
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

$Recommen
�Correspondi
E-mail addre

(U. Marder), ha
1This work

meinschaft (DF

(SFB) 501 ‘‘D

Methods’’.
Information Systems 30 (2005) 444–466

www.elsevier.com/locate/infosys
Towards a theory of multimedia metacomputing$

Ulrich Marder�, Theo Härder

Database and Information Systems Group, Department of Computer Science, University of Kaiserslautern, P.O. Box 3049,

D-67653 Kaiserslautern, Germany

Received 23 May 2003; received in revised form 1 May 2004; accepted 1 June 2004
Abstract

Multimedia metacomputing is a new approach to the management and processing of multimedia data in web-based

information systems. It offers high flexibility and openness while shielding the applications from any system internals.

Starting with the vision of a completely open and globally distributed multimedia information system, we consider

abstraction concepts required, especially transformation independence, and an appropriate semantic model.

Thus, the major focus of this paper is on the abstract data and processing model called VirtualMedia,1 which provides

a transformation independence framework for multimedia processing. In particular, we describe how transformation

requests are represented and processed, exploiting semantic equivalence relations on filter graphs and redundant

materialization, finally yielding instantiatable plans for materializing the requested media object(s) at the client.

r 2004 Elsevier B.V.. All rights reserved.

MSC: primary C.2.4; D.2.11; H.2.4; H.3.5

Keywords: Media Data abstractions; Transformation independence; Distributed computing; Multimedia information systems
1. Introduction

We may consider multimedia information systems
(MMIS) an enabling technology for infotainment:
the integration of information, communication,
e front matter r 2004 Elsevier B.V.. All rights reserv

2004.06.001

ded by Maurizio Lenzerini

ng author.

sses: marder@informatik.uni-kl.de

erder@informatik.uni-kl.de (T. Härder).

is supported by the Deutsche Forschungsge-

G) as part of the Sonderforschungsbereich

evelopment of Large Systems with Generic
and entertainment. While traditional MMIS only
existed as ‘‘islands’’, e.g., on CD-ROMs or local
networks, today—thanks to the world-wide web—
we can easily imagine large, global MMIS support-
ing millions of users in the office, at home, and on
the way. However, providing all of them with the
best possible experience and benefit—at any time,
any place, and any environment—is still a vision to
become true.
One of the most challenging problems in such

large and complex systems is the variety of end
user devices, which may vary from small mobile
devices to powerful multimedia workstations. This
ed.

www.elsevier.com/locate/infosys


ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 445
makes the preplanning of actions to satisfy user
requests rather difficult and most often inefficient.
The ever increasing bandwidth of the world-wide
networking infrastructure and the virtually un-
limited number of potential server systems, how-
ever, enable new solutions for multimedia service
providers to approach these challenges in a more
dynamic and flexible manner. For instance,
frequently required services can be offered by
many servers at the same time, complex services
can be distributed on several servers, and new
services can be integrated easily and any time
without the need to change the client software.
Depending on the origin, such concepts are
sometimes called metacomputing [1], peer-to-peer
(P2P) computing [2], or grid computing [3].
However, using the internet as a platform for

MMIS today is usually driven by the classic client/
server paradigm (cf. Fig. 1). Media assets are
managed by servers and can be referenced and
located by URLs. While most of the servers are
simple HTTP servers, there are also some special
(streaming) media servers and multimedia data-
base management systems (MM-DBMS). Gener-
ally, these servers provide publishing and retrieval
functionality, but very little support for (content-
based) searching and processing of media objects.
For content-based searching, however, standard
internet search engines can be used, e.g., Googlet
Image Search [4]. Processing media objects on
servers is partially supported by some object-
relational DBMS [5–7].
Media assets

Existing Internet
Infrastructure

Clients retrieving /
publishing media
assets

Fig. 1. Common usage of the internet as an MMIS platform.
In contrast to the client/server paradigm, the
P2P paradigm relies on a network of coequal
peers. Peers can be functionally equivalent, but
also specialized on a specific subtask of an
application. They can call each other (delegation)
and, in the case of functional equivalence, also
replace each other (redundancy). In many P2P
architectures, there is some kind of registry
allowing to integrate or remove peers dynamically.
Only recently, some P2P applications like the
popular file-sharing networks have gained a lot of
attention. The primary objective of file-sharing
networks is realizing the distributed storage and
management of media files with some limited
content-based access like searching by artist, title,
etc. The P2P architecture makes it possible to get
by with very few central components (e.g., Napster
[8]) or even to do without them (e.g., Gnutella [9]).
There are other recently developed concepts for

distributed computing like component-based me-
tacomputing [10], web services [11,12], or the
famous Seti@Home project [13], which still have
to be evaluated for usefulness and deployment in
web-based MMIS. Today, media processing func-
tions are usually realized by client modules which
rely on certain system software or special devices to
be present (and available). Therefore, it is difficult
to simply put these functions on the most advanced
distributed computing architectures, because they
are not enabled for cooperation with remote
services—not to mention, dynamic detection and
employment of remote functions. This is mostly
true also for MM-DBMS which provide some kind
of media processing functionality [5,14,15]. Despite
the development of quite advanced abstract data
models [16,17] these systems still assume a homo-
genous server environment, thus disregarding
global distribution aspects, heterogeneity, redun-
dancy, P2P concepts, dynamic extensibility, etc.
These aspects, however, have driven the develop-
ment of the concept of transformation indepen-
dence [18], which we will briefly introduce below.
2. Objectives

The general functionality of a web-based, open,
heterogeneous, and dynamically extensible MMIS



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466446
can be described as multimedia metacomputing
[19]. Fig. 2 shows a typical application scenario of
such a system.
At first, a content-based query is sent to a search

engine 1 . The search engine processes the query
and returns a list of references to relevant media
objects to the client. The realization of such search
engines is an issue of current information retrieval
research and, hence, not addressed in this paper.
Next, the application (or the user, resp.) has to

decide on the subsequent actions regarding the
media objects found, e.g., whether—and how—to
present them on the client. These actions are
described in the form of a so-called trans-

form&deliver request, which is transmitted to the
multimedia metacomputing service 2 .
The multimedia metacomputing service inter-

prets the transform&deliver request and then
accomplishes the following tasks 3 :
�
 locating the requested media objects, i.e., their
physical representations,
�
 locating processing resources that are able and
willing to execute the requested (or required)
media operations,
Media Processing ResourcesMedia Processing Resources

Client
Application

Metadata
Media Processing Resources

4 2

3

Fig. 2. Principle of multim
�

W
M
E

edi
computing an optimal plan for executing the
media operations,
�
 activating the data and processing resources
(instantiation) and establishing the necessary
data channels between them (interconnection).

The execution of the media operations starts
either automatically after completion of the
planning and instantiation phase or not until
receiving a start signal from the client. The
delivery of the processed media objects to the
client 4 is generally somewhat delayed, depending
on the size of the intermediate buffers between the
processing steps, the processing time, and possibly
synchronization constraints.
The whole extent of research issues to be

addressed in the realization of multimedia meta-
computing is still increasing. The retrieval problem
and the distributed component architectures alone
are areas with high activity in research commu-
nities and industrial labs. In this paper, however,
we focus on a different problem: the ‘‘semantic
gap’’ between the application-oriented trans-
form&deliver requests and the application-neutral
basic technologies like database systems, web and
Global Media Assets (MM-DBorDL)Global Media Assets (MM-DBorDL)

General Scenario:

Find media assets
"Transform & Deliver" Request
Find, integrate, and Instantiate
Media Processing Resources
Deliver Requested Media

eb based
etacomputing
nvironment

Search
Engine

Global Media Assets (MM-DB or DL)

1

1

2

3

4

a metacomputing.



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 447
media servers, component-based middleware, etc.
This gap has to be closed by an integrated data
and processing model that solves the following
problems:
�
 Specification of media transformations. Having
no or just incomplete knowledge of the physical
representation of media objects, the users
should still be able to form these objects
according to their imagination. Consequently,
transform&deliver requests have to be based on
a model allowing the semantically precise
specification of media operations without refer-
ring to the interfaces of software modules that
implement the operation or other hidden
resources like, e.g., alternative representations
of the media objects.
�
 Automatic detection of required operations. Due
to their incomplete knowledge, the applications
are not able to specify all operations required
for the desired media transformations directly.
Generally, there can be several soft- or hardware
modules within the MMIS providing a specific
processing functionality. Hence, a—not neces-
sarily deterministic—mapping between the more
or less descriptive specification of media trans-
formations as a transform&deliver request and
the available processing resources is required.
For this reason, an important issue is how to
describe the functionality of a processing
resource such that an algorithm can decide
whether it can perform a certain media trans-
formation or not.
�
 Dynamic connection and coordination of different

processing resources. Generally, complex media
transformations are realized by dynamically
combining different processing resources to
form a chain or graph of ‘‘media processors’’.
This concept, which we also call coordinated

joint processing, has both logical and physical
implications. At the logical layer, the functional
properties of processing resources have to be
considered, resulting in a model supporting the
dynamic synthesis and refinement of complex
media transformations. At the physical layer,
especially distribution and heterogeneity aspects
have to be addressed. For instance, the servers
on which processing resources are employed as
part of a coordinated joint processing must be
interconnected by sufficiently reliable and fast
networks. These processing resources must also
be able to communicate using common proto-
cols in order to exchange and to synchronize
media streams where required (e. g., if two
streams meet at one processing resource).

