
 DBMS Architecture—New Challenges Ahead

Theo Härder

DBMS Architecture – New Challenges Ahead

 Table 1: DBMS mapping hierarchy

Level of
abstraction Objects

L5 Nonprocedural
access

Tables, views,
tuples

L4 Navigational
access

Logical records,
sets, networks

L3 Access path
mgmt

Physical records,
access paths

L2 Propagation
control Segments, pages

L1 File mgmt Files, blocks
More than two decades ago, an architec-
tural model based on successive data ab-
straction steps of record-oriented data
was proposed as kind of a standard and
later refined to a five-layer hierarchical
DBMS model. While this model greatly
supported all requirements of horizontal
and vertical distribution of record-orient-
ed DB processing, it is now challenged by
a variety of new requirements and chang-
es as far as processing environments,
data types, functional extensions, hetero-
geneity, autonomy, etc. are concerned.
We discuss some cases where the original
layer model can only keep up through
substantial changes in the individual lay-
ers and where totally new architectural
models have to be found. Furthermore, a
broader perspective is needed when de-
pendable adaptive information systems
are designed. In this respect, we will
identify a big chasm resulting from di-
verging requirements and leading to a
conflict in the design objectives: growing
system complexity due to extensions in
current DBMSs which will be augmented
by improving adaptivity as opposed to ur-
gent simplification needs mandatory for
the development of dependable systems.1

1 Motivation

In [Härder 2005c], we have intensively
discussed the issues of data mapping and
transaction support in a centralized
DBMS architecture consisting of five hi-
erarchical layers. Furthermore, we have
outlined how the layered architecture
could be adjusted to progress in science
and technology evolving in the last two
decades, that is, our architectural model
successfully responded to the pressure of
»permanent change«. It could even prove
its extensibility potential for new require-
ments of a variety of emerging data man-
agement tasks. By introducing an addi-
tional layer for the needs of communica-
tion, adaptation, and mediation, our
architectural model can also serve for

1. This contribution is the second part of an ex-
tended version of [Härder 2005a and 2005b].
Datenbank-Spektrum 1
scenarios where DB processing has to be
distributed in a horizontal or vertical
fashion.

Distributed DBMSs are the main ex-
ponent of horizontal distribution of the
entire DB functionality and of parti-
tioned/replicated data to processing
nodes connected by a network [Rahm
1994]. As a consequence, the core re-
quirements remain, leading to an archi-
tectural model which consists of identical
layered models for every node together
with a connection layer responsible for
communication, adaptation, or mediation
services. In contrast, vertical distribution
is typically achieved by so-called client/
server DBMSs. Their major concern is to
make DBMS processing capacity avail-
able close to the application in the client
(computer). Usually, client/server
DBMSs are used in applications relying
on long-running transactions with a
checkout/checkin mechanism for (ver-
sioned) data.

In all of these cases, however, naviga-
tional or set-oriented processing of
record-like data was the primary objec-
tive to be supported by the layered archi-
tecture, as sketched in Table 1. We have
observed that the invariants in database
management determine the mapping
steps of the supporting architecture and,
hence, an architectural model serves well
as long as it can effectively support these
basic invariants. For the appropriate use
of the layered architecture, its basic in-
variants should hold true: page-oriented
mapping to external storage, manage-
ment of record-oriented data, set-oriented
database processing.

Today, however, each DBMS archi-
tecture is flooded by a wave of require-
ments for new data types, transactional
concepts, and data management scenari-
os where these invariants only partially
hold or where they have to be replaced by
totally new concepts. Nowadays impor-
tant DBMS requirements include data
streams, unstructured or semi-structured
documents, time series, spatial objects,
etc. Due to the variety of these emerging
and diverging demands and application
trends, we should seriously explore the
question whether the evolutionary poten-
tial of our architectural model is suffi-
cient to adopt the new functionality or
whether we need »a revolution in the area
of DBMS architecture« [Gray 2004]?

In this paper, we explore new archi-
tectural requirements and try to answer
this question. For this reason, we start in
section 2 with moderate deviations from
the traditional data management invari-
ants and debate urging issues of native
DB processing of XML documents. Da-
tabase caching sketched in section 3 fo-
cusses on declarative and set-oriented
query processing in caches close to the
application servers sitting at the edge of
the Web. By this vertical distribution, the
backend DBMS can be unburdened to in-
crease overall system scalability and per-
formance. Furthermore, user-perceived
latency for dynamically created Web ob-
jects may be greatly improved. In section
4, we consider the role of our architectur-
al model when applied to other kinds of
data management scenarios and sketch
extensions to adjust for a variety of new
data types. We illustrate the reasons why
the »next DBMS revolution« may be
around the corner, because a large variety
of database services for an »ecosystem«
of new data types is urgently needed.

Because information system services
are ubiquitous in our daily life, adaptivity
and dependability of data management
services have to be substantially en-
hanced. For this reason, we have to con-
sider a bigger picture in section 5 includ-
ing the information system perspective as
an ecosystem consisting of DBMS en-
gine(s), DB-related middleware, and ap-
plication integration, before we briefly
summarize our contribution in section 6.
1

DBMS Architecture—New Challenges Ahead

Transaction Services

File Services
I/O Manager Temp File Manager

Propagation Control
Buffer Manager

Access Services
Index Manager Catalog Manager

Record Manager

X
T

C
se

rv
er

Node ServicesNode Manager

Transaction Manager

Lock Manager

XML Services
XML ManagerXQuery Processor XSLT Processor

Interface Services
Http Agent Ftp Agent DOM RMI SAX RMI API RMI

OS File SystemTransaction Log File Container Files Temp Files

Fig. 1: XTC system – overview
2 Native DB Processing of XML
Documents

For the data management scenarios
sketched above, the layers of our archi-
tectural model (see Table 1) perfectly
match the invariants of set-oriented,
record-like database management such
that they could be reused more or less un-
changed in the outlined DBMS variants.
However, recent requirements strongly
deviate from this processing paradigm.
Integration efforts developed during the
last 10 years were primarily based on a
kind of loose coupling of components –
called Extenders, DataBlades, or Cart-
ridges – and a so-called extensibility in-
frastructure. Because these approaches
could neither fulfil the demands for
seamless integration nor the overblown
performance and scalability expectations,
future solutions may face major changes
in the architecture.

2.1 Architectural Layer Reuse

First attempts to provide for DB-based
XML processing focused on using the
lower layer features of relational DBMSs
(RDBMSs) such that roughly the access
and storage system layers were reused
and complemented by the data system
functionality tailored to the demands of
the XML data model (e.g., DOM, SAX,
XQuery). This proceeding implied the
mapping (called »shredding«) of XML
document structures onto a set of tables
for which numerous proposals were pub-
lished [Florescu & Kossmann 1999].

Although viable within our five-layer
architecture (by reusing L1 to L4), this
idea had serious performance trade-offs,
mainly in the areas of query optimization
and concurrency control. New concepts
and implementation techniques in the re-
used layers are required to achieve effi-
cient query processing2. For these rea-
sons, so-called native XML DBMSs
(XDBMSs, [Jagadish et al 2002])
emerged in recent years, an architectural
example of which is illustrated in Fig. 1.

Here we use XTC (XML Transaction
Coordinator, [Haustein 2005]) as an ex-
ample. It is a full-fledged native XDBMS
which initially was developed to serve as
a testbed system for exploring and evalu-
ating fine-grained concurrency control on

2. »A growing number of application developers
believe XML and XQuery should be treated as
our primary data structure and access pattern«
[Gray 2005].
2

XML document processing (XDP) via
some/all of the standardized XML lan-
guage interfaces [DOM 2004, XQuery
2004]. Its current state perfectly proves
that native XDBMSs can be implemented
along the lines of our five-layer architec-
ture.

2.2 Storage and Buffer Management

At the layers L1 and L2, reuse of con-
cepts is obvious. Hence, we can more or
less adopt the mechanisms proven in rela-
tional DBMS implementations and adjust
them to the specific needs of XML docu-
ment representations. In summary, our
storage layer offers an extensible file
structure based on the B*-tree mecha-
nism as a container of single XML docu-
ments such that updates of an XML doc-
ument (by IUD operations) can be per-
formed on any of its nodes. We have
shown that a very high degree of storage
occupancy (> 96%) for XML documents
is achieved under a variety of different
update workloads.

