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Fine-Grained Management of
Natively Stored XML Documents

Abstract

Processing XML data in relational database systems
(RDBMSs) requires a sophisticated and application-spe-
cific mapping of XML data to relational database tables
and columns. Future database systems should provide—in
addition to the relational processing capabilities—native
storage and processing mechanisms for XML data which
allow for abstraction and isolation from the internal repre-
sentation at higher system layers.

In this paper, we present the architecture and imple-
mentation of our prototype system which gives the user full
relational and XML functionality based on native storage
structures and processing capabilities for each side. Our
XML Transaction Coordinator (XTC) supports such a
combined query processing via declarative and naviga-
tional interfaces. For this purpose, the XTC architecture
extends an existing (object-) relational database system by
a native XML storage engine using mature techniques
proven and tested in various DBMS implementations.

1 Introduction
The use of XML for electronic data interchange often leads
to an enormous number and size of files keeping semi-
structured XML data. Special application domains (e. g.,
mapping UML diagrams to XML structures or maintaining
large tagged documents) lead to management of volumi-
nous XML data in centralized repositories. Collaborative
workflows in these application domains require concurrent
read as well as write access to such XML data.

Currently available relational or object-relational data-
base management systems ((O)RDBMSs) only manage
structured data well. There is no effective and straightfor-
ward way for handling XML data. This is obviously true
when simple CLOB types have to be used. In particular,
searching of XML documents becomes prohibitively slow.
But also more refined mappings do not lead to good solu-
tions per se: An innumerable number of algorithms [11, 17,

24] has been proposed for the mapping of semi-structured
XML data to structured relational database tables and col-
umns (the so-called "shredding"). Especially the isolation
of concurrent transactions in RDBMSs is tailored to the re-
lational data model and does not take the semi-structured
data model and corresponding interfaces of XML into ac-
count. "Shredded" mappings of XML documents to rela-
tional tables may cause disastrous locking behavior, in par-
ticular, if relational systems lock entire pages or even entire
tables in order to prevent the phantom anomaly.

On the other hand, native XML database systems enable
tailored processing of XML documents, but most of the
systems published in the DB literature are designed for ef-
ficient document retrieval and not for frequently concur-
rent and transaction-safe document modifications. This pri-
marily results from the numbering schemes used to identify
XML components. These schemes allow for very fast com-
putation of structural dependencies, but modifications of
the document structure often lead to re-numeration of large
document parts. As opposed to these retrieval-oriented sys-
tems, Natix is a rare example that is designed to support
concurrent modifications [10]. 

In any case, there are no specific provisions to process
concurrent transactions guaranteeing the ACID properties
and using typical XML document processing (XDP) inter-
faces like SAX [4], DOM [17], and XQuery [3] simulta-
neously. For this reason, we implemented our prototype
system, called XML Transaction Coordinator (XTC), with
native XML storage structures as a testbed for the evalua-
tion of XML storage and searching efficiency and, later on,
synchronization and logging/recovery algorithms. The de-
tailed architecture of our system is presented in this paper.
Our XTCserver is a database management system which
supports combined processing capabilities for relational
and XML data and is strictly designed in accordance to the
well-known five-layer database architecture [14]. In this
way, the XTCserver implementation also illustrates the
idea of extending existing (object-) relational database sys-
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tems with native XML storage using techniques already
available in these systems.

XML documents can be composed of components of
different types including elements, attributes, texts, pro-
cessing instructions, and comments. These components of
XML documents embody externally visible nodes identi-
fied by unique IDs, that is, they can be directly referenced
at the client side. Our XTCserver is responsible to store
such documents as physically ordered records in fixed-
length pages which can be adjusted to the space require-
ments of XML objects (documents or elements). This ap-
proach leads to a new kind of XML storage-level manage-
ment.

To motivate our approach, we refer to Fig. 1. At the user
level, XML documents consist of trees whose nodes repre-
sent the typical XML types elements, attributes, and texts.
Our native XML storage structures are designed to achieve
effective storage utilization and efficient search to any
node in a document tree, while arbitrary modifications of
the tree structure and the node contents remain possible.

This requires a flexible node identification scheme which is
also a mandatory requirement for fine-grained locking pro-
tocols on XML documents. To further enhance concurrent
operations, we have introduced for the internal XML tree
representation two additional node types called string and
attribute root [15] which do not need special consideration
here. Transparent at the user level, a string node, for exam-
ple, keeps the actual value of an attribute or text node
which avoids locking of such a node unless its value is ex-
plicitly fetched. While instances of the node types text and
string may be very large thereby challenging our storage
mechanism, the remaining nodes are typically short.

In the following section, we outline the system architec-
ture of the XTCserver. Section 3 discusses the database en-
gine architecture in detail. Section 4 summarizes our per-
formance evaluation results for bulkloading documents and
querying simple path expressions. Finally, in sections 5 and
6, we review the related work concerning native XML stor-
age and wrap up with conclusions and some aspects of fu-
ture work.