In the remainder of this paper, we will
particularly address theoretical foundations for
multimedia metacomputing. In Section 3, several
general media data abstractions described in the
literature are discussed. We point out that our
newly developed abstraction concept of transfor-
mation independence is crucial for the multimedia
metacomputing approach. Accordingly, the Vir-
tualMedia concept, a formal realization of trans-
formation independence, is presented in Section 4
in some detail. Section 5 considers the formaliza-
tion of VirtualMedia focusing on the fundamental
definitions, followed by some ideas on advanced
request processing issues discussed in Section 6.
We conclude the paper in Section 7, also
summarizing some results of the architectural
considerations already presented in [19].
3. Media data abstractions

A major requirement that immediately follows
from the given objectives is data independence.
This abstraction concept is realized in most
today’s DBMS in order to support a variety of
external representations of the data that are
specific to a certain application or host language.
Media data, however, is usually composed of
binary raw data and structured registration data
which provides information that is required to
interpret the raw data appropriately, e. g., a
format identifier. Hence, it is reasonable to
distinguish between logical and physical data
independence [20]. Logical data independence
means that all metadata (from which the registra-
tion data is only a part) is modeled and managed
independently from the format of the raw data.
This requires, e.g., a logical addressing scheme
allowing references to spatial or temporal coordi-
nates within the raw data that are stable even in



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466448
the case of a format conversion. If content-based
features of the media object are included in the
metadata, it is also possible to support content-
based searching independently from the raw media
data.
Physical data independence, however, is tar-

geted directly on the physical representation of the
media object, i.e., the internal structure or schema
of the raw data, which is also often referred to as
format or encoding. Therefore, we generally use the
term format independence as a synonym for
physical data independence. In our application
scenario, format independence is crucial because
of the contradicting requirements of clients and
servers regarding the properties of the media
formats:
�
 The servers need lossless, universal formats that
preserve the highest data quality and support all
possible operations with a maximum of perfor-
mance and quality of service.
�
 The clients usually need special-purpose formats
that are optimal for a given presentation device,
internet connection or other specific constraints
including data compression and reduction of the
data quality, e.g., image size or frame rate
reduction.

Until today, format independence has only been
realized successfully when the overall functionality
of the system, i.e., the variety of media operations
supported, was almost reduced to zero. That
means, the systems were able to deliver (and
receive) media objects in different formats and
quality, but without providing any further func-
tionality (except searching on metadata) [15,20].
This phenomenon which we call the format
independence problem is due to the following
three implications of format independence:
1.
 With format independence, each media object
that is to be stored in the system has to be
converted into a system-determined internal
format. This does not only cause a significant
loss of performance, but also a potential loss of
quality because some very popular compressed
media formats like JPEG or MPEG can not be
exactly (or at least with equal quality) restored
from the uncompressed data.
2.
 The optimization of a sequence of media
operations can not be left to the clients, if the
internal format is not revealed. However, with-
out an algebra that allows semantic optimiza-
tion, the system can not effectively optimize the
operations either.
3.
 Operations may have side effects that can not
be reversed. For instance, an operation may
update a media object, e.g., applying a smooth-
ing-filter on an image, in a way that renders the
object useless for other clients.

Fortunately, none of these implications is
mandatory—they rather depend on the traditional
method of realizing format independence which
was adopting the realization of data independence
in common DBMS. With the introduction of the
concept of transformation independence [18], it was
shown that format independence is achievable
without running into the problems mentioned
above. The pivotal innovation of transformation
independence is to abandon the traditional data-
centric approach in favor of a more dynamic,
operation-centric view. In this approach, format
independence is supported by a very flexible
materialization concept that distinguishes between
primary, secondary, and derived representations of
media objects. The primary representation is
identical with the original external representation
of the media object and protected from any kind of
modification, thus avoiding the first and the third
implication stated above. The other two kinds of
representation may be used for any other purpose
like optimization or semantic extension (e.g.,
providing an alternative representation of a media
object). Furthermore, a specific processing concept
is defined that poses basic requirements on all
media operations like being free of side effects and
randomly combinable. Operations that meet these
requirements are called media filters. An arbitrary
combination of such filters applied to a set of
media objects is called a transformation request

or—if it is directly executable—a media transfor-

mation. The idea behind this distinction is that a
transformation request must only express the
semantics of an application and that algebra is
provided to enable the system to transform the
request into a semantically equivalent media



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 449
transformation. Besides the semantics-based opti-
mization this request processing can also include
cost-based optimization.
The data model implied by transformation

independence is more generic than other media
data models, which is a tribute to the fact that
the—both formal and semantic—polymorphism of
media objects in an environment as described in
the previous section is at most partially predict-
able. These generic features in particular prevent
the realization of transformation independence
based on existing models that already support data
independence like, e.g., the MADT (media-specific
abstract data types) concept [21]. Hence, a new
media data model that is fully based on the generic
concepts of transformation independence has been
developed.
4. The VirtualMedia concept

The VirtualMedia concept is particularly tar-
geted at realizing transformation independence in
a distributed, heterogeneous (e.g., Web-based)
MMIS. Generally, VirtualMedia addresses API,
data model(s), architecture, DBMS-integration,
optimization, protocol, visualization, and inter-
operability issues. However, using a small exam-
ple, the following introduction mainly focuses on
API, data model, and optimization concepts.
This section is divided into three subsections

dealing with the following fundamental aspects:
�
 Transformation requests. How can a user de-
scribe his media processing needs independently
from implementation details?
�
 Filter graphs. How can media transformations
be formally modeled?
�
 Request processing. What are the semantic and
formal foundations for the transformation of
filter graphs?

4.1. Transformation requests in VirtualMedia

To illustrate the major aspects of the Virtual-
Media concept a continuous example is being
used. As mentioned before, accessing a virtual
media object requires creating an appropriate
transformation request and sending it to a
VirtualMedia-enabled server. Only semantics,
logical structure, and general media type informa-
tion on media objects (MO) may be exposed to
the clients. Hence, VirtualMedia uses a kind
of media description language suited for
specifying media transformations at this abstrac-
tion level.
Fig. 3 shows the VirtualMedia transformation

request for our example, thus illustrating some of
the major features of the VirtualMedia markup

language (VMML). In VMML, a transformation
request is called a VirtualMedia descriptor (VMD).
Starting with the semantics of this sample request,
assume a video object is stored in the database and
shows a talk given by a famous scientist. A client
of the database wants to hear this talk, but for
whatever reason she only wants to hear the voice
without watching the video and, additionally, she
would like to have a textual transcript of the talk
displayed on her screen.
To accomplish this task, the request first

references the video object as a source MO.
Because this MO is well known to the server,
specifying any type information is optional and,
thus, omitted. Next, the request specifies the two
target objects as VirtualMedia objects (VMO).
Because both of these must be materialized at the
client, exact type information is required for the
external format which is given by specifying a
media signature. Optionally, a media signature
may include quality properties as demonstrated
with the second VMO and content properties (see
first VMO).
The transformation section is mandatory for

each VMO, because even if there is no explicit
transformation operation to be specified (as with
the second VMO), it must be present defining at
least one source object from which the VMO is to
be materialized. Note that one could also think of
replacing the ‘‘implicit’’ operation by some other
operation that separates the audio part from the
video part of the source MO. Thus, by omitting
this operation we rely on the server to find an
appropriate default operation for extracting the
audio. This is a reasonable assumption if the video
has only one audio track. Otherwise (if, e.g.,
multiple languages are provided), it would indeed



ARTICLE IN PRESS

Fig. 3. A sample transformation request (VirtualMedia descriptor).

U. Marder, T. Härder / Information Systems 30 (2005) 444–466450
be necessary to refine the second transformation
section.
Any VMO and any intermediate object (named

transformation or named operation output) may
be chosen as input to operations. The only
restriction is, of course, that no media object
may be input to itself, neither directly nor
indirectly. To build such source-target relation-
ships, multiple transformation sections (within one
VMO) and multiple operation sections (within one
transformation section) are allowed. With respect
to the introductory character of this article, the
example does not further demonstrate these
advanced features.
Effectively, a (successfully verified) VMD de-

scribes a directed acyclic graph (DAG). Source
objects become start nodes, operations become
intermediate nodes, and only VMOs become end
nodes of this graph. The edges are derived from
the source-target relationships. Therefore, this
graph structure is a suitable internal model for
describing any media transformations requested
through VMDs.

4.2. The filter graph model for media processing

Modeling and realizing the processing (i.e.,
transformation) of media objects as filter graphs
is a well-known principle in theory [22,23] and
practice [24,25]. However, to our knowledge it has
never before been applied to model abstract media
data types. In this section, we first present a short,
informal overview of the model to support the
comprehensibility of the example. More details



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 451
regarding the formalization of the model follow
later on in Section 5.

