the effective cache key
of the root table. Note again, a target table becomes the source table of the
subsequent evaluation step i+ 1: Ti 7→ Si+1 and nTi 7→ nSi+1 .
5 We assume a lossless join along an RCC. If, for example, an RCC connects a unique

column of S with a unique column of T , then NS = NT , i. e., NULL values do not
occur in these columns.
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Table 1. General scheme for the table population induced by an RCC

target table filling nT
target column T.j

U NU

U nS · 1 nS ·NT /cT.j
source column S.i NU, DC nS · cS.i/NS · 1 nS · cS.i/NS ·NT /cT.j

NU, non-DC f(NS , cS.i, nS) · 1 f(NS , cS.i, nS) ·NT /cT.j

Whether a non-unique column S.i becomes domain complete, is context de-
pendent (see Sect. 3.1). If it is domain complete, all its values cause new record
sets of size NS/cS.i to be loaded into S.

5 Evaluation of Single Cache Groups

So far, we have considered the effect of a single RCC on cache group filling.
Note, since nS and nT are context dependent, it is not sufficient to sum the
individual RCC filling results. Starting from an empty cache group G, our next
goal is the estimation of G’s population induced by a single ck eff value. This
estimation is an upper bound (in the average-case sense) for subsequent fillings
due to a further ck eff value, because, in case of a NU, non-DC source column S.i
of an RCC, some of the values estimated by f(N, c, n) may already reside in
column S. Hence, only some of these values may lead to a filling activity in the
target table. The effective set of values is usually smaller than estimated by our
formula – a rare situation that, however, has to be taken into account due to
limited model accuracy.

We propose a population-estimation algorithm PE that refers to G’s reach-
ability graph γ built from its applicable RCCs only; we assume that γ is cycle
free. PE starts at the given filling point and computes – once and for all – the
number of records nS to be filled into the root table. Each member table T has
m ≥ 1 incoming RCCs originating from source tables S1, . . . , Sm. In order to
avoid multiple evaluation of T ’s outgoing RCCs (for each incoming RCC sepa-
rately), we need the expected size nTact of T ’s population based on all incoming
RCCs, before we compute the populations of tables directly reachable from T .6

Furthermore, in order to compute T ’s table population at once, we must know
nSiact of all source tables Si. Since this rule applies to all Si in their role as
a target table as well, we have to compute the individual table populations in
cache group G in such an order that, for the estimation of each T , the estimated
populations of all Si are already known. In other words, we have to perform a
topological sort TS of G’s reachability graph7 to determine the order in which
6 Although G is assumed to be cycle-free, this is the reason why a single traversal (e. g.

left-most depth-first) of G’s reachability graph is not sufficient for the population
estimation.

7 Since a topological sort detects cycles, it is a consistency check whether the PE
algorithm is applicable to G’s reachability graph.
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1. Using its reachability graph, list the topological sort order of G’s tables in TSO.
2. Visit the first (root) table S in TSO and compute the expected population nS

using the cardinality of ckeff .
3. While there are tables in TSO not visited, visit the next table T and obtain the

expected table population nT :
(a) For each incoming RCC Ri = Si.a→ T.bi, compute the population nTi

using the already computed nSiact of its source table Si, the type of Ri,
and the cardinality of its target column cT.bi .

(b) nTact is obtained by applying the combination-of-events model using all
determined nTi.

Fig. 4. Algorithm PE, estimating the population of a cache group G caused by a
reference to a single ckeff value.

the table populations can be computed. Since only the root table of G lacks
incoming arcs, it is the starting point of TS.

Knowing nSiact for all source tables S.i connected to T via incoming RCCs,
we can apply the appropriate formula of Tab. 1 and compute the population sizes
nTi (i = 1, . . . ,m) expected from each of the m RCCs. Since the corresponding
record sets are considered stochastically independent, we can eliminate the ex-
pected duplicates from our population estimation by computing nTact = nT1...m

as sketched in Sect. 4.1. Figure 4 summarizes the steps of PE.

6 Conclusion and Future Work

We have introduced constraint-based database caching using as an example a
specific kind of cache groups tailored to PSJ queries, which frequently occur in
TWAs. Cache groups provide predicate completeness for predicates built con-
structively from simple base predicates, which are specified as parameterized
constraints on cache tables. This use of parameters gives cache groups a simple
kind of adaptability.

The analysis of the basic type of cache groups has shown that one must
be aware of the consequences of a set of specified cache constraints: On the
one hand, performance problems due to uncontrolled cache loading must be
prevented; on the other hand, one must know which kinds of predicates can
be evaluated correctly in the cache and must have efficient probe operations to
check the availability of predicate extensions. Furthermore, for each variation of
constraint-based caching, quantitative analyses must help to understand which
cache configurations are worth the effort. Therefore, we have developed the basic
principles to quantitatively estimate the loading costs of a given cache group
configuration.

Our framework can be used for the design of a cache group advisor support-
ing the DBA in the specification of a cache group, when the characteristics of the
workload are known. Then, the expected costs for cache maintenance and the
savings gained by predicate evaluation in the cache can be determined thereby
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identifying the trade-off point of cache operation. For example, starting with
the cache tables and join paths exhibiting the highest degrees of reference lo-
cality, the cache group design can be expanded by additional RCCs and tables
until the optimum point of operation is reached. Such a tool may also be useful
during cache operation by observing the workload patterns and by proposing
or automatically invoking changes in the cache group specification. This kind
of self-administration or self-tuning opens a new and complex area of research
often referred to as autonomic computing.

There are many other issues that wait to be resolved: For example, we have
not said anything about the invalidation of predicates, about the removal of
overlapping predicate extensions from the cache, or about different strategies
how updates can be applied to cache and backend DB. We also want to explore,
how the idea of constraint-based caching can be extended to other types of
predicates (e. g., range or aggregation predicates).

Acknowledgments. We want to thank M. Altinel, Ch. Bornhövd, and C. Mo-
han for many fruitful discussions during the first author’s sabbatical at ARC
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