2 System Architecture
In this section, we introduce the system architecture em-
bedding our XTCserver in an existing (object-) relational
database environment. This approach is in accordance with
the questions raised in ROX: Relational over XML [13] to
support SQL APIs as well as XDP interfaces. Questions
controversially discussed so far are "Will the DBMSs of

Fig. 1. XML fragment

<book>
  <title>Introduction to DBS</title>
  <content>
    <chapter title="An Overview...">
      <keyword>Database</keyword>
    </chapter>
  </content>
</book>
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the future be hybrids, storing both relational and XML?" or
"Will everything be stored in XML format?" making myr-
iads of SQL systems "legacy applications". While, in this
paper, we primarily focus with our XTCserver on the sup-
port of XDP operations on native XML structures, we can
use/extend our testbed system to future DBMS architec-
tures representing mixed SQL and XQuery systems to run
SQL applications on native XML or on hybrid structures
concurrently. Therefore, the coarse architectural overview
in Fig. 2 accentuates the XML internals. It visualizes a cli-
ent/server environment, where several client applications
can communicate with the XTCserver.

After starting the XTCserver, the remote method invo-
cation agents (RMI) in the interface services layer are in-
stantiated. To execute queries by the XTCserver, we have
developed a command line processor enabling the user to
connect to the server via the XTCdriver and to send queries
whose results are written back to the screen or into a file.
The XTCdriver is responsible for the connection establish-
ment of client applications. At the server side, the API RMI
thread handles the processing of the queries passed on by
the XTCdriver.

The application programming interface (API) provided
by the command line processor may be considered as an in-
terface providing for SQL and XML processing functions.
This require a certain kind of preprocessing of the submit-
ted statements. For this reason, the API RMI parses each
statement sent by the corresponding command line proces-
sor and processes, on the one hand, the recognized XML
parts invoking the XTCserver, on the other hand the SQL
parts invoking a connected RDBMS. Although a descrip-
tion of such a combined processing is not a focus of this pa-
per, we give a first impression of the XML-enriched SQL
interface in Fig. 3.

The first statement creates the table xmldata which con-
tains a column of type XTCXML that natively stores XML
documents (performed by storing the document into the
XTCserver and maintaining a reference to the document in
the column data). In the second statement a SELECT query
is shown which directly evaluates an XPath expression on
column data of table xmldata. Note, the expression relat-
edTerm with the prefixed $-character is a column of the
conventional relational table keywords (also referenced
within the FROM clause) and, in that way, enables directly
a join of relational and XML data inside a path expression.

The XTCengine is responsible for native XML process-
ing and serves all clients connected to the XTCserver via
the interface services. The refined architecture and algo-
rithms enabling XML processing inside the XTCengine are
further discussed in Section 3.

As an additional feature, the XTCserver provides an ftp
and http daemon which allow for accessing XML docu-
ments via a usual ftp client or a web browser. For these
tasks, an ftp agent and an http agent can be defined which
deliver the connection handles of the connected ftp client or
web browser at the server side.

3 Database Engine
So far, we have sketched essential aspects of XML process-
ing at the database user level. In this section, we present the
XTCserver database engine and the corresponding algo-
rithms to store XML documents. For this reason, the data-
base engine components organized by five hierarchical lay-
ers are described in more detail.

3.1 Engine Architecture

To implement a centralized database management system,
Härder and Reuter have proposed a mapping model con-
sisting of five layers [14]: file services (file management),
propagation control, access services (record and access
path management), node services (record-oriented, naviga-
tional access), XML services (non-procedural or algebraic
access).

The design of our XTCengine (depicted in Fig. 2) strict-
ly adheres to this widely used reference architecture. Its
mapping hierarchy embodies the major steps of dynamic
abstraction from the level of physical storage up to the user
interface. At the bottom, the database consists of huge vol-
umes of bits stored on non-volatile storage devices, which
are interpreted by the DBMS into meaningful information
on which the user can operate. With each level of abstrac-
tion (stepping upwards), the objects become more com-
plex, allowing more powerful operations and being con-
strained by a growing number of integrity rules. The upper-
most interfaces both support the XML data model, in our
case by providing navigational and declarative data access.

File Services. The bottom layer operates on the bit pat-
tern stored on some external, non-volatile storage device
and is implemented by the i/o managers and the temporary
file manager. In collaboration with the operating system’s
file system, this layer copes with the physical characteris-
tics of each type of storage device. Each i/o manager is re-
sponsible for a so-called container file with a uniform
block size.

Propagation Control. This layer implemented by our
buffer managers provides for pages which are fixed-length
partitions of a linear address space and mapped into physi-
cal blocks of the system layer below.

Access Services. The next layer implements mapping
functions much more complicated than those provided by

Fig. 3. Combined processing of relational and XML data

CREATE TABLE myschema.xmldata
(
  filename VARCHAR(50),
  data     XTCXML
)

SELECT data/book/content
       /chapter[keyword=$relatedTerm]/@title
FROM   xmldata, keywords
WHERE  keyword = ’semi-structured’
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the two subordinate layers. For performance reasons, the
partitioning of data into pages is still visible at this layer. It
has to maintain all physical object representations, that is,
data records, fields, etc. as well as access paths structures,
such as lists, B-trees, and B*-trees, and internal catalog in-
formation. These tasks are provided by the record manag-
er, index manager, and catalog manager. Especially tai-
lored to the XML data model, the record manager is re-
sponsible to prevent the records from loosing their physical
order among each other.

Node Services. The navigational access layer maps
physical objects to their logical representations and vice
versa. At this interface, the user (or the modules at the next
higher layer) navigates through hierarchies of XML nodes.
This task is achieved by the node manager.
XML services. This layer provides logical data structures
with declarative operations or a non-procedural interface to
the database. It provides an access-path-independent data
model with descriptive languages and contains the XML
manager which is responsible for declarative document ac-
cess, e. g., evaluation of XPath queries [6] or XSLT trans-
formations [7]. 