4.2.1. Filter graphs

A filter graph is directed and acyclic (cf. Fig. 4).
The start nodes of the graph are media producers
pi (media objects stored in the database or
anywhere else, maybe even live media sources)
and the end nodes are media consumers ci (most
often client applications or the database). The
intermediate nodes are media filters fi, the basic
building blocks of a media transformation, while
the edges of the graph represent media streams
flowing from one filter (or media producer) to
another filter (or media consumer).
It is easy to define an isomorphism between the

graph representations of VMDs and filter graphs.
This, however, would not correctly reflect the
corresponding semantic relationship. A filter
graph specifies an instantiatable media transforma-
tion, whereas a VMD describes a virtual media
transformation (thus, we could call the corre-
sponding graph a virtual filter graph). ‘‘Instantia-
table’’ means that each media producer is a unique
materialization, each filter has a determined
implementation, and all input data formats meet
the respective requirements. Hence, if we assume
that for each source object in a VMD exists at least
one materialization and for each operation exists
at least one implementation, then the conclusion is
that for this VMD exist n semantically equivalent
filter graphs (nA[0UUN]). Consequently, Virtual-
Media’s main optimization problem is finding the
optimal filter graph for a given VMD (if one
exists). The optimality criterion may vary from
P
C

F

p
1 f

1

c
1

p
2 f

2 f
3

e
1

e
2

e
3 e

4

e
6

e
7

f
4e

5

Fig. 4. Illustration of the filter graph model.
very simple (e.g., minimize the graph size) to very
complex (e.g., minimize the execution costs) as
long as it can be evaluated for any given graph.

4.2.2. Data model for media objects and filters

To support the transformation of request graphs
into instantiatable filter graphs, a data model for
virtual filter graphs is introduced. Such a Virtual-
Media filter graph may contain both virtual
elements and real (or instantiatable) elements.
We define an object-oriented data model de-

scribing media object types and media filter types.
The MO part of the model does not define a
(traditional) media type hierarchy. Instead, all
attributes of an MO like main type, subtype,
encoding, and further optional characteristics are
modeled as properties which may be dynamically
assigned to MOs as a signature (generally denoted
with s). The assignment of contradictory proper-
ties may be prevented by defining appropriate
constraints. We believe that this approach is more
flexible and extensible than a type hierarchy built
on inheritance and, thus, better supports the
framework character of VirtualMedia.
The filter part of the data model describes both

virtual filters and instantiatable (implemented)
filters. A filter is characterized by its functional
and non-functional properties. The functional
properties are defined as a set of input and output
signatures. These signatures are interpreted differ-
ently depending on the filter being virtual or
instantiatable. If a virtual filter specifies input or
output signatures, these are considered as part of
its semantics. If an instantiatable filter specifies
input or output signatures, it specifies requirements

on actual input-MOs and assertions on actual
output-MOs. That means, a filter implementing a
virtual filter is not required to specify ‘‘compati-
ble’’ signatures. To give an example: let the virtual
filter F state that its input should be audio, then we
could imagine an implementation of F accepting
video as input (but, of course, affecting only the
audio part).
By non-functional filter properties we mean

features like resource consumption, computational
complexity, or quality degradation. Considering
such properties when processing requests sounds
reasonable. How this should be realized, however,



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466452
has not yet been examined in detail. Whether there
exist meaningful non-functional properties of
virtual filters that are to be modeled and con-
sidered by graph transformation rules is also still
an open question.
Resuming the continuous example, the VMD

(Fig. 3) may now be translated into a request
graph according to the data model introduced
above. The resulting graph is shown in Fig. 5. The
start node p1 of this graph is the video object which
is the source object of the transformation request.
The two virtual objects of the transformation
request become end nodes c1 and c2 of the graph.
The end nodes are attributed with the requested
MO signatures. The transcript operation specified
in the request is turned into an according virtual
media filter f1, which is placed within the data flow
from the source object to the text object c2. At this
time, f1 must be virtual because its input and
output signatures are not given.

4.3. Request processing

In the following, we describe some characteristic
steps performed during request processing. The
general goal of this process is to find a semantically
equivalent graph containing instantiatable filters
instead of virtual filters and materializations
instead of VMOs. Thus, we have to consider
how materializations should be represented in the
: :
[Typespec][Typespec]

Maintype=Audio Maintype=Text
Subtype=Waveform Subtype=Plain
Encoding=WAV Encoding=UTF-8
[Quality]
Sampling_Frequency=44100
Sample_Depth=16

f
1
: Transcript

p
1
: CNN_Vi-

deos/4711

c
2
: Transcr-

iptedSpeech

c
1
: Speech σ

c1

σ
c1

 σ
c2

 σ
c2

Fig. 5. A sample VirtualMedia request graph.
VirtualMedia model and how to get rid of the
‘‘virtual nodes’’ in request graphs.
4.3.1. Materialization graphs

For representing the materialization of VMOs,
we use the same data model as introduced above.
That means, a so-called materialization graph of a
VMO describes how certain physical data objects
form the materialization of this VMO. Fig. 6
shows a possible materialization graph for the
VMO ‘‘CNN_Videos/4711’’ of our example.
As mentioned earlier, we distinguish three types

of materialization: primary, secondary, and de-
rived materialization. The first two types occur in
Fig. 6: p2, p3, and p4 are primary materializations
and p5 is a secondary materialization. Primary
materialization is supplied at the time of creation
of the VMO and is assumed to provide the
maximum available quality of the VMO. Conse-
quently, this materialization may not be altered or
destroyed unless the VMO is destroyed itself. On
the other hand, secondary materializations are
either created by the server for optimization
purposes, usually without informing the applica-
tions, or by a user in order provide an alternative
representation. Hence, the server may create
secondary materializations whenever this seems
likely to improve the system’s performance. As
shown in the example, materialization graphs can
also contain media filters. In contrast to the
transformation request graph, however, these
media filters may already be instantiatable like f4.
This is possible because the input data formats of
materializations are always known.
4.3.2. Graph transformation

Generally, there are two kinds of graph trans-
formations called (1) replacement (of one node by
another one or by a subgraph) and (2) adjustment
(adding or removing one or two nodes). The
replacement steps are the driving parts of the
transformation, because the ‘‘virtual nodes’’ are
replaced by (more) real ones. Any replacement
may induce a number of adjustment steps neces-
sary to make the signatures compatible.
Thus, in the case of the example, the following

two tasks are to be accomplished:



ARTICLE IN PRESS

p
2
: 4711/sound

p
3
: 4711/clip1

p
4
: 4711/clip2

p
5
: 4711/scnd1

p2

p3

p4

p5

f
3
: Compose

f31

f
4
: Assemble

f41 f42

f32

f33

c
3
: CNN_Vi-

deos/4711

c31

c32

p2
:

p3
,

p4
,

f41
,

f42
:

p5
,

c32
:

f32
:

[Typespec] [Typespec]
Maintype=Audio Maintype=Video

[Typespec]
Maintype=Video

[Typespec]
Maintype=Video

Subtype=Waveform Subtype=SingleStream Subtype=MultipleStream Subtype=SingleStream
Encoding=WAV Encoding=MJPEG Encoding=AVI

[Quality]
f33

,
c31

:

Channels=Stereo
f31

: [Typespec]

Sampling_Frequency=44100 [Typespec] Maintype=Video

Maintype=AudioSample_Depth=16 Subtype=MultipleStream

σ σ

σ

σ

σ

σ
σ

σ

σ σ

σ

σ σ σ σ σ σ σ σ

σ σ
σ

Fig. 6. A sample VirtualMedia materialization graph.

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 453
1.
 finding an appropriate materialization of the
object ‘‘CNN_Videos/4711’’, and
2.
 replacing the virtual filter ‘‘Transcript’’ with its
optimal (if several are found), semantically
correct implementation.

Having a transformation request graph and a
matching materialization graph we can merge
them by unifying the corresponding VMO-nodes
p1 of the request graph (Fig. 5) and c3 of the
materialization graph (Fig. 6). (This is not fully
shown in the following figures due to space
limitations.) The resulting graph now offers
different materializations to be alternatively uti-
lized in fulfilling the request. The final choice
depends on the subsequent process of finding
implementations for virtual filters and adapting
media stream types and formats.

Semantic equivalence relations. The graph trans-
formation is driven by rules which are derived
from a number of equivalence relations concerning
(sets of) filters and MO-signatures. These equiva-
lence relations are considered being part of the
VirtualMedia data model (cf. Section 5.5).
Notice that, how ever we constitute our data

model and equivalence relations, they will prob-
ably not conform to any application’s semantics.
This is because such an abstract model can not
consider all the media properties an application
might depend on. Hence, an application program-
mer should be aware of this model and the
equivalences it defines in order to avoid erroneous
transformation requests. Because application neu-
trality is a major objective of VirtualMedia in
order to be applicable in a multimedia metacom-
puting environment, only such equivalences are
defined on which the majority of applications
could agree.
There are three basic semantic equivalence

relations:
�
 Semantic neutrality. Classifying a filter as being
semantically neutral means it may (in principle)
be inserted anywhere in a VirtualMedia graph
(or removed) without changing the semantics of
the graph. Obviously, putting all the format
conversion filters in this equivalence class is
crucial for automatic format adaptations to
work. Actually, the formal VirtualMedia
model defines several different context-sensitive
(with respect to media signatures) varieties of
semantic neutrality by distinguishing between



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466454
content neutrality, quality neutrality, and type
neutrality.
�
 Semantic reversibility. Some filter operations are
reversible by corresponding inverse filters. This
means, connecting a reversible filter with its
inverse filter yields a semantically neutral filter
pair. Hence, if such a pair occurs in a
VirtualMedia graph it may be removed safely.
At first glance, inserting such a pair does not
appear to make much sense. An important
exception, however, is the composition and
decomposition of multiple-stream MOs, which
is discussed below.
�

2The formal definition of the signature distance function D is
presented in Section 5.3.
Semantic permutability. If the sequence in which
two filters are applied to an MO does not
matter, they are permutable without changing
the graph semantics. Besides being stated a
priori, permutability may also be stated ad hoc
in a transformation request: a single transfor-
mation can contain several operations on the
same source. If there are no specified input/
output dependencies between these operations,
they are considered permutable. Instead of
permuting such permutable filters it is also
possible to merge them in a multiple-filter node
(super-filter), thus deferring the decision on the
actual sequence to a secondary optimization
step.

