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 Table 1: DBMS mapping hierarchy

Level of 
abstraction Objects

L5 Nonprocedural 
access

Tables, views, 
tuples

L4 Navigational 
access

Logical records, 
sets, networks

L3  Access path 
mgmt

Physical records,
access paths

L2 Propagation 
control Segments, pages

L1 File mgmt Files, blocks
More than two decades ago, an architec-
tural model based on successive data ab-
straction steps of record-oriented data 
was proposed as kind of a standard and 
later refined to a five-layer hierarchical 
DBMS model. While this model greatly 
supported all requirements of horizontal 
and vertical distribution of record-orient-
ed DB processing, it is now challenged by 
a variety of new requirements and chang-
es as far as processing environments, 
data types, functional extensions, hetero-
geneity, autonomy, etc. are concerned. 
We discuss some cases where the original 
layer model can only keep up through 
substantial changes in the individual lay-
ers and where totally new architectural 
models have to be found. Furthermore, a 
broader perspective is needed when de-
pendable adaptive information systems 
are designed. In this respect, we will 
identify a big chasm resulting from di-
verging requirements and leading to a 
conflict in the design objectives: growing 
system complexity due to extensions in 
current DBMSs which will be augmented 
by improving adaptivity as opposed to ur-
gent simplification needs mandatory for 
the development of dependable systems.1

1 Motivation

In [Härder 2005c], we have intensively 
discussed the issues of data mapping and 
transaction support in a centralized 
DBMS architecture consisting of five hi-
erarchical layers. Furthermore, we have 
outlined how the layered architecture 
could be adjusted to progress in science 
and technology evolving in the last two 
decades, that is, our architectural model 
successfully responded to the pressure of 
»permanent change«. It could even prove 
its extensibility potential for new require-
ments of a variety of emerging data man-
agement tasks. By introducing an addi-
tional layer for the needs of communica-
tion, adaptation, and mediation, our 
architectural model can also serve for 

1. This contribution is the second part of an ex-
tended version of [Härder 2005a and 2005b].
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scenarios where DB processing has to be 
distributed in a horizontal or vertical 
fashion. 

Distributed DBMSs are the main ex-
ponent of horizontal distribution of the 
entire DB functionality and of parti-
tioned/replicated data to processing 
nodes connected by a network [Rahm 
1994]. As a consequence, the core re-
quirements remain, leading to an archi-
tectural model which consists of identical 
layered models for every node together 
with a connection layer responsible for 
communication, adaptation, or mediation 
services. In contrast, vertical distribution 
is typically achieved by so-called client/
server DBMSs. Their major concern is to 
make DBMS processing capacity avail-
able close to the application in the client 
(computer). Usually, client/server 
DBMSs are used in applications relying 
on long-running transactions with a 
checkout/checkin mechanism for (ver-
sioned) data. 

In all of these cases, however, naviga-
tional or set-oriented processing of 
record-like data was the primary objec-
tive to be supported by the layered archi-
tecture, as sketched in Table 1. We have 
observed that the invariants in database 
management determine the mapping 
steps of the supporting architecture and, 
hence, an architectural model serves well 
as long as it can effectively support these 
basic invariants. For the appropriate use 
of the layered architecture, its basic in-
variants should hold true: page-oriented 
mapping to external storage, manage-
ment of record-oriented data, set-oriented 
database processing. 

Today, however, each DBMS archi-
tecture is flooded by a wave of require-
ments for new data types, transactional 
concepts, and data management scenari-
os where these invariants only partially 
hold or where they have to be replaced by 
totally new concepts. Nowadays impor-
tant DBMS requirements include data 
streams, unstructured or semi-structured 
documents, time series, spatial objects, 
etc. Due to the variety of these emerging 
and diverging demands and application 
trends, we should seriously explore the 
question whether the evolutionary poten-
tial of our architectural model is suffi-
cient to adopt the new functionality or 
whether we need »a revolution in the area 
of DBMS architecture« [Gray 2004]?

In this paper, we explore new archi-
tectural requirements and try to answer 
this question. For this reason, we start in 
section 2 with moderate deviations from 
the traditional data management invari-
ants and debate urging issues of native 
DB processing of XML documents. Da-
tabase caching sketched in section 3 fo-
cusses on declarative and set-oriented 
query processing in caches close to the 
application servers sitting at the edge of 
the Web. By this vertical distribution, the 
backend DBMS can be unburdened to in-
crease overall system scalability and per-
formance. Furthermore, user-perceived 
latency for dynamically created Web ob-
jects may be greatly improved. In section 
4, we consider the role of our architectur-
al model when applied to other kinds of 
data management scenarios and sketch 
extensions to adjust for a variety of new 
data types. We illustrate the reasons why 
the »next DBMS revolution« may be 
around the corner, because a large variety 
of database services for an »ecosystem« 
of new data types is urgently needed. 

Because information system services 
are ubiquitous in our daily life, adaptivity 
and dependability of data management 
services have to be substantially en-
hanced. For this reason, we have to con-
sider a bigger picture in section 5 includ-
ing the information system perspective as 
an ecosystem consisting of DBMS en-
gine(s), DB-related middleware, and ap-
plication integration, before we briefly 
summarize our contribution in section 6.
1
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Fig. 1:   XTC system – overview 
2 Native DB Processing of XML 
Documents

For the data management scenarios 
sketched above, the layers of our archi-
tectural model (see Table 1) perfectly 
match the invariants of set-oriented, 
record-like database management such 
that they could be reused more or less un-
changed in the outlined DBMS variants. 
However, recent requirements strongly 
deviate from this processing paradigm. 
Integration efforts developed during the 
last 10 years were primarily based on a 
kind of loose coupling of components – 
called Extenders, DataBlades, or Cart-
ridges – and a so-called extensibility in-
frastructure. Because these approaches 
could neither fulfil the demands for 
seamless integration nor the overblown 
performance and scalability expectations, 
future solutions may face major changes 
in the architecture. 

2.1 Architectural Layer Reuse

First attempts to provide for DB-based 
XML processing focused on using the 
lower layer features of relational DBMSs 
(RDBMSs) such that roughly the access 
and storage system layers were reused 
and complemented by the data system 
functionality tailored to the demands of 
the XML data model (e.g., DOM, SAX, 
XQuery). This proceeding implied the 
mapping (called »shredding«) of XML 
document structures onto a set of tables 
for which numerous proposals were pub-
lished [Florescu & Kossmann 1999]. 

Although viable within our five-layer 
architecture (by reusing L1 to L4), this 
idea had serious performance trade-offs, 
mainly in the areas of query optimization 
and concurrency control. New concepts 
and implementation techniques in the re-
used layers are required to achieve effi-
cient query processing2. For these rea-
sons, so-called native XML DBMSs 
(XDBMSs, [Jagadish et al 2002]) 
emerged in recent years, an architectural 
example of which is illustrated in Fig. 1. 