Although the functionality in the re-
maining three layers is comparable at an
abstract level, the objects and the specific
implementation methods exhibit strong
distinctions. Due to space restrictions, we
can only focus on some new important
aspects.

2.3 Access Services

Efficient and effective processing and
concurrent operations on XML docu-
ments are greatly facilitated, if we use a
specialized internal representation which
enables fine-granular management and
locking. While we use DOM trees – con-
taining element, attribute, and text nodes
as defined in [DOM 2004] –, for the re-
presentation of XML documents on ex-
ternal storage, we have implemented for
their memory representation a slight ex-
tension, the so-called taDOM storage
model [Haustein 2005]. In contrast to the
DOM tree, we do not directly attach at-
tributes to their element node, but intro-
duce separate attribute roots which con-
nect the attribute nodes to the respective
elements. String nodes are used to store
the actual content of an attribute or a text
node. Via the DOM API, this separation
enables access of nodes independently of
their value. Our representational en-
hancement does not influence the user
operations and their semantics on the
XML document, but is solely exploited
by the lock manager to achieve certain
kinds of optimizations.

Most influential for an access model
for the tree nodes of an XML document is
a suitable node labeling scheme for
which several candidates have been pro-
posed in the literature. While most of
them are adequate to label static XML
documents, the design of schemes for dy-
namic documents allowing arbitrary in-
sertions within the tree – free of reorgani-
zation, i.e., no reassignment of labels to
existing nodes – remains a challenging
research issue. The existing approaches
can be classified into range-based and
prefix-based labeling schemes. While
Datenbank-Spektrum 1

 DBMS Architecture—New Challenges Ahead

Fig. 2: Document storage using B*-trees

1 bib
.3 title

1.3.5 price

1

1.3.1.5.1
1.3.5

1.3 book
1.3.1 ...

1.3.1.5 id

...

1.3.4.
3.5.3.1 W.

... 1.5 book ...

bibauthor last

............
1

1.3.4.3 1.3.4.3.3
1.7.3.3

a) Storage structure

b) Element index

1.3.1.5.1 11.3

1.3.5.3.1 ...
range-based schemes consisting of inde-
pendent numbering elements (e.g.,
DocID, startPos : endPos, level, see [Al-
Khalifa et al. 2002]) seem to be less ame-
nable to algorithmic use and cannot al-
ways avoid relabeling in case of node in-
sertions, prefix-based schemes seem to
be more flexible. We believe that they are
at least as expressive as range-based
schemes, while they guarantee stability
of node IDs under arbitrary insertions, in
addition. In particular, we favor a scheme
supporting efficient insertion and com-
pression while providing the so-called
Dewey order (defined by the Dewey Dec-
imal Classification System).

Fast access to and identification of all
nodes of an XML document is mandatory
to enable effective indexing primarily
supporting declarative queries and effi-
cient processing of direct-access methods
(e. g., getElementById()) as well as navi-
gational methods (e. g., getNextSib-
ling()). Conceptually similar to the ORD-
PATH scheme [O’Neil et al. 2004], our
DeweyID scheme refines the Dewey or-
der mapping and introduces a kind of
overflow mechanism when »gaps« for
new insertions are in short supply in the
labeling space. A DeweyID consists of
several so-called divisions separated by
dots (in the human readable format). The
root node of the document is always la-
beled by DeweyID 1 and consists of only
a single division. The children obtain the
DeweyID of their parent and attach an-
other division whose value increases
from left to right. To allow for later node
insertions at a given level, we introduce a
parameter distance which determines the
gap initially left free in the labeling
space. An empirical evaluation of this
Datenbank-Spektrum 1
scheme can be found in [Haustein & al.
2005b].

The salient features of a scheme as-
signing a DeweyID to each tree node in-
clude the following properties: Referring
to the DeweyID of a node, we can deter-
mine the level of the node in the tree and
the DeweyID of the parent node. Hence,
we can derive its entire ancestor path up
to the document root without accessing
the document. By comparing the Dewey-
IDs of two nodes, we can decide which
node appears first in the document’s node
order. If all sibling nodes are known, we
can determine the exact position of the
node within the document tree. Further-
more, it is possible to insert new nodes at
arbitrary locations without relabeling ex-
isting nodes. In addition, we can rapidly
figure out all nodes accessible via the typ-
ical XML navigation steps, if the nodes
are stored in document order, i.e., in left-
most depth-first order. Nevertheless,
DeweyIDs tend to become quite long, de-
pending on the depth of the document,
the distance parameter, and possible
»gap« overflows. Therefore, suitable en-
coding and compression schemes for
their implementation are mandatory.

Fast (indexed) access to each node is
provided by variants of B*-trees tailored
to our requirements of node identification
and direct or relative location of any
node. Fig. 2a illustrates the storage struc-
ture – consisting of document index and
document container as a set of chained
pages – sketching a sample XML docu-
ment, which is stored in document order;
the key-value pairs within the document
index are referencing the first DeweyID
stored in each container page. In addition
to the storage structure of the actual doc-
ument, an element index is created con-
sisting of a name directory with (poten-
tially) all element names occurring in the
XML document (Fig. 2b); for each spe-
cific element name, in turn, a node-refer-
ence index may be maintained which ad-
dresses the corresponding elements using
their DeweyIDs. In all cases, variable-
length key support is mandatory; addi-
tional functionality for prefix compres-
sion of DeweyIDs is very effective. Be-
cause of reference locality in the B*-trees
while processing XML documents, most
of the referenced tree pages (at least the
ones belonging to the upper tree layers)
are expected to reside in DB buffers –
thus reducing external accesses to a min-
imum.
2.4 Node Services –
Support of Navigation, Query
Evaluation, and Locking

Selection and join algorithms based on
index access via TID lists together with
the availability of fine-grained index
locking boosted the performance of
DBMSs [Härder 2005a], because they re-
duced storage access and minimized
blocking situations for concurrent trans-
actions as far as possible. Both factors are
even more critical in XDBMS. Hence,
when designing such a system, we have
to consider them very carefully.

Using the document index sketched
in Fig. 2, the five basic navigational axes
parent, previous-sibling, following-sib-
ling, first-child, and last-child, as speci-
fied in DOM [DOM 2004], may be effi-
ciently evaluated – in the best case, the
corresponding objects reside in the page
of the given context node cn. When ac-
cessing the previous sibling ps of cn, e.g.,
of node 1.5 in Fig. 2, an obvious strategy
would be to locate the page of 1.5 requir-
ing a traversal of the document index
from the root page to the leaf page where
1.5 is stored. This page is often already
present in main memory because of re-
ference locality. Hence, we inspect the ID
d of the directly preceding node of 1.5 in
document order, which is 1.3.5.3.1 in the
example. If ps exists, d must be a descen-
dant of ps. With the level information of
cn, we can infer the ID of ps: 1.3. Now a
direct access to 1.3 suffices to locate the
result. This strategy ensures indepen-
dence from the document structure, i.e.,
the number of descendants between ps
and cn does not matter. We have found
similar search algorithms for the remain-
ing four axes. The parent axis, as well as
first-child and next-sibling can be re-
trieved directly, requiring only a single
document index traversal. The last-child
axis works similar to the previous-sibling
axis and, therefore, needs two index tra-
versals in the worst case.

For declarative access via query lan-
guages like XQuery, a set-at-a-time pro-
cessing approach – or more accurately,
sequence-at-a-time – and the use of the
element index promise in some cases in-
creased performance over a navigational
evaluation strategy. To illuminate the ele-
ment index use for declarative access, let
us consider a simple XQuery predicate
that only contains forward and reverse
step expressions with name tests:
axis1::name1/.../axisN::nameN. XQuery
3

DBMS Architecture—New Challenges Ahead
contains 13 axes, 8 of which span the four
main dimensions in an XML document:
parent–child, ancestor–descendant, pre-
ceding-sibling–following-sibling, and
preceding–following. For each axis, we
provide an algorithm that operates on a
duplicate-free input sequence of nodes in
document order and produces an output
sequence with the same properties and
containing for the specified axis all nodes
which passed the name test. Therefore,
the evaluation of axes is closed in this
group of algorithms and we can freely
concatenate them to evaluate path ex-
pressions having the referenced structure.
Our evaluation strategy follows the idea
of structural joins [Al-Khalifa et al. 2002]
adjusted to DeweyIDs, and additionally
expanded to support the preceding-sib-
ling–following-sibling and preceding–
following dimensions.