All these basic relations only lead to adjustment
rules. To continue our example, however, we need
a replacement rule for exchanging the virtual
transcript-filter. This rule is based on a relation
called semantic assimilation.

Semantic assimilation. The semantic equivalence
between a virtual filter and a possible implementa-
tion of this filter is called semantic assimilation
(cf. Fig. 7). The implementation of a virtual filter fv

consists of an instantiatable filter fi implementing
the semantics of fv and an arbitrary number of
additional filters. The additional filters may be
located before and after fi. They must either be
semantically neutral or otherwise a filter f before fi

must be followed by its inverse f�1 after fi where
(f, f�1) conform to the generalized reversibility
semantics (explained in the following section on
(de-)composition). An implementation is called
complete if (1) all filters are instantiatable, and (2)
the signature distance2 between start and end point
of all edges is zero.
The primary rule derived from the semantic

assimilation relation is that a virtual filter may be
replaced by another filter with the same semantics,
but more specific signatures. Afterwards, some
adjustment rules may be applied to ‘‘complete the
implementation’’.
Fig. 8 shows (a part of) the example graph after

replacing the virtual transcript-filter with a suita-
ble non-virtual version. Note that the signature sp1

of the VMO has been gained from merging the
request graph with the materialization graph.
The non-virtual transcript-filter provides a

signature sf 11 for the input MO and a signature
sf 12 for the output MO. While the output
signature matches the client’s request, i.e., D(sf12,
sc2)=0, the input signature does not match the
signature of the source MO, i. e., D(sp1, sf11)40,
because the Maintype properties are different.
Any reasonable implementation of the tran-

script-operation will most probably operate on
audio data. Hence, it is quite unlikely that a
transcript-filter exists with D(sp1, sf11)=0. There-
fore, an adjustment step is required to complete
the implementation of the virtual transcript-filter.
Because the transformation request does not
specify how the video object is to be converted
into an audio object, the request processing
algorithm is free to find a suitable converter. In
our case, the source MO is a composition of
several sub-MOs which is indicated by the
property ‘‘Subtype=MultipleStream’’. Such MOs
can be decomposed to restore the various sub-
MOs. In order to see how this fact can be exploited
for adjustment, the specific semantics of composi-
tion and decomposition have to be considered.

(De-)Composition semantics. Filters that com-
pose or decompose multiple-stream MOs work
without information loss (by definition). That
means, for example, that a decompose-filter must
not only provide all the single streams but also the
synchronization information. Thus, compose- and
decompose-filters are reversible. Because no in-
formation gets lost, they are also kind of



ARTICLE IN PRESS

a v1 fv: op v2 b

a i1 fi : op i2 b

Assimilation

Additional filters must
be semantically neutral

Conditions:
 σ

 σ
 σ

 σ

 σ σ σ σ

 σ  σ  σ  σ v1 must be equally or more

specific than i1 and 

v2 must be equally or more

specific than i2

(in at least one case "more").

Fig. 7. Illustration of semantic assimilation.

f
1
: Transcript

p
1
: CNN_Vi-

deos/4711

c
2
: Transcr-

iptedSpeech
c2

p1

f12

f11

p1
:

[Typespec] [Typespec]
Maintype=Audio Maintype=Audio
Subtype=MultipleStream Subtype=Waveform

Encoding=WAV
[Quality]
Channels=Mono

σ

σ σ

σ

σ

f11
:σ

[Typespec]
Maintype=Text
Subtype=Plain
Encoding=UTF-8

f12 :σ , c2σ

Fig. 8. Assimilation of the transcript-filter.

3Assuming the (simple) criterion ‘‘use the minimal number of

filters to solve the given request’’.

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 455
semantically neutral. Anyhow, only two of four
possibilities to insert/remove a (de)compose-filter
are reasonable (cf. Fig. 9), which is the reason why
the graph transformation arrows are pointing only
to the right.
The semantic reversibility of (de)compose-filters

may be exploited for applying filters to single sub-
MOs of a composed MO. In case 1 (cf. Fig. 10), a
filter f gets embraced by a decompose/compose
pair (f may as well represent a whole subgraph).
Thus, the definition of reversibility is generalized
in a sense that all other filters (i. e., not only
neutral filters) are allowed in-between a decom-
pose/compose pair which is newly inserted into a
VirtualMedia graph. In case 2, the embracement
of a multiple-filter node is shown. The filters in a
multiple-filter node may apply to different sub-
MOs of a composed MO (depending on their
signature). Because the filters are classified as
permutable, there are by definition no semantic
dependencies between them. Hence, it is possible
to split the multiple-filter node when it gets
embraced by a decompose/compose pair.
We may now continue our example by applying

the rule of Fig. 9, case 2, as the first adjustment
step. This results in a graph with a newly added
decomposition filter, which is (partly) depicted in
Fig. 11.
The next adjustment step exploits the reversi-

bility relation between composition and decom-
position filters in order to simplify the current
graph (adjustment by reduction). Fig. 12 motivates
this by showing another excerpt of the graph in
Fig. 11 shifting the focus to the composition filter
f3 (originating from the merged materialization
graph) and the newly inserted decomposition filter
f2. Because the VMO node p1/c3 between these two
filters is functionally neutral, they are actually
direct neighbors neutralizing each other semanti-
cally. Thus, we can eliminate both the composition
filter and the decomposition filter (and, of course,
also the VMO node).

Concluding the example. There is now only little
work left to complete the optimal3 solution of our



ARTICLE IN PRESS

f: Composef1 f2

a

b

c a c

Case 1: Remove f, if ∆ σ

σ
σ

σ σ σ σ σ σ

σ σ σσσ

σσ

σ

σ

σ σ σ

σ
σ σ σ(

a
,

c
) < ∆(

f2
,

c
).

This includes removing the subgraph represented by
b
.

Case 2: Add f, if ∆ ∆(
a
,

f1
) = 0 and (

f2
,

b
) < ∆(

a
,

b
),

where 
f2

is the best matching output signature of f.

a b a f: Decomposef1 f2 b

Fig. 9. Exploiting the semantic neutrality of (de-)composition filters.

a fg1 fg2

d1 fd :Decompose

d3

d2 c1 fc : Compose

c2

f1 f f2

Case 1: Add fd and fc, if ∆( a, d1) = 0

and ∆( a, f1) > ∆( d3, f1).

g

f

a f1 f

a

f2

a d1

d3

f
d
: Decomp. d2 c1 fc: Comp.

c2

f1 f f2

g1 g g2

d4 c3

Case 2 (multiple-filter node): Add fd and fc, if ∆( a, d1) = 0

and ∆( a, f1) > ∆( d3, f1)

and ∆( a, g1) > ∆( d2, g1).σ σ σ

σ σ

σ

σσ

σ

σσ

σ σ σ σ σ σ

σ σ

σ

σ
σ
σ σ

σ

σ

σ

σ

σ

σσ

σ

σ

σ

σ

σσ

σ

σ

σ σ

σ

Fig. 10. Exploiting the semantic reversibility of (de-) composi-

tion filters.

U. Marder, T. Härder / Information Systems 30 (2005) 444–466456
example. After removing the compose/decompose
pair the (primary) materialization p2 of the sound-
track of the video becomes directly connected to
both the transcript filter f1 and the end node c1
‘‘Speech’’. Thus, we find that D(sp2, sc1)=0, but
D(sp2, sf11)40. However, the non-zero result in
the latter evaluation only comes from a different
value of the quality property ‘‘Channels’’ (stereo
vs. mono). Hence, assuming a suitable4 converter
filter is available, we perform a final adjustment
step by adding this filter between p2 and f1
(adjustment by addition). Fig. 13 shows the
resulting final media transformation graph realiz-
ing the sample transformation request (cf. Fig. 3).
In this section, we demonstrated (by example)

how the transformation request processing is
expected to work. The basic rules driving this
process have been introduced and their application
has been shown by example: An implementation
of the virtual transcript-filter is found by semantic
assimilation. The optimal source object is found by
exploiting both semantic neutrality (insertion of
the decomposition filter) and semantic reversibility
of (de-)composition filters (elimination of the
compose/decompose pair). Finally, a format
adaptation is realized by inserting a semantically
4This filter (in this example called ‘‘Audio2mono’’) should

match the given signatures sp2 and sf 11 and must be classified as

‘‘content-neutral’’.
neutral (more precisely: content-neutral) conver-
ter. To automate this process a complete forma-
lization of the VirtualMedia concept has been
developed.