Here we use XTC (XML Transaction 
Coordinator, [Haustein 2005]) as an ex-
ample. It is a full-fledged native XDBMS 
which initially was developed to serve as 
a testbed system for exploring and evalu-
ating fine-grained concurrency control on 

2. »A growing number of application developers 
believe XML and XQuery should be treated as 
our primary data structure and access pattern« 
[Gray 2005].
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XML document processing (XDP) via 
some/all of the standardized XML lan-
guage interfaces [DOM 2004, XQuery 
2004]. Its current state perfectly proves 
that native XDBMSs can be implemented 
along the lines of our five-layer architec-
ture. 

2.2 Storage and Buffer Management

At the layers L1 and L2, reuse of con-
cepts is obvious. Hence, we can more or 
less adopt the mechanisms proven in rela-
tional DBMS implementations and adjust 
them to the specific needs of XML docu-
ment representations. In summary, our 
storage layer offers an extensible file 
structure based on the B*-tree mecha-
nism as a container of single XML docu-
ments such that updates of an XML doc-
ument (by IUD operations) can be per-
formed on any of its nodes. We have 
shown that a very high degree of storage 
occupancy (> 96%) for XML documents 
is achieved under a variety of different 
update workloads.

Although the functionality in the re-
maining three layers is comparable at an 
abstract level, the objects and the specific 
implementation methods exhibit strong 
distinctions. Due to space restrictions, we 
can only focus on some new important 
aspects. 

2.3 Access Services

Efficient and effective processing and 
concurrent operations on XML docu-
ments are greatly facilitated, if we use a 
specialized internal representation which 
enables fine-granular management and 
locking. While we use DOM trees – con-
taining element, attribute, and text nodes 
as defined in [DOM 2004] –, for the re-
presentation of XML documents on ex-
ternal storage, we have implemented for 
their memory representation a slight ex-
tension, the so-called taDOM storage 
model [Haustein 2005]. In contrast to the 
DOM tree, we do not directly attach at-
tributes to their element node, but intro-
duce separate attribute roots which con-
nect the attribute nodes to the respective 
elements. String nodes are used to store 
the actual content of an attribute or a text 
node. Via the DOM API, this separation 
enables access of nodes independently of 
their value. Our representational en-
hancement does not influence the user 
operations and their semantics on the 
XML document, but is solely exploited 
by the lock manager to achieve certain 
kinds of optimizations.

Most influential for an access model 
for the tree nodes of an XML document is 
a suitable node labeling scheme for 
which several candidates have been pro-
posed in the literature. While most of 
them are adequate to label static XML 
documents, the design of schemes for dy-
namic documents allowing arbitrary in-
sertions within the tree – free of reorgani-
zation, i.e., no reassignment of labels to 
existing nodes – remains a challenging 
research issue. The existing approaches 
can be classified into range-based and 
prefix-based labeling schemes. While 
Datenbank-Spektrum 1
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Fig. 2:   Document storage using B*-trees
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range-based schemes consisting of inde-
pendent numbering elements (e.g., 
DocID, startPos : endPos, level, see [Al-
Khalifa et al. 2002]) seem to be less ame-
nable to algorithmic use and cannot al-
ways avoid relabeling in case of node in-
sertions, prefix-based schemes seem to 
be more flexible. We believe that they are 
at least as expressive as range-based 
schemes, while they guarantee stability 
of node IDs under arbitrary insertions, in 
addition. In particular, we favor a scheme 
supporting efficient insertion and com-
pression while providing the so-called 
Dewey order (defined by the Dewey Dec-
imal Classification System). 

Fast access to and identification of all 
nodes of an XML document is mandatory 
to enable effective indexing primarily 
supporting declarative queries and effi-
cient processing of direct-access methods 
(e. g., getElementById()) as well as navi-
gational methods (e. g., getNextSib-
ling()). Conceptually similar to the ORD-
PATH scheme [O’Neil et al. 2004], our 
DeweyID scheme refines the Dewey or-
der mapping and introduces a kind of 
overflow mechanism when »gaps« for 
new insertions are in short supply in the 
labeling space. A DeweyID consists of 
several so-called divisions separated by 
dots (in the human readable format). The 
root node of the document is always la-
beled by DeweyID 1 and consists of only 
a single division. The children obtain the 
DeweyID of their parent and attach an-
other division whose value increases 
from left to right. To allow for later node 
insertions at a given level, we introduce a 
parameter distance which determines the 
gap initially left free in the labeling 
space. An empirical evaluation of this 
Datenbank-Spektrum 1
scheme can be found in [Haustein & al. 
2005b]. 

The salient features of a scheme as-
signing a DeweyID to each tree node in-
clude the following properties: Referring 
to the DeweyID of a node, we can deter-
mine the level of the node in the tree and 
the DeweyID of the parent node. Hence, 
we can derive its entire ancestor path up 
to the document root without accessing 
the document. By comparing the Dewey-
IDs of two nodes, we can decide which 
node appears first in the document’s node 
order. If all sibling nodes are known, we 
can determine the exact position of the 
node within the document tree. Further-
more, it is possible to insert new nodes at 
arbitrary locations without relabeling ex-
isting nodes. In addition, we can rapidly 
figure out all nodes accessible via the typ-
ical XML navigation steps, if the nodes 
are stored in document order, i.e., in left-
most depth-first order. Nevertheless, 
DeweyIDs tend to become quite long, de-
pending on the depth of the document, 
the distance parameter, and possible 
»gap« overflows. Therefore, suitable en-
coding and compression schemes for 
their implementation are mandatory.

Fast (indexed) access to each node is 
provided by variants of B*-trees tailored 
to our requirements of node identification 
and direct or relative location of any 
node. Fig. 2a illustrates the storage struc-
ture – consisting of document index and 
document container as a set of chained 
pages – sketching a sample XML docu-
ment, which is stored in document order; 
the key-value pairs within the document 
index are referencing the first DeweyID 
stored in each container page. In addition 
to the storage structure of the actual doc-
ument, an element index is created con-
sisting of a name directory with (poten-
tially) all element names occurring in the 
XML document (Fig. 2b); for each spe-
cific element name, in turn, a node-refer-
ence index may be maintained which ad-
dresses the corresponding elements using 
their DeweyIDs. In all cases, variable-
length key support is mandatory; addi-
tional functionality for prefix compres-
sion of DeweyIDs is very effective. Be-
cause of reference locality in the B*-trees 
while processing XML documents, most 
of the referenced tree pages (at least the 
ones belonging to the upper tree layers) 
are expected to reside in DB buffers – 
thus reducing external accesses to a min-
imum.
2.4 Node Services –  
Support of Navigation, Query 
Evaluation, and Locking

Selection and join algorithms based on 
index access via TID lists together with 
the availability of fine-grained index 
locking boosted the performance of 
DBMSs [Härder 2005a], because they re-
duced storage access and minimized 
blocking situations for concurrent trans-
actions as far as possible. Both factors are 
even more critical in XDBMS. Hence, 
when designing such a system, we have 
to consider them very carefully.