Another aspect of node services to
support fine-grained concurrency control
for collaborative use of XML documents
is of outmost importance. Although pred-
icate locking of XQuery and XUpdate-
like statements [XQuery 2004] would be
powerful and elegant, its implementation
rapidly leads to severe drawbacks such as
the need to acquire large lock granules
and undecidability problems – a lesson
learned from the (much simpler) relation-
al world. To provide for a multi-lingual
solution, we necessarily have to map
XQuery operations to a navigational ac-
cess model to accomplish fine-granular
concurrency control. Such an approach
implicitly supports other interfaces such
as DOM, because their operations corre-
spond more or less directly to a naviga-
tional access model. Therefore, we have
designed and optimized a group of lock
protocols explicitly tailored to the DOM
interfaces which are absolutely complex
– 20 lock modes for nodes and three
modes for edges together with the related
compatibilities and conversion rules –,
but for which we proved their correctness
[Haustein & Härder 2005] and empirical-
4

ly identified their superiority3 [Haustein
et al. 2005a].

2.5 Query Compilation and
Optimization

The prime task of layer L5 is to produce
QEPs, i.e., to translate, optimize, and
bind the multi-lingual requests – declara-
tive as well as navigational – from the
language models to the operations avail-
able at the logical access model interface
(L4, [Graefe 1993]). For DOM and SAX
requests, this task is straightforward. In
contrast, XQuery or XPath requests will
be a great challenge for cost-based opti-
mizers for decades. Remember, for com-
plex languages such as SQL:2003 (sim-
pler than the current standard of XQue-
ry), we have experienced a never-ending
research and development history – for
30 years to date – and the present opti-
mizers still are far from perfect. For ex-
ample, selectivity estimation is much
more complex, because the cardinality
numbers for nodes in variable-depth sub-
trees have to be determined or estimated.
Furthermore, all current or future prob-
lems to be solved for relational DBMSs
[Graefe 2000] will occur in XDBMSs,
too.

2.6 Relational over XML

The issues of a simultaneous support of
XML and relational database manage-
ment were explored in [Halverson et al.
2004]. Questions controversially dis-
cussed so far are »Will the DBMSs of the
future be hybrids, storing both relational
and XML data?« or »Will everything be
stored in XML format?« making myriads
of SQL systems »legacy applications«.
Besides hybrid architectures which map
XML documents and tables by separate
storage and access systems and support
coexistence/combination of DB requests
of both kinds, a futuristic scenario moti-
vated by the latter question was discussed
under the name ROX: Relational over
XML. While XML operations on native

3. By using so-called meta-synchronization,
XTC maps the meta-lock requests to the actual
locking algorithm which is achieved by the
lock manager’s interface. Hence, exchanging
the lock manager’s interface implementation
exchanges the system's complete XML lock-
ing mechanism. In this way, XTC ran the ex-
periments with 11 different lock protocols. At
the same time, all experiments were performed
on the taDOM storage model optimized for
fine-grained management of XML documents.
XML structures are the target of optimi-
zation in XDBMSs, such future DBMS
architectures represent mixed SQL and
XQuery systems to run SQL applications
on native XML or on hybrid structures
concurrently. Mapping SQL requests
onto XQuery and attaining high-perfor-
mance transaction workloads as familiar
from RDBMSs on native XML document
trees would probably lead to a kind of
»killer application«. However, it seems
to be very unlikely that query evaluation
efficiency and concurrency control opti-
mization common in RDBMSs can be
achieved by a system which needs addi-
tional layers for the SQL/XQuery map-
ping on top of those in Fig. 1.

3 Database Caching

Caching, in general, is a proven remedy
to increase scalability and performance
behavior of large, distributed database
applications as well as to improve user-
perceived latency (response time) and
availability. Former approaches include
static replication and full-table caching
which may cause expensive consistency
maintenance under certain update pro-
files while not providing the kind of lo-
cality support required. Therefore, adap-
tive caching tailored to the specific work-
load characteristics of an application is
highly desirable.

3.1 Optimizing the Entire User-to-
Data Path

As transactional Web applications
(TWAs) must deliver more and more dy-
namic content and often updated infor-
mation, Web caching should be comple-
mented by techniques that are aware of
the consistency and completeness re-
quirements of cached data (whose source
is dynamically changed in backend data-
bases) and that, at the same time, adap-
tively respond to changing workloads.
Because the provision of transaction-con-
sistent and timely data is now a major
concern, optimization of Web applica-
tions has to consider the entire user-to-
data path (see Fig. 3). In contrast to Web
caching where single Web objects are
kept ready somewhere in caches in the
client-to-server path, database caching is
used to optimize data requests on the re-
maining path from application servers to
the backend database. Because the essen-
tial caching issues in the path up to the
Web server(s) are already addressed in
Datenbank-Spektrum 1

 DBMS Architecture—New Challenges Ahead

DB
Cache

DB
server

app.
server

Web
server(s)

customers
where region = ‘west’

customers
where region = ‘east’

Web clients application
logic

frontend
DB servers

backend
DB server

DB
Cache

app.
server

HTTP

SQL

HTTP
SQL

Fig. 3: The entire user-to-data path in DB-based Web applications
sufficient detail in lots of publications
[Podlipinig & Böszörmenyi 2003], we
target at specific problems related to the
path towards database-managed data. For
this relatively new problem, currently
many database vendors are developing
prototype systems or are just extending
their current products, e.g., [IBM DB2,
Larson et al. 2004], to respond to the re-
cently uncovered bottleneck for Web in-
formation systems or e*-applications.

What is the technical challenge of all
these approaches? When user requests re-
quire responses to be assembled from
static and dynamic contents somewhere
in a Web cache, the dynamic portion is
often generated by a remote application
server, which in turn asks the backend
DB server for up-to-date information,
thus causing substantial latency. An obvi-
ous reaction to this performance problem
is the migration of application servers to
data centers closer to the users: Fig. 2 il-
lustrates that clients select one of the rep-
licated Web servers »close« to them in
order to minimize its response time. This
optimization is amplified if the associat-
ed application servers can instantly pro-
vide the expected data – frequently indi-
cated by geographical contexts. But the
displacement of application servers to the
edge of the Web alone is not sufficient;
conversely it would dramatically degrade
the efficiency of database support be-
cause of the frequent round trips to the
then remote backend DB server, e.g., by
open/next/close loops of cursor-based
processing via SQL application program-
ming interfaces (APIs). As a conse-
quence, frequently used data should be
kept close to the application servers in so-
called DB caches. Note, the backend DB
server cannot be moved to the edge of the
Web as well, because it has to serve sev-
eral application servers distributed in
wide-area networks. On the other hand,
replication of the entire database at each
application server is too expensive, be-
cause DB updates can be performed via
each of them. A flexible solution should
not only support database caching at mid-
tier nodes of central enterprise infrastruc-
tures, but also at edge servers of content
delivery networks or remote data centers.

3.2 Objectives

Another important aspect of practical so-
lutions is to achieve full cache transpar-
ency for applications, that is, modifica-
tions of the API are not tolerated. This ap-
Datenbank-Spektrum 1
plication transparency is a key require-
ment of database caching, which also dis-
tinguishes caching from replication. It
gives the cache manager the choice at run
time to process a query locally or to send
it to the backend DB to comply with strict
consistency requirements, for instance.

The ultimate goal of database caching
is to process frequently requested DB op-
erations close to the application. There-
fore, the complexity of these operations
and, in turn, of the underlying data model
essentially determines the required mech-
anisms. The use of SQL implies a consid-
erable challenge because of its declara-
tive and set-oriented nature. This means
that, to be useful, the cache manager has
to guarantee that queries can be pro-
cessed in the DB cache, that is, the sets of
records (of various types) satisfying the
corresponding predicates – denoted as
predicate extensions – must be complete-
ly in the cache. This completeness condi-
tion, the so-called predicate complete-
ness, ensures that the query evaluation
semantics is equivalent to the one provid-
ed by the backend.