At the top of our architecture, the agents of the interface
layer make the functionality of the XML and node services
available to common internet browsers, ftp clients, and the
XTCdriver thereby achieving declarative / set-oriented as
well as navigational / node-oriented interfaces.

Transaction management is performed by the transac-
tion manager. It provides facilities for logging transaction
operations onto disk to enable recovery after a system
crash. Furthermore, the transaction manager includes a
lock manager which isolates transactional accesses on
XML documents using fine-granular node locks [15].

In the following, we will sketch important design issues
for the layers which are performance-critical for processing
XML data structures.

3.2 I/O Manager

An i/o manager makes read and write operations of fixed-
length blocks available for the next higher layer. The
blocks are identified by a unique number and read from re-
sp. written into a variable-length container file. 

Each container file may have a different block size spec-
ified at container creation time. A specific block size is pri-
marily chosen to obtain high storage utilization when stor-
ing and maintaining XML documents. In particular, the
block size should be somehow adjusted to the storage re-
quirements of the XML objects, that is, neither small XML
documents fitting entirely into a block nor records repre-
senting XML elements should cause too much fragmenta-
tion in a block. 

The first block called the index block keeps the block
size in two bytes, followed by additional administration
data (AD). When an i/o manager opens a container file, it

reads the block size from the index block and calculates the
number of blocks within the container file by dividing the
container file size by the block size.

If the container file is exhausted, we can flexibly extend
the container size (extension size adjusted in AD) without
any displacements of already allocated blocks. 

3.3 Buffer Manager

A buffer manager is assigned to each i/o manager. At in-
stantiation time, it requests the i/o manager assigned to fig-
ure out the characteristic block size. Using this parameter
and a buffer-size configuration parameter of the XTCserv-
er, the buffer manager dynamically allocates the buffer
memory space for the current session. After initialization,
the buffer manager is able to service requests from modules
residing at the next higher layer.

The pages provided by the buffer manager are typically
mapped one-to-one to the blocks of the non-volatile stor-
age. However, the conceptual separation of blocks and pag-
es allows for other flexible mappings, e.g., to provide for
shadowing. 

A page request is specified by a page number which is a
4-byte integer value. It encodes in the highest byte the con-
tainer number and in the lowest three bytes the block num-
ber where the page is mapped to. A page request causes the
buffer manager to search the requested page in the buffer.
For this task, a hash table is implemented which uses the
page number as the hash key and delivers the position of
the page inside the buffer as the hash table value. If the hash
table probing fails, the page must be loaded from the con-
tainer file by the i/o manager. If the buffer is already
warmed up, a page—a so-called victim—has to be deter-
mined to make room for the newly requested page. Then,
page replacement can be performed, that is, the victim page
can be freed—if it was modified, it must be written back to
the container file before—and the requested page can be
loaded. Finally, the buffer manager returns the position of
the page inside the buffer to the requesting module after
having issued a fix command which prevents replacement
of the page during its use.

When the requestor has finished its processing within
the fixed page, it sends an unfix call to the buffer manager
which makes the page eligible for replacement or for a fur-
ther request (a new fix-unfix interval).

To reduce the read and write operations of XTCserver
pages on the container file to a minimum, an adequate page
replacement strategy should be applied. In our prototype
approach, we have chosen to implement the LRD-V2 algo-
rithm [9], where both reference density as well as reference
frequency (combined with some aging mechanism) of a
page are taken into account. An individual buffer manager
for each i/o manager also allows for applying individual
page replacement algorithms to XML documents semanti-
cally grouped and stored within a single container file.
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3.4 Record Manager

The interface provided by the buffer manager corresponds
to a main memory DB with a potentially infinite address
space with visible boundaries of fixed-length pages. The
record manager referring with the fix-unfix mechanism to
these pages is responsible for storing records and access
path data into these pages. Some of this data is later trans-
formed into XML document nodes by the node manager
(Section 3.7). Because the record manager embodies the
core of our XML processing approach, its record storage
algorithm also takes the structure of XML documents into
account to allow for their optimized processing.

3.4.1 Page and Record Formats

Each node of an XML document is represented as a physi-
cal record. Such a record is stored in a page which is
flagged by a page type byte as a record page. The left-most
depth-first order of the nodes (logical document node order
or tree order) within the corresponding XML document is
assured by the physical order of the records within the
record pages together with so-called level indicators. This
is a very important aspect. The reconstruction of subtrees is
a very frequent operation in XML database systems; in this
way, it can always be done on a clustered set of records.
The order of the pages—needed to reconstruct the entire
XML document—is preserved by two pointers in each
page which reference the previous and next record page.
The records within a record page are addressed by offset
pointers which are located at the end of the page (corre-
sponding to the record identifiers (RID concept) in [2]).
Both together the page number and the offset pointer index
constitute the physical address of a record which allows for
displacing a record inside a page without changing its ex-
ternally visible address. The layout of a record page is de-
picted in Fig. 4.

Before storing a record which corresponds to an XML
document node, a new page of type document catalog is al-
located which keeps the reference to a record page contain-
ing the first record of the document. The specific buffer
manager allocates a new page for the document catalog be-
fore the actual storage procedure is initiated. Because the
entire XML document is analyzed before it is stored, the

record manager is able to choose an adequate container file
to optimize storage utilization (see also Section 3.4.2).

