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Abstract. Database caching supports declarative query processing close to the
application. Using a full-fledged DBMS as cache manager, it enables the evalua-
tion of specific project-select-join queries in the cache. In this paper, we propose
significant improvements and optimizations – as compared to the well-known
DBCache approach – that make our caching concept truly adaptive. Furthermore,
we describe an adaptive constraint-based cache system (ACCache) relying on
middleware components as a DBMS-independent realization of this approach.

1 Motivation

While Web caching is concerned with reducing response time and bandwidth consump-
tion for service requests in the user-to-server path, database (DB) caching focuses on
request optimization in the remaining path from the Web server to the backend database,
which keeps the dynamic up-to-date data used by transactional programs to derive user
query results. In contrast to Web caching, which can only answer identifier-based cache
requests, DB caching provides declarative query processing, which makes it much more
powerful but also complex.

To accelerate service requests of Web users and, at the same time, to improve scala-
bility of applications accessing the backend DB, application servers frequently migrate
to data centers closer to the user “at the edge of the Internet”. Special algorithms enable
Web clients to select one of the replicated servers close to them thereby minimizing
response times of Web services. However, this is only true if locality of data reference
can be provided by such application servers – often achieved through geographical con-
texts of these services. Otherwise, frequent round-trips to the remote backend DB may
degrade the performance of DB-based services to a level much worse than without ap-
plication server migration. Therefore, it is vital for the entire migration approach to keep
prevalently used data close to the application in database caches (also called frontend
DB servers).

In Sect. 2, we present an adaptive constraint-based caching concept supporting the
evaluation of project-select-join (PSJ) queries. This mechanism must be entirely trans-
parent to application programs such that turning caching on or off only affects query
performance. Because (any type of) caching always has inherent trade-offs as far as
cache consistency and maintenance is concerned, only DB contents exhibiting high lo-
cality of reference should be kept in the cache. Therefore, only a few tables containing
selected records are maintained in a typical cache, arranged into cache groups, although
the backend DB may consist of hundreds of tables. Moreover, caching is always kind of
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speculative, because it should anticipate changing workload needs in the future. Thus,
caching adaptivity is of utmost importance. As compared to [1], we propose a much
more flexible mechanism enabling orthogonality of parameter specification (by candi-
date values) and cache filling as well as evaluation of more query types.

Section 3 describes an implementation of this mechanism based on middleware
concepts. While cache management is rather straightforward for simple cache groups
(e. g., Director → Movie), query processing power is limited in such cases. Thus, to
reveal the strengths and weaknesses of ACCache, we have chosen a rather complex
running example (Fig. 1). Section 4 summarizes our results and identifies future work.

2 Constraint-Based Database Caching

Constraint-based database caching promises a new quality for the placement of data
close to their application. The key idea is to accomplish predicate completeness in the
cache for some given types of query predicates P such that all queries matching P can
be evaluated correctly.

A database cache is a database consisting of cache tables. Cache tables represent se-
lected backend tables in the cache and contain subsets of their records1. All records (of
various types) in the backend DB that are needed to evaluate a predicate P are called the
predicate extension of P. If a collection of cache tables contains the predicate extension
of a predicate P, it is said to be predicate complete with respect to P. Note that a pred-
icate extension in the sense used here consists of all records from the backend tables
needed to reconstruct the query result. For an aggregate query, the predicate extension
would not be the aggregate (as the query result) but all records to be aggregated.

Cache constraints enable cache loading in a constructive way and guarantee the
presence of their respective predicate extensions in the cache. This technique does not
rely on static predicates: Parameterized constraints make the specification adaptive; it is
completed when specific values instantiate the parameters: An “instantiated constraint”
then corresponds to a predicate and, once the constraint is satisfied (i. e., all related
records have been loaded), it delivers correct answers to eligible queries. Note, the set of
all present predicate extensions flexibly allows combined evaluation of their predicates
in the cache.

Given suitable cache constraints, there are no or only simple difficulties in deciding
whether certain predicates can be evaluated. At run time, only simple existence queries
are required to determine whether suitable predicate extensions are available.

The primary task of this constraint-based caching approach is to support local pro-
cessing of queries that typically contain simple projection and selection operations as
well as equi-joins (PSJ). Because all columns of the corresponding backend tables are
kept, all project operations possible in the backend DB can also be performed in the
cache. Other operations like selection and join depend on specific cache constraints.
Furthermore, since full DB functionality is available, the results of these PSJ queries
can be subjected to further arbitrary selections and transformations.

