
Making the Most of Cache Groups

Andreas Bühmann and Theo Härder

Department of Computer Science, University of Kaiserslautern,
P. O. Box 3049, D-67653 Kaiserslautern, Germany
{buehmann, haerder}@informatik.uni-kl.de

Abstract. Cache groups are a powerful concept for database caching, which is
used to relieve the backend database load and to keep referenced data close to
the application programs at the “edge of the Web”. Such cache groups consist of
cache tables containing a subset of the backend database’s data, guided by cache
constraints. If certain query types are anticipated in the application workload,
specifically designed cache groups can directly process parts of incoming declar-
ative queries. The main class of such queries, project-select-join queries, can be
supported by specifying a proper set of referential cache constraints.
Cache groups should be managed in the most cost-effective way. Hence, redun-
dant constraints should not be respected during cache loading and consistency
maintenance to avoid unnecessary overhead. On the other hand, because as much
queries as possible should be processable in the cache, all redundant relationships
implied by the set of specified cache constraints should be made explicit to help
the query optimizer.

1 Database Caching with Cache Groups

Often, performance of data-intensive applications over wide-area networks (e. g., of
transactional Web applications or Web information systems) is limited by the (back-
end) database (DB), especially by its processing power, its resource availability, and the
communication delays for serving user requests. A proven remedy for such situations
is the use of caching to substantially increase scalability and availability of the system
as well as to drastically reduce the user-perceived delays of information requests.

Web caching, as another kind of caching in this context, [1] typically keeps static
Web objects (XML fragments or images) in some of the caches in the user-to-server path
and only enables identifier-based requests for cached objects. In contrast, DB caching
is intended to deliver correct results for declarative DB queries (e. g., in SQL) from the
current cache contents, thereby relieving the backend DB of some of its workload. La-
tency of user requests is supposed to be noticeably reduced by allocating these caches
close to the application servers at the edge of the Web. This, however, only happens if
user queries can be completely evaluated in the cache to save the travel times of mes-
sages (query shipping, result transmission) to the backend DB through wide-area net-
works. Hence, analysis of workloads must help to determine the future data reference
behavior of applications and, in this way, prepare for appropriate locality of reference
for them, to enable cache-based answering of frequent queries. This task is often facil-
itated by geographic contexts, which frequently determine the workload of application

servers and, in turn, the data to be kept in their DB caches. Because these caches need
powerful functionality for query optimization and processing, storage management, in-
dexing, etc., they are often managed by full-fledged DBMSs and are therefore called
frontend DBs, too.

Differing from approaches that make use of (stacked) materialized views [2], our
cached data is organized in cache groups [3], which consist of a set of cache tables.
These cache tables contain a subset of the backend DB’s data, whose selection is guided
by cache constraints – the approach therefore also being called constraint-based DB
caching. It primarily rests upon referential cache constraints (RCCs), which specify
the data sets needed to run selected project-select-join (PSJ) queries in the cache. Such
specifications may be redundant or may contain RCC cycles, which imply cache groups
exhibiting non-minimal maintenance or excessive loading or unloading [4].

Our specific contribution in this paper is to introduce a set of rules for proper cache
group design and usage. In case of redundantly specified RCCs, our rules identify these
redundant constraints, which will reduce cache maintenance overhead. On the other
hand, our rules derive all redundant relationships implied by the set of specified cache
constraints and make them explicit. This facilitates the query optimizer’s task of figur-
ing out all (parts of) queries that can be evaluated in the cache – besides those ones the
cache groups are designed for.

The rest of the paper is organized as follows: In the following Sect. 2, we illustrate
how cache groups are designed, how they are loaded, and how they are probed in order
to determine whether a given query can be processed in the cache. Section 3 derives
the set of rules that govern the optimization of cache groups, whereas we apply these
rules to a sizeable example in Sect. 4 to demonstrate the course and the effects of this
optimization process. Finally in Sect. 5, we summarize our results and give an outlook
on our future work.