ARTICLE IN PRESS

p1
,

f21
:

f11
:

f22
:

f12
,

c2
:

f
1
: Transcript

p
1
: CNN_Vi-

deos/4711

c
2
: Transcr-

iptedSpeech
c2

p1

f12

f11

f
2
: Decompose

f21

f22

[Typespec]

[Typespec]

Maintype=Audio

Maintype=Audio
[Typespec]
Maintype=Video

[Typespec]
Maintype=Text

Subtype=WaveformSubtype=MultipleStream Subtype=Plain
Encoding=WAV Encoding=UTF-8
[Quality]

Channels=Mono

σ σ

σσ

σσσσ

σ

σ

σ

σ

Fig. 11. Decomposition of the video object added.

p1
,

f21
,

f33
,

c31
:

p2
:

f31
,

f22
:

p
2
: 4711/sound

p
1
/c

3
: CNN_

Videos/4711

f
3
: Compose

f31

p1

p2

c31

f
2
: Decompose

f21

f22

f33

[Typespec][Typespec]
Maintype=AudioMaintype=Video
Subtype=WaveformSubtype=MultipleStream
Encoding=WAV
[Quality]
Channels=Stereo

[Typespec]
Maintype=Audio

σ

σ

σ

σ

σ

σσ

σ σ σ σ σ σ σ

Fig. 12. The composition filter f3 neutralized by a decomposi-

tion filter f2 (p1/c3 is a neutral VMO node).

c
2
: Transcr-

iptedSpeechc2

c
1
: Speech

c1
p

2
: 4711/sound  σ  σ

 σ

 σ

 σ

 σ  σ

p2

f
1
: Transcript

f12

f11

f
5
: Audio2mono

f52

f51

σ

 σ  σ  σ

 σ  σ  σc1: p2
:

c2
,

f12
:

[Typespec] [Typespec] [Typespec]
Maintype=Audio Maintype=Audio Maintype=Text
Subtype=Waveform Subtype=Waveform Subtype=Plain
Encoding=WAV Encoding=WAV Encoding=UTF-8
[Quality] [Quality]
Sampling_frequency=44100 Channels=Stereo
Sampling_depth=16 Sampling_frequency=44100

Sampling_depth=16

f51: f52, f11:
[Typespec]
Maintype=Audio
Subtype=Waveform
Encoding=WAV
[Quality]
Channels=Stereo

[Typespec]
Maintype=Audio
Subtype=Waveform
Encoding=WAV
[Quality]
Channels=Mono

Fig. 13. The final media transformation graph.

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 457
5. Formal model

5.1. Introduction

In this section, the formalization of the Virtual-
Media concept is briefly presented. The formal
foundation include
�
 the general structure and semantics of Virtual-
Media graphs and
�
 the definition of media-specific semantics by
means of properties and signatures.

Advanced aspects of the formalization include a
comprehensive set of media-specific semantic
equivalence relations, complexity calculations,
heuristic score functions and their application in
request processing, a hierarchical metadata sche-
ma, materialization management, and the defini-
tion of the query language VMML. For brevity,
we only present the formalization of one equiva-
lence relation and discuss the general ideas of
request processing optimization. For a complete
presentation of the model refer to [26].
The formalization is based on traditional

algebra and first-order predicate logic. Therefore,
it can be easily realized using common program-
ming languages. Moreover, common heuristic
problem solving approaches [27] are applicable in
a straightforward manner. The following subsec-
tion starts the formalization by first defining the
general structure and semantics of VirtualMedia
graphs.



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466458
5.2. VirtualMedia graph

A VirtualMedia graph (VMgraph) G is a tuple
(V, E). V is a set of nodes; E is a set of directed
edges. G is free of cycles, i.e., G is a directed acyclic
graph (DAG). The edges represent channels
transmitting media objects, while nodes represent
resources that produce, consume, filter (process,
manipulate) or distribute media objects.
An edge eAE can alternatively be described as a

tuple (u, v), where uAV identifies the start node
and vAV identifies the target node of the edge.

5.2.1. Producers, consumers, and filters

Generally, the nodes of a VMgraph can be
subdivided into source, sink, and intermediate
nodes building mutually disjoint subsets of the
node set V (cf. Fig. 4). In the VirtualMedia model,
each of these subsets gets assigned the specific
semantics of producers, consumers, and filters,
respectively. In the following paragraphs these
semantics are formally defined.

Producers. The set of producers PCV contains
all nodes having no incoming edges, formally,

P ¼ fp 2 V j9u 2 V : ðp; uÞ 2 E ^ :9v

2 V : ðv; pÞ 2 Eg:

Given that G is acyclic, we conclude:
Va+ ^ Ea+ ) Pa+ ^ P � V .

Consumers. The set of consumers KCV contains
all nodes having no outgoing edges, formally,

K ¼ fk 2 V j9u 2 V : ðu; kÞ 2 E ^ :9v 2 V : ðk; vÞ 2 Eg:

Given that G is acyclic, we conclude:
Va+ ^ Ea+ ) Ka+ ^ K � V .

Filters. The set of filters FCV contains all nodes
having a minimum of one incoming and one
outgoing edges, formally:

F ¼ ff 2 V j9u; v 2 V : ðu; f Þ 2 E ^ ðf ; vÞ 2 Eg:

Given a VMgraph, the following is true:
F ¼ V \ðP [ KÞ, iff fv 2 V j:9u : ðv; uÞ 2 Enðu; vÞ 2
Eg ¼ +; i.e., if there does not exist a node having
neither incoming nor outgoing edges. In the
following, we generally assume that
F ¼ V \ðP [ KÞ. The predicate Filter, which is
used below, is defined as Filter ðvÞ : 3v 2 F :
5.2.2. Topological classification of filters

We distinguish three topological filter classes:
�
 Basic filters are filters having exactly one
incoming and exactly one outgoing edge. The
corresponding predicate Basic_Filter is
defined as follows:

Basic_Filter(v):3Filter(v)4
(8 x, y A V: (x, v) A E 4 (y, v) A E )

x=y) 4
(8 x, y A V: (v, x) A E 4 (v, y) A E )

x=y).
In Fig. 4, f3 und f4 are basic filters.
�
 Split filters are filters having exactly one
incoming and at least two outgoing edges. The
corresponding predicate Split_Filter is
defined as follows:

Split_Filter(v):3Filter(v) 4,
(8 x, y A V: (x, v) A E 4 (y, v) A E )

x=y) 4
(9 x, y A V: (v, x) A E 4 (v, y) A E 4 x

6¼ y).
In Fig. 4, f1 is a split filter.
�
 Merge filters are filters having at least two
incoming and exactly one outgoing edges. The
corresponding predicate Merge_Filter is
defined as follows:

Merge_Filter(v) :3Filter(v) 4
(9 x, y A V: (x, v) A E 4 (y, v) A E 4 x

6¼ y) 4
(8 x, y A V: (v, x) A E 4 (v, y) A E )

x=y).
In Fig. 4, f2 is a merge filter.
Each filter in a VMgraph has to belong to
exactly one of these classes. Thus, filters with two
or more incoming and two or more outgoing edges
are not allowed. We assume that the semantics of
such so-called merge/split filters can generally be
split into separate merge and split filters.
Note that topological classification does not imply

any specific media semantics, yet. For instance,
classification as a split filter does not specify, in
which way the incoming media stream is distributed
to the outgoing streams. Actually, incoming and
outgoing streams may be completely independent
from each other. While this would be kind of a
pathological case, however, we can still imagine



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 459
different ‘‘reasonable’’ semantics, e.g., distribution of
the incoming media to several outgoing channels
(multicast), or decomposition of the incoming media
into several parts. Hence, the next section introduces
methods to assign more media-specific semantics to
the elements of a VMgraph.

5.3. Media-specific semantics

A VMgraph models media streams being
manipulated by filters. Each edge of the graph
represents one media stream or media object,
respectively. A media object can be further
characterized by a number of individual properties.
A set of such properties fulfilling some yet to
specify conditions is called a media signature or
signature for short.
A producer generates a media object. Hence, its

semantics is sufficiently determined by the signa-
ture of the generated media object. Obviously,
consumers can be treated analogously. The seman-
tics of a filter, however, is not adequately specified
by the signatures of its incoming and outgoing
media streams. In fact, enabling a semantically
correct transformation of VMgraphs requires a
considerably more precise modeling of the different
semantic properties of different kinds of filters.
The following subsections introduce the notions

of properties and signatures formally. The for-
malization of filter semantics, however, can only
be sketched. For a full description see [26].

5.3.1. Properties

We consider properties as symbols from a
(countable infinite) symbol set M. The individual
meanings of the properties do not have to be
defined; therefore, new properties can easily be
introduced. Furthermore, let a special symbol � 2
M denote the empty property.
While individual semantics of properties is not

important for the VirtualMedia model, it must be
possible to classify them according to the typical
elements of media or filter signatures. This is
accomplished by means of predicates, e.g.:
�

5In [26] properties are defined as a structure and an

accordingly refined definition of d is given.
Maintype(p) evaluates to true, iff p 2 M

specifies a media object main type (e.g. Image,
Audio, Video,y), otherwise it evaluates to false.
�
 Subtype(p) evaluates to true, iff p 2 M speci-
fies a media object subtype (e.g. Raster, Wave-

form,Multiplestream,y), otherwise it evaluates
to false.
�
 Encoding(p) evaluates to true, iff p 2 M

specifies a media object encoding (e.g. GIF,
WAV, MPEG, y), otherwise it evaluates to
false.
�
 Operation(p) evaluates to true, iff p 2 M

specifies a filter operation (e.g. Clip, Sharpen,
Extract, Normalize_Volume, y), otherwise it
evaluates to false.
�
 Parameter(p) evaluates to true, iff p 2 M

specifies a (filter-) parameter (e.g. Threshold,
Quantization_Matrix, Tolerance, y), otherwise
it evaluates to false.