1 In the present state of our model, we deal with whole records only and do not consider projec-
tions of certain sets of columns, as DBProxy [2] does, for example.
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2.1 Completeness

For predicates we would like to evaluate in the cache, we must guarantee predicate
completeness. Considering a cache table S, we denote by SB its corresponding backend
table, by S.c a column c of S.

Let us begin with single cache tables. For simple equality predicates like S.c = v,
where v is a value, the predicate completeness takes the shape of value completeness.

Definition 1 (Value completeness). A value2 v is said to be value complete (or com-
plete for short) in a column S.c if and only if all records of σc=v SB are in S.

Obviously, if we know that a value v is value complete in a column S.c, we can
correctly evaluate S.c = v in the cache, because all records from table SB that carry this
value are there. Determining which values actually are complete is the task of probing,
which will be introduced in Sect. 2.2.

To obtain the predicate extensions of PSJ queries we use referential cache con-
straints (RCCs) between cache columns to specify all records needed to satisfy specific
equi-join predicates.

Definition 2 (Referential cache constraint). A referential cache constraint S.a→ T.b
from a source column S.a to a target column T.b is satisfied if and only if all values v
in S.a are value complete in T.b.

An RCC S.a → T.b guarantees, whenever we find a record s in cache table S, that
all join partners of s with respect to S.a = T.b are in T , too. Note, the RCC alone
does not allow us to correctly perform this join in the cache: Many records of SB that
have join partners in TB may be missing from S. But using an equality predicate with a
complete value in column S.c as an anchor, we can restrict this join to pairs of records
that are present in the cache: The RCC S.a → T.b expands the predicate extension of
S.c = x to the predicate extension of S.c = x∧S.a = T.b. In this way, a column with a
complete value can serve as an entry point for a query into the cache; it allows us to start
reasoning about predicates evaluable in the cache: Once the cache has been entered in
this sense, reachable RCCs show us where joins can correctly be performed. Of course,
the application of RCCs can be chained: A second RCC T.d →U.e could expand the
predicate extension to S.c = x∧S.a = T.b∧T.d = U.e.

Figure 1 shows a cache setup for a movie database, including many RCCs used
to connect the selected cache tables. Let us assume we know that the name ‘Bond’
is complete in A.name3, which means that all actors named ‘Bond’ are in the cache.
We can then safely evaluate the predicate A.name = ‘Bond’ in the cache, because it is
predicate complete with respect to this predicate. Furthermore, since we guarantee that
all specified RCCs hold at any time, we are allowed to evaluate

A.name = ‘Bond’∧A.id = P.aid∧P.mid = M.id∧M.zip = C.zip

in the cache, too. Of course, this is only a skeleton of a possible query and could be
enriched with further selection predicates such as M.title = ‘Dr. No’.

2 As SQL’s null indicates the absence of a value, we do not regard null in itself as a value.
3 In formulas like this one, we like to abbreviate the table names.
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Fig. 1. Cache groups G1 and G2

Using RCCs we implicitly introduce a value-based table model intended to sup-
port queries. Despite similarities to the relational model, RCCs are not identical to the
PK/FK (primary key / foreign key) relationships contained in the backend schema. A
PK/FK relationship can be processed symmetrically, whereas our RCCs can be used for
join processing only in the specified direction. There are other important differences:
n : m RCCs (NU→NU) have no counterparts in the backend DB, and a column may be
the source of n and the target of m RCCs. In contrast, a column in the role of a primary
key may be the starting point of k, but in the role of a foreign key the ending point of
only one (meaningful) PK/FK relationship.

2.2 Probing for Entry Points

RCCs allow us to draw conclusions about predicate extensions that are in the cache,
but only if we can rely on some value being complete and serving as an entry point.
Considering some column S.c, how do we know that a value v is complete there? Obvi-
ously, our goal ought to be to provide simple and efficient means for deciding about the
completeness of values in the cache: The process of using simple (existence) queries
on the cache to decide about completeness is called probing; the queries used are called
probe queries accordingly.

In contrast to DBCache [1], we use a new probing approach [3], which does not re-
quire new constraints and thus does not load extra records into the cache (as DBCache’s
cache keys do). The fundamental insight is that RCCs already provide guarantees about
complete values in the cache: The source column S.a of an RCC S.a → T.b (or more
precisely, the values therein) controls which values are complete in its target column
T.b. We therefore call S.a a control column of T.b.