2 Designing Cache Groups

The key idea of constraint-based database caching is to accomplish predicate com-
pleteness for some given types of query predicates P in the cache such that all queries
matching P can be evaluated correctly. This technique does not rely on static predi-
cates: Parameterized constraints make the specification adaptive; so-called candidate
values (CVs) are used to instantiate the corresponding parameters: An “instantiated
constraint” then corresponds to a predicate and, once the constraint is satisfied (i. e.,
all related records have been loaded), it delivers correct answers to eligible queries.
Hence, the candidate values should be carefully chosen, because they determine the set
of cache-evaluable predicates. They describe the future reference locality anticipated in
the cache and, therefore, serve as a kind of “loading directives” for the cache manager.

2.1 Basics of Cache Groups

A cache contains a collection of cache tables, which represent backend tables and which
can either be isolated or related to each other in some way. For simplicity, let the table
and column names be the same in the cache and in the backend DB: Considering a

cache table S, SB designates its corresponding backend table, S.c a column c of S. All
records (of various types) in the backend DB that are needed to evaluate predicate P are
called the predicate extension of P.

For comprehension, let us repeat some definitions from [4]: The simplest form of
predicate completeness is value completeness. A value v is said to be value complete
(or complete for short) in a column S.c if and only if all records of σc=v SB are in S.
Hence, if we know that a value v is value complete in a column S.c, we can correctly
evaluate S.c = v, because all records from table SB that carry this value are in the cache.
Furthermore, if we know that all values occurring in a column S.c are complete, we call
S.c column complete. This property allows to evaluate all simple equality predicates
S.c = x in the cache as soon as a value x is found in S.c.

To answer PSJ queries in the cache, we must be sure that their extensions are
present. Specific equi-join predicates can be evaluated only if all corresponding join
partners are in the cache, which is enforced by using referential cache constraints
(RCCs) [3]. An RCC is defined between two cache columns not necessarily belonging
to separate tables. An RCC S.a→ T.b from a source column S.a to a target column T.b
is satisfied if and only if all values v in S.a are value complete in T.b.

This RCC ensures that, whenever we find a record s in cache table S, all join part-
ners of s with respect to S.a = T.b are in T , too. Note, the RCC alone does not allow us
to perform this join in the cache correctly: Many records of SB that have join partners
in TB may be missing from S. But using an equality predicate with a complete value
in column S.c as an anchor, we can restrict this join to pairs of records that are present
in the cache: The RCC S.a → T.b expands the predicate extension of S.c = x to the
predicate extension of S.c = x∧ S.a = T.b. In this way, a complete value can serve as
an entry point into the cache for the evaluation of a query; it allows us to start reason-
ing about predicates evaluable in the cache: Once the cache has been entered in this
sense, reachable RCCs show us where joins can correctly be performed: Of course, the
application of RCCs can be chained.

A column is non-unique (NU) by default, but it can be declared unique (U) via the
SQL constraint unique in the backend DB schema. Depending on the types of source
and target columns, RCCs of types 1 : n, n : 1, and n : m may occur.

Probing is the process of finding out whether, given an equality predicate S.c = v
in a query, the value v is complete in column S.c. This knowledge is the foundation for
applying RCCs along the join directions that occur in the query. There are basically two
approaches to probing that can be combined to form probing strategies:

– If S.c is known to be column complete, it suffices to check whether v exists in S.c.
If it exists, it is complete.

– Otherwise RCCs can be exploited: If v exists in one of the source columns of RCCs
leading to S.c, the value v is complete (in S.c).

2.2 Loading the Cache

How do we fill the cache? To initiate cache loading, we have to specify some filling
columns S. f : Assume x ∈ SB. f is in the CV list and the cache manager wants to instan-
tiate a cache constraint containing S. f = x. In a first step, x is made complete, which

C.k ww
1 2C.a

O.c 1 1 2 2 2

P.e s t

O.d - - s s t

UU

U SO

C P

a k e f

b c d down up

Fig. 1: Cache group COPS: Construction of a predicate extension for COP

loads a number of records into S. Then for each RCC S.a→ T.b emanating from S, the
newly inserted values in S.a have to be made complete in T.b. Hence, new records are
inserted into all target tables Ti reached by RCCs originating from S. In the same way,
RCCs emanating from Ti provoke loading actions in further cache tables, until all RCC
constraints are satisfied.