A full-fledged DBMS used as cache
manager offers great advantages. A sub-
stantial portion of the query processing
logic (parsing, optimization, and execu-
tion) has to be made available anyway.
By providing the full functionality, addi-
tional database objects such as triggers,
constraints, stored procedures, or access
paths can be exploited in the cache there-
by simulating DB semantics locally and
enhancing application performance due
to increased locality. Furthermore, trans-
actional updates seem to be conceivable
in the cache (some time in the future),
and, as a consequence, continued service
for TWAs when backend databases be-
come unavailable.

Note, a cache usually contains only
subsets of records pertaining to a small
fraction of backend tables. Its primary
task is to support query processing for
TWAs, which typically contain up to 3 or
4 joins [Altinel et al. 2003]. Often the
number of cache tables – featuring a high
degree of reference locality – is in the or-
der of 10 or less, even if the backend DB
consists of hundreds of tables.

A federated query facility as offered
in [IBM DB2] allows cooperative predi-
cate evaluation by multiple DB servers.
This property is very important for cache
use, because local evaluation of some
(partial) predicate can be complemented
by the work of the backend DB server on
other (partial) predicates whose exten-
sions are not in the cache.

3.3 Approaching a Solution for
Database Caching

The conceptually most simple approach –
namely, full-table caching, which repli-
cates entire contents of selected backend
tables – attracted various DB cache pro-
ducts [Oracle 2005a]. It seems infeasible,
however, for large tables even under
moderate update dynamics, because rep-
lication and maintenance costs may out-
weigh the potential savings on query pro-
cessing.

Traditional approaches to caching at
a finer granularity are settled at the object
level and, hence, only support access to
objects by identifiers. When the cache re-
ceives a declarative query, it is generally
impossible to decide whether a complete
answer can be provided without querying
the backend DB. Semantic descriptions
of the cached data, however, enable the
cache manager to determine the com-
pleteness of query results.

So far, most approaches to DB cach-
ing were primarily based on the use of
single tables, sometimes called semantic
caching [Dar et al. 1996], or on material-
ized views and their variants [Amiri et al.
5

DBMS Architecture—New Challenges Ahead
2003]. A materialized view consists of a
single table whose columns correspond
to the set of output attributes OV = {O1,
..., On} and whose contents are the query
result V of the related view-defining que-
ry QV with predicate P. Materialized
views can be loaded into the DB cache in
advance or can be made available on de-
mand, for example, when a given query is
processed the nth time (), exhibit-
ing some kind of built-in locality and
adaptivity mechanism. When they are
used for DB caching, essentially indepen-
dent tables, each representing a query re-
sult Vi of QVi, are separately cached in
the frontend DB. In general, query pro-
cessing for an actual QA is limited to a
single cache table. The result of QA is
contained in Vi, if PA is logically implied
by Pi (subsumption) and if OA is con-
tained in OVi. Only in special cases, a
union of cached query results, for exam-
ple, , can be ex-

ploited. In contrast, a superset of the at-
tributes QVi may potentially enhance the
caching benefit of Vi, but, on the other
hand, it may increase the storage and
maintenance costs.

Static methods for DB caching,
where the cache contents must be pre-
specified and possibly loaded in advance,
are not very interesting. Such approaches
are sometimes called declarative caching
and do not comply with challenging de-
mands like self-administration and adap-
tivity4. Hence, what are the characteris-
tics of a promising solution when the
backend DB is (frequently) updated and
the cache contents must be adjusted dy-
namically?

Constraint-based database caching
promises a new quality for the placement
of data close to their application. The key
idea is to accomplish for some given
types of query predicates P predicate
completeness in the cache such that all
queries eligible for P can be evaluated
correctly [Härder & Bühmann 2004]. Be-
cause predicates form an intrinsic part of
a data model, the various kinds of eligible
predicate extensions are data-model de-
pendent, that is, they always support only
specific operations of a data model under

4. Minimum interaction by the database adminis-
trator is desirable when a large number of
caches exists, e.g., Akamai's network has near-
ly 15,000 edge caching servers [Akamai].

n 1≥

V1 V2 ... Vn∪ ∪ ∪
6

consideration.
Suitable cache constraints for these

predicates have to be specified for the
cache. They enable cache loading in a
constructive way and guarantee, when
satisfied, the presence of their predicate
extensions in the cache. The technique
does not rely on the specification of static
predicates: The constraints are parame-
terized making this specification adap-
tive; it is completed when the parameters
are instantiated by specific values. An
»instantiated constraint« then corre-
sponds to a predicate and, when the con-
straint is satisfied – i.e., all related
records have been loaded – it delivers
correct answers to eligible queries. Note,
the union of all existing predicate exten-
sions flexibly allows the evaluation of
their predicates, i.e.,

or or subsets/com-

binations thereof, in the cache.
There are no or only simple decid-

ability problems whether predicates can
be evaluated. Only a simple probe query
is required at run time to determine the
availability of eligible predicate exten-
sions. Furthermore, because all columns
of the corresponding backend tables are
kept, all project operations possible in
the backend DB can also be performed in
the cache. Other operations like selection
and join depend on specific cache con-
straints. Since full DB functionality is
available, the results of these queries can
further be refined by selection predicates
such as Like, Null, etc. as well as process-
ing options like Distinct, Group-by, Hav-
ing (potentially restricted), or Order-by.

Moreover, we have observed that the
idea of predicate completeness can be ex-
tended to other types of data models – in
particular, XML data models –, too.
Thinking about the potential of this idea
gives us the vision that we could support
the entire user-to-data path in the Internet
with a single XML data model [Härder &
Bühmann 2004].

On the other hand, handling of up-
dates is a critical problem and could be
alleviated by applying different update
models to DB caching. Instead of pro-
cessing all (transactional) updates in the
backend DB first, one could perform
them in the cache (under ACID protec-
tion) or even jointly in cache and backend
DB under a 2PC protocol. Such update
models may lead to futuristic consider-
ations where the conventional hierarchic

P1 P2 ... Pn∪ ∪ ∪

P1 P2 ... Pn∩ ∩ ∩
arrangement of frontend cache and back-
end DB is dissolved: If each of them can
play both roles and if together they can
provide consistency for DB data, more
effective DB support may be gained for
new applications such as grid or P2P
computing.

As compared to the most sophisticat-
ed client/server DBMSs – the query serv-
er approach [Härder & Rahm 2001] – the
situation is here even more challenging.
While locality preservation in the (client-
side) query result buffer of a query server
can take advantage of application hints
[Deßloch et al. 1998], adaptivity of data-
base caching is a major challenge for fu-
ture research [Altinel et al. 2003]. Fur-
thermore, precise specification of relaxed
currency and consistency of data is an im-
portant future task to better control the
widespread and growing use of distant
caches and asynchronous copies [Guo et
al. 2004].

4 The Next Database
Revolution Ahead?

So far, we could show that the invari-
ants in database management observed
in relational DBMSs also determine the
mapping steps of an XDBMS architec-
ture, although we had to refine and ad-
just the layers and algorithms to the
fine-grained and record-oriented tree
structures of XML documents. Fig. 4
shows simplified three-layer architectur-
al models for relational and XML
DBMSs thereby contrasting the differ-
ence of these record-oriented architec-
tures to those of other data types.

Progress is made for some of these
data types. Thanks to the object-relation-
al database development, data and proce-
dures are now being joined. Decades of
discussion about the inside-the-database/
outside-the-database dichotomy of appli-
cation code are over: »The Java or com-
mon language runtimes have been mar-
ried to relational database engines so that
the traditional EJB-SQL outside-inside
split has been eliminated. Now Beans or
business logic can run inside the data-
base« [Gray 2005]. Indeed, the most re-
cent generation of object-oriented envi-
ronments provides a common runtime ca-
pable of supporting good performance
for nearly all languages, in particular,
Java and C#. These languages have also
been fully integrated into some object-re-
lational databases.5 Hence, databases
Datenbank-Spektrum 1

 DBMS Architecture—New Challenges Ahead

Fig. 4: Desirable extensions for future DBMS architectures

relational

relational

storage system

ET
L/

cu
be

s

tra
ns

ac
tio

ns
/u

til
iti

es

pr
oc

ed
ur

es

qu
eu

es
/p

ub
&

su
b

ex
te

rn
al

 fi
le

s

V
IT

A

tim
e/

sp
ac

e

st
re

am
in

g

. . .