The record manager operation storeRecord is used to
write a physical record into a record page. The structure of
a physical record is shown in Fig. 5.

The first byte of a record represents the record descrip-
tor. The descriptor encodes in the first two bits one of the
storage modes inlined, distributed, or vocabulary. Inlined
materializes the record data as the tail of the record struc-
ture, whereas vocabulary only keeps a reference to the ac-
tual data value in an XML vocabulary. This vocabulary is
represented by an ordered list of (surrogate, name) pairs
where surrogate contains the internal numeric representa-
tion of an element or attribute name. In the case of rather
small sets of names, a list implementation using sequential
access on both pair items obtains satisfactory performance;
larger vocabularies could be indexed by B-trees, in addi-
tion. Because XML documents often consist of many ele-
ments or attributes with identical names, the vocabulary
storage option is a less space-consuming method and,
hence, allows to keep larger document parts in the database
buffer. If the record data length exceeds the maximum
available page free space (a so-called "long" record), stor-
age mode distributed is chosen storing the record data
across several pages. Each record has assigned a unique
life-time node ID stored together with the record. Three
bits in the middle of the record descriptor encode the num-
ber of bytes allocated to keep the node ID. The last three
bits of the record descriptor encode the record type corre-
sponding to one of the XML node types (Section 1).

The level indicator stored in byte 1 expresses—in addi-
tion to the order given by the physical record order—the re-
lationship of a record to its immediate physical predeces-
sor. When records are mapped to XML document nodes,
the level indicator is used to specify relationships like
child-of or sibling-of. We discuss this mapping together
with typical values for the level indicator in detail in
Section 3.4.3.

The bytes following the level indicator depend on the
storage mode set in the record descriptor. For mode inlined,
bytes 2 and 3 store the length of the data at the end of the
record. Mode distributed keeps in bytes 2 to 5 the number
of the page keeping the initial part of the long record, in
mode vocabulary bytes 2 and 3 deliver address information
for accessing the (surrogate, name) pair in the vocabulary.

Fig. 4. Record page layout
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The record description is continued by the bytes for the
node ID and possibly the record data (only mode inlined).
The node ID value allows the node manager supported by
the index manager to quickly locate the corresponding
physical record (see sections 3.5 and 3.7). Because the
node order of an XML document is represented by the
physical record order in a page, insert operations of records
can cause page overflows and movements of records into
another page. In this case, the record manager has to update
the physical record addresses for the corresponding node
IDs. For this reason, the record manager notifies the index
manager when records are moved across page boundaries.

Using our physical record format, the inlined storage of
a record of type element or attribute with a typical node-ID
length of 3 bytes requires only 7 bytes. This approach al-
lows us to address each node very quickly by its unique
life-time ID and, additionally, to store an entire XML doc-
ument consuming less space than its textual (external) rep-
resentation (see Section 4).

3.4.2 Inserting Records 

 Initial loading of entire XML document allocates pages as
needed and fills them sequentially. The XML document is
parsed and each identified XML node is appended to the so
far stored document part. If there is not enough space in the
current page, a new page is allocated, the new record is in-
serted at the first position in the new page, and the next
record page pointer of the current page is updated to the just
allocated page. This procedure is shown illustrating the in-
sertion of two records in Fig. 6; it guarantees that, if an
XML document is distributed across several pages, each
page is filled as much as possible.

If an already existing XML document is modified (e.g.
by editing the document), a new record is always inserted
directly after the record specified as the logical predecessor
in document order. In contrast to the loading of an entire
XML document, the insert operation may need page split-
ting. This means, the new record is inserted immediately
after the specified record by moving the succeeding
records, if any, inside the page. If there is not enough free
space in the page for inserting the new record, a new page
is allocated (anywhere) and the set of all records in the orig-
inal page is divided in two parts of approximately the same
size. The first part remains in the original page, whereas the

second part is moved into the new page. Fig. 7 depicts the
insertion of a new record which causes a page split. Be-
cause the affected records are distributed equally and free
space is left to adjust for future insertions, the growth of the
structure only requires a minimum of page splits.

If the size of a long record to be inserted exceeds the
fixed-length page size, the long value is divided in parts
each stored into a single page and reachable via its repre-
senting record using storage mode distributed as described
in Section 3.4.1. Assume, a new record exceeds the length
of one page, then the record is distributed over two pages
and inserted as illustrated in Fig. 8.

Our record management algorithms guarantee effective
and efficient page utilization. In particular, if entire XML
documents are stored at a time, we achieve a very high page
occupancy, because we can control the page allocation.1

Even if the structure of these documents is modified later
on, we may expect a degree of page filling of more than
90% in most cases.

3.4.3 Maintaining Record Order

When storing an XML document, the record manager first
initializes an analyzing SAX parser which checks the entire
document. For each XML node discovered in the docu-
ment, the SAX parser calculates the expected size of its
physical representation. In this way, the analyzing SAX
parser can estimate the expected physical size of the entire
document and choose the best fitting container file.

Fig. 6. Initial loading of records
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dance to the XMark benchmark documents in [23], we have achieved an
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Fig. 7. Insertion causing a page split
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At the end of the analyzing phase, the node manager in-
vokes a second SAX parser which guides the actual storage
mechanism. For each XML node encountered, the record
manager requests a new node ID from the catalog manager
and calls the record manager to store the XML node as a
physical record. Furthermore, it passes the (node ID, RID)
pair on to the index manager which modifies the associated
B-tree.