We can use cache tables, filling columns and RCCs to specify cache groups, which
is our unit of design to support a specific predicate type in the cache. A cache group is a
collection of cache tables linked by a set of RCCs. A distinguished cache table is called
the root table R and holds one or more filling columns. The remaining cache tables are
called member tables and must be reachable from R via RCCs.

With these definitions, we are able to introduce predicate extensions for PSJ queries.
First let us discuss the loading process in detail by an example: Cache group COPS
(Customer, Order, Product, Structure) in Fig. 1, which includes two member and two
owner constraints. For a moment forget table S and both RCCs between S and P. Then
assume the predicate of a PSJ query to be evaluated on COP is

Q = (C.k = w∧C.a = O.c∧O.d = P.e) .

An example of Q’s predicate extension is sketched in Fig. 1, where dots represent rec-
ords, lines value-based relationships. To establish value completeness for the value w
of filling column C.k, the cache manager loads all records of σk=w CB in a first step. For
each of these records loaded, the RCC C.a → O.c must be fulfilled (PK/FK relation-
ships, solid lines); that is, all values of source column C.a (1,2 in the example) must be
made complete in the target column O.c. Finally, for all values present in O.d (s, t), the
RCC O.d→ P.e makes their counterparts complete in P.e (FK/PK relationships, dashed
lines). Hence, we have constructed the predicate extension needed for Q exactly.

To make cache group design more elegant, we simplify our specification concepts:
Those values of the CV list that have already initiated cache loading may be considered
as values in artificial control columns and their relationships to filling columns may
be described by RCCs. (For example, the RCC stub leading from nowhere to C.k in
Fig. 1 indicates such an RCC; we leave out the artificial columns in our figures.) With
this unification of cache group specification, cache tables are loaded only via RCCs.
Following the RCCs, the cache manager can construct predicate extensions using only
simple loading steps based on equality of values. Accordingly, it can correctly evaluate
the corresponding queries locally.

t vP.e

S.down t t u u u

x y

S.up u v x y z
v x

z

z z

u

Fig. 2: Unsafe loading of products in COPS. Dots represent records, lines value-based relation-
ships along RCCs.

We will show by an example that, for reasons of “safe” cache loading and mainte-
nance, not all cache groups are acceptable: Assume we continue to load COPS, where
tables P and (now) S contain the bill-of-material representation of products. As soon
as value t is made complete in P (via RCC O.d → P.e), it initiates loading in S via
P.e→ S.down to make t complete in S.down. In turn, this action loads values u and v
into S.up, which enforces completeness for these value in P.e via S.up→ P.e. As illus-
trated in Fig. 2, cache loading recursively iterates over the RCC cycle and causes prod-
uct t and its entire composed-of hierarchy to be loaded into the cache. Such excessive
load situations are called unsafe and are prohibited when designing cache groups [3].

An RCC cycle is classified as homogeneous or heterogeneous, if it involves only
a single column or more than one column in some participating table, respectively. If
several cycles occur in a cache group and influence each other, some records loaded via
a cycle may smuggle values into other cycles, which may keep these cycles running.
Therefore, as proven in [4], while isolated homogeneous RCC cycles are acceptable,
other cyclic RCC specifications must be prohibited to prevent unsafe cache groups:

– Isolated heterogeneous RCC cycles are not allowed.
– Heterogeneous RCC cycles with non-compensating smuggler relationships are not

allowed.

The RCC cycle in cache group COPS (Fig. 1) is heterogeneous and isolated and should
hence not be part of a cache group design.

3 Optimizing the Design

Making the most of a given cache group has two facets: First, when answering queries,
we would like the query evaluation in the cache to be as powerful and flexible as possi-
ble. Second, when maintaining the cache contents – in order to fulfill the defined cache
constraints – or when probing, we try to get by with the least possible effort.

3.1 Utilizing Redundancy

The path to both of these optimization goals lies in discovering redundancy in the cache
group: Excluding redundant paths of loading steps during maintenance avoids unneces-
sary costs; including all possible (redundant) join directions enables the query analysis

to use the cached predicate extensions for a greater variety of queries. Therefore, we
need to know where redundant RCCs are.