In general, any given column S.c can have zero or more control columns. Whenever
a column S.c we would like to use as an entry point for a predicate S.c = v has at least
one control column, we can probe (i. e., check for the existence of value v) in the control
columns of S.c. If we find v in one of these columns, we know that it is value complete
in S.c and that we can correctly evaluate the predicate in the cache.
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In our example in Fig. 1 the following five columns possess control columns and
could thus serve as entry points: P.aid, M.id, M.directed_by, and G.id have one control
column each, C.zip even three (A.zip, D.zip, and M.zip), which would require – in the
worst case – to probe in all the three columns for a value.

Probing can be optimized if we can deduce that, at all times, a column can contain
complete values only.

Definition 3 (Column completeness). A cache column S.c is said to be column com-
plete (or complete for short) if and only if all values v in S.c are value complete.

Given a complete column S.c, if a probe query confirms that value v is present in S.c
(a single record suffices), we can be sure that v is value complete and thus evaluate S.c =
v in the cache. Unique columns of a cache table are complete per definition. In contrast,
non-unique columns are only complete under special conditions (or if completeness is
enforced through additional cache constraints4).

You can show that a column T.c is complete (at all times) if

– it is a U column,
– it is a column with an (self-)RCC T.c→ T.c, or
– it is the only column in table T with incoming RCCs.

In our example, we have five U columns and one additional complete NU column,
namely P.aid. Column M.directed_by is not complete, because table M is reached by
another incoming RCC on column M.id.

Probing Strategies. When looking for an entry point for a predicate S.c = v, we have
two kinds of probing operations at our disposal:

– If S.c is column complete, we can probe directly in S.c.
– If S.c has at least one incoming RCC, we can probe in a control column of S.c.

We may choose between these two, based on the probing costs (e. g., is there an
index on the probed column?). We may even apply a number of successive probing
operations for a single entry point, thereby forming probing strategies. In this case, the
order of the probing operations and their probabilities of success determine the average
costs of the whole probing strategy.

2.3 Loading Predicate Extensions

To be able to evaluate a predicate Q in the cache, the cache manager must guaran-
tee predicate completeness for Q by loading all required records into the cache tables.
Following the RCCs, the cache manager can construct predicate extensions using only
simple loading steps based on equality of values.

Obviously, there must be some way to tell the cache manager which predicate exten-
sions to load. In essence, this means placing single values into specific cache columns,
from where the cache manager will fill the cache, guided by the cache constraints.

4 For example, DBCache’s cache key columns are forcibly complete.
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Candidate Values in Filling Columns. Besides RCCs, a second type of cache object
is needed in order to establish a parameterized loading mechanism: Attached to selected
filling columns are sets of candidate values (CVs), which alone initiate the loading of
predicate extensions when they are referenced by user queries.

The set of all candidate values of a filling column S. f is denoted by CS. f and is
always a subset of SB. f ’s domain. Whenever a candidate value v in CS. f occurs in an
equality predicate of a query (S. f = v), the cache manager probes the respective cache
table as usual to see whether this value is present: A successful probe query (the value v
is found) implies that the predicate extension for the given equality query is in the cache
and that this query can be evaluated locally. Otherwise, the query is sent to the backend
to continue processing.

As a further consequence of this cache miss attributed to v, the cache manager satis-
fies the value completeness for v asynchronously by fetching all required records from
the backend and loading them into the respective cache table. It then proceeds to restore
the validity of all RCCs by loading the necessary records into the remaining tables.
Hence, the cache is ready to answer the corresponding equality query locally from then
on as well as all queries anchored by it.

Apparently, a reference to a candidate value v serves as a kind of indicator that,
in the immediate future, locality of reference is expected on the predicate extension
determined by v. Candidate values therefore carry information about the future work-
load and sensitively influence caching performance. Hence, candidate values must be
selected carefully. In an advanced scheme, the cache manager itself takes care, by mon-
itoring the query load, that only those values with high re-reference probability become
and stay candidate values. In a straightforward case, the database administrator (DBA)
specifies the set of candidate values (e. g., as the domain itself, an enumeration, a range,
or as other predicates) positively or negatively (stop-words).

Master Control Columns. The subset of candidate values of a filling column S. f that
have already been referenced and therefore actually are in the cache controls which
values are complete in S. f and, hence, behaves similar to the contents of a control
column. To allow uniform treatment of all cache columns with regard to probing and
filling, we introduce an artificial control column ctrl( f ) for each filling column f .