Using the document index sketched 
in Fig. 2, the five basic navigational axes 
parent, previous-sibling, following-sib-
ling, first-child, and last-child, as speci-
fied in DOM [DOM 2004], may be effi-
ciently evaluated – in the best case, the 
corresponding objects reside in the page 
of the given context node cn. When ac-
cessing the previous sibling ps of cn, e.g., 
of node 1.5 in Fig. 2, an obvious strategy 
would be to locate the page of 1.5 requir-
ing a traversal of the document index 
from the root page to the leaf page where 
1.5 is stored. This page is often already 
present in main memory because of re-
ference locality. Hence, we inspect the ID 
d of the directly preceding node of 1.5 in 
document order, which is 1.3.5.3.1 in the 
example. If ps exists, d must be a descen-
dant of ps. With the level information of 
cn, we can infer the ID of ps: 1.3. Now a 
direct access to 1.3 suffices to locate the 
result. This strategy ensures indepen-
dence from the document structure, i.e., 
the number of descendants between ps
and cn does not matter. We have found 
similar search algorithms for the remain-
ing four axes. The parent axis, as well as 
first-child and next-sibling can be re-
trieved directly, requiring only a single 
document index traversal. The last-child
axis works similar to the previous-sibling
axis and, therefore, needs two index tra-
versals in the worst case.

For declarative access via query lan-
guages like XQuery, a set-at-a-time pro-
cessing approach – or more accurately, 
sequence-at-a-time – and the use of the 
element index promise in some cases in-
creased performance over a navigational 
evaluation strategy. To illuminate the ele-
ment index use for declarative access, let 
us consider a simple XQuery predicate 
that only contains forward and reverse 
step expressions with name tests: 
axis1::name1/.../axisN::nameN. XQuery 
3
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contains 13 axes, 8 of which span the four 
main dimensions in an XML document: 
parent–child, ancestor–descendant, pre-
ceding-sibling–following-sibling, and
preceding–following. For each axis, we 
provide an algorithm that operates on a 
duplicate-free input sequence of nodes in 
document order and produces an output 
sequence with the same properties and 
containing for the specified axis all nodes 
which passed the name test. Therefore, 
the evaluation of axes is closed in this 
group of algorithms and we can freely 
concatenate them to evaluate path ex-
pressions having the referenced structure. 
Our evaluation strategy follows the idea 
of structural joins [Al-Khalifa et al. 2002] 
adjusted to DeweyIDs, and additionally 
expanded to support the preceding-sib-
ling–following-sibling and preceding–
following dimensions.

Another aspect of node services to 
support fine-grained concurrency control 
for collaborative use of XML documents 
is of outmost importance. Although pred-
icate locking of XQuery and XUpdate-
like statements [XQuery 2004] would be 
powerful and elegant, its implementation 
rapidly leads to severe drawbacks such as 
the need to acquire large lock granules 
and undecidability problems – a lesson 
learned from the (much simpler) relation-
al world. To provide for a multi-lingual 
solution, we necessarily have to map 
XQuery operations to a navigational ac-
cess model to accomplish fine-granular 
concurrency control. Such an approach 
implicitly supports other interfaces such 
as DOM, because their operations corre-
spond more or less directly to a naviga-
tional access model. Therefore, we have 
designed and optimized a group of lock 
protocols explicitly tailored to the DOM 
interfaces which are absolutely complex 
– 20 lock modes for nodes and three 
modes for edges together with the related 
compatibilities and conversion rules –, 
but for which we proved their correctness 
[Haustein & Härder 2005] and empirical-
4

ly identified their superiority3 [Haustein 
et al. 2005a].

2.5 Query Compilation and 
Optimization

The prime task of layer L5 is to produce 
QEPs, i.e., to translate, optimize, and 
bind the multi-lingual requests – declara-
tive as well as navigational – from the 
language models to the operations avail-
able at the logical access model interface 
(L4, [Graefe 1993]). For DOM and SAX 
requests, this task is straightforward. In 
contrast, XQuery or XPath requests will 
be a great challenge for cost-based opti-
mizers for decades. Remember, for com-
plex languages such as SQL:2003 (sim-
pler than the current standard of XQue-
ry), we have experienced a never-ending 
research and development history – for 
30 years to date – and the present opti-
mizers still are far from perfect. For ex-
ample, selectivity estimation is much 
more complex, because the cardinality 
numbers for nodes in variable-depth sub-
trees have to be determined or estimated. 
Furthermore, all current or future prob-
lems to be solved for relational DBMSs 
[Graefe 2000] will occur in XDBMSs, 
too.

2.6 Relational over XML

The issues of a simultaneous support of 
XML and relational database manage-
ment were explored in [Halverson et al. 
2004]. Questions controversially dis-
cussed so far are »Will the DBMSs of the 
future be hybrids, storing both relational 
and XML data?« or »Will everything be 
stored in XML format?« making myriads 
of SQL systems »legacy applications«. 
Besides hybrid architectures which map 
XML documents and tables by separate 
storage and access systems and support 
coexistence/combination of DB requests 
of both kinds, a futuristic scenario moti-
vated by the latter question was discussed 
under the name ROX: Relational over 
XML. While XML operations on native 

3. By using so-called meta-synchronization, 
XTC maps the meta-lock requests to the actual 
locking algorithm which is achieved by the 
lock manager’s interface. Hence, exchanging 
the lock manager’s interface implementation 
exchanges the system's complete XML lock-
ing mechanism. In this way, XTC ran the ex-
periments with 11 different lock protocols. At 
the same time, all experiments were performed 
on the taDOM storage model optimized for 
fine-grained management of XML documents.
XML structures are the target of optimi-
zation in XDBMSs, such future DBMS 
architectures represent mixed SQL and 
XQuery systems to run SQL applications 
on native XML or on hybrid structures 
concurrently. Mapping SQL requests 
onto XQuery and attaining high-perfor-
mance transaction workloads as familiar 
from RDBMSs on native XML document 
trees would probably lead to a kind of 
»killer application«. However, it seems 
to be very unlikely that query evaluation 
efficiency and concurrency control opti-
mization common in RDBMSs can be 
achieved by a system which needs addi-
tional layers for the SQL/XQuery map-
ping on top of those in Fig. 1. 