Further, we demand that the equality of any two
properties is (easily) computable. Then a property
distance function d : M � M ! f0; 1g can be
defined as follows:5

8p; q 2M : dðp; qÞ ¼def
0 iff p ¼ q;

1 otherwise:

�

More complex distance functions would be
possible (e.g., by exploiting some of the predicates
above), but that is not necessary for the model to
work. However, a second, less strict variant called
dc (where c stands for compatible) is required:

8p; q 2M : dcðp; qÞ

¼
def

0 iff p ¼ q _ p ¼ � _ q ¼ �;

1 otherwise:

(

Compared to the ‘‘normal’’ distance function,
with dc properties have a distance of zero (instead
of one) to the empty property.
5.3.2. Signatures

A signature is a quadruple (m, s, e, O) with m, s,
eAM and OCM. These four signature elements
are subject to the following constraints:



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466460
Definition 1. Let S the set of all signatures, then

8ðm; s; e;OÞ 2 S :

(m A M 4 (m=e 3 Maintype(m))) 4
(s A M 4 (s=e 3 (Subtype(s) 4 m 6¼e))) 4
(e A M 4 (e=e 3 (Encoding(e) 4 s 6¼e))) 4
(8 p A O: :Maintype(p) 4 :Subtype(p) 4
:Encoding(p))

That means, m indicates the main type of the
media object, wherem ¼ � is permitted meaning that
the main type is unknown or not specified. The
second element, s, indicates the subtype. This is,
however, permitted only if a main type is given,
otherwise s ¼ � must apply. The third element, e,
indicates the encoding. This is also permitted only if
a subtype (and, hence, implicitly a main type) is
given, otherwise e ¼ � must apply. The set O, which
may be empty, can contain arbitrary further proper-
ties, however, none of which may indicate a main
type, subtype, or encoding (because these three kinds
of properties may occur at most once in a signature).

Definition 2. Let g=(mg, sg, eg, Og) A S, then the
distance function D : S � S ! Rþ

0 is defined as
follows:

8g; h 2 S : Dðg; hÞ ¼def cmdðmg;mhÞ þ csdðsg; shÞ

þ cedðeg; ehÞ

þcO
jðOg [ OhÞj � jðOg \ OhÞj

jðOg [ OhÞj þ 1

with firmly selected constants cm4cs4ce4co40.
The last condition guarantees that the main type

property gets the highest weight concerning the
signature distance, the subtype property the
second highest weight etc. One can now easily
verify that 8g, h 2 S : g ¼ h3Dðg; hÞ ¼ 0 ^ ga
h3Dðg; hÞ40. Furthermore, if we choose the
constants ci such that ðcm4cs þ ce þ coÞ ^

ðcs4ce þ coÞ is true, then D features the following
additional characteristics:
1.
 8g, hAS: mg 6¼mh3D(g, h)Xcm
2.
 8g, hAS: mg=mh4sg 6¼sh3cm4D(g, h)Xcs
3.
 8g, hAS: mg=mh4sg=sh4eg6¼eh3cs4D(g, h)
Xce
4.
 8g, hAS: mg=mh4sg=sh4eg=eh3D(g, h)
oco.
The benefit of these characteristics is that the
distance value alone already indicates which of the
three type properties are equal or unequal,
respectively. Hence, if two signatures g and h

according to formula (4) meet the inequality
Dðg; hÞoco, then g and h are called type equivalent,
shortly written as gffiT h.
We further define a function Dc analogously to

D by replacing d with dc. Then, if two signatures g

and h meet Dcðg; hÞ ¼ 0, they are called compatible,
in short gffich; because all properties occurring in
both signatures must be equal.

5.4. Assigning signatures to edges and nodes

Let G ¼ ðV ;EÞ be a VMgraph and e ¼ ðu; vÞ
with e 2 E and u, v 2 V an edge of G. Then the
partial function s : E � V ! S assigns to all pairs
(e, u) and (e, v) a signature sðe; uÞ or sðe; vÞ,
respectively. To illustrate this, think of the start
node u as an emitter of a media object with
signature sðe; uÞ and the target node v as an
acceptor of a media object with signature sðe; vÞ.
As mentioned earlier, edges represent channels.

More precisely, we can now state that e ¼ ðu; vÞ

represents a real channel, iff Dðsðe; uÞ; sðe; vÞÞ ¼ 0
applies, thus, a real channel, by definition, is
supposed to leave the signature of the transmitted
media object untouched. However, a real channel
must not necessarily also be instantiatable, because
this would require knowledge of the complete type
information of the media to transmit. Therefore,
an instantiatable channel needs the additional
constraint esðe;uÞa� to be met. If, on the other
hand, Dðsðe; uÞ; sðe; vÞÞ40 applies, then e is called
a magic channel assumed to be capable of
transforming the media object with signature
sðe; uÞ into a media object with signature sðe; vÞ.
In principle, the same effect may be achieved by a
VMgraph, i.e., a magic channel can be replaced by
a VMgraph without corrupting semantics (and
vice-versa). Thus, we may consider a magic
channel as a placeholder for a (usually unknown)
VMgraph.
We assign semantics to the nodes in a similar

way. Two functions { : V ! S2 und o : V ! S2

assign to each node a set of input and output
signatures, respectively. That means: i(v)={s(e, v)



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 461
| ( uAV: e=(u, v)} and o(v)={s(e, v) | ( uAV:
e=(v, u)}. A third function k : V ! M2 assigns to
each node a set of optional properties, where
k(v) 6¼+) ( mAk(v): Operation(m) is assume-
d.As a consequence, we can also distinguish
between nodes representing instantiatable or
virtual processing resources (as a general term
for producers, consumers, and filters): Let
S(v)=i(v) [ o(v)={s(e, v) | ( u A V: e=(u, v) 3
e=(v, u)} be the set of all media signatures directly
associated to the node v. Then v represents an
instantiatable processing resource, iff

8g 2 SðvÞ : ega� ðimplying mga� and sga�Þ:

Let x ¼ ð�; �; �; +Þ be the empty signature. Then,
the following, derived from definitions 1 and 2,
applies

8g 2 SðvÞ : ega�38g 2 SðvÞ : Dðg; xÞ

Xcm þ cs þ ce:

Hence, it follows that v represents a virtual

processing resource, iff

9g 2 SðvÞ : Dðg; xÞocm þ cs þ ce:

Given these measures to distinguish between
magic and instantiatable edges and between virtual
and instantiatable nodes, we can ultimately define
the virtual VMgraph:
A VMgraph is called virtual, iff at least one of

its nodes is virtual or one of its edges is magic.

5.5. Semantic equivalence relations

We can now reformulate the request processing
problem as finding an algorithm to transform a
given virtual VMgraph into a semantically equiva-
lent non-virtual VMgraph. In [26] this semantic
equivalence is formally defined by means of
equivalence relations. For brevity, only one of
these relations is presented here to exemplify their
formalization. All other relations including those
illustrated in Figs. 7, 9 and 10 are defined using a
similar approach.

5.5.1. Neutrality

A filter must never behave completely neutral or
it would not be of any use. Hence, attributing
neutrality to a filter should always be restricted to
certain media properties. In [26] three categories of
properties are considered: type (or format alter-
natively), quality, and content properties. All
properties that may occur in a signature must be
classified as belonging to exactly one of these
categories. Following this observation, we have
to consider three subtypes of neutrality called
type neutrality, quality neutrality, and content

neutrality.
5.5.2. Format converters

Filters being both quality and content neutral
generally have little if any application-level
semantics. This class of filters can be best
characterized as all sorts of format converters.
Hence, the deployment of these filters should be
driven by both freedom and economy. The
following formally defined equivalence relation
adheres to those principles.

Definition 3. Let G ¼ ðV ;EÞ and G0 ¼ ðV 0;E0Þ

VMgraphs. Then G and G0 are semantically
equivalent, iff

9u; v 2 V ;x 2 V 0; e 2 E; e1; e2 2 E0 :

content_neutral(x) 4 quality_neu-
tral(x) 4
x e V 4 V0=V [ {x} 4
e=(u, v) 4 e1=(u, x) 4 e2=(x, v) 4
E0=(E\{e}) [ {e1, e2}4
((D(s(e, u), s(e, v))4D(s(e1, u), s(e1, x))
4D(s(e, u), s(e, v))4D(s(e2, x), s(e2, v)))
3(D(s(e, u), s(e, v)) p D(s(e1, u), s(e1, x))
4D(s(e, u), s(e, v))p D(s(e2, x), s(e2, v)))).
This definition states that one edge can be
replace by two other edges with a neutral filter in-
between (cf. Fig. 14). The signatures assigned to
these edges have to meet certain constraints. That
is, either
(a)
 the signature difference of the one edge (e)
must be greater than the signature differences
of both replacing edges (e1 and e2) or
(b)
 the signature difference of the one edge (e)
must be less or equal than the signature
differences of both replacing edges (e1 and e2).