This master control column ctrl( f ) is a U column of a separate, anonymous (master
control) table with an RCC ctrl( f )→ f pointing to the filling column f .

Having made this step, we can simply regard the domain of ctrl( f ) as the set of
candidate values of f , whereas the actual contents of column ctrl( f ) (i. e., some of the
candidate values) determines which predicate extensions are in the cache. When looking
for an entry point for a predicate f = v, we can use our regular probing strategies (and
probe in the control column ctrl( f ), for instance); in case of a cache miss, the value v is
inserted into the master control column ctrl( f ) from where the cache manager will start
its loading steps to reestablish the validity of all cache constraints.

Now the only special thing about filling columns is their sensitivity to references
of values in equality predicates, which leads to new values in their artificial control
columns. With respect to probing, query evaluation, and even filling via RCCs they
behave exactly like any other column.
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Figure 2 shows the master control columns ctrl(A.name) and ctrl(D.name) for the
two filling columns A.name and D.name (dark gray) of our example. Assume A.name =
‘Bond’ is part of a predicate. Hence, the filling column A.name is our potential entry
point. We can now probe for ‘Bond’ in the control column of A.name, which happens to
be the master control column ctrl(A.name). If we find the value there, we can evaluate
the predicate in the cache. If we do not, we must pass the predicate on to the backend,
but can prepare for subsequent cache-based evaluations of the predicate by inserting
‘Bond’ into ctrl(A.name).

With the master control columns in place, we can add the NU columns A.name and
D.name to our set of potential entry points gathered in Sect. 2.2, which yields a total
count of nine.

2.4 Cache Groups and Federations

In general, our caching mechanism supports PSJ queries that are characterized by pred-
icate types of the form (EP1∨ . . .∨EPn)∧EJ1∧ . . .∧EJm, where the EPi, 1≤ i≤ n, are
equality predicates on filling columns of a specific cache table called root table and the
EJ j, 1 ≤ j ≤ m, correspond to RCCs that (transitively) connect the root table with the
remaining cache tables involved. The resulting structure is called cache group, which is
our unit of design to support a specific predicate type in the cache.

Definition 4 (Cache group). A cache group is a collection of cache tables linked by a
set of RCCs. A distinguished cache table is called the root table R of the cache group
and holds one or more filling columns. The remaining cache tables are called member
tables and must be reachable from R via RCCs.

Whenever more than one basic predicate type should be supported in a cache, we
have to consider the federation of cache groups overlapping in some tables. On the
one hand, memory space may be saved in shared cache tables, but, on the other hand,
implicit extension of one cache group by RCCs of another one may lead to the loading
of many unwanted records into the cache.

In our example, cache group G1 and G2 are designed for the two predicate types

(A.name = v1)∧A.id = P.aid∧P.mid = M.id∧M.genre = G.id∧A.zip = C.zip

(D.name = v2)∧D.zip = C.zip∧D.id = M.directed_by∧M.zip = C.zip

and share the member tables C and M in the federation (see Fig. 1).
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2.5 Related approaches

At first sight, DBCache [1,4] uses similar concepts to perform database caching with
cache groups: The concept RCC and the basic method of determining predicates evalu-
able in the cache are the same. But DBCache does not use the concept of predicate
extensions or predicate completeness to explain why the cache is structured as it is. It
has no notion of master control columns or of probing in control columns in general
and is restricted to complete columns (DBCache term: domain-complete columns) as
potential entry points. To make at least filling columns complete, further constraints
called cache keys are employed – they fail to separate values referenced and wanted to
be complete in the cache (contents of our master control columns) from values that are
in the cache because of other constraints and may thus lead to unwanted cache loading.

Our master control columns have been inspired by the control tables in the MT-
Cache project [5,6], which are used in quite a similar way: There a set of stacked mate-
rialized views is used to describe the cache contents, each dependent on the contents of
another view (which resembles RCCs) or ultimately on the contents of a control table.

