
Locking-Aware Structural Join Operators for
XML Query Processing

Christian Mathis, Theo Härder, Michael Haustein
Dept. of Computer Science, University of Kaiserslautern, Germany

{mathis | haerder | haustein}@informatik.uni-kl.de
ABSTRACT
As observed in many publications so far, the matching of twig
pattern queries is a core operation in XML database management
systems (XDBMSs) for which the structural join and the holistic
twig join algorithms were proposed. In a single-user environment,
especially the latter algorithm provides a good evaluation strategy.
However, when it comes to multi-user access to a single XML
document, it may lead to extensive blocking situations: The
XDBMS has to ensure data consistency and, therefore, has to
prevent concurrent modification operations from changing
elements in the input sequences, a holistic twig algorithm accesses
while operating. To circumvent this problem, we propose a set of
new locking-aware operators for twig pattern query evaluation that
rely on stable path labeling IDs (SPLIDs) as well as document and
element set indexes. Furthermore, by running empirical tests on a
native XDBMS, we show that their performance is comparable to
existing approaches in a single-user environment, and leads to
higher throughput rates in the case of multi-user access.

1. MOTIVATION
As XML documents permeate information systems and databases
with increasing pace, they are more and more used in a collabora-
tive way. The challenge for database system development is to pro-
vide adequate and fine-grained management for these documents
enabling efficient and concurrent read and write operations. In es-
sence, this objective postulates the design and management of high-
ly dynamic XML documents. Because event-driven, navigational,
and declarative languages are already available in the form of (par-
tial de-facto) standards like SAX, DOM, XPath, or XQuery [21],
and used as typical XML document processing (XDP) interfaces,
XDBMSs should be able to run concurrent transactions supporting
all these interfaces simultaneously and, at the same time, guarantee
ACID properties [10] for all of them.

Multi-lingual XDP support explicitly means that—starting from a
context node—navigational operations of the DOM language mod-
el such as parent/first-child/last-child/previous-sibling/next-sibling
and event triggering for SAX nodes in document order must be fa-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD 2006, June 26-29, 2006, Chicago, Illinois, USA
Copyright 2006 ACM 1-59593-256-9/06/0006…$5.00
cilitated and, at the same time, adequate support for declarative
queries of the XQuery and XPath 2.0 language model must be guar-
anteed. Furthermore, transaction-safe modifications in any part of
the document must be enabled.

In a first step, we concentrate on twig queries, i.e., queries that only
contain the child and descendant axes and allow branching path-
based predicates (Figure 4b). They are often exploited in XML que-
ry processing by decomposing them into sequences of operations
where tailored axes operators are employed and chained together to
derive the final result. Another evaluation approach is the applica-
tion of holistic twig join algorithms (twig joins for short).

1.1 Required System Support
Currently, a growing wave of proposals for index structures is pub-
lished for XDBMS use. They can be classified into structure, con-
tent, and hybrid indexes [4] where the latter two classes borrow
many ideas from well-known Information Retrieval approaches.
Because they focus on node access based on values, they are of lim-
ited use for structural processing steps required for our query pat-
terns sketched above. In contrast, structural access support is of
prime importance. Therefore, we claim that such a mechanism
should facilitate all path processing steps in an orthogonal way,
thereby providing dynamic reorganization, balanced structure, and
logarithmic access costs.

Together with appropriate index structures, a labeling scheme for
tree nodes is most influential for efficient access to XML docu-
ments. It should support all the navigational operations as well as
the evaluation of the main axes for declarative query processing. At
the same time, the labeling scheme must facilitate the work of the
lock manager which needs stable identifiers—similar to TIDs in the
relational world—to lock individual nodes and subtrees of a docu-
ment. Note, fine-grained locking of an arbitrary tree node also re-
quires locks in appropriate modes on all its ancestor nodes to be
kept until transaction commit. Therefore, dynamic relabeling of
nodes (as a consequence of a subtree insertion) would not only be
very expensive because (a part of) the document residing on disk
has to be modified, but would also strongly interfere with lock man-
agement. For these reasons, node labels should be immutable (for
the life time of the nodes), should easily reveal the level and the IDs
of all ancestor nodes, and must, when inserting new nodes, pre-
serve the document order. When storing an XML document, the
round-trip property must be guaranteed, that is, the XDBMS must
be able to reconstruct the original ordered document transferred by
a client application. Last, but not least, the labels need a very effi-
cient variable-length representation, because there are frequently
millions of nodes to process in large XML documents.