ARTICLE IN PRESS

u v
 σ(e, u)  σ(e, v)

 σ(e1, u)  σ(e2, x)  σ(e2, v) σ(e1, x)

Graph G 

Graph G′ 

u vx

∆
<

<< >

e

e
1

e
2

∨

Fig. 14. Graphical illustration of the definition of semantic

neutrality.

U. Marder, T. Härder / Information Systems 30 (2005) 444–466462
Thus, we do not allow the signature difference
of e1 being greater than e’s together with e2’s
signature difference being less than e’s and vice-
versa, because this would violate the principle of
economy.
With regard to the request processing problem

we can derive the following two rules from
Definition 3: If condition (a) is met, then the filter
x should be ‘‘built in’’ (i.e., transition from G to
G0). If, on the other hand, condition (b) is met,
then the filter x should be removed (i.e., transition
from G0 to G).
Furthermore, for realizing case (a) it is possible

to tighten the condition in the following manner:
the signature difference of e1 must be zero and
the signature difference of e2 must be less than
e’s. This results in considering only those solutions
in which format converters x are built in that
match exactly the signature sðe1; uÞ of the input
media. Thereby, no practical solution would be
lost, because, if channel e1 is not realizable in the
first place, then the realization of channel e2
degrades to a problem without any practical
relevance.
As a final remark, note that in practice many

format converters are actually not completely
quality neutral, often depending on the user’s
subjective perception of quality. From the per-
spective of a (VirtualMedia) system designer, there
is probably no ideal solution to this problem. One
possible approach could be giving (experienced)
users some control over the evaluation of the
predicate quality_neutral.
6. Considerations on request processing algorithms

6.1. General complexity of the problem

All graph transformation rules (except graph
composition) can be derived from the equivalence
relations (partially) defined in the previous section.
Obviously, these rules are applicable to drive the
transformation of a VMgraph in very different
directions, some of which will probably not lead to
an acceptable result. What constitutes an accep-
table result, however, may be defined in various
ways, for example:
1.
 A complete implementation of the client’s
transformation request.
2.
 A complete implementation, optimized accord-
ing to one of the following criteria: resource
consumption (min.), delivery latency (min.),
perceivable quality (max.). (This list may still
be extended.)
3.
 A complete implementation with multidimen-
sional optimization (two or more of the criteria
listed above).

Note that goals (2) and (3) may imply the
consideration of non-functional properties as part
of signatures which is still an open issue requiring
further investigation.
Generally, the number of transformation rules

applicable to any given graph varies without a fixed
upper bound. The number of atomic problems to
solve, however, is always limited to a maximum of
n ¼ jV j þ jEj � 1. Hence, we may start by selecting
atomic problems and applying best matching rules
to them one by another according to a breadth-first
or depth-first search algorithm, resulting in a
search graph with VMgraphs as nodes and rule
application as edges. This is also known as
exhaustive search [27]. Breadth-first search will find
a solution to (1), if one exists. Because the search
graph can contain cycles, cycle detection must be
added to the algorithm, if breadth-first search
should find all solutions, which would be necessary
to solve (2) or (3).
The size of the search graph does not only

depend on the size of the transformation request
graph, but also on the size of the affected



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 463
materialization graphs and the size of the filter base
which are both unbound. Actually, it can be shown
that—because the atomic problems are not solva-
ble independently from each other—the complexity
of computing an optimal solution is equivalent to
the traveling salesman problem, i. e., O(n!) [26].
Hence, if the aim is finding an optimal solution, we
should avoid computing all possible solutions,
because in a large multimedia metacomputing
system the response time must be kept short. Thus,
a heuristic search algorithm is required.
There exist many such algorithms [27] and it is

not at all obvious which one to choose. However,
because the selection of an algorithm is considered
being part of the implementation of the Virtual-
Media model (but not part of the model itself), we
provide some information on which approaches
appear promising.

6.2. Applying heuristics

Good heuristics may considerably reduce the
effort required for deciding on both which atomic
problem to address and which rule to apply. For
the first decision, two different approaches are
considered:
�
 The a priori heuristic H1 determines the ‘‘most
serious’’ atomic problem based on the formal
definitions given in Sections 5.3 and 5.4. H1 is
defined as follows:
H1ðeÞ ¼
def Dðsðe; uÞ;sðe; vÞÞ with e ¼ ðu; vÞ 2 E;

H1ðvÞ ¼
def 1

jiðvÞ [ oðvÞj

X
g2iðvÞ[oðvÞ

cm þ cs þ ce þ cO

jOgj

jOgj þ 1
� Dðg; xÞ

� �
with v 2 V :
Addressing only the atomic problem yielding the
highest value of H1 (costs) by applying one
matching rule significantly reduces the complex-
ity of request processing to O(n).
�
 The a posteriori heuristic uses a function H2 that
aggregates the costs of all atomic problems
found in a VMgraph. H2 is defined as follows:
H2ðGÞ ¼
def w

jV j

X
v2V

H1ðvÞ þ
1� w

jEj

X
e2E

H1ðeÞ with G ¼
In this approach, all atomic problems are
addressed in turn. The resulting VMgraphs are
compared using H2 and the one with the lowest
costs is selected for further processing, thus,
yielding a complexity of O(n2). The rationale
behind this is due to H1 not always determining
the rule that reduces the value of H2 the most.

The heuristic for choosing rules works by
assigning a priority to each rule primarily based
on how a rule affects the size of a VMgraph. That
means, rules that reduce the size of a VMgraph get
a higher priority than rules that increase the size.
Applying these heuristics in the most straight-

forward manner corresponds to the well-known
principle of a greedy algorithm. In this case, the
complexity depends on which of the two heur-
istics—a priori or a posteriori—is implemented.
This algorithm, however, is likely to get stuck in a
local optimum, thus missing the global optimum
we are looking for. Experiments have shown that
the greedy algorithm works quite satisfying, if the
request primarily requires the application of
format converters [26]. If the request contains
descriptively specified content manipulation, how-
ever, the greedy algorithm is more likely to fail.
There are several traditional algorithms which
may avoid this pitfall, e.g., branch-and-bound or
the A* algorithm. For these algorithms to work,
the cost function evaluating the benefits of
applying a certain rule must meet certain condi-
tions. For A*, for instance, it must always behave
monotonic on the path from the request graph to
the (optimal) solution graph. This is impossible if
the cost function is only based on the signature
distance, because replacement rules usually in-
crease the distance, while adjustment rules gen-
erally decrease the distance. Hence, the cost
ðV ;EÞ;w 2�0; 1½:



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466464
functionsH1 andH2 are not expected to work with
these kinds of algorithm.
Instead, we propose to employ randomizing

algorithms like simulated annealing or evolutionary

algorithms [26]. Such algorithms may also miss the
global optimum, but usually find a better solution
than the simple greedy algorithm and, in general,
find more often a solution. The computational
complexity of both algorithms is basically O(n),
but their implementations are considerably more
complex compared to the greedy algorithm. In
particular, evolutionary algorithms have the
advantage of computing several solutions in
parallel. This feature may be highly beneficial in
multimedia metacomputing, because the heuristic
generally can not take volatile conditions like, for
example, the availability of all processing
resources into consideration. Thus, the optimal
solution found by request processing may turn
out to be not instantiatable later on, because
a required resource is temporarily unavailable,
and, hence, the system becomes more robust,
if it always has some substitute solutions at
hand.
7. Conclusions

In this paper, we described the so-called multi-
media metacomputing approach that aims at the
formation of a large scale, loosely coupled multi-
processing environment providing a distributed
architecture to perform transformations on media
objects.
In particular, we point out the importance of

data abstractions and formal concepts for multi-
media metacomputing systems. Beside common
abstractions, such as device and data indepen-
dence we consider a newly developed abstraction
called transformation independence. In principle,
this abstraction requires a multimedia system to
solve the following problems:
�
 Overcome irreversibility of most of the opera-
tions that are applicable to media objects. First
of all, this means isolating concurrent applica-
tions with respect to updates of media objects—
at the cost of an increased resource demand, for
example, storage space for different materializa-
tions of a media object.
�
 Optimize media transformations globally, i.e., (1)
by considering the transformation request as a
unit regardless of the type and number of media
objects involved, (2) by exploiting general
domain knowledge on multimedia processing
(rules, cost functions), and (3) by collecting and
evaluating statistical data. As a prerequisite, this
requires a transformation request interface
allowing to request media transformations in a
descriptive manner. Transformation requests
should (ideally) contain only statements of
semantic relevance to the application.
�
 Support format independence by seamlessly
integrating format-related operations into med-
ia transformations, which might either be
caused by internal formats not being compatible
with a requested transformation or by requested
external formats not matching currently avail-
able internal formats.