XML access

compilation,
optimization &

data system evaluation of XML

access system services
also have the opportunity to become the
preferred integration vehicle for applica-
tion development environments. With
these integration efforts, fields become
objects (values or references), records be-
come vectors of objects (fields), and ta-
bles become sequences of record objects.
As a consequence, databases can be per-
ceived as collections of tables (of ob-
jects). According to Jim Gray, this objec-
tified view of database systems embodies
a quantum leap for revolutionary devel-
opments for other data types. On the oth-
er hand, such a development would stand
for the re-rise of the object-relational
DBMS concepts.

With these concepts in mind, the inte-
gration of persistent queues is only a little
step, because – based on the available
ACID properties – we can implement tai-
lored queuing semantics using, for exam-
ple, stored procedures (and triggers).
Based on such persistent queues [DB2
2005, Oracle 2005b], the DB middleware
can provide message brokering and
pub&sub services. Because messages are
data, too, we could directly exploit en-
hanced XDBMSs to enable native stor-
age and management of messages in
XML format. However, what has to be
done when the conceptual differences of
the data types such as VITA (video, im-
age, text, audio) or data streams are even
larger? Because the new data types can
often reuse only the external storage
mapping, specialized higher-level layers
have to be implemented for each of them.
For example, VITA types managed in tai-
lored DB buffers are typically delivered

5. For OLTP, this opportunity could mean that
databases encapsulate business logic using
stored procedures. Then the TP-lite discussion
is on the stage back again where three-tier cli-
ent/server systems running under control of a
TP monitor (TP-heavy) are challenged by two-
tier architectures [Gray 2005].
Datenbank-Spektrum 1
(in variable-length junks) directly to the
application thereby avoiding additional
layer crossings. In turn, to avoid data
transfers, the application may pass down
some operations to the buffer to directly
manipulate the buffered object represen-
tation.

Often it makes not much sense to
store and manage all data in a DBMS. For
data that must be »streamed« to the appli-
cation within a specified time period in
order to be meaningful, e.g., video frames
or audio, the use of specialized file serv-
ers optimized for delivery of such data
would be more appropriate. Locating the
data close to the application further im-
proves application performance. To
loosely integrate (huge numbers of) such
external files, the DataLink concept pro-
vides a framework to control referential
integrity, access control, and recoverabil-
ity for external data by a DBMS [Bhatta-
charya et al. 2002, Hsiao & Narang 2000,
Melton et al. 2001].

Fig. 4 illustrates some characteristics
of future DBMS architectures: layer
models of different kinds, architectural
models for specific data types, integra-
tion of external files, etc. Often the OS
services or, at best, the storage system
represent the least common denominator
for these desired DBMS extensions. For
many of these future DBMS extensions,
systematic architectural approaches are
not known today. Therefore, we rather
have to deviate to vague speculations.

If the commonalities in data manage-
ment invariants for the different types
and thus the reuse opportunities for func-
tionality are so marginal, it makes no
sense to squeeze all of them into a unified
DBMS architecture. As a proposal for fu-
ture research and development, Jim Gray
sketched a framework leading to a diver-
sity of type-specific DBMS architectures
[Gray 2004] for which the metaphor of a
database ecosystem is used. As a conse-
quence, we obtain a collection of hetero-
geneous DBMSs (and file systems)
which have to be made accessible for the
applications – as transparently as possi-
ble – by suitable APIs. Apparently, this
database ecosystem enables a large de-
gree of scalability. Furthermore, such a
collection embodies an »extensible ob-
ject-relational system where non-proce-
dural relational operators manipulate ob-
ject sets. Coupled with this, each DBMS
is now a Web service« [Gray 2004]. And
because databases should be accessible
from anywhere, Web services may be-
come the means of choice by which we
federate heterogeneous database systems.
Furthermore, because these systems co-
operate on behalf of applications, ACID
protection has to be assured for all mes-
sages and data taking part in a transaction
[Gray & Reuter 1993]. Applications and
the corresponding transactions currently
running locally under control of a single
DBMS will then typically access a data-
base ecosystem and, as a consequence,
will turn into distributed and heteroge-
neous processing compounds needing
federation services and 2PC protocols.

Orthogonal to the desire to provide
functional extensions, the key role of
DBMSs in modern societies places other
kinds of »stress« on their architecture.
Adaptivity to application environments
with their frequently changing demands
in combination with dependability in crit-
ical situations will become more impor-
tant design goals6 – both leading to con-
tradicting guidelines for the architectural
design.

5 Dependable Adaptive
Information Systems

Along these lines, we have to broaden our
perspective and deviate from the unilater-
al focus on the DBMS engine alone.
Many parts and functions of modern soci-
eties heavily depend on information sys-
tems serving a wide spectrum of uses in
administration, production, trading,
banking, traffic control, tele-communica-
tion, science, law-enforcement, etc.
Hence, we have to consider a bigger pic-

6. »Indeed, if every file system, every disk, every
phone, every TV, every camera, and every
piece of smart dust is to have a database inside,
then those database systems will need to be
self-managing, self-organizing, and self-heal-
ing« [Gray 2005].
7

DBMS Architecture—New Challenges Ahead
ture including the information system
perspective as an ecosystem consisting of
DBMS engine(s), DB-related middle-
ware, and application integration.

5.1 Design Objectives

One of the Grand Challenges in trustwor-
thy computing (stated by the Computing
Research Association) is: »Build Sys-
tems You Can Count On«. For the realm
of information systems, Jim Gray has
pinpointed the consequences by (at least)
three of the dozen long-term research &
development goals stated in his 1999
Turing Lecture:

• Trouble-Free
Build a system used by millions of
people each day and yet administered
and managed by a single part-time
person.

• Secure
Assure that the system (solving previ-
ous problem) only services autho-
rized users, service cannot be denied
by unauthorized users, and informa-
tion cannot be stolen (and prove it).

• Always-Up
Assure that the system is unavailable
for less than one second per hundred
years – eight 9s of availability (and
prove it).

By solving these problems, we accom-
plish dependable adaptive information
systems (DAISs). When designing such
information systems, software correct-
ness (the information system meets its
specification) is only one among several
dependability issues. To provide for high
availability and to protect against data
loss, recovery-oriented computing
(ROC) is of significant importance. Vari-
ous kinds of failures are unavoidable
(transaction abort, system crash, media
failure) and have no solution to be
achieved by software alone. DBMSs
have a long history of successful ROC
and guarantee, in any failure case, a trans-
action-consistent state of the data. In con-
trast, adaptivity is a far less common
property of DBMSs or even information
systems. A DBMS should automatically
adapt to varying numbers of users, to ca-
pacity changes in resources, to the un-
availability of data sources, and to differ-
ent response-time/throughput require-
ments of the incoming transactions.
Optimized service under workload/usage
changes and scalability (Web informa-
tion systems may attract very large num-
8

bers of concurrent users) are still design
goals hard to achieve. Finally, depend-
ability requires high degrees of system
availability and robustness, tolerance
against deliberate attacks, as well as pro-
vision for trust management and security
to an extent so far unknown even in cen-
tralized DBMSs.

Future generation information sys-
tems are no longer built around a central
DBMS. For their applications, they must
provide access to several databases, coor-
dination of the concurrent accesses, use
of other services with unknown internal
structure, and support of business pro-
cesses by long and structured transac-
tions, often designed as workflows. In
particular, these information systems
have to cope with the following require-
ments:

• Wide-area distribution
• Openness of system structure and au-

tonomy of components
• Heterogeneity of structure and con-

tent
• Long-term interactive processes.