3 Architecture of ACCache

The key idea of DB caching is to provide – close to the application server – a query
processing facility, which must be transparent for the transaction programs requesting
DBMS services. For developing an adequate architecture, it is reasonable to strive for
a solution which is independent of a specific DBMS and exclusively rests on the avail-
ability of some SQL engine. Hence, it became obvious that we should go for a flexible
solution based on middleware concepts. In this way, our work does not rely on the good-
will of a single manufacturer (which would require to massively modify and expand the
code of an existing DBMS) and gains flexibility and openness thereby enabling the use
of different DBMS engines at minimal porting costs. Furthermore, we have the opportu-
nity to avoid the trade-offs and to combine – based on our concepts described in Sect. 2
– the advantages of different existing systems [1,5].

3.1 Component Architecture

Figure 3 illustrates the main tasks of our adaptive constraint-based caching system by its
components providing the required services and their interaction. Cache transparency
for the user is achieved through the JDBC interface, which accepts SQL statements
and delivers results in the way the application program expects. All requests are passed
on to some Query Worker, which analyzes them, regarding the cache’s configuration
and its current contents, and – if processing in the cache is possible – transforms them
such that references to cache and backend tables can be separated. Hence, the native
federated query facility of the DBMS used [7] can distribute (appropriate parts of) the
query statement to the cache DB and backend DB. Sending DB requests and receiving
their results are handled by the middle tier thereby providing a uniform interface (to all
ACCache components) and controlling all accesses to the underlying DBMSs.

The Setup and Initializer components perform the initial cache creation using a con-
figuration file and possibly some initial cache filling. Cache maintenance and adaptivity
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is primarily accomplished by the Fill Daemon and the Garbage Collector whereas the
Hit Counter is collecting reference statistics to enable accurate load/unload decisions.

3.2 Initializing DB Cache Processing

The Setup and Initializer components provide an administrator interface to ACCache.
They enable the setup of a specific cache DB configuration and, for each operating
session, the creation and initialization of appropriate data structures within ACCache.
These are used for keeping meta-data for the cache tables (table and column names, col-
umn types, RCCs, filling columns, etc.) as well as statistics for cache operation control.
The kernel part of the ACCache-internal data structure contains the object types illus-
trated in Fig. 4. The kind of information recorded is dependent on the role a column
embodies. For example, if a filling column is specified, two additional table objects are
created and referenced by this column object. The first one is a master control table car-
rying information about cached values in a filling column (value, loading time stamp,
most recent reference, etc.), whereas the second one keeps all candidate values for the
filling column (filling value table).

Cache DB setup requires the following essential steps:

– allocation of the specified cache tables and their related control tables: They can be
created in any sequence, because FK relationships are not maintained in the cache
(but only RCCs)
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– specification of filling value tables
– creation of appropriate indexes (on source columns of RCCs and on U columns) to

speed up probe queries.

An important optimization feature is the use of prepared statements for probing,
filling, and other housekeeping operations on the cache. Because of their frequency,
these SQL operations should be highly optimized and ready for running when needed.
Because all possible operations are known in advance – once a cache DB configuration
is fixed –, they can be prepared in the form of query execution plans (QEPs) and kept
ready as soon as the cache DB is set up. The ACCache components accessing the cache
DB via the middle tier require four different types of SQL statements:

– existence queries, primarily used by the Query Workers for probing
– insert statements used by the Fill Daemon to load new records into cache tables
– update queries to modify information in control tables
– delete statements to unload records from cache tables.

3.3 Query Worker

The Query Worker component (QW) is responsible for processing user queries and
therefore provides the key functionality of ACCache. Several QW instances are man-
aged in a pool at run time; a free QW is assigned to an arriving query and put back in the
pool when finished. At first, a QW validates the request against a grammar of a subset
of SQL. If no match is obtained, the query is passed on to the backend DB. Otherwise,
local processing is initiated which is only sketched in its essential steps. Assume the
following query is a potential candidate for cache processing (see Fig. 1):

SELECT d.name, m.title, g.name FROM Director d, Movie m, Genre g
WHERE d.id = m.directed_by AND m.genre = g.id AND d.id = ’711’
ORDER BY g.name ASC

After checking for correct SQL syntax, the query is decomposed into its different
clauses. At first, all table (and alias) names from the FROM clause are extracted. Then
the WHERE clause is analyzed. For predicates of the form columni = column j (equi-join
predicate), QW checks whether an RCC exists between these columns. The data struc-
ture illustrated in Fig. 4 greatly supports the analysis. When an RCC is identified, QW
creates/expands a directed graph – the so-called cache group evaluation graph (CEG) –,
which receives the table names of the related columns as vertices. These table vertices
are connected by a directed edge representing the direction of the RCC.