3 Database Caching

Caching, in general, is a proven remedy 
to increase scalability and performance 
behavior of large, distributed database 
applications as well as to improve user-
perceived latency (response time) and 
availability. Former approaches include 
static replication and full-table caching 
which may cause expensive consistency 
maintenance under certain update pro-
files while not providing the kind of lo-
cality support required. Therefore, adap-
tive caching tailored to the specific work-
load characteristics of an application is 
highly desirable.

3.1 Optimizing the Entire User-to-
Data Path

As transactional Web applications 
(TWAs) must deliver more and more dy-
namic content and often updated infor-
mation, Web caching should be comple-
mented by techniques that are aware of 
the consistency and completeness re-
quirements of cached data (whose source 
is dynamically changed in backend data-
bases) and that, at the same time, adap-
tively respond to changing workloads. 
Because the provision of transaction-con-
sistent and timely data is now a major 
concern, optimization of Web applica-
tions has to consider the entire user-to-
data path (see Fig. 3). In contrast to Web 
caching where single Web objects are 
kept ready somewhere in caches in the 
client-to-server path, database caching is 
used to optimize data requests on the re-
maining path from application servers to 
the backend database. Because the essen-
tial caching issues in the path up to the 
Web server(s) are already addressed in 
Datenbank-Spektrum 1
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Fig. 3:   The entire user-to-data path in DB-based Web applications
sufficient detail in lots of publications 
[Podlipinig & Böszörmenyi 2003], we 
target at specific problems related to the 
path towards database-managed data. For 
this relatively new problem, currently 
many database vendors are developing 
prototype systems or are just extending 
their current products, e.g., [IBM DB2, 
Larson et al. 2004], to respond to the re-
cently uncovered bottleneck for Web in-
formation systems or e*-applications. 

What is the technical challenge of all 
these approaches? When user requests re-
quire responses to be assembled from 
static and dynamic contents somewhere 
in a Web cache, the dynamic portion is 
often generated by a remote application 
server, which in turn asks the backend 
DB server for up-to-date information, 
thus causing substantial latency. An obvi-
ous reaction to this performance problem 
is the migration of application servers to 
data centers closer to the users: Fig. 2 il-
lustrates that clients select one of the rep-
licated Web servers »close« to them in 
order to minimize its response time. This 
optimization is amplified if the associat-
ed application servers can instantly pro-
vide the expected data – frequently indi-
cated by geographical contexts. But the 
displacement of application servers to the 
edge of the Web alone is not sufficient; 
conversely it would dramatically degrade 
the efficiency of database support be-
cause of the frequent round trips to the 
then remote backend DB server, e.g., by 
open/next/close loops of cursor-based 
processing via SQL application program-
ming interfaces (APIs). As a conse-
quence, frequently used data should be 
kept close to the application servers in so-
called DB caches. Note, the backend DB 
server cannot be moved to the edge of the 
Web as well, because it has to serve sev-
eral application servers distributed in 
wide-area networks. On the other hand, 
replication of the entire database at each 
application server is too expensive, be-
cause DB updates can be performed via 
each of them. A flexible solution should 
not only support database caching at mid-
tier nodes of central enterprise infrastruc-
tures, but also at edge servers of content 
delivery networks or remote data centers.

3.2 Objectives

Another important aspect of practical so-
lutions is to achieve full cache transpar-
ency for applications, that is, modifica-
tions of the API are not tolerated. This ap-
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plication transparency is a key require-
ment of database caching, which also dis-
tinguishes caching from replication. It 
gives the cache manager the choice at run 
time to process a query locally or to send 
it to the backend DB to comply with strict 
consistency requirements, for instance. 

The ultimate goal of database caching 
is to process frequently requested DB op-
erations close to the application. There-
fore, the complexity of these operations 
and, in turn, of the underlying data model 
essentially determines the required mech-
anisms. The use of SQL implies a consid-
erable challenge because of its declara-
tive and set-oriented nature. This means 
that, to be useful, the cache manager has 
to guarantee that queries can be pro-
cessed in the DB cache, that is, the sets of 
records (of various types) satisfying the 
corresponding predicates – denoted as 
predicate extensions – must be complete-
ly in the cache. This completeness condi-
tion, the so-called predicate complete-
ness, ensures that the query evaluation 
semantics is equivalent to the one provid-
ed by the backend.

A full-fledged DBMS used as cache 
manager offers great advantages. A sub-
stantial portion of the query processing 
logic (parsing, optimization, and execu-
tion) has to be made available anyway. 
By providing the full functionality, addi-
tional database objects such as triggers, 
constraints, stored procedures, or access 
paths can be exploited in the cache there-
by simulating DB semantics locally and 
enhancing application performance due 
to increased locality. Furthermore, trans-
actional updates seem to be conceivable 
in the cache (some time in the future), 
and, as a consequence, continued service 
for TWAs when backend databases be-
come unavailable. 

Note, a cache usually contains only 
subsets of records pertaining to a small 
fraction of backend tables. Its primary 
task is to support query processing for 
TWAs, which typically contain up to 3 or 
4 joins [Altinel et al. 2003]. Often the 
number of cache tables – featuring a high 
degree of reference locality – is in the or-
der of 10 or less, even if the backend DB 
consists of hundreds of tables. 

A federated query facility as offered 
in [IBM DB2] allows cooperative predi-
cate evaluation by multiple DB servers. 
This property is very important for cache 
use, because local evaluation of some 
(partial) predicate can be complemented 
by the work of the backend DB server on 
other (partial) predicates whose exten-
sions are not in the cache. 

3.3 Approaching a Solution for 
Database Caching

The conceptually most simple approach – 
namely, full-table caching, which repli-
cates entire contents of selected backend 
tables – attracted various DB cache pro-
ducts [Oracle 2005a]. It seems infeasible, 
however, for large tables even under 
moderate update dynamics, because rep-
lication and maintenance costs may out-
weigh the potential savings on query pro-
cessing.

Traditional approaches to caching at 
a finer granularity are settled at the object 
level and, hence, only support access to 
objects by identifiers. When the cache re-
ceives a declarative query, it is generally 
impossible to decide whether a complete 
answer can be provided without querying 
the backend DB. Semantic descriptions 
of the cached data, however, enable the 
cache manager to determine the com-
pleteness of query results.

So far, most approaches to DB cach-
ing were primarily based on the use of 
single tables, sometimes called semantic 
caching [Dar et al. 1996], or on material-
ized views and their variants [Amiri et al. 
5



DBMS Architecture—New Challenges Ahead
2003]. A materialized view consists of a 
single table whose columns correspond 
to the set of output attributes OV = {O1, 
..., On} and whose contents are the query 
result V of the related view-defining que-
ry QV with predicate P. Materialized 
views can be loaded into the DB cache in 
advance or can be made available on de-
mand, for example, when a given query is 
processed the nth time ( ), exhibit-
ing some kind of built-in locality and 
adaptivity mechanism. When they are 
used for DB caching, essentially indepen-
dent tables, each representing a query re-
sult Vi of QVi, are separately cached in 
the frontend DB. In general, query pro-
cessing for an actual QA is limited to a 
single cache table. The result of QA is 
contained in Vi, if PA is logically implied 
by Pi (subsumption) and if OA is con-
tained in OVi. Only in special cases, a 
union of cached query results, for exam-
ple, , can be ex-

ploited. In contrast, a superset of the at-
tributes QVi may potentially enhance the 
caching benefit of Vi, but, on the other 
hand, it may increase the storage and 
maintenance costs. 