As an approach to realize transformation
independence, the VirtualMedia model is intro-
duced. VirtualMedia solves the irreversibility
problem by establishing a layer of virtual media
objects which applications may unrestrictedly
manipulate. We adopt the filter graph model to
represent virtual media objects as transformation
graphs. Semantic equivalence relations defined for
such VirtualMedia graphs allow for transforming
request graphs into (instantiatable) media trans-
formation graphs while applying different heuristic
optimization strategies like cost-based evaluation
of semantically equivalent graphs or creating and
exploiting redundant materialization.
In [19] we already discussed architecture con-

cepts for multimedia metacomputing, yielding the
following conclusions:
�
 Operations that perform the transformations on
media objects can be provided in the form of
special media processing components.
�
 Each media processing component should pro-
vide a signature to formally describe the run-
time environment it requires during its deploy-
ment, types of media objects it accepts and the
transformations it performs.



ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466 465
�
 It proves to be essential to exploit services of a
repository as a distributed storage mechanism
for processing components; in comparison to
other solutions, a repository may provide
additional functionality related to component
versioning as well as combining component
versions into valid configurations capable of
cooperation in the process of media object
transformation.
�
 An abstract semantic model like the VirtualMe-
dia model has to be provided to ensure
(semantically) correct request processing and
robustness of client programs against changes of
the metacomputing environment like, for ex-
ample, exchange of components, processors, or
media object materializations.

A global multimedia metacomputing environ-
ment would, in principle, allow delivering global
media data to any client and any kind of multi-
media device without the need to generate
especially adapted materializations of the media
data in advance. Moreover, computationally
complex transformations and manipulations of
the data are dynamically delegated to the most
appropriate processing resources at run-time, thus
optimizing response time and utilization of ex-
pensive special-purpose hardware. Ultimately, a
‘‘pluggable’’ model for vendors of components
providing media transformations and computing
resource providers could form the (technical)
foundation of a flexible business model for
offering and vending multimedia services over
the Web.
8. Outlook

There are many perspectives on future research
and development in the field of multimedia
metacomputing. Obviously, one major direction
is towards realizing the concept based on the
emerging web and grid services architectures.
Subsequently, practical evaluation of the concept
and theory certainly will be tackled.
Besides improving and refining the theory for its

original application domain—media data proces-
sing—it is also worthwhile to think about general-
izing the theory, thus making it applicable to other
domains in which the automated composition of
eServices is an issue. This is a challenging goal,
because in our opinion any semantic model serving
the purpose of composing eServices must be found
using a very careful and thorough analysis of the
rationality underlying the present, yet manual
composition of such services. Even so, models
generally have limitations a human could easily
cross, and they sometimes happen to show
‘‘unreasonable’’ behavior (which, of course, hu-
mans are also capable of). Considering this,
multimedia metacomputing still offers a rich
playground for studying and evaluating semantic
models without bearing much risk of causing
serious damage.
References

[1] L. Smarr, C.E. Catlett, Metacomputing, Comm. ACM 35

(6) (1992) 44–52.

[2] K. Kant, R. Iyer, V. Tewari, A framework for classifying

peer-to-peer technologies, in: Proceeding of the Second

IEEE International Symposium on Cluster Computing

and the Grid (CCGrid 2002), Berlin, Germany, May

22–24, 2002, pp. 368–375.

[3] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a

New Computing Infrastructure, Morgan Kaufmann Pub-

lishers, San Francisco, CA, 1998.

[4] Google Image Search, Google Website, Google, 2004,

http://images.google.com.

[5] S. Hollfelder, F. Schmidt, M. Hemmje, K. Aberer, A.

Steinmetz, Transparent integration of continuous media

support into a multimedia DBMS, in: Proceeding of the

Third Biennial World Conference on Integrated Design

and Process Technology (IDPT), Issues and Applications

of Database Technology (IADT’98), vol. 2, Berlin, July

6–9, 1998, pp. 192–199.

[6] Informix Digital Media Solutions: The Emerging Industry

Standard for Information Management, Informix Soft-

ware, Inc., 1997.

[7] Oracle8i interMedia Audio, Image, and Video User’s

Guide and Reference, Oracle Corporation, 2000.

[8] Napster, Napster Website, Napster, Inc., 2004, http://

www.napster.com.

[9] Gnutella, Gnutella Website, Gnutella.com, 2004, http://

www.gnutella.com.

[10] K.A. Hawick, H.A. James, A.J. Silis, D.A. Grove, C.J.

Patten, J.A. Mathew, P.D. Coddington, K.E. Kerry, J.F.

Hercus, F.A. Vaughan, DISCworld: an environment for

service-based metacomputing, Future Gener. Comput.

Sys. 15 (5–6) (1999) 623–635.

http://images.google.com
http://www.napster.com
http://www.napster.com
http://www.gnutella.com
http://www.gnutella.com


ARTICLE IN PRESS

U. Marder, T. Härder / Information Systems 30 (2005) 444–466466
[11] G. Alonso, Myths around Web Services, IEEE Data Eng.

Bull. 25 (4) (2002) 3–9.

[12] S. Tsur, Are web services the next revolution in

E-commerce?, in: Proceeding of the 27th International

Conference on Very Large Data Bases, VLDB 2001,

Roma, Italy, September 11–14, 2001, pp. 614–617.

[13] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M.

Lebofsky, SETI@home—Massively Distributed Comput-

ing for SETI, Comput. Sc. Eng. 1 (2001) 78–83.

[14] G.D. Speegle, X. Wang, L. Gruenwald, A meta-structure

for supporting multimedia editing in object-oriented

databases, in: Proceedings of the Advances in Databases,

16th British National Conference on Databases,

BNCOD 16, Cardiff, Wales, UK, July 6–8, 1998,

pp. 89–102.

[15] M. Wagner, S. Holland, W. KieXling, Towards self-tuning

multimedia delivery for advanced internet services, in:

Proceedings of the First International Workshop on

Multimedia Intelligent Storage and Retrieval Management

(MISRM ‘99) in conjunction with ACM Multimedia

Conference Orlando, FL, October, 1999.

[16] T.C. Rakow, W. Klas, E.J. Neuhold, Abstractions for

multimedia database systems, in: Proceedings of the

Second International Workshop on Multimedia Informa-

tion Systems, West Point, New York, USA, September

26–28, 1996, pp. 41–46.

[17] P. Seshadri, Enhanced abstract data types in object-

relational databases, The VLDB J 7 (3) (1998) 130–140.

[18] U. Marder, On Realizing Transformation Independence in

Open, Distributed Multimedia Information Systems, in: A.

Heuer, F. Leymann, D. Priebe (Eds.), Proceedings of the

Ninth GI-Fachtagung ‘‘Datenbanksysteme in Büro, Tech-

nik und Wissenschaft’’, BTW ’2001, Oldenburg, March

7–9, Springer, Heidelberg, Berlin, 2001, pp. 424–433.

[19] U. Marder, J. Kovse, Multimedia metacomputing, in:

Proceedings of the Seventh International Workshop on
Multimedia Information Systems, MIS 2001, Capri, Italy,

November 7–9, 2001, pp. 173–182 (also in: ACM

SIGMOD Digital Symposium Collection 2002).

[20] T. Prückler, M. Schrefl, An Architecture of a Hypermedia

DBMS Supporting Physical Data Independence, in:

Proceedings of the Ninth ERCIM Database Research

Group Workshop on Multimedia Database Systems,

Darmstadt, March 18–19, 1996, pp. 45–57.

[21] R. Käckenhoff, D. Merten, K. Meyer-Wegener,

MOSS as multimedia object server, extended summary,

in: R. Steinmetz (Ed.), Proceedings of the Second

Internantional Workshop on Advanced Teleservices

and High Speed Communication Architectures, IWACA

’94, Springer, Heidelberg, Berlin, September 1994,

pp. 413–425.

[22] K.S. Candan, V.S. Subrahmanian, P. Venkat Rangan,

Towards a theory of collaborative multimedia, in: Pro-

ceedings of the IEEE International Conference on Multi-

media Computing and Systems, Hiroshima, Japan, June

1996, pp. 279–282.

[23] D. Dingeldein, Multimedia interactions and how they can

be realized, in: Proceedings of the SPIE/IS&T Interna-

tional Conference on Multimedia Computing and Net-

working, San Jose, CA, February 5–10, February 1995,

pp. 46–53.

[24] DirectShow Documentation, MSDN Library, Microsoft

Corporation, 2002, http://msdn.microsoft.com/library/.

[25] Java Media Framework API Guide, Sun Microsystems,

Inc, 1999.

[26] U. Marder, Multimedia-Metacomputing in Web-basierten

multimedialen Informationssystemen, Logos Verlag, Ber-

lin, 2003 (in German).

[27] Z. Michalewicz, D.B. Fogel, How to Solve It: Modern

Heuristics, Springer, Berlin, Heidelberg, ISBN 3-540-

66061-5, 2000.

http://msdn.microsoft.com/library/

	Towards a theory of multimedia metacomputing
	Introduction
	Objectives
	Media data abstractions
	The VirtualMedia concept
	Transformation requests in VirtualMedia
	The filter graph model for media processing
	Filter graphs
	Data model for media objects and filters

	Request processing
	Materialization graphs
	Graph transformation


	Formal model
	Introduction
	VirtualMedia graph
	Producers, consumers, and filters
	Topological classification of filters

	Media-specific semantics
	Properties
	Signatures

	Assigning signatures to edges and nodes
	Semantic equivalence relations
	Neutrality
	Format converters


	Considerations on request processing algorithms
	General complexity of the problem
	Applying heuristics

	Conclusions
	Outlook
	References