Figure 5 shows the result of the analysis process for our example. After two join
predicates, QW extracts a predicate of the form columnk = value which is considered as
a potential entry point. Hence, QW initiates a probing process. If columnk is a U column
(like d.id), a probing query is sent to the cache DB. Otherwise, probing is performed
on the source columns of incoming RCCs (see Sect. 2.2). The related existence queries
probing potential entry points have the form

SELECT 1 FROM TABLE (VALUES 1) AS tmp
WHERE EXISTS (SELECT * FROM 〈cache table〉 WHERE 〈column〉 = ?)
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As soon as a complete value is determined (assume, d.id = ‘711’ is in the cache), prob-
ing stops successfully. In this case, the column can be used as an entry point for the
query: It is taken as an anchor for the related table and added/connected to the CEG.
Depending on the query analyzed, several entry points attached to table vertices may
exist. Obviously, all table vertices reachable from an entry point are automatically an-
chored. Hence, CEG enables the generation of modified queries that are to be (partially)
evaluated in the cache DB. For our example, the original query is rewritten to

SELECT d.name, m.title, g.name
FROM CA_Director d, CA_Movie m, CA_Genre g
WHERE d.id = m.directed_by AND m.genre = g.id AND d.id = ’711’
ORDER BY g.name ASC

where the prefix CA_ indicates a reference to a cache table. When the middle-tier com-
ponent forwards the transformed query to the federated query facility, the entire query
evaluation is performed in the cache DB in this case.

If probing fails, the value looked up is not complete in the cache. QW then checks
whether the related column is a filling column and whether the value belongs to the
candidate values. If so, a message is sent to the Fill Daemon to load this value into the
cache.

3.4 Fill Daemon

Loading of records must be accomplished very carefully, that is, caching of duplicate
records must be prevented and – after the filling process as a consequence of a CV
reference is finished – all cache constraints must be satisfied by the state of the cache.
The principal approach to loading predicate extensions has been discussed in Sect. 2.3.
Here we outline its implementation.

Assume Actor name ‘Bond’ is included in the list of CVs, was referenced in a
query, and was not found in the cache (see Fig. 1). Hence, the Fill Daemon will receive
a message to make Actor name ‘Bond’ complete thereby loading the resp. predicate ex-
tension. Inserting ‘Bond’ into the control table implies loading the related Actor records
which force Play and City records into the cache. The inserted Play records require the
filling of Movie records and these, in turn, Genre and City records.
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We have already mentioned that the insert statements for such a filling process are
prepared by the Initializer component. However, these statements necessarily carry so-
called markers (for actual parameters values) instead of concrete values. Hence, starting
with the control table, we insert value ‘Bond’ and request all Actor records with name
‘Bond’ from the backend DB. These records are then inserted into the Actor table in
the cache (bewaring of duplicates). Furthermore, they deliver the values replacing the
markers in the prepare statements for Play and City, and so on.

Top-Down Filling. The filling process sketched so far iteratively loads a sequence of
cache tables starting with the control table. This table sequence can be computed by
recursively following the outgoing RCCs of each table visited. As an example, we list
the insert statement for the Actor table:

INSERT INTO CA_Actor SELECT * FROM Actor a WHERE a.name = ’Bond’
AND a.name NOT IN (SELECT name FROM CA_Actor)

The entire filling process must be executed by a transaction whose insertions have
to be protected by locks. Otherwise, parallel QWs could see inconsistent cache states
which could lead to wrong query evaluations. For example, when inserting Actor record
having a.id = ‘007’, the corresponding records are not present in cache table Play.
Hence, “long” X locks must be kept until the filling process is successfully finished
which, in turn, may block reader transactions for long time spans.

Bottom-Up Filling. A more sophisticated filling mechanism may avoid such situations.
The key observation is that loading the cache tables bottom-up, we can fill each table in
a separate transaction thereby providing cache consistency and only need to lock until
the resp. cache table is loaded. More precisely, we have to define so-called atomic zones
which can be loaded independently. In the simplest case, if no cycles are present, every
cache table is an atomic zone. Due to space limitations, we cannot discuss cycle issues
in detail and refer to [8]; suffice it to say that all tables belonging to an allowed cycle
end up in the same atomic zone.