Static methods for DB caching, 
where the cache contents must be pre-
specified and possibly loaded in advance, 
are not very interesting. Such approaches 
are sometimes called declarative caching 
and do not comply with challenging de-
mands like self-administration and adap-
tivity4. Hence, what are the characteris-
tics of a promising solution when the 
backend DB is (frequently) updated and 
the cache contents must be adjusted dy-
namically?

Constraint-based database caching 
promises a new quality for the placement 
of data close to their application. The key 
idea is to accomplish for some given 
types of query predicates P predicate 
completeness in the cache such that all 
queries eligible for P can be evaluated 
correctly [Härder & Bühmann 2004]. Be-
cause predicates form an intrinsic part of 
a data model, the various kinds of eligible 
predicate extensions are data-model de-
pendent, that is, they always support only 
specific operations of a data model under 

4. Minimum interaction by the database adminis-
trator is desirable when a large number of 
caches exists, e.g., Akamai's network has near-
ly 15,000 edge caching servers [Akamai].

n 1≥

V1 V2 ... Vn∪ ∪ ∪
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consideration.
Suitable cache constraints for these 

predicates have to be specified for the 
cache. They enable cache loading in a 
constructive way and guarantee, when 
satisfied, the presence of their predicate 
extensions in the cache. The technique 
does not rely on the specification of static 
predicates: The constraints are parame-
terized making this specification adap-
tive; it is completed when the parameters 
are instantiated by specific values. An 
»instantiated constraint« then corre-
sponds to a predicate and, when the con-
straint is satisfied – i.e., all related 
records have been loaded – it delivers 
correct answers to eligible queries. Note, 
the union of all existing predicate exten-
sions flexibly allows the evaluation of 
their predicates, i.e.,  

or  or subsets/com-

binations thereof, in the cache.
There are no or only simple decid-

ability problems whether predicates can 
be evaluated. Only a simple probe query 
is required at run time to determine the 
availability of eligible predicate exten-
sions. Furthermore, because all columns 
of the corresponding backend tables are 
kept, all project operations possible in 
the backend DB can also be performed in 
the cache. Other operations like selection 
and join depend on specific cache con-
straints. Since full DB functionality is 
available, the results of these queries can 
further be refined by selection predicates 
such as Like, Null, etc. as well as process-
ing options like Distinct, Group-by, Hav-
ing (potentially restricted), or Order-by.

Moreover, we have observed that the 
idea of predicate completeness can be ex-
tended to other types of data models – in 
particular, XML data models –, too. 
Thinking about the potential of this idea 
gives us the vision that we could support 
the entire user-to-data path in the Internet 
with a single XML data model [Härder & 
Bühmann 2004]. 

On the other hand, handling of up-
dates is a critical problem and could be 
alleviated by applying different update 
models to DB caching. Instead of pro-
cessing all (transactional) updates in the 
backend DB first, one could perform 
them in the cache (under ACID protec-
tion) or even jointly in cache and backend 
DB under a 2PC protocol. Such update 
models may lead to futuristic consider-
ations where the conventional hierarchic 

P1 P2 ... Pn∪ ∪ ∪

P1 P2 ... Pn∩ ∩ ∩
arrangement of frontend cache and back-
end DB is dissolved: If each of them can 
play both roles and if together they can 
provide consistency for DB data, more 
effective DB support may be gained for 
new applications such as grid or P2P 
computing.

As compared to the most sophisticat-
ed client/server DBMSs – the query serv-
er approach [Härder & Rahm 2001] – the 
situation is here even more challenging. 
While locality preservation in the (client-
side) query result buffer of a query server 
can take advantage of application hints 
[Deßloch et al. 1998], adaptivity of data-
base caching is a major challenge for fu-
ture research [Altinel et al. 2003]. Fur-
thermore, precise specification of relaxed 
currency and consistency of data is an im-
portant future task to better control the 
widespread and growing use of distant 
caches and asynchronous copies [Guo et 
al. 2004].

4 The Next Database 
Revolution Ahead?

So far, we could show that the invari-
ants in database management observed 
in relational DBMSs also determine the 
mapping steps of an XDBMS architec-
ture, although we had to refine and ad-
just the layers and algorithms to the 
fine-grained and record-oriented tree 
structures of XML documents. Fig. 4 
shows simplified three-layer architectur-
al models for relational and XML 
DBMSs thereby contrasting the differ-
ence of these record-oriented architec-
tures to those of other data types. 

Progress is made for some of these 
data types. Thanks to the object-relation-
al database development, data and proce-
dures are now being joined. Decades of 
discussion about the inside-the-database/
outside-the-database dichotomy of appli-
cation code are over: »The Java or com-
mon language runtimes have been mar-
ried to relational database engines so that 
the traditional EJB-SQL outside-inside 
split has been eliminated. Now Beans or 
business logic can run inside the data-
base« [Gray 2005]. Indeed, the most re-
cent generation of object-oriented envi-
ronments provides a common runtime ca-
pable of supporting good performance 
for nearly all languages, in particular, 
Java and C#. These languages have also 
been fully integrated into some object-re-
lational databases.5 Hence, databases 
Datenbank-Spektrum 1
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Fig. 4:   Desirable extensions for future DBMS architectures
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access system services
also have the opportunity to become the 
preferred integration vehicle for applica-
tion development environments. With 
these integration efforts, fields become 
objects (values or references), records be-
come vectors of objects (fields), and ta-
bles become sequences of record objects. 
As a consequence, databases can be per-
ceived as collections of tables (of ob-
jects). According to Jim Gray, this objec-
tified view of database systems embodies 
a quantum leap for revolutionary devel-
opments for other data types. On the oth-
er hand, such a development would stand 
for the re-rise of the object-relational 
DBMS concepts.