The increase in power, accessibility,
and flexibility provided by such informa-
tion systems comes at a high price. Distri-
bution, openness, and component autono-
my lead to less control over the system
and to new possibilities for faults and de-
liberate attacks – with negative conse-
quences for dependability. A future DA-
IS, for example, integrating data sources
from the Web, will necessarily have to
cope with different kinds of heterogene-
ity and dynamic information integration.
For this reason, research currently takes a
strong focus on XML technology to
transparently query data from different
kinds of data sources thereby »homoge-
nizing« the query result to a unified view.
However, such approaches can only par-
tially solve the semantic heterogeneity
problem at the structure level (schema
level). At the content level (instance lev-
el), the resulting problems are rather elu-
sive and far away from an adequate solu-
tion. The entirety of these requirements
also makes it more difficult to develop in-
formation systems that automatically
adapt to changes in resource availability
and that are scalable to the needs of dif-
ferent application scenarios. For exam-
ple, long-term processes lead to complex
dependencies between the applications
and the persistent data repositories and
their subcomponents. In such distributed
component systems, resource planning
and adaptation require state and control
information delivered by distributed ob-
servations that go beyond single compo-
nents.

5.2 Architectural and Transactional
Model

Because of the new kinds of component
interactions, information exchanges, and
mutual dependencies, the design of the
system architecture and middleware be-
comes at least equally important as the
development/layout of the individual
components and their algorithms for the
higher-ranking objectives of adaptivity
and dependability. For these reasons, the
challenge to build dependable and adap-
tive information systems of the future is
particularly concerned with architectural
issues of software systems, component
models, and new concepts of cooperation
and synchronization. An important prob-
lem is to tame the architecture, its flexi-
bility and complexity to a degree that still
enables extensibility (permanent change
of technology and functional growth) and
adaptivity without losing dependability.
To construct such DAISs, these three
conflicting design goals have to be con-
sidered together.

Although these developments are im-
portant prerequisites to implement
DAISs, they are by far not sufficient to
reach the fundamental goals. A particular
challenge for failure-free component in-
teraction and cooperation is that their
context models often do not exactly
match. Furthermore, successful adapta-
tion can only be achieved based on obser-
vation and prediction. If the application
processes rely on a specific execution
model that is known by the other partici-
pating components of the information
system, these components can use the
knowledge of the execution model to
plan their actions. If they have no infor-
mation about the application behavior,
reliable adaptation is not possible. Simi-
lar to the transaction concept which indi-
cates the intent to perform a number of
DB operations in an atomic way, we need
equivalent, but more flexible execution
models that allow to convey properties of
the upcoming execution to the informa-
tion system component responsible for it.

For these and other aspects, a number
of models and techniques have already
been developed. For example, (closed)
nested transactions enable a tree-like
structuring of executions thereby en-
Datenbank-Spektrum 1

 DBMS Architecture—New Challenges Ahead
abling intra-transaction parallelism and
fine-grained recovery while preserving
ACID for the entire transaction tree
[Weikum & Vossen 2002]. In a DAIS,
open nested transactions have to be ad-
justed to the distributed and heteroge-
neous environment thereby aggravating
the compensation problems in case of a
failure. When autonomous systems are
involved, so-called agreement protocols
have to be introduced to support secure
distributed computing in group coopera-
tion between applications. Behavioral
specification techniques for component
interfaces are available and can be en-
riched by non-functional properties.
However, it is not yet clear how these
models and techniques evolve and work
together. Therefore, we should refine
these concepts and integrate their proper-
ties in a well-defined semantic frame-
work that provides the foundation for
adaptivity and dependability while the
participating DBMSs remain extensible.

5.3 Adaptivity in a DAIS

So far, information hiding and layers as
abstract machines were the cornerstones
for the design of large evolutionary sys-
tems and, in particular, of the DBMS en-
gine. The new design goal of enhanced
adaptivity, however, challenges these
proven concepts. Typically, adaptable
component behavior cannot be achieved
by exploiting local »self«-observations
(knowledge) alone. Hence, autonomic
computing principles applied to DBMS
components require more information
exchange across components (introduc-
ing additional dependencies) to gain a
more system-oriented view when deci-
sions relevant for behavioral adaptations
have to be made.

DBMS Component Adaptivity

In this context, components are large-
grained rather than fine-grained objects,
that is, storage manager, query optimizer,
etc. as examples. Heuristic mechanisms
(rules of thumb) will sometimes provide
adequate static settings for specific tun-
ing knobs, but will quickly exhaust in
more complex situations (e.g., when the
cache size has to be adjusted to varying
workloads). As a consequence, typical
component adaptations often require the
collection of statistical data and imply a
continuous adjustment of tuning or be-
havioral parameters. They may be as
Datenbank-Spektrum 1
complex as a learning optimizer [Markl
et al. 2003].

The provision of inter-component
adaptivity is more challenging, because
tight cooperation among separate system
components is necessary where each
component is aware of only its optimal
local planning situation or decision.
Some examples may illustrate this issue.
Dynamic query evaluation plans require
alternate plans for different load situa-
tions and resource availability. In con-
trast, the query optimizer could ask the
index manager to dynamically create a
new index on a table – a decision con-
cerning the physical DB which could
quickly be amortized when the future
query load evolves as anticipated by the
optimizer. Such a decision again is an in-
ter-component optimization problem.
Optimized dynamic index selection, i.e.,
whether a new index for a table is cost-ef-
fective, needs the cooperation of several
components to collect statistical data
which identify potential costs and sav-
ings caused by new indexes, before a
»performance planner« decides that such
an adaptation measure is beneficial for
the entire system behavior. Or the resolu-
tion of overload conflicts due to lock con-
tention can only be handled by a cooper-
ation of the lock manager and load bal-
ancer. The general solution to achieve
»self-*« system properties in such situa-
tions consists of the four phases observa-
tion, analysis, planning, and reaction
which form an online feedback control
loop with which (hopefully) optimal situ-
ation-specific system decisions can be
derived [Weikum et al. 2002].

System-level Adaptivity

Complex, long-living workflows are the
most important mechanism to implement
business processes in DAISs. Because
each workflow instance can be consid-
ered as a persistent, recoverable object
and typically has a large amount of state
information, again DBMSs come into
play to provide stable states of workflow
instances and to take over quite a share of
their functionality. Adaptation at the sys-
tem level primarily means to allow for
flexible workflow schemas, which may
evolve responding to unforeseen situa-
tions (new cooperation partner, inacces-
sibility of data sources, unavailability of
resources) or which need a sudden re-
scheduling. Because »the human is in the
loop«, interaction timing is hard to pre-
plan (think time). As a consequence,
ACID transactions are inappropriate as
control structures. Rather, open nested
transactions or agreement protocols have
to be used to achieve an adequate pro-
cessing quality (still to be defined).

5.4 Adaptivity versus Dependability

Trouble-free operation of a DAIS prima-
rily comes from adjustment mechanisms
automatically applied to problems of ad-
ministration, tuning, coordination,
growth, hardware and software upgrades,
etc. Ideally, the human system manager
should only set goals, policies, and a bud-
get while the automatic adaptation mech-
anisms should do the rest [Gray 2003].
Online feedback control loops are key to
achieve such adaptation and »self-*« sys-
tem properties, which, however, amplify
the information channels across system
layers. In addition, close cooperation
among the participating (autonomous and
heterogeneous) systems introduces many
new dependencies. Too many informa-
tion channels, however, increase the in-
ter-component complexity and are direct-
ed against salient software engineering
principles for highly evolutionary sys-
tems. In this respect, they work against
the very important dependability objec-
tive which is much broader than self-tun-
ing or self-administration. Hence, design
challenges are to develop a system which
should be always available, i.e., exhibit-
ing an extremely high availability, and
which only services authorized uses, i.e.,
even hackers cannot destroy data or force
the system to deny services to authorized
users. To develop such »always-up + se-
cure + trouble-free« systems, innovative
architectures observing new software en-
gineering principles have to be adopted.
However, most of their properties are not
easily amenable to mathematical model-
ing and runtime analysis, because they
are non-functional in general.

Prerequisites of Dependability

Dependability requires precaution mea-
sures for all expected failure types,
which, in the first place, means tailored
ROC mechanisms, i.e., logging and re-
covery algorithms optimized w.r.t. the
critical system demands (e.g., high avail-
ability). Such issues are amenable to
known engineering principles and can be
proven by checking the resulting perfor-
mance behavior. However, many other
aspects such as security or trust are non-
9

DBMS Architecture—New Challenges Ahead
functional and cannot easily be »at-
tached« to a specific component, let
alone optimized by using mathematical
models.