Figure 6 illustrates the atomic zones for the filling process of cache group G1. The
loading sequence of these zones can be determined by topological sorting which results
for our example in: (Genre, City), Movie, Play, Actor, and finally the control table for
A.name. Hence, after having finished loading of, say, cache table Genre, we can release
the locks on Genre and let concurrent QWs run reader transactions on this table, and
so on. However, to start the filling process with table Genre, we need to determine the
records to be inserted. Therefore, we need to travel along the reverse RCC path from
Genre up to Actor to select the Genre records depending on a CV to be filled in.

In the general case, the reverse RCC path be Rn,Rn−1, . . . ,R1 where the target table
of Rn is the cache table to be filled and the source table of R1 is the root table. Then, the
prepared insert statements have the following generic form:

INSERT INTO 〈cache table〉 (
SELECT * FROM 〈corresponding backend table〉 WHERE 〈Rn target col.〉 IN (

SELECT 〈Rn source col.〉 FROM 〈Rn source table〉 WHERE 〈Rn−1 target col.〉 IN (
. . . (SELECT 〈R1 source col.〉 FROM 〈R1 source table〉 WHERE 〈filling col.〉 = ?))))
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Fig. 6. Loading cache tables bottom-up

If a cache table is reachable by several RCC paths, it may receive records via all
these paths. Therefore, prepared insertion statements are generated for all these paths –
done in a stereotypical way, as shown below. Again, we illustrate the insertion statement
for the first table to be loaded. The only marker to be replaced is ‘Bond’.

INSERT INTO CA_Genre SELECT * FROM Genre g WHERE g.id IN (
SELECT m.genre FROM Movie m WHERE m.id IN (

SELECT p.mid FROM Play p WHERE p.aid IN (
SELECT a.id FROM Actor a WHERE a.name = ’Bond’

))) AND g.id NOT IN (SELECT id FROM CA_Genre)

Hence, bottom-up filling provides a trade-off between potentially higher concurrency
during the filling process and the need for more complex queries to be evaluated in the
backend DB.

3.5 Hit Counter and Garbage Collector

The Hit Counter (HC) is responsible for recording statistical data used by the Garbage
Collector (GC) for its cache replacement strategy. It is implemented as a separate pro-
cess owning a queue continuously monitored and emptied. QWs fill this queue with
messages recording each entry point found while a query was analyzed. In all control
tables, HC maintains statistical information on the (candidate) values which triggered
the load of those values identified as potential entry points for a query. In particular, the
columns hitcounter and lastaccess are incremented or modified.

GC is responsible for controlling the size of the cached data by periodically check-
ing whether or not a pre-specified cache filling level (high-water mark) is observed. If
this level is reached, GC initiates one or more deletions of cache instances by remov-
ing a CV from a control table. As a consequence, the entire predicate extension for the
removed CV has to be deleted from the cache thereby preserving the cache constraints.
Thus, records belonging to multiple predicate extensions must not be deleted. In such
cases, records can leave the cache only if the last predicate extension they belong to is
removed from the cache.
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Again, the prepared statements for delete operations are generated by the Initializer.
The concrete CVs to be replaced, however, are chosen by means of an LRU algorithm.
As a victim, GC selects the entry from a control table which has the least recent time
stamp in the lastaccess column. This CV replaces the marker in the prepared statement.

Deletion starts from the control table removing the selected LRU CV and proceeds
to all connected cache tables via outgoing RCCs. As in case of cache loading, we ex-
clude the discussion of cycles. Assume, we want to remove the predicate extension for
D.name = ‘Spielberg’ in cache group G2 (see Fig. 1). After ‘Spielberg’ is not in master
control table, say K1, anymore, the records in cache table Director are removed by:

DELETE FROM CA_Director
WHERE (name IS NOT IN (SELECT name FROM K1))

The deletion procedure has to follow all RCC paths starting from the root table. The
prepared statements to be applied have the following generic form where corresponding
expressions have to be generated and ANDed for each incoming RCC of a cache table.
Hence, the base template is

DELETE FROM 〈cache table〉 WHERE (〈RCC target column〉
IS NOT IN (SELECT 〈RCC source column〉 FROM 〈RCC source table〉))

which can easily applied to cache table Movie. Removing records from City with two
incoming RCCs requires the following statement:

DELETE FROM CA_City
WHERE (zip IS NOT IN (SELECT zip FROM CA_Movie))

AND (zip IS NOT IN (SELECT zip FROM Director))

At this point, you might wonder whether or not the deletion procedure is complete.
What happens to RCC-dependent records in table Genre?