With these concepts in mind, the inte-
gration of persistent queues is only a little 
step, because – based on the available 
ACID properties – we can implement tai-
lored queuing semantics using, for exam-
ple, stored procedures (and triggers). 
Based on such persistent queues [DB2 
2005, Oracle 2005b], the DB middleware 
can provide message brokering and 
pub&sub services. Because messages are 
data, too, we could directly exploit en-
hanced XDBMSs to enable native stor-
age and management of messages in 
XML format. However, what has to be 
done when the conceptual differences of 
the data types such as VITA (video, im-
age, text, audio) or data streams are even 
larger? Because the new data types can 
often reuse only the external storage 
mapping, specialized higher-level layers 
have to be implemented for each of them. 
For example, VITA types managed in tai-
lored DB buffers are typically delivered 

5. For OLTP, this opportunity could mean that 
databases encapsulate business logic using 
stored procedures. Then the TP-lite discussion 
is on the stage back again where three-tier cli-
ent/server systems running under control of a 
TP monitor (TP-heavy) are challenged by two-
tier architectures [Gray 2005].
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(in variable-length junks) directly to the 
application thereby avoiding additional 
layer crossings. In turn, to avoid data 
transfers, the application may pass down 
some operations to the buffer to directly 
manipulate the buffered object represen-
tation. 

Often it makes not much sense to 
store and manage all data in a DBMS. For 
data that must be »streamed« to the appli-
cation within a specified time period in 
order to be meaningful, e.g., video frames 
or audio, the use of specialized file serv-
ers optimized for delivery of such data 
would be more appropriate. Locating the 
data close to the application further im-
proves application performance. To 
loosely integrate (huge numbers of) such 
external files, the DataLink concept pro-
vides a framework to control referential 
integrity, access control, and recoverabil-
ity for external data by a DBMS [Bhatta-
charya et al. 2002, Hsiao & Narang 2000, 
Melton et al. 2001].

Fig. 4 illustrates some characteristics 
of future DBMS architectures: layer 
models of different kinds, architectural 
models for specific data types, integra-
tion of external files, etc. Often the OS 
services or, at best, the storage system 
represent the least common denominator 
for these desired DBMS extensions. For 
many of these future DBMS extensions, 
systematic architectural approaches are 
not known today. Therefore, we rather 
have to deviate to vague speculations.

If the commonalities in data manage-
ment invariants for the different types 
and thus the reuse opportunities for func-
tionality are so marginal, it makes no 
sense to squeeze all of them into a unified 
DBMS architecture. As a proposal for fu-
ture research and development, Jim Gray 
sketched a framework leading to a diver-
sity of type-specific DBMS architectures 
[Gray 2004] for which the metaphor of a 
database ecosystem is used. As a conse-
quence, we obtain a collection of hetero-
geneous DBMSs (and file systems) 
which have to be made accessible for the 
applications – as transparently as possi-
ble – by suitable APIs. Apparently, this 
database ecosystem enables a large de-
gree of scalability. Furthermore, such a 
collection embodies an »extensible ob-
ject-relational system where non-proce-
dural relational operators manipulate ob-
ject sets. Coupled with this, each DBMS 
is now a Web service« [Gray 2004]. And 
because databases should be accessible 
from anywhere, Web services may be-
come the means of choice by which we 
federate heterogeneous database systems. 
Furthermore, because these systems co-
operate on behalf of applications, ACID 
protection has to be assured for all mes-
sages and data taking part in a transaction 
[Gray & Reuter 1993]. Applications and 
the corresponding transactions currently 
running locally under control of a single 
DBMS will then typically access a data-
base ecosystem and, as a consequence, 
will turn into distributed and heteroge-
neous processing compounds needing 
federation services and 2PC protocols. 

Orthogonal to the desire to provide 
functional extensions, the key role of 
DBMSs in modern societies places other 
kinds of »stress« on their architecture. 
Adaptivity to application environments 
with their frequently changing demands 
in combination with dependability in crit-
ical situations will become more impor-
tant design goals6 – both leading to con-
tradicting guidelines for the architectural 
design. 

5 Dependable Adaptive 
Information Systems

Along these lines, we have to broaden our 
perspective and deviate from the unilater-
al focus on the DBMS engine alone. 
Many parts and functions of modern soci-
eties heavily depend on information sys-
tems serving a wide spectrum of uses in 
administration, production, trading, 
banking, traffic control, tele-communica-
tion, science, law-enforcement, etc. 
Hence, we have to consider a bigger pic-

6. »Indeed, if every file system, every disk, every 
phone, every TV, every camera, and every 
piece of smart dust is to have a database inside, 
then those database systems will need to be 
self-managing, self-organizing, and self-heal-
ing« [Gray 2005].
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ture including the information system 
perspective as an ecosystem consisting of 
DBMS engine(s), DB-related middle-
ware, and application integration. 

5.1 Design Objectives

One of the Grand Challenges in trustwor-
thy computing (stated by the Computing 
Research Association) is: »Build Sys-
tems You Can Count On«. For the realm 
of information systems, Jim Gray has 
pinpointed the consequences by (at least) 
three of the dozen long-term research & 
development goals stated in his 1999 
Turing Lecture:

• Trouble-Free 
Build a system used by millions of 
people each day and yet administered 
and managed by a single part-time 
person. 

• Secure  
Assure that the system (solving previ-
ous problem) only services autho-
rized users, service cannot be denied 
by unauthorized users, and informa-
tion cannot be stolen (and prove it).

• Always-Up 
Assure that the system is unavailable 
for less than one second per hundred 
years – eight  9s of availability (and 
prove it).

By solving these problems, we accom-
plish dependable adaptive information 
systems (DAISs). When designing such 
information systems, software correct-
ness (the information system meets its 
specification) is only one among several 
dependability issues. To provide for high 
availability and to protect against data 
loss, recovery-oriented computing 
(ROC) is of significant importance. Vari-
ous kinds of failures are unavoidable 
(transaction abort, system crash, media 
failure) and have no solution to be 
achieved by software alone. DBMSs 
have a long history of successful ROC 
and guarantee, in any failure case, a trans-
action-consistent state of the data. In con-
trast, adaptivity is a far less common 
property of DBMSs or even information 
systems. A DBMS should automatically 
adapt to varying numbers of users, to ca-
pacity changes in resources, to the un-
availability of data sources, and to differ-
ent response-time/throughput require-
ments of the incoming transactions. 
Optimized service under workload/usage 
changes and scalability (Web informa-
tion systems may attract very large num-
8

bers of concurrent users) are still design 
goals hard to achieve. Finally, depend-
ability requires high degrees of system 
availability and robustness, tolerance 
against deliberate attacks, as well as pro-
vision for trust management and security 
to an extent so far unknown even in cen-
tralized DBMSs.

Future generation information sys-
tems are no longer built around a central 
DBMS. For their applications, they must 
provide access to several databases, coor-
dination of the concurrent accesses, use 
of other services with unknown internal 
structure, and support of business pro-
cesses by long and structured transac-
tions, often designed as workflows. In 
particular, these information systems 
have to cope with the following require-
ments:

• Wide-area distribution
• Openness of system structure and au-

tonomy of components
• Heterogeneity of structure and con-

tent
• Long-term interactive processes.