1.2 Our Contribution
We believe that only selected indexing and labeling schemes as
well as query processing approaches can fulfill the strong require-
ments outlined above. The interplay of these concepts proposed so
far was not considered in detail; in particular, the needs of locking
protocols for document modifications together with related index
maintenance was not explored. Furthermore, none has taken the
support of navigation into account which can be optimized together
with the physical document mapping.

Existing query evaluation algorithms (for so-called twig queries)
are running sequences of processing steps where single-user envi-
ronments are assumed. They have to lock large element sets to
avoid, for example, phantoms (see Section 2.3)—thereby blocking
them against modifications in multi-user mode—, even if the result
set is small in case of highly selective queries. Hence, they are not
aware of the large data granules to be locked until transaction com-
mit to guarantee transaction isolation levels repeatable read or even
serializable [10]. Therefore, these algorithms cannot respond to and
optimize complex transaction mixes typically occurring in multi-
user environments. For this reason, we develop alternative—so-
called locking-aware—path processing operations, in particular,
structural join algorithms which are sensitive to the requirements of
multi-lingual XDP interfaces and concurrent transactions. As a re-
sult, we propose a set of physical algorithms supporting processing
steps of XML query evaluation as kind of locking-aware building
blocks to be selected by the query optimizer.

We claim that the key to fine-grained and efficient management of
XML documents are special—for dynamic documents optimized—
prefix-based labeling schemes (as i.e. explored in [11]). Our algo-
rithms take advantage of their expressiveness and our experimental
results provide indicative hints of their potential.

In this paper, Section 2 gives an overview of the essential internals
of our native XDBMS prototype XTC [12] implemented in Java;
some numbers drawn from our extensive empirical experiments are
characterizing the power of the labeling schemes mentioned above.
Section 3 discusses the locking support needed for twig queries.
Our approach to locking-aware path processing based on these sys-
tem internals is outlined in Section 4; here we explore methods to
efficiently implement twig joins. In Section 5, we describe some
empirical experiments giving evidence of the performance potential
of our approach. Finally, we wrap up with conclusions.

2. SYSTEM TESTBED
Our XTC system adheres to the well-known layered hierarchical ar-
chitecture: The concepts of the storage system and buffer manage-
ment could be adopted from existing relational DBMSs. The access
system, however, required new concepts for document storage, in-
dexing, and modification including locking. The data system avail-
able only in a slim version is of minor importance for our consider-
ations.

2.1 Path Labels
A comparison and evaluation of node labeling schemes in [11] rec-
ommends node labeling schemes based on the Dewey Decimal
Classification [6]. The abstract properties of Dewey order encod-
ing—each label represents the path from the document’s root to the

node and the local order w.r.t. the parent node; in addition, sparse
numbering facilitates node insertions and deletions—are described
in [20]. Refining this idea, a number of similar labeling schemes
were proposed differing in some aspects such as overflow tech-
nique for dynamically inserted nodes, attribute node labeling, or en-
coding mechanism. Examples of these schemes are ORDPATH [18]
(used in MS SQL Server), DeweyID [15], or DLN [3]. Because all
of them are adequate and equivalent for our processing tasks, we
prefer to use the substitutional name stable path labeling identifiers
(SPLIDs) for them.