Additionally, knowledge about column-complete columns as well as about redun-
dant RCCs offers more and probably cheaper possibilities for probing [4]: Redundant
RCCs need not be used during probing, and using a column-complete column, one is
able to avoid considering RCCs altogether.

An RCC is called redundant if dropping it from the cache group does not change the
cache group’s behavior with regard to record loading: The same sets of records will be
present in the cache in any situation after any number of loaded CVs, with or without
the redundant RCC. Every RCC is either a redundant RCC (RRCC) or a non-redundant
RCC (NRCC).

3.2 Optimization rules

In summary, given a cache group, we would like to find out

– which redundant RCCs can be added,
– which user-defined RCCs are in fact redundant and which are not,
– and which columns are complete.

Our goal is, on the one hand, to find an irreducible core of cache constraints that mini-
mizes maintenance costs. On the other hand, we try to extend this core with a maximum
of information that is useful during non-maintenance tasks.

To this end, we transform the user-specified cache group by applying a number of
rules. These rules match certain situations in a cache group and may mark a column as
column complete or introduce redundant RCCs. It is important that no rule ever changes
the behavior of the cache group.

At the beginning of this optimization, due to the lack of better knowledge, we con-
sider all user-defined RCCs non-redundant. When a newly discovered RRCC coincides
with a user-defined NRCC, it effectively degrades the NRCC to an RRCC.

Figure 3 illustrates the situations in which our rules apply. The depicted tables and
columns match the ones used in the textual descriptions of the rules below. We will
walk through them one by one.

Unique Columns. We have two rules to discover complete columns. The first one is
trivial, but it is needed nonetheless, because finding all complete columns is a prerequi-
site for successful application of some of the subsequent rules.

Rule 1. Every unique column is column complete. (Fig. 3a)

Every value in a unique column is complete as soon as it appears in the cache. Obvi-
ously, the column must always be complete then.

Induced Column Completeness. Our second rule deals with complete columns that
are induced by RCCs and the loading mechanism.

U

(a) Unique columns

T.b

(b) Induced column
completeness

S.a

T.b

(c) Inverse RCCs

S.a

T.b

x1

x2

(d) RCCs to siblings

Fig. 3: Rules. Changes in the cache group are highlighted with thicker lines. The prohibition sign
() marks exemplary RCCs that are not allowed for the rule to apply. (Complete columns are
gray, redundant RCCs dotted.)

U CustomerArea

id classcity person

Hamburg 78 • • 78 platinum
Berlin 78 • 47 silver
Darmstadt 47 • 30 zinc
Munich 47

Fig. 4: Induced column completeness (of column Area.person) and inverse RCC (Area.person→
Customer.id). Records marked with a dot (•) are in the cache.

Rule 2. Let T.b be the only column of a table T that is reached by incoming NRCCs.
Then T.b is column complete. (Fig. 3b)

Every value that is loaded into T through one of the incoming NRCCs is complete in
T.b. Since records are not loaded into T in another way (possibly existing RRCCs do
not contribute to the loading), T.b is column complete.

Let us look at a little example: Figure 4 shows a cache group comprising two cache
tables Customer and Area (with their backend and cache contents) as well as an RCC
Customer.id→ Area.person. Table Customer is filled via column id. Customers 78 and
30 have been inserted, for each of which the corresponding Area records have been
loaded: two records for 78 (making 78 complete), none for 30 (assuming 30 is not in
AreaB) which is therefore complete in person nevertheless. Therefore, person is column
complete.

Column person would stay complete if another incoming RCC were added to it (and
made 47 complete, for example). But if (Munich,47) were loaded because of an RCC
to city, it could not be guaranteed that the other 47 record would get into the cache,
too. Hence, 47 would not be complete and neither would person. Note that any number
of incoming RRCCs are acceptable; RRCCs do not contribute to the loading of cache
tables and, thus, are unable to challenge column completeness.