To store a record, parameters for record type, record da-
ta, and level indicator have to be supplied. The type of each
XML node is mapped to the record type parameter. Both
the name of an element node and the name of an attribute
node are stored into an XML vocabulary, the information
to address the names in the vocabulary is mapped to the
physical record as described in Section 3.4.1. The value of
the attribute node is stored inlined into an additional record
of type string. Text nodes do not have a name, they only
contain their value which is mapped to a record of string
type stored (also inlined) after the actual text record.

As already explained in Section 3.4.1, the record man-
ager takes care of the order of the related XML nodes, but
does not maintain node relationships like child-of or sib-
ling-of. These node relationships are expressed using the
level indicator which describes the depth of the node posi-
tion to the XML document root. Starting with level indica-
tor value 0 at the document root node, each new opening el-
ement tag increases the level indicator value by 1. In other
words: sibling nodes carry the same level value, child
nodes have the level value of their parent node increased by
1. Attribute nodes are stored with the level indicator value
increased by 1 of their corresponding element node. String
nodes are stored with the level value of their owning at-
tribute or text node increased by 1. Using the stored level
identification, it is very simple to reconstruct an XML frag-
ment or the entire XML document. Fig. 9 illustrates the pa-
rameters of the records maintained for the XML fragment
in Fig. 1.

3.5 Index Manager

The index manager provides methods to maintain sequen-
tial lists and the well-known B- and B*-trees [8]. An entry
present in such access paths consists of a (key, value) pair,
both key and value of variable length.

In our approach, we assign stable IDs, valid for their life
time, to XML nodes. For this reason, a B-tree is used to
map such logical node IDs to the locations (RIDs) of their
corresponding records. Note, because physical records can
be displaced by document modifications, this mapping
guarantees ID stability (also called database key concept).
The availability of these stable IDs is critical for direct ac-
cess to an arbitrary node, update flexibility, and perfor-
mance of node indexing. Therefore, we represent the node
ID and its 6-byte physical address (RID: 4-byte page num-
ber and 2-byte offset index) as a (key, value) pair in the B-
tree.

If a new XML node is inserted by the record manager, a
B-tree entry is created whose key represents the unique
node ID and whose RID references its current physical
record location. Despite of the indirection, a record speci-
fied by the ID of its XML node can be located very rapidly.
If the corresponding record is modified or moved inside the
page, no additional updates in the B-tree are required, be-
cause displacement inside a page does not change the phys-
ical address (RID). Only modifications which cause the
movement of the record across a page boundary requires
the update of the physical record address to keep the B-tree
entry consistent.

3.6 Catalog Manager

The catalog manager maintains the catalog data of the
XTCserver. Therefore, at the first XTCserver startup the
catalog manager creates the database catalog page, a B-tree
for managing the node IDs, and a so-called master docu-
ment into which the metadata of the XTCserver is stored.
The identifier of the B-tree and the master document are
kept in the catalog page which is always resident in main
memory from XTCserver startup on. The catalog manager
also provides for access information to the structural index-
es which are introduced in the next section.

3.7 Node Manager

The node manager implements the navigational access lay-
er and offers methods for node-oriented processing of
XML documents. Furthermore, XML nodes can be insert-
ed into an XML document at an arbitrary position and sin-
gle nodes or subtrees can be deleted, to support flexible
document modification. Most of the DOM API methods
are implemented with direct invocations of the node man-
ager.

Starting from a context node, specific methods support
the navigation to the parent node, the previous or next sib-
ling node, or the first or last child node, and the retrieval of

record type node ID level record data

element 1 0 book

element 2 1 title

text 3 2

string 4 3 Introduction to DBS

element 5 1 content

element 6 2 chapter

attribute 7 3 title

string 8 4 An Overview...

element 9 3 keyword

text 10 4

string 11 5 Database

Fig. 9. Parameters for XML document creation - example
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attributes or entire XML fragments. Having additional
methods to identify an XML document’s root node and to
get and set single XML node values, the node manager as
part of the navigational access layer provides the essential
functionality to support the next higher layer—implement-
ed by the XML manager—to process declarative queries
through node-oriented operations.

3.7.1 Node-Oriented Navigation

Because the node manager performs all navigational tasks
by applying the methods provided by the record manager,
all operations have to be evaluated on the physical record
structures. As mentioned in Section 3.4, these tasks can be
efficiently performed for operations executed on records
which are physically clustered. For example, this can be
done very rapidly for accessing a complete XML fragment,
the first sibling or an arbitrary attribute of an element, or
the value of an attribute or text node.

In contrast, locating at the DOM API distant nodes via
one of the four structural relationships parent-of, previous-
sibling-of, next-sibling-of, and last-child-of for a given
context node is (especially for very large XML documents)
an expensive operation, because the entire XML document
part between the context node and the requested node has
to be fetched. This necessity results from the fact that only
the level indicator of a record can be used to determine the
corresponding node relationships. Hence, many records
may have to be scanned in order to locate the record with
the level value searched. 

To efficiently support these structural operations, we
again resort to the idea of addressing these nodes by B-
trees. Hence, we provide so-called structural indexes intro-
duced in the next section.