For adaptivity, self-observation and
self-analysis primarily aim at the auto-
matic system accommodation and opti-
mization under changes in user behaviors
and workloads. Future DAISs and, in par-
ticular, DBMSs typically operate in an
unattended way. In contrast, improving
the dependability aspect asks for auto-
matic recognition of internal malfunc-
tions and malfunction of communicating
components, identification of data cor-
ruption, intrusion detection, application
failures, etc. In other words, such capabil-
ities require making the information sys-
tem more self-aware. To automatically
recognize deviations from the expected
behavior, the system needs explicit mod-
els of its behavior and the surrounding
system/environment in which it partici-
pates/cooperates – these may be guided
by default policies to proceed in unex-
pected situations and by personal profiles
summarizing the user needs to cope with
extraordinary user requests/attacks
[Lowell 2003].

5.5 Towards Dependability
Engineering

How to improve dependability proper-
ties? All the issues sketched so far call for
even more information system function-
ality which opens an immense chasm re-
sulting from diverging requirements:
growing system complexity due to new
extensions and improved adaptivity as
opposed to urgent simplification needs
mandatory for the development of de-
pendable systems. Therefore, we need to
develop a kind of dependable systems’
engineering which should cover all de-
pendability aspects in a system model
(enclosing the DBMS architecture). Ab-
stract principles for such an idea include
[Weikum et al. 2002]:

• a highly componentized system struc-
ture with

• components of limited and relatively
simple functionality (similar to
RISC-style designs) and

• well-controlled component interfaces
as narrow as possible to keep the in-
teraction complexity between com-
ponents to a minimum.
At the moment, it is not clear how

such a design can be accomplished and
10
how it affects other system objectives, in
particular, performance. It will be a great
challenge to define dependability in an
operational way, such that the depend-
ability state of a system can be evaluated
and that the success of additional mea-
sures towards a higher degree of depend-
ability can be captured in a quantitative
way. However, currently the bad news is
that the state-of-the-art architectural de-
signs of universal DBMSs are against the
spirit of a dependability engineering.

Nevertheless, a future architecture
has to observe the implications of auto-
nomic and trouble-free computing even
under various forms of pressures and de-
liberate attacks, that is, it has not only to
be guided by data independence and evo-
lution, but has to be developed along the
lines of adaptivity and dependability.

5.6 More Challenges Ahead

Another of the Grand Challenges in trust-
worthy computing is: »Within 10 years,
develop quantitative information-sys-
tems risk management that is at least as
good as quantitative financial risk man-
agement.« Currently, we have made
many observations and experiences, but
we do not understand the full nature of
what causes IT risk and the emergent be-
havior of some vulnerabilities and sys-
tems. Furthermore, we assume in our as-
sessments and countermeasures the inde-
pendence and single-failure-at-a-time
properties, although failures in net-
worked systems are not independent. To
approach a solution for DAISs, mathe-
matical modeling where models for oper-
ational risks are explored, is helpful. On
the other hand, progress towards more in-
telligent adaptive information system in-
terfaces may facilitate trust management
and effective defense of, for example,
hacker attacks or accidental misuse of the
DAIS. Filtering and assessment of user
requests help to achieve better usability
(personalization and context awareness)
and may prevent »dangerous« situations
which would possibly lead to system fail-
ures, unavailability of resources, denial
of service, and so on.

6 Conclusions

In this paper, we primarily considered ar-
chitectural issues of database research
and development which may happen in
the next decade of the BTW – the Ger-
man conference »Database Systems in
Business, Technology, and the Web«.
We observed that the DBMS architecture
for the declarative and set-oriented (rela-
tional) processing paradigm of record-
like structures embodied by the five-layer
hierarchical model cannot accommodate
all the desired requirements and exten-
sions for new and future data manage-
ment scenarios.

The more the integration of new data
types requires new processing invariants,
the less the original architecture is able to
cope with them. It is an open question
how the architecture for an extensible ob-
ject-relational system where non-proce-
dural relational operators manipulate
object sets will evolve in detail. Further-
more, a future architecture has to observe
the implications of autonomic and trou-
ble-free computing even under various
forms of »pressures« and deliberate at-
tacks, that is, it has to be guided by data
independence and evolution and, at the
same time, developed along the lines of
adaptivity and dependability. At any rate,
the good news for all DB researchers is
that there are plenty of challenges still
ahead in the area of DBMS architecture
and that new ones evolve as soon as we
seriously cope with these challenges.

Acknowledgements. Discussions with
Andreas Bühmann, Stefan Deßloch,
Jernej Kovse, Christian Mathis, Bernhard
Mitschang and Joachim Thomas who
also carefully read a preliminary version
helped to shape the paper and to improve
its final version.

References
[Akamai] Akamai Technologies Inc.: Akamai

EdgeSuite. http://www.akamai.com/en/html/
services/edgesuite.html

[Al-Khalifa et al. 2002] Al-Khalifa, S.; Jagadish,
H. V.; Patel, J. M.; Wu, Y.; Koudas, N.;
Srivastava, D.: Structural Joins: A Primitive
for Efficient XML Query Pattern Matching.
Proc. 18th Int. Conf. on Data Engineering,
141 (2002)

[Altinel et al. 2003] Altinel, M.; Bornhövd, C.;
Krishnamurthy, S.; Mohan, C.; Pirahesh, H.;
Reinwald, B.: Cache Tables: Paving the Way
for an Adaptive Database Cache. VLDB
2003: 718-729

[Amiri et al. 2003] Amiri, K.; Park, S.; Tewari,
R.; Padmanabhan, S.: DBProxy: A Dynamic
Data Cache for Web Applications. ICDE
Conference 2003: 821–831

[Bhattacharya et al. 2002] Bhattacharya, S., Mo-
han, C., Brannon, K., Narang, I., Hsiao, H.,
Subramanian, M.: Coordinating backup/re-
covery and data consistency between data-
Datenbank-Spektrum 1

 DBMS Architecture—New Challenges Ahead
base and file systems. SIGMOD Conference
2002: 500-511

[Dar et al. 1996] Dar, S., Franklin, M., Jónsson,
B., Srivastava, D., Tan, M.: Semantic Data
Caching and Replacement. VLDB 1996:
330–341

[DB2 2005] Administration of file and queue
management on DB2, http://publib.boul-
der.ibm.com/infocenter/txen/index.jsp?top-
ic=/com.ibm.txseries510.doc/
erzhab0028.htm

[Deßloch et al. 1998] Deßloch, S.; Härder, T.;
Mattos, N. M.; Mitschang, B.; Thomas, J.:
Advanced Data Processing in KRISYS: Mod-
eling Concepts, Implementation Techniques,
and Client/Server Issues. VLDB J. 7(2): 79-
95 (1998)

[DOM 2004] Document Object Model (DOM)
Level 2 / Level 3 Core Specification, W3C
Recommendation (Nov. 2000 / Apr. 2004)

[Florescu & Kossmann 1999] Florescu, D.;
Kossmann, D.: Storing and Querying XML
Data using an RDMBS. IEEE Data Eng. Bull.
22(3): 27-34 (1999)

[Graefe 1993] Graefe, G.: Query Evaluation
Techniques for Large Databases. ACM Com-
put. Surv. 25(2): 73-170 (1993)

[Graefe 2000] Graefe, G.: Dynamic Query Eval-
uation Plans: Some Course Corrections?
IEEE Data Eng. Bull. 23(2): 3-6 (2000)

[Gray 2003] Gray, J.: What next?: A dozen infor-
mation-technology research goals. J. ACM
50(1): 41-57 (2003) (Journal Version of the
1999 ACM Turing Award Lecture)

[Gray 2004] Gray, J.: The Next Database Revo-
lution. SIGMOD Conference 2004: 1-4

[Gray 2005] Gray, J.: A Call to Arms. ACM
Queue 3:3, 30-38, April 2005

[Gray & Reuter 1993] Gray, J.; Reuter, A.: Trans-
action Processing: Concepts and Techniques.
Morgan Kaufmann 1993

[Guo et al. 2004] Guo, H.; Larson, P.-A.; Ra-
makrishnan, R.; Goldstein, J.: Relaxed Cur-
rency and Consistency: How to Say »Good
Enough« in SQL. SIGMOD Conference
2004: 815-826