Inverse RCCs. An RCC x→ y expresses that every value in x is complete in y. We can
discover additional RCCs if we are able to control the set of values present in x (and can
then show that these values have to be complete in y). The simplest situation where it is
clear which values appear in x is when x’s table is loaded only via a single RCC s→ x
pointing to x. Then the values in x depend directly on the values in s: More precisely, x
can only contain a subset of values of s. Therefore, we say that a column T.b is column
dependent on a column S.a iff the only NRCC targeting table T is S.a→ T.b.

By comparing this definition with Rule 2, it is obvious that every column-dependent
column is complete, but not every complete column is column dependent.

Let us return to our example in Fig. 4: There we have two column-dependent col-
umns, person and id. We will concentrate on person: Due to the incoming RCC, it
contains a subset (78) of the values in id (30,78), which we know to be complete in id,
because id has a unique constraint. Therefore, every value in person is complete in id
and we can add an inverse RRCC person→ id.

The colum person must not be reached by another NRCC (as opposed to our pre-
vious case of only column completeness), because a so-loaded 47 in person would not
necessarily become complete in id.

We wrap up the sketched situation in our next rule:

Rule 3. Let T.b be column dependent on a column S.a due to an NRCC S.a→ T.b. If
S.a is column complete, then an inverse RRCC T.b→ S.a holds. (Fig. 3c)

RCCs to Siblings. In special situations, two or more columns are in some sense syn-
chronized due to RCCs originating from a common column. In Fig. 3d, this common
column is S.a and we have got three RCCs leading from it to some other (child) columns
T.b, x1, and x2. (The RCC S.a → x1 is redundant, the other two are not.) This means
that all the values in S.a are complete in all of these three columns; let VS.a denote this
set of values.

As we know from the discussion of Rule 3, column dependency of a column, say
T.b, restricts the set of values in this column to a subset (of VS.a). Hence, every value
in column T.b is complete in the children of S.a, which we can express by redundant
RCCs from T.b to its siblings. (Strictly speaking, we could also add a redundant RCC
from T.b to itself. But because such an RCC can be equivalently replaced with a colum-
completeness label, we omit it: This would just be a special case of Rule 2.)

These thoughts leave us with the following rule:

Rule 4. Let T.b be column dependent on a column S.a due to an NRCC S.a → T.b.
Then for every column ci that is reached by an RCC S.a → ci from the same source
column (i. e., a sibling of T.b), an additional RRCC T.b→ ci holds. (Fig. 3d)

Possible Extensions. Our rules do not find every redundant RCC possible. We will
discuss two conceivable generalizations of existing rules that would enable us to find
more redundant RCCs.

The example shown in Fig. 5a generalizes the situation that is covered by our Rules
3 and 4: Column T.b is reached by two different homogeneous paths (where there is no
change of column in any table on the path), both emanating from S.a.

S.a

T.b

c d

(a) Multiple paths from
the same column

S.a

T.b x1

R.a

(b) Multiple synchroniz-
ing columns

Fig. 5: Harder optimization RCCs

This means that T.b is not column dependent on S.a according to our simple def-
inition, but in a more general sense it is: The values in T.b are still determined only
by the values in S.a; on the paths towards S.a, more values may get lost than in our
simple single-RCC case, but we still have a subset relationship. This means that an in-
verse RCC T.b→ S.a is possible as well as RCCs from T.b to the direct children of S.a
(which are no longer siblings of T.b).

Figure 5b shows a different kind of generalization of the concept of dependency:
This time, the values in column T.b depend on both the values in S.a and the values in
R.a (i. e., at any time, T.b contains a subset of the union of those values). This setting
still permits RCCs to siblings to be added, as long as these siblings (e. g., x1) are reached
by RCCs from each of these synchronizing columns.

Rules expressing the sketched situations are not as easily checked as our chosen
ones, which can consider a column and its immediate neighborhood locally. In contrast,
here we would have to collect information about paths of any length and compare sets
of influencing columns. It is questionable whether these special situations occur often
enough to justify the added complexity of the rules for their optimization.

3.3 Applying the Rules

How do we apply our four rules to a given cache group? The basic idea is simple: Keep
applying the set of rules until no further match occurs and the cache group is in a stable
and, with regard to our rules, optimized state. Obviously, we must be sure that this will
happen eventually: Our rule application algorithm should not run into endless cycles.