3.6 Savings and Penalties in Cache Group Federations

So far, we have discussed the management of single cache groups. As our running ex-
ample in Fig. 1 reveals, it may be sometimes beneficial to allocate multiple overlapping
cache groups in a federation. This design was influenced by the transparency require-
ments for cache tables which demand that each table (logically) appears only once in
the cache.

For example, G1 and G2 share the tables Movie and City, which may save multi-
ple representations of the same records. However, loading of records intended for one
cache group may unintentionally cause records to be loaded in other cache groups. For
example, table Genre only belongs to G1. However, it is RCC-connected to table Movie
to be loaded in G1 and G2. Hence, to preserve the RCC constraint, Genre may have to
be filled whenever new records appear in table Movie. Therefore, loading a new predi-
cate extension in G2 may enforce records into Genre (in G1) – only to satisfy all cache
constraints.

Hence, if we load a new predicate extension into G2, ACCache may have to insert
Genre records, too, that is, new records in Movie may imply via RCC M.genre→ G.id
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the insertion of (unwanted) Genre records. Symmetrically, deletion of a predicate ex-
tension in G2 may remove records from Movie. To keep the cache consistent, Genre
records may have to be deleted, too. Thus, deletion statements must cover all cache
tables reachable by RCC paths starting from the root table of G2.

The penalty each group in a federation must pay can be considered as a “mem-
bership fee”. Separate allocation of cache groups, however, does not offer a perfect
solution either. In such cases, we necessarily create copies in the cache which have to
be kept consistent. For these reasons, savings and penalties of different solutions should
be quantified, before a specific cache group design is chosen. Such an approach requires
quantitative models for loading and unloading cache tables depending on specific work-
loads. A so-called cache group adviser could be a valuable tool for such design deci-
sions. First steps in this direction are proposed by the authors in [9].

4 Summary

In this paper, we have primarily discussed the design and implementation issues of
a middleware-based solution for database caching. For this reason, we have sketched
our model for adaptive constraint-based caching and have emphasized the benefits and
added value of this model as compared to the DBCache approach. The main part of our
work has addressed our ACCache system which provides a database caching solution
kept independent from specific DBMSs.

Our future work concentrates on optimization in ACCache. This includes the design
of a suitable benchmark enabling representative performance measurements with com-
parable results and providing a refined exploration of federation issues. Moreover, these
results could empower an adviser to support the specification of adequate configurations
for cache groups and federations.

References

1. Altinel, M., Bornhövd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald, B.: Cache
tables: Paving the way for an adaptive database cache. In: VLDB Conference. (2003) 718–729

2. Amiri, K., Park, S., Tewari, R., Padmanabhan, S.: DBProxy: A dynamic data cache for web
applications. In: ICDE Conference. (2003) 821–831

3. Bühmann, A.: Einen Schritt zurück zum negativen Datenbank-Caching (A step back towards
negative database caching). In: BTW Conference, Karlsruhe (2005) 107–124

4. Bornhövd, C., Altinel, M., Mohan, C., Pirahesh, H., Reinwald, B.: Adaptive database caching
with DBCache. Data Engineering Bulletin 27(2) (2004) 11–18

5. Larson, P., Goldstein, J., Zhou, J.: MTCache: Transparent mid-tier database caching in SQL
server. In: ICDE Conference, IEEE Computer Society (2004) 177–189

6. Zhou, J., Larson, P., Goldstein, J.: Partially materialized views. Technical Report MSR-TR-
2005-77, Microsoft Research (2005)

7. IBM: DB2 Universal Database (V 8.2) (2005)
8. Merker, C.: Konzeption und Realisierung eines Constraint-basierten Datenbank-Cache. Mas-

ter’s thesis, TU Kaiserslautern (2005)
9. Härder, T., Bühmann, A.: Database caching – Towards a cost model for populating cache

groups. In: ADBIS Conference. Volume 3255 of LNCS., Budapest, Springer (2004) 215–229


	Motivation
	Constraint-Based Database Caching
	Completeness
	Probing for Entry Points
	Probing Strategies.

	Loading Predicate Extensions
	Candidate Values in Filling Columns.
	Master Control Columns.

	Cache Groups and Federations
	Related approaches

	Architecture of ACCache
	Component Architecture
	Initializing DB Cache Processing
	Query Worker
	Fill Daemon
	Top-Down Filling.
	Bottom-Up Filling.

	Hit Counter and Garbage Collector
	Savings and Penalties in Cache Group Federations

	Summary