General properties are the following: Each node label contains the
label of its parent node as a prefix. A node label consists of a se-
quence of so-called divisions (separated by dots in the human-read-
able format). Odd division values indicate a level transition whereas
even division values provide an overflow mechanism. Upon initial
document storage, only odd division values are assigned, e.g.,
d1=1.3.3 and d2=1.3.5 label two consecutive nodes at level 3. A lat-
er insertion of a node at level 3 before d2 receives the label
d3=1.3.4.3, which allows for correct level identification by count-
ing simply the number of odd values, order preservation, node label
comparison (e.g., d3<d2), and ancestor determination (e.g., 1.3 and
1) without relabeling the nodes. Division value 1 at levels > 1 is
used to label attribute nodes (where order does not matter). An ef-
fective way to handle later insertions and, at the same time, to avoid
overflows is to provide for gaps in the labeling space, that is, to ini-
tially assign the division values dist+1, 2*dist+1, etc. where the pa-
rameter dist governs the gap size. The minimum value dist=2
should be applied to almost static XML documents whereas larger
dist values avoid resorting too frequently to overflow values; how-
ever, large dist values increase the storage space needed for the
SPLIDs encoding.

Here we can only summarize the benefits of the SPLID concept; for
details, see [3, 11, 18]. It provides holistic system support. Existing
SPLIDs are immutable, that is, they allow the assignment of new
IDs without the need to reorganize the IDs of nodes present. In the-
ory, SPLIDs are free of maintenance under arbitrary insertions. Yet,
implementation restrictions (e.g., key length < 128B in B-trees)
may enforce subtree relabeling, either by exclusive reorganization
or dynamically by a concurrent transaction (potentially aborting the
violating one before). But worst-case experiments indicate that
such events are very infrequent [14]. All SPLID properties are pre-
served and (equally important) relabeling only concerns the sub-
tree.

Comparison of two SPLIDs allows ordering of the related nodes in
document order. As opposed to competing schemes, SPLIDs easily
provide the IDs of all ancestors to enable intention locking of all
nodes in the path up to the document root without any access to the
document itself. Declarative queries are supported by the efficient
evaluation—that is, computation without the need to access the
document on disk—of the eight axes frequently occurring in XPath
or XQuery path expressions: parent/child, ancestor/descendant,
following-sibling/preceding-sibling, following/preceding. Even se-
quential document processing and navigational operations to par-
ent/child/sibling nodes from the context node are facilitated in com-
bination with the storage structures sketched in the following.

2.2 Fine-Grained Access to XML Documents
Our solution includes indexed access, maintenance of document or-
der, variable-length node management, and representation of long
fields. As sketched in Figure 1 and Figure 2, B-trees and B*-trees
embody an efficient storage framework for XML trees and provide
indexed access and order maintenance for them. Variations of the
entry layout for the nodes allow for single-document and multi-doc-
ument stores, key compression, use of vocabularies, and specialized
handling of short documents [12].

Figure 1 illustrates the storage representation of a document; a B-
tree, the so-called document index, with key/pointer pairs
(SPLID+PagePtr) references the first node in each page of the doc-
ument container consisting of a set of doubly-chained pages.1
These pages contain the node data where text values exceeding a
given threshold are stored in referenced mode. The document order
obviously facilitates first/next child navigation. Locating the parent
or next/previous sibling by a sequential scan in the container pages
could possibly provoke a bad performance, because a (potentially)
large set of pages had to be traversed; by taking the SPLID of the
current node as a “hint”, the document index always limits this op-
erations to a single container page access. For example, given 1.3.7
as the current node, the previous sibling 1.3.5 is efficiently located
via the document index, no matter how many container pages are in
between. Using 16K pages, the document index is usually of height
1 or 2. Because of reference locality in the B-tree while processing
XML documents, most of the referenced tree pages are expected to
reside in DB buffers—thus reducing external accesses to a mini-
mum. Having the magnitude of 108 nodes in 105 pages, document
containers need careful optimization considerations. All node for-
mats (of type element, attribute, or text) are of variable length. An
element node only consists of a key and a name part, whereas an at-
tribute node has a value part in addition. In contrast, a text node has
only a key and a value part. Because the key part—consisting of a
one-byte field KL (key length) and the encoded SPLID—may be-
come the Achilles heel of the storage representation, it must be re-
duced in a very efficient way.