Let us analyze the dependencies among our rules: Rules 3 and 4 produce RRCC,
which may override NRCCs. NRCCs eventually embody the irreducible core of the
constraints; they are not produced by any rule. Since RRCCs are not removed, their
number is only increasing, the number of NRCCs decreasing. This may at most lead to
further columns becoming column dependent, which might make Rules 3 and 4 appli-
cable again. This process is bounded by the number of feasible RCCs.

The first two rules only produce column-complete columns: Only Rule 3 depends
on these column-complete columns. Since no rule removes the column-completeness
status of a column, no cyclic behavior is possible – as long as we are careful enough to
check whether a rule application did actually change the cache group.

U

U

i

ii

iv

iii

(a)

U

U

1

2
3

4

(b)

U

U

5 6

(c)

U

U

7

(d)

U

U

leadercity

Leadership

Offer

Customer

Area

id class

city person seller buyers

8

(e)

Fig. 6: Optimizing a cache group. The dashed lines indicate user-defined but redundant RCCs.

Unique columns cannot be created during optimization: Therefore, Rule 1 can be
independently applied in advance, before the other rules are applied repeatedly until
there are no further changes to the cache group.

In a Java implementation [5], we have chosen to apply our rules according to a
depth-first search of the cache group, starting at the filling columns and stopping when
cycles are detected. This is sufficient, because all tables not reachable this way will not
be filled and used either. Furthermore, we are able to analyze the cycles encountered
during rule application and see whether they lead to controllable loading behavior or
make for unsafe cache groups.

4 Example

Let us see our rules acting in concert to optimize a given cache group. Figure 6 depicts
our object of optimization (a) as well the optimization result (e); we will show step by
step how this result has been derived.

We start with a cache group that has been specified by someone who wants to use
our caching system for his online selling platform (Fig. 6a): We have four cache tables,
two unique columns Customer.id and Leadership.city, one filling column Customer.id
and six user-defined RCCs, which we have to consider non-redundant until further in-
vestigation. (In Fig. 6e these are the five solid RCCs and the dashed one.)

In a preparing step, we apply Rule 1 to every column in the cache group. The order
in which we visit the cache tables in this and all the following steps is given in Fig. 6a in
Roman figures: a depth-first search starting at the filling column C.i. (In the following,
we abbreviate table and column names by their first letters.) In this way, we find the
unique columns C.i and L.c and mark them as column complete.

We then begin to apply Rules 2–4 to the cache group (Fig. 6b):

1. C.i is the only column of C that is reached by NRCCs; therefore, by Rule 2, it
is column complete (which we already know, so this does not change the cache

group). C.i is column dependent as well, but because it is dependent on an artificial
column outside of our main cache group, we skip the other rules.

2. In table O no column is induced column complete or column dependent, because
there are incoming NRCCs on two columns: None of our rules matches.

3. A.p is reached by two NRCCs, but not any other column is: A.p is column complete.
Note that A.p is not column dependent, because it is influenced by both C.i and L.l.

4. L.l is induced column complete because of the only NRCC A.p→ L.l, which makes
L.l column dependent, too.

5. Since L.l is column dependent, we can add an inverse RRCC L.l → A.p (Rule 3).
This degrades the already existing NRCC (indicated by a dashed line in Fig. 6c),
recognizing it as redundant.

6. According to Rule 4 we can finally add redundant RCCs from L.l to each of its
siblings (with respect to the common father column A.p): Here this makes only for
one RRCC L.l → O.s.

This concludes our first run through the cache group; we have visited each table once.
Since we have made four changes (two column-complete columns and two RRCCs),
and because these might have established the preconditions for further rule applications,
we have to start a second time: In tables C and O we come across the same states as
before, but in A we find something new:

7. Column A.p has become column dependent on C.i due to the degradation of the
former NRCC L.l → A.p. This means – according to Rule 2 – that we can add an
inverse RRCC A.p→C.i (Fig. 6d). Furthermore, we could add RRCCs to children
of C.i if there were any besides A.p.