[Härder 2005a] Härder, T.: DBMS Architecture –
Still an Open Problem. BTW, LNI P-65,
Springer, 2-28, 2005

[Härder 2005b] Härder, T.: XML Databases –
Plenty of Architectural Problems Ahead. AD-
BIS Conference 2005 (keynote paper),
LNCS, Springer

[Härder 2005c] Härder, T.: DBMS Architecture –
The Layer Model and its Evolution. Daten-
bank-Spektrum, Heft 13/2005, 45-57

[Härder & Bühmann 2004] Härder, T.; Bühmann,
A.: Query Processing in Constraint-Based
Database Caches. Data Engineering Bulletin
27:2 (2004) 3-10

[Haustein 2005] Haustein, M.: Eine XML-Pro-
grammierschnittstelle zur transaktionsge-
schützten Kombination von DOM, SAX und
XQuery, BTW, LNI P-65, Springer, 265-284,
2005

[Haustein & Härder 2005] Haustein, M.; Härder,
T.: Optimizing Concurrent XML Processing,
submitted (2005), http://wwwdvs.informa-
tik.uni-kl.de/pubs/p2005.html
Datenbank-Spektrum 1
[Haustein & al. 2005a] Haustein, M.; Härder, T.;
Luttenberger, K.: Contest of Lock Protocols,
submitted (2005), http://wwwdvs.informa-
tik.uni-kl.de/pubs/p2005.htm

[Haustein & al. 2005b] Haustein, M.; Härder, T.;
Mathis, C.; Wagner, M.: DeweyIDs—The
Key to Fine-Grained Management of XML
Documents, appears in: Proc. 20th SBBD,
Uberlandia, 2005), http://wwwdvs.informa-
tik.uni-kl.de/pubs/p2005.html

[Härder & Rahm 2001] Härder, T.; Rahm, E.:
Datenbanksysteme: Konzepte und Techniken
der Implementierung, 2nd edition, Springer
2001

[Halverson et al. 2004] Halverson, A.; Josifovski,
V.; Lohman, G.; Pirahesh, H.; Mörschel, M.:
ROX: Relational Over XML. VLDB 2004:
264-275

[Hsiao & Narang 2000] Hsiao, H., Narang, I.:
DLFM: A Transactional Resource Manager.
SIGMOD Conference 2000: 518-528

[IBM DB2] IBM DB2 Universal Database
(V 8.2). http://www.ibm.com/software/data/
db2/

[Jagadish et al. 2002] Jagadish, H. V., Al-Khalifa,
S., Chapman, A., Lakshmanan, L. V. S., Nier-
man, A., Paparizos, S., Patel, J. M., Srivasta-
va, D., Wiwatwattana, N., Wu, Y., Yu, C.:
TIMBER: A native XML database. VLDB J.
11(4): 274-291 (2002)

[Larson et al. 2004] Larson, P.-Å.; Goldstein, J.;
Zhou, J.: MTCache: Mid-Tier Database
Caching in SQL Server. ICDE 2004: 177-189

[Lowell 2003] Lowell Workshop Summary: The
Lowell Database Research Self Assessment.
The Computing Research Repository, CoRR
cs.DB/0310006 (2003)

[Markl et al. 2003] Markl, V., Lohman, G. M., Ra-
man, V.: LEO: An autonomic query optimizer
for DB2. IBM Systems Journal 42(1): 98-106
(2003)

[Melton et al. 2001] Melton, J., Michels, J.-E.,
Josifovski, V., Kulkarni, K. G., Schwarz, P. M.,
Zeidenstein, K.: SQL and Management of Ex-
ternal Data. SIGMOD Record 30(1): 70-77
(2001)

[O’Neil et al. 2004] O'Neil, E. J.; O'Neil, P. E.;
Pal, S.; Cseri, I.; Schaller, G.; Westbury, N.:
ORDPATHs : Insert-Friendly XML Node La-
bels. Proc. SIGMOD 2004, 903-908 (2004)

[Oracle 2005a] Oracle Corporation: Internet Ap-
plication Sever Documentation Library,
http://otn.oracle.com/documentation/
appserver10g.html

[Oracle 2005b] Advanced Queuing In Oracle9i,
http://www.oracle-base.com/articles/9i/
AdvancedQueuing9i.php

[Podlipinig & Böszörmenyi 2003] Podlipinig, S.;
Böszörmenyi, L.: A Survey of Web Cache Re-
placement Strategies. ACM Computing Sur-
veys 35:4, 374–398 (2003)

[Rahm 1994] Rahm, E.: Mehrrechner-Daten-
banksysteme - Grundlagen der verteilten und
parallelen Datenbankverarbeitung. Addison-
Wesley 1994

[Weikum et al. 2002] Weikum, G.; Mönkeberg,
A.; Hasse, C; Zabback, P.: Self-tuning Data-
base Technology and Information Services:
from Wishful Thinking to Viable Engineer-
ing. VLDB 2002: 20-31
[Weikum & Vossen 2002] Weikum, G.; Vossen,
G.: Transactional Information Systems – The-
ory, Algorithms, and the Practice of Concur-
rency Control and Recovery, Morgan Kauf-
mann 20027

[XQuery 2004] XQuery 1.0: An XML Query
Language. W3C Working Draft (Oct. 2004)

Theo Härder ob-
tained his Ph.D.
degree in Comput-
er Science from
the TU Darmstadt
in 1975. In 1976,
he spent a post-
doctoral year at the
IBM research Lab
in San Jose and
joined the project

System R. In 1978, he was associate professor for
Computer Science at the TU Darmstadt. As a full
professor, he is leading the research group DBIS
at the TU Kaiserslautern since 1980. He is the re-
cipient of the Konrad Zuse Medal (2001) and the
Alwin Walther Medal (2004) and obtained the
Honorary Doctoral Degree from the Computer
Science Dept. of the University of Oldenburg in
2002.
Theo Härder's research interests are in all areas of
database and information systems - in particular,
DBMS architecture, transaction systems, infor-
mation integration, and Web information sys-
tems. He is author/coauthor of 7 textbooks and of
more than 200 scientific contributions with >100
peer-reviewed conference papers and >50 journal
publications. His professional services include
numerous positions as chairman of the GI-Fach-
bereich »Databases and Information Systems«,
conference/program chairs and program commit-
tee member, editor-in-chief of Informatik – Fors-
chung und Entwicklung (Springer), associate ed-
itor of Information Systems (Elsevier), World
Wide Web (Kluver), and Transactions on Data-
base Systems (ACM). He serves as a DFG expert
and is the Chairman of the Selection Committee
for Computer Science of the Bavarian Network
of Excellence (Elitenetzwerk Bayern). He was
chairman of the Center for Computed-based En-
gineering Systems at the University of Kaiser-
slautern, member of two DFG SFBs (124, 501),
and co-coordinator of the National DFG Re-
search Program »Object Bases for Experts«.

Prof. Dr.-Ing. Dr. h.c. Theo Härder
Technische Universität Kaiserslautern
Fachbereich Informatik
Postfach 3049
67653 Kaiserslautern
haerder@informatik.uni-kl.de
http://www.haerder.de

7. Many references are copied from http://
www.informatik.uni-trier.de/~ley/db/in-
dex.html. This support of Michael Ley is
greatly appreciated.
11

	1 Motivation
	2 Native DB Processing of XML Documents
	2.1 Architectural Layer Reuse
	2.2 Storage and Buffer Management
	2.3 Access Services
	2.4 Node Services - Support of Navigation, Query Evaluation, and Locking
	2.5 Query Compilation and Optimization
	2.6 Relational over XML
	3 Database Caching
	3.1 Optimizing the Entire User-to- Data Path
	3.2 Objectives
	3.3 Approaching a Solution for Database Caching
	4 The Next Database Revolution Ahead?
	5 Dependable Adaptive Information Systems
	5.1 Design Objectives
	5.2 Architectural and Transactional Model
	5.3 Adaptivity in a DAIS
	DBMS Component Adaptivity
	System-level Adaptivity
	5.4 Adaptivity versus Dependability
	Prerequisites of Dependability
	5.5 Towards Dependability Engineering
	5.6 More Challenges Ahead
	6 Conclusions
	References