3.7.2 Structural Indexes on Demand

Structural indexes are implemented by four B-trees which
store together with the ID of the context node the corre-
sponding ID of the previous and next sibling, the last child,
and the parent for a given context node. To keep the sizes
of these B-trees as small as possible, we only index struc-
tural relationships that are actually used, that is, pairs of
node IDs are inserted on demand into the resp. B-trees. If a
node has to be located in the course of query processing via
such a structural relationship and if it is not already avail-
able in the corresponding index, the record manager has to
scan all records of a page and possibly, in the same way, a
large set of subsequent pages to identify the requested node
by comparing the level indicators of each record. The so
determined node ID is finally inserted into the index and
can be used in future references. A detailed example for
this procedure is given in the now following paragraph.

Assume, the node manager has to return the next-sibling
record of the context node specified by its ID, say ID=0815
for our discussion. First of all, the node manager accesses
the next-sibling B-tree and looks up the ID attached to

ID=0815. In case, this B-tree access is successful, the next
sibling of 0815, say 4711, can be immediately located via
the node-ID index which delivers the RID for 4711. Other-
wise—no (ID, ID) pair present for ID=0815 as a key in the
next-sibling B-tree—, the node manager has to search it
"the hard way". Accessing the node-ID B-tree for ID=0815
delivers the RID of the context node under consideration.
Hence, the referenced page can be directly fetched into the
DBMS buffer and, using the offset pointer index at the bot-
tom of this page, the record representing node 0815 can be
exactly located. Then, the node manager scans all records
succeeding record 0815 until the first record of type ele-
ment is located having an identical level indicator (this is
record 4711). Finally, the located record is transformed
into its external representation and returned. 

Now the pair (0815, 4711) can be inserted on demand
into the structural index for next siblings to avoid perfor-
mance-critical scan operations on future sibling requests.
Because our XTCserver guarantees life-time stable node
IDs, the (ID, ID) pairs in these structural indexes only have
to be updated on node deletions and insertions of new sib-
ling and child nodes. The more frequent movements of sets
of records caused by record insertions and page splits do
not affect the index data.

When entire XML fragments can be efficiently recon-
structed by local scans of a single page content, it is not
necessary to index the next-sibling information. Because
structural indexing is performed on demand and only in sit-
uations where large subtrees can be skipped using such re-
lationship information, our structural index mechanism ac-
celerates frequently used navigation paths in documents
and, at the same time, avoids excessive storage consump-
tion of static schemes. Performance gains are shown in
Section 4.

3.8 XML Manager

The XML manager implements the highest layer in the sys-
tem layer hierarchy—the nonprocedural access layer re-
sponsible for set-oriented processing. So far, the node man-
ager makes a number of methods available to store and re-
trieve documents, document fragments, or single nodes.

For evaluating an XPath expression, the expression is
initially separated into single search steps (e. g., /book/con-
tent/chapter is separated into /book, /content, and /chap-
ter). Next, an iterator—keeping a list of nodes—is initial-
ized with the root node of the document for which the ex-
pression is evaluated. Then, the nodes contained in the
iterator are recursively replaced by their child nodes which
satisfy the condition of the step currently processed (e. g.,
while processing the step /content, the root node <book>
will be replaced by its child node <content>). Finally, the
iterator contains all nodes which qualify for the path ex-
pression referenced. A performance evaluation of this algo-
rithm is given in Section 4.2.
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4 Performance
In this section, we give a first impression of the overall sys-
tem performance. The XTCserver is completely imple-
mented in Java using the Standard Edition 1.4.2. In order
to evaluate the performance of bulkloading and querying
entire XML documents, we run the XTCserver on an IBM
eServer xSeries 235 with two Intel Xeon-A 2400MHz pro-
cessors. The machine executes Microsoft Windows Server
2003 Enterprise Edition. Both the B-tree index and the
XML documents are stored in separate container files, each
assigned with a buffer manager providing for 500 pages of
4096 bytes. The container files initially consist of 10,000
pages and are automatically extended by 2,500 pages if a
container runs out of space. The bulkload operation for a
document is performed transaction safe, this means, it is
executed within a transaction which is isolated from other
concurrently running transactions and which is completely
logged to be recoverable after a system crash. Although cli-
ent and server are running on the same machine in our per-
formance evaluation environment, each XML document
inserted is copied from the XTCdriver to the XTCserver via
a local TCP/IP connection to reflect normal client/server
cooperation.

We used the xmlgen tool of the XMark benchmark for
XML database systems [23] to generate the documents
which are loaded into the XTCserver. The document size
varied from 1MB up to 100MB. These documents generat-
ed by xmlgen correspond to a range from ca. 49,000 up to
4.2 million XML nodes (in detail listed in Fig. 11).

4.1 Bulkloading Performance

The storage space required for the XML documents is list-
ed in Fig. 10. The documents generated for the XMark
benchmark primarily use short element and attribute names
(like person, item, name, id, ...). Although all text values

are stored by the XTCserver in two separate records (text
record and string record with the actual value) and a unique
ID is assigned to each node, our space-saving physical
record layout based on vocabulary use and bit encoding of
structural information reduces the storage requirements by
nearly 10 percent (compared to the original textual repre-
sentation of the document). For XML documents contain-
ing longer element and attribute names (and perhaps addi-
tional XML namespaces), we expect even more substantial
space savings.