The increase in power, accessibility, 
and flexibility provided by such informa-
tion systems comes at a high price. Distri-
bution, openness, and component autono-
my lead to less control over the system 
and to new possibilities for faults and de-
liberate attacks – with negative conse-
quences for dependability. A future DA-
IS, for example, integrating data sources 
from the Web, will necessarily have to 
cope with different kinds of heterogene-
ity and dynamic information integration. 
For this reason, research currently takes a 
strong focus on XML technology to 
transparently query data from different 
kinds of data sources thereby »homoge-
nizing« the query result to a unified view. 
However, such approaches can only par-
tially solve the semantic heterogeneity 
problem at the structure level (schema 
level). At the content level (instance lev-
el), the resulting problems are rather elu-
sive and far away from an adequate solu-
tion. The entirety of these requirements 
also makes it more difficult to develop in-
formation systems that automatically 
adapt to changes in resource availability 
and that are scalable to the needs of dif-
ferent application scenarios. For exam-
ple, long-term processes lead to complex 
dependencies between the applications 
and the persistent data repositories and 
their subcomponents. In such distributed 
component systems, resource planning 
and adaptation require state and control 
information delivered by distributed ob-
servations that go beyond single compo-
nents. 

5.2 Architectural and Transactional 
Model

Because of the new kinds of component 
interactions, information exchanges, and 
mutual dependencies, the design of the 
system architecture and middleware be-
comes at least equally important as the 
development/layout of the individual 
components and their algorithms for the 
higher-ranking objectives of adaptivity 
and dependability. For these reasons, the 
challenge to build dependable and adap-
tive information systems of the future is 
particularly concerned with architectural 
issues of software systems, component 
models, and new concepts of cooperation 
and synchronization. An important prob-
lem is to tame the architecture, its flexi-
bility and complexity to a degree that still 
enables extensibility (permanent change 
of technology and functional growth) and 
adaptivity without losing dependability. 
To construct such DAISs, these three 
conflicting design goals have to be con-
sidered together. 

Although these developments are im-
portant prerequisites to implement 
DAISs, they are by far not sufficient to 
reach the fundamental goals. A particular 
challenge for failure-free component in-
teraction and cooperation is that their 
context models often do not exactly 
match. Furthermore, successful adapta-
tion can only be achieved based on obser-
vation and prediction. If the application 
processes rely on a specific execution 
model that is known by the other partici-
pating components of the information 
system, these components can use the 
knowledge of the execution model to 
plan their actions. If they have no infor-
mation about the application behavior, 
reliable adaptation is not possible. Simi-
lar to the transaction concept which indi-
cates the intent to perform a number of 
DB operations in an atomic way, we need 
equivalent, but more flexible execution 
models that allow to convey properties of 
the upcoming execution to the informa-
tion system component responsible for it. 

For these and other aspects, a number 
of models and techniques have already 
been developed. For example, (closed) 
nested transactions enable a tree-like 
structuring of executions thereby en-
Datenbank-Spektrum 1
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abling intra-transaction parallelism and 
fine-grained recovery while preserving 
ACID for the entire transaction tree 
[Weikum & Vossen 2002]. In a DAIS, 
open nested transactions have to be ad-
justed to the distributed and heteroge-
neous environment thereby aggravating 
the compensation problems in case of a 
failure. When autonomous systems are 
involved, so-called agreement protocols 
have to be introduced to support secure 
distributed computing in group coopera-
tion between applications. Behavioral 
specification techniques for component 
interfaces are available and can be en-
riched by non-functional properties. 
However, it is not yet clear how these 
models and techniques evolve and work 
together. Therefore, we should refine 
these concepts and integrate their proper-
ties in a well-defined semantic frame-
work that provides the foundation for 
adaptivity and dependability while the 
participating DBMSs remain extensible. 

5.3 Adaptivity in a DAIS

So far, information hiding and layers as 
abstract machines were the cornerstones 
for the design of large evolutionary sys-
tems and, in particular, of the DBMS en-
gine. The new design goal of enhanced 
adaptivity, however, challenges these 
proven concepts. Typically, adaptable 
component behavior cannot be achieved 
by exploiting local »self«-observations 
(knowledge) alone. Hence, autonomic 
computing principles applied to DBMS 
components require more information 
exchange across components (introduc-
ing additional dependencies) to gain a 
more system-oriented view when deci-
sions relevant for behavioral adaptations 
have to be made. 

DBMS Component Adaptivity

In this context, components are large-
grained rather than fine-grained objects, 
that is, storage manager, query optimizer, 
etc. as examples. Heuristic mechanisms 
(rules of thumb) will sometimes provide 
adequate static settings for specific tun-
ing knobs, but will quickly exhaust in 
more complex situations (e.g., when the 
cache size has to be adjusted to varying 
workloads). As a consequence, typical 
component adaptations often require the 
collection of statistical data and imply a 
continuous adjustment of tuning or be-
havioral parameters. They may be as 
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complex as a learning optimizer [Markl 
et al. 2003].

The provision of inter-component 
adaptivity is more challenging, because 
tight cooperation among separate system 
components is necessary where each 
component is aware of only its optimal 
local planning situation or decision. 
Some examples may illustrate this issue. 
Dynamic query evaluation plans require 
alternate plans for different load situa-
tions and resource availability. In con-
trast, the query optimizer could ask the 
index manager to dynamically create a 
new index on a table – a decision con-
cerning the physical DB which could 
quickly be amortized when the future 
query load evolves as anticipated by the 
optimizer. Such a decision again is an in-
ter-component optimization problem. 
Optimized dynamic index selection, i.e., 
whether a new index for a table is cost-ef-
fective, needs the cooperation of several 
components to collect statistical data 
which identify potential costs and sav-
ings caused by new indexes, before a 
»performance planner« decides that such 
an adaptation measure is beneficial for 
the entire system behavior. Or the resolu-
tion of overload conflicts due to lock con-
tention can only be handled by a cooper-
ation of the lock manager and load bal-
ancer. The general solution to achieve 
»self-*« system properties in such situa-
tions consists of the four phases observa-
tion, analysis, planning, and reaction 
which form an online feedback control 
loop with which (hopefully) optimal situ-
ation-specific system decisions can be 
derived [Weikum et al. 2002]. 

System-level Adaptivity

Complex, long-living workflows are the 
most important mechanism to implement 
business processes in DAISs. Because 
each workflow instance can be consid-
ered as a persistent, recoverable object 
and typically has a large amount of state 
information, again DBMSs come into 
play to provide stable states of workflow 
instances and to take over quite a share of 
their functionality. Adaptation at the sys-
tem level primarily means to allow for 
flexible workflow schemas, which may 
evolve responding to unforeseen situa-
tions (new cooperation partner, inacces-
sibility of data sources, unavailability of 
resources) or which need a sudden re-
scheduling. Because »the human is in the 
loop«, interaction timing is hard to pre-
plan (think time). As a consequence, 
ACID transactions are inappropriate as 
control structures. Rather, open nested 
transactions or agreement protocols have 
to be used to achieve an adequate pro-
cessing quality (still to be defined).