In addition to the document store, an element index is created con-
sisting of a name directory with (potentially) all element names oc-
curring in the XML document (Figure 2); this name directory often
fits into a single page. For each specific element name, in turn, a
node-reference index may be maintained which addresses the cor-

responding elements using their SPLIDs. Conceptually, these in-
dexes are sequential lists which may contain very large numbers of
SPLIDs; organized as B*-trees, they enable direct access. In all cas-
es, variable-length key support is mandatory; prefix compression of
SPLID keys turns out to be very effective.

2.3 Locking Documents and Indexes
Processing XML trees in multi-user environments requires sophis-
ticated isolation mechanisms to perform scanning, navigation, de-
clarative read operations and arbitrary element/subtree inser-
tions/deletions. Often, XDBMS interface operations from DOM
implementations are processed directly on the document nodes
where several concurrently running transactions have to be isolated.
At the same time, declarative queries—written in XPath or XQue-
ry—are using indexed node references for the evaluation of path
processing steps and, potentially, additional navigation steps there-
by traversing the document to complete their query results.

Simply transferring the proven isolation techniques known from
(object-)relational systems to XDBMSs leads to several drawbacks
in concurrent transaction handling.2 For example, evaluations of
the child axis or navigation steps from node to node are frequently
applied during XML query processing, but multi-granularity lock-
ing [10] only provides for intention and subtree locks. Hence, it is
unable to lock an entire document level or a single XML node with-
out affecting the nodes residing in the related subtrees. Protocols
using latches to synchronize read and write operations on tree struc-
tures maximize the processing throughput by sophisticated algo-
rithms, but they just lock the required tree sections and unlock the
no longer needed sections as soon as possible. As a consequence,
these latches only isolate single operations and do not take any
transactional scope into account.

To cope with the requirements for transaction isolation, we imple-
mented a hierarchical lock protocol [12, 13] which provides tailored
lock modes for tree operations and tuning options such as lock
depth. It synchronizes the fine-grained shared and exclusive access
to single XML nodes, their potential attributes and values, and ac-
cess to entire document levels or subtrees. When a pre-specified
lock limit is reached, lock escalation may be applied, such that no
running transaction has to be aborted for reasons of resource un-
availability. Query evaluation is typically performed by locating

1 If we prefix the SPLIDs with the identifier of the individual
documents, we obtain a multi-document store where the
documents can be easily partitioned into separate sets of
container pages.

Figure 1. Document store with a B-tree and container pages

1.3.3.3

1. 1.3.1.3.1 1.3.5.3.3 1.3.5.5.3.1

1.3.5.3.3
1.3.5.3.3.1
1.3.5.5
1.3.5.5.3

1.3.1.3.1
1.3.1.5
1.3.1.5.1
1.3.3

1.3.3.3
1.3.3.3.1
1.3.5
1.3.5.3

1.3.5.5.3.1
1.3.7
1.3.7.3
1.3.7.3.1

1.
1.3.
1.3.1
1.3.1.3

SPLID (byte representation) node data (byte representation)

2 Using timestamped snapshots for reading and copies of subtrees
for updates is e.g. applied in SystemRX [2]. For high transaction
throughput, this requires the maintenance of several copies
affecting clustered XML store and enforces blocking of even
larger parts to enable document re-clustering (a premise for high-
performance DBMSs).

Figure 2. Organization of the element indexes

• regions

• categories • people

1.3.5 1.3 1.3.7

each of them sorted in document order

node-reference indexes
(B*-trees)

name directory
(B-tree)

XML elements via indexes; this means that lock acquisition for ar-
bitrary context nodes and all their ancestor nodes up to the docu-
ment root is a very frequent operation. To provide effective support,
in turn, the calculation of all these node IDs must be performed in
memory without accessing the nodes in the document stored on
disk. In particular, as a result of addressing the nodes by SPLIDs,
our lock protocols can operate very efficiently.