The elapsed times for bulkloading XML documents
(varying from 1MB up to 100MB) are shown in Fig. 11.
Storing as document means that the XML document is
parsed and each node is stored as a record and referenced
by a key which is inserted into the node-ID B-tree as de-
scribed in Section 3.4. Storing as blob causes the record
manager to store the document as a single record distribut-
ed across a large number of pages with only one ID in the
B-tree addressing the blob.

Of course, storing XML documents and assigning to
each record an individual ID takes much longer than just
"copying a file into pages" (blob option)—roughly a factor
of 10 in our experiments. Nevertheless, the system is scal-
ing with the document sizes.Fig. 10. Storage requirements for XML documents

document
size (bytes)

inlined
(4096B 
pages)

inlined
(bytes)

vocabulary
(4096B 
pages)

vocabulary
(bytes)

1,182,547 285 1,167,360 264 1,081,344

2,622,586 653 2,674,688 582 2,383,872

5,194,897 1294 5,300,224 1135 4,648,960

7,837,417 2021 8,278,016 1750 7,168,000

10,734,292 2744 11,239,424 2366 9,691,136

26,170,648 6990 28,631,040 6012 24,625,152

52.244.461 13943 57,110,528 11950 48,947,200

79.098.184 21658 88,711,168 18475 75,673,600

104.732.949 28474 116,629,504 24203 99,135,488

Fig. 11. Bulkloading times for XML documents

document
size

number of
XML nodes

storing as
document

storing as
blob

1 MB 49,172 10sec 615msec

2.5 MB 107,446 26sec 2.4sec

5 MB 212,076 53sec 5.2sec

7.5 MB 319,548 1min 22sec 8.5sec

10 MB 435,121 1min 55sec 12sec

25 MB 1,060,178 4min 55sec 28sec

50 MB 2,117,748 10min 40sec 1min 2sec

75 MB 3,194,869 16min 57sec 1min 35sec

100 MB 4,232,422 23min 5sec 2min 12sec
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4.2 Structural Index

As described in Section 3.8, our iterator-based path evalu-
ation algorithm mainly has to determine the children and
siblings of given nodes in order to get the result set. For
these tasks, the operations first-child and next-sibling are
used. The first-child operation can be efficiently performed
because the record manager often locates the first child
only a few bytes behind the parent node within the same
page. This favorable behavior is contrasted by the next-sib-
ling operation where, due to the tree order, a given context
node is typically separated from its next sibling by a (prob-
ably very large) subtree stored directly behind this context
node.

In order to demonstrate the performance benefits of the
structural index (Section 3.7.2), we evaluated the XMark
path query Q1 /site/people/person[@id=’person1’] on the
XML documents generated by xmlgen. Because we did not
support any further indexes besides the node-ID and next-
sibling B-trees in this experiment, we had to locate and
fetch all person nodes in /site/people and test the predicate
@id=’person1’ on each node. Fig. 12 (column ‘no index’)
lists the query evaluation times obtained. 

The last two columns in Fig. 12 refer to experiments
supported by a structural index on demand. Processing the
first query, the empty index increases the query evaluation
time (compared to ‘no index’) because the next-sibling re-
lationships are inserted into the index. Further queries of

the same type on the 100 MB document profit from the in-
dexed next-sibling IDs and consume on the average only
76% of the initial execution time. In this case, the structural
index does not lead to a performance improvement as high
as expected. This is caused by the large number (22,439) of
person elements distributed across a large set of pages. Be-
cause each of the person elements contains only a few child
nodes, the subtrees separating siblings in tree order are
small such that the index advantage that allows jumping
over a large set of pages gets lost. Nevertheless, query pro-
cessing with or without any additional index scales with the
document size. 

A more significant gain by the structural index use is
achieved in our second experiment. While the results illus-
trated in both columns ‘no index’ and ‘first query’ in Fig.
13 are comparable to their counterparts in Fig. 12, the col-
umn ‘further queries’, however, reveals dramatic gains at-
tributed to the structural index. The index-supported query
/site/regions/africa/item[@id=’item1’] is executed in 344
milliseconds which is only 3% of the execution time on a
freshly inserted document without any index data avail-
able. Here, the relevant part of the 100 MB document con-
tains in region africa 483 different item elements; each sub-
tree of an item element consists of up to 200 nested nodes
which can be skipped in the next-sibling operation if
matching index entries (in a structural index on demand) al-
ready exist. The execution times of the item query which

Fig. 12. Querying persons using the structural index

document 
size

person 
elements

no index first query 
using index

further queries 
using index

1 MB 254 343msec 500msec 250msec

2.5 MB 560 743msec 938msec 485msec

5 MB 1121 1.3sec 1.6sec 935msec

7.5 MB 1707 1.9sec 2.4sec 1.4sec

10 MB 2294 2.5sec 3.1sec 2.0sec

25 MB 5609 6.1sec 8.0sec 4.7sec

50 MB 11219 12.4sec 15.2sec 8.8sec

75 MB 16956 18.4sec 23.1sec 13.8sec

100 MB 22439 24.6sec 30.6sec 18.7sec
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Fig. 13. Querying items using the structural index

document 
size

item 
elements

no index first query 
using index

further queries 
using index

1 MB 4 112msec 141msec 19msec

2.5 MB 11 266msec 313msec 32msec

5 MB 23 547msec 594sec 47msec

7.5 MB 35 797msec 828sec 63msec

10 MB 48 1.1sec 1.15sec 78msec

25 MB 120 2.8sec 2.9sec 110msec

50 MB 241 5.5sec 5.7sec 219msec

75 MB 364 8.5sec 8.8sec 328msec

100 MB 483 11.2sec 11.7sec 344msec
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clearly owed the performance improvements to the index
use are illustrated in Fig. 13.