5.4 Adaptivity versus Dependability

Trouble-free operation of a DAIS prima-
rily comes from adjustment mechanisms 
automatically applied to problems of ad-
ministration, tuning, coordination, 
growth, hardware and software upgrades, 
etc. Ideally, the human system manager 
should only set goals, policies, and a bud-
get while the automatic adaptation mech-
anisms should do the rest [Gray 2003]. 
Online feedback control loops are key to 
achieve such adaptation and »self-*« sys-
tem properties, which, however, amplify 
the information channels across system 
layers. In addition, close cooperation 
among the participating (autonomous and 
heterogeneous) systems introduces many 
new dependencies. Too many informa-
tion channels, however, increase the in-
ter-component complexity and are direct-
ed against salient software engineering 
principles for highly evolutionary sys-
tems. In this respect, they work against 
the very important dependability objec-
tive which is much broader than self-tun-
ing or self-administration. Hence, design 
challenges are to develop a system which 
should be always available, i.e., exhibit-
ing an extremely high availability, and 
which only services authorized uses, i.e., 
even hackers cannot destroy data or force 
the system to deny services to authorized 
users. To develop such »always-up + se-
cure + trouble-free« systems, innovative 
architectures observing new software en-
gineering principles have to be adopted. 
However, most of their properties are not 
easily amenable to mathematical model-
ing and runtime analysis, because they 
are non-functional in general. 

Prerequisites of Dependability

Dependability requires precaution mea-
sures for all expected failure types, 
which, in the first place, means tailored 
ROC mechanisms, i.e., logging and re-
covery algorithms optimized w.r.t. the 
critical system demands (e.g., high avail-
ability). Such issues are amenable to 
known engineering principles and can be 
proven by checking the resulting perfor-
mance behavior. However, many other 
aspects such as security or trust are non-
9
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functional and cannot easily be »at-
tached« to a specific component, let 
alone optimized by using mathematical 
models.

For adaptivity, self-observation and 
self-analysis primarily aim at the auto-
matic system accommodation and opti-
mization under changes in user behaviors 
and workloads. Future DAISs and, in par-
ticular, DBMSs typically operate in an 
unattended way. In contrast, improving 
the dependability aspect asks for auto-
matic recognition of internal malfunc-
tions and malfunction of communicating 
components, identification of data cor-
ruption, intrusion detection, application 
failures, etc. In other words, such capabil-
ities require making the information sys-
tem more self-aware. To automatically 
recognize deviations from the expected 
behavior, the system needs explicit mod-
els of its behavior and the surrounding 
system/environment in which it partici-
pates/cooperates – these may be guided 
by default policies to proceed in unex-
pected situations and by personal profiles 
summarizing the user needs to cope with 
extraordinary user requests/attacks 
[Lowell 2003].

5.5 Towards Dependability 
Engineering

How to improve dependability proper-
ties? All the issues sketched so far call for 
even more information system function-
ality which opens an immense chasm re-
sulting from diverging requirements: 
growing system complexity due to new 
extensions and improved adaptivity as 
opposed to urgent simplification needs 
mandatory for the development of de-
pendable systems. Therefore, we need to 
develop a kind of dependable systems’ 
engineering which should cover all de-
pendability aspects in a system model 
(enclosing the DBMS architecture). Ab-
stract principles for such an idea include 
[Weikum et al. 2002]:

• a highly componentized system struc-
ture with

• components of limited and relatively 
simple functionality (similar to 
RISC-style designs) and

• well-controlled component interfaces 
as narrow as possible to keep the in-
teraction complexity between com-
ponents to a minimum.
At the moment, it is not clear how 

such a design can be accomplished and 
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how it affects other system objectives, in 
particular, performance. It will be a great 
challenge to define dependability in an 
operational way, such that the depend-
ability state of a system can be evaluated 
and that the success of additional mea-
sures towards a higher degree of depend-
ability can be captured in a quantitative 
way. However, currently the bad news is 
that the state-of-the-art architectural de-
signs of universal DBMSs are against the 
spirit of a dependability engineering.

Nevertheless, a future architecture 
has to observe the implications of auto-
nomic and trouble-free computing even 
under various forms of pressures and de-
liberate attacks, that is, it has not only to 
be guided by data independence and evo-
lution, but has to be developed along the 
lines of adaptivity and dependability.

5.6 More Challenges Ahead

Another of the Grand Challenges in trust-
worthy computing is: »Within 10 years, 
develop quantitative information-sys-
tems risk management that is at least as 
good as quantitative financial risk man-
agement.« Currently, we have made 
many observations and experiences, but 
we do not understand the full nature of 
what causes IT risk and the emergent be-
havior of some vulnerabilities and sys-
tems. Furthermore, we assume in our as-
sessments and countermeasures the inde-
pendence and single-failure-at-a-time 
properties, although failures in net-
worked systems are not independent. To 
approach a solution for DAISs, mathe-
matical modeling where models for oper-
ational risks are explored, is helpful. On 
the other hand, progress towards more in-
telligent adaptive information system in-
terfaces may facilitate trust management 
and effective defense of, for example, 
hacker attacks or accidental misuse of the 
DAIS. Filtering and assessment of user 
requests help to achieve better usability 
(personalization and context awareness) 
and may prevent »dangerous« situations 
which would possibly lead to system fail-
ures, unavailability of resources, denial 
of service, and so on. 

6 Conclusions

In this paper, we primarily considered ar-
chitectural issues of database research 
and development which may happen in 
the next decade of the BTW – the Ger-
man conference »Database Systems in 
Business, Technology, and the Web«. 
We observed that the DBMS architecture 
for the declarative and set-oriented (rela-
tional) processing paradigm of record-
like structures embodied by the five-layer 
hierarchical model cannot accommodate 
all the desired requirements and exten-
sions for new and future data manage-
ment scenarios. 

The more the integration of new data 
types requires new processing invariants, 
the less the original architecture is able to 
cope with them. It is an open question 
how the architecture for an extensible ob-
ject-relational system where non-proce-
dural relational operators manipulate 
object sets will evolve in detail. Further-
more, a future architecture has to observe 
the implications of autonomic and trou-
ble-free computing even under various 
forms of »pressures« and deliberate at-
tacks, that is, it has to be guided by data 
independence and evolution and, at the 
same time, developed along the lines of 
adaptivity and dependability. At any rate, 
the good news for all DB researchers is 
that there are plenty of challenges still 
ahead in the area of DBMS architecture 
and that new ones evolve as soon as we 
seriously cope with these challenges.
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