8. In table L column L.l is still column dependent on A.p – as discovered in step 4. (A
column can never lose its column dependency.) In step 6, we have already applied
Rule 4 and introduced RRCCs to all siblings of A.p – but wait, there is a new
sibling, namely C.i, due to the recently created RRCC A.p→ C.i. Hence, we can
add an RRCC L.l →C.i back to the Customer table (Fig. 6e).

Our second run through the cache group is finished. We have added two RRCCs and
must therefore perform a third run to see whether these changes have opened up further
possibilities. You should be able to verify that this is not the case. Accordingly, the state
in Fig. 6e is our optimized version of the cache group the user has defined:

– We have identified three additional RCCs, which, during query analysis and eval-
uation, allow for more join directions in the cache. For example, the predicate
L.c = ‘Berlin’ ∧ L.l = C.i can be evaluated in the cache, given that L.c can be
probed successfully for ‘Berlin’.

– We have revealed that RCC L.l → A.p is actually redundant and thus need not be
checked during cache loading or probing operations. We could also warn the user
about this redundancy in his design, either when loading his complete specification
into our caching system or in advance, when the user is designing his cache group
assisted by a cache group adviser that implements our rules.

– Finally we have discovered four column-complete columns (among them admit-
tedly two trivial ones): These promise more flexibility in choosing the cheapest
probing strategy.

5 Conclusion

In this paper, we have presented four simple optimization rules that can be applied to
a cache group after it has been designed. These rules do not touch the loading behav-
ior, but make redundant information explicit that is contained in or derivable from the
given cache group design. Furthermore, during optimization, unsafe cache groups can
be detected. This stock of information allows the cache manager to perform his tasks of
loading, unloading, probing, and query evaluation more efficiently.

Alternatively, this information could be fed back interactively to the designer of a
cache group to make him aware of the consequences of his decisions. Another type of
information that would be useful in this setting is estimates about the loading costs of
predicate extensions.

Our rules find the most useful redundant RCCs in situations that occur frequently.
We have demonstrated which constellations in cache groups lie beyond the capabilities
of our rules and how the rules could be extended to cope with those.

We have already implemented a DB-caching prototype called ACCache [6], which
relies on our constraint-based caching model. It is realized on top of an existing rela-
tional DBMS and leverages its federated query execution capabilities. Within ACCache
we can fill the cache; analyze, rewrite, and execute queries (partially) in the cache or
in the backend DB; collect statistics about the usage of specific predicate extensions;
and we can perform garbage collection based on these statistics. The making use of
redundant RCCs and column-complete columns during this tasks is still to be added.

At the moment, we are developing an automated measurement environment, which
will enable us to perform comparative benchmarks in order to assess quantitatively the
actual benefit of our cache group optimization rules presented in this paper – among
other aspects, such as the costs of loading and unloading predicate extensions or the
overhead of probing, always in comparison to the lower latencies or reduced backend
loads achievable.

References

1. Podlipinig, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACM Com-
puting Surveys 35(4) (2003) 374–398

2. Larson, P., Goldstein, J., Zhou, J.: MTCache: Transparent mid-tier database caching in SQL
server. In: ICDE Conference, IEEE Computer Society (2004) 177–189

3. Altinel, M., Bornhövd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald, B.: Cache
tables: Paving the way for an adaptive database cache. In: VLDB Conference. (2003) 718–729

4. Härder, T., Bühmann, A.: Value complete, column complete, predicate complete – Magic
words driving the design of cache groups. VLDB Journal (2006) Accepted for publication.

5. Scholl, W.: Cache-Group-Optimierung zur Effizienzsteigerung von Datenbank-Caches.
Project thesis, TU Kaiserslautern (2006) http://wwwdvs.informatik.uni-kl.de/pubs/DAsPAs/
Sch06.PA.pdf.

6. Bühmann, A., Härder, T., Merker, C.: A middleware-based approach to database caching.
In Manolopoulos, Y., Pokorný, J., Sellis, T., eds.: ADBIS 2006. Volume 4152 of LNCS.,
Thessaloniki (2006) 182–199