Considering the query evaluation times and number of
elements analyzed in the queries mentioned before, an ar-
bitrary element node and its corresponding attribute are lo-
cated and tested with the predicate @id=’...’ within 0.8
milliseconds—an impressive performance behavior attrib-
uted to the node-ID B-tree delivering the record identifiers
for the direct node accesses.

5 Related Work
The detailed design of physical storage structures for XML
data and their processing inside a DBMS are hardly dis-
cussed in scientific papers. The work closest to our ap-
proach is related to the eXist database system [21] which
also stores consecutive XML nodes in fixed-length pages
and uses a B+-tree to maintain physical record addresses
and node IDs. The node IDs are determined by an extension
of the numbering scheme proposed in [19] using a com-
plete k-ary tree for each node level. Because the numbering
scheme allows for very fast location of, e. g., parent, child,
or sibling nodes, eXist is mainly designed for data retrieval.
On the other hand, a simple node insertion may lead to
nearly the complete renumbering of the entire (possibly
very large) XML document. This behavior is not desirable
for OLTP applications.

Lore [20] is a database system designed for the manage-
ment of semi-structured data with a focus on query process-
ing. The data managed is not confined to a schema and may
even be irregular or incomplete. As far as storage is con-
cerned, the XML document is mapped to the object ex-
change model (OEM [22]). Each object is stored in a so-
called slot within a fixed-length page; the physical order of
the objects corresponds to the depth-first traversal of the
XML document. For these semi-structured objects, the
SQL-like Lore Language (Lorel [1]) provides powerful
processing capabilities. 

Natix [10] splits an XML document tree into several
subtrees which are separately stored. The related split algo-
rithm can be guided by the so-called split matrix. Finally,
each subtree is stored as a record in a fixed-length page.
Natix supports full transactional XML processing capabil-
ities with concurrency control as well as logging and recov-
ery tailored to the subtree storage structures. To speed up
query execution, XML documents may be indexed by the
XASR index.

Timber [18] splits an XML document into single nodes
and assigns a node ID consisting of start-, end-, and level-
position of the node. Reserved gaps in the numbering
scheme are supposed to avoid a too frequent renumbering
of the document. Single nodes are stored in a clustered
mode in document-order by the Shore data manager [5].
But Shore exhibits considerable overhead when dealing
with small objects, so several nodes must be packaged in
page-size containers. A further problem is that Shore de-

stroys the node cluster if update operations force a page
split. Timber implements a mature tree algebra for query
evaluation; transaction management is not adapted to the
semi-structured data model.

6 Conclusion and Future Work
Native storage of XML documents in database systems is
an important practical problem. So far, (object-) relational
database systems do not support really native XML storage
and concurrency control by their engine. On the other hand,
native XML database systems are mostly designed for effi-
cient data retrieval, although transaction-safe processing of
XML data is desirable. The relevant ideas for transaction
management (e. g., logging and recovery or isolation) are
in the majority of cases described in a sketchy way.

In our paper, we have presented the XTCserver, a proto-
type database system which supports native XML process-
ing. Our XTCserver is able to extend an existing (object-)
relational database environment to support native XML
data storage and relational tables, that is, hybrid structures,
at a time.

The XTCserver is strictly designed in accordance to the
well-known five-layer database architecture. For the im-
plementation of file management, any kind of data is stored
in block-structured container files. The propagation control
is implemented by a buffer manager which offers a poten-
tially infinite page-structured address space to the next
higher components. The core mechanisms for native XML
data storage are implemented by the access services which
consist of the index, catalog, and record managers, taking
into account both the level indicator and the record order
which represent the logical structure of an XML document.
By the use of a B-tree, unique node IDs are assigned to each
record resp. corresponding XML node. Because they re-
main valid for their life time, they can be used to directly
access these records from anywhere, for example, using in-
dex structures to invert XML documents or node contents,
independently of any document modifications. The node
manager as part of the node services layer maps the nodes
of an XML document to internally managed records. The
XML manager as the core part of the XML services repre-
senting a non-procedural access layer processes collection-
based queries.

Our current steps integrate concurrency control mecha-
nisms for fine-granular collaborative XML document pro-
cessing. In particular, we take advantage of the update flex-
ibility of and selective access to XML nodes achieved by
our stable numbering mechanism (via the node-ID B-tree)
in the XTCserver. Because XML elements can be identi-
fied and directly accessed, fine-grained lock acquisition at
the node-level can be achieved to synchronize multi-user
access on server-controlled XML documents [15]. We
want to systematically evaluate this new approach in our
XTCserver environment; first results are already available
[16]. Finally, in future steps, fine-grained concurrency con-
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trol combined with logging and recovery mechanisms will
allow us to perform relational and XML data accesses in a
single transaction. More support for processing of collec-
tion-based queries with update extensions for XML docu-
ments are part of future work in the non-procedural access
layer. Additionally, the integration of path-based index
structures will support our structural indexes and will allow
us to reach even more competitive processing times for typ-
ical XML benchmark queries.
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