Furthermore, read and write operations affecting the update of in-
dex structures have to be synchronized, too. Therefore, we combine
the node-based hierarchical locking with a kind of key-range index
locking [17] extended by XPath axes semantics (called axis locks in
this paper). Axis locks requested for document modifications and
element index accesses prevent the occurrence of any phantom in
the specified axis, while navigational and declarative queries are
processed concurrently. As a brief example, an axis lock can be re-
quested in read mode for the context node with SPLID 1.3.3.7, the
lock value name and its axis child. This lock prevents any concur-
rent transaction from inserting or deleting a node with value name
that resides in the child axis of the node 1.3.3.7. But the lock does
not restrict parallel transactions more than necessary, because name
nodes can be inserted into any other axes areas of the document
(e.g., as descendants of 1.3.3.7 except children or in disjoint sub-
trees).

An example situation for the described child axis lock on the node
with SPLID 1.3.3.7 is shown in Figure 3. Because of the locked val-
ue name in mode R the node 1.3.3.7.5 can be updated if its value dif-
fers from name, otherwise such an operation would be blocked. The
same applies for the insertion of 1.3.3.7.199 which can only be per-
formed if the node value is not name. Deeper levels (e.g., the level
containing 1.3.3.7.3.3 or 1.3.3.7.5.3) are not affected by this lock
and the existing nodes are allowed to be updated or deleted or new
nodes can be inserted.

2.4 Empirical Results of SPLID Use
Implementation of SPLIDs has to be done carefully because of their
potential size primarily influenced by the document depth, the node
fan-out, and the dist parameter. Therefore, serious efforts are need-
ed to optimize their representation and storage to provide for a prac-
tical solution.

In [11], we report on the results of a comprehensive empirical study
of SPLID use for node labeling of XML trees. Under a wide varia-
tion of sizes and shapes, we obtained quite stable results for the
storage consumption of SPLIDs. We used a Huffman encoding
scheme primarily because of its ability to optimize the codes to the
frequency distributions of the division values occurring in the set of
node labels for a document. By representing a SPLID as a sequence
of divisions, we have systematically varied the dist parameter to

cover the reasonable solution space for practical use. For example,
using dist=2 and dist=32 as parameter values, average SPLID sizes
ranged from ~3 to ~8 resp. ~5 to ~12 bytes.

As visualized in Figure 1, the document order inherent in the se-
quence of SPLIDs lends itself to prefix compression. Therefore, we
obtained the favorable result that the average size of prefix-com-
pressed SPLIDs for all documents under a wide variation of the dist
parameter considered varied between ~2 and <3 bytes. Applying
prefix compression to the element indexes, the average compressed
SPLID—although indexed in document order—did not reach the
reduction rate of the document store. Nevertheless, we again ob-
tained acceptable prefix-compressed results from ~3 bytes to ~6
bytes. As a rule of thumb, we may expect in all cases average
SPLID sizes which are comparable to TIDs and can therefore be
processed in similar ways both in memory and on disk.

3. TWIG QUERY MATCHING
Because XML data has a tree-structured data model, it is very nat-
ural to use path and tree patterns for the search of structurally relat-
ed XML elements. Therefore, expressions specifying those patterns
are a common and frequently used idiom in many XML query lan-
guages and their fast and effective evaluation is of utmost impor-
tance for every XML query processor. A particular pattern in-
stance—the twig—has gained much attention in recent publica-
tions, because it represents a small but practical class of queries, for
which effective evaluation algorithms have been found [4].

3.1 Twig Queries
Basically, a twig is a tree where V is a set of
nodes, is a set of edges, is a mapping

: , , and r is the root node of the tree.
Figure 4b depicts such a twig. The nodes represent simple predi-
cates, such as tests on element names or content, while edges ex-
press the desired relationships between the elements to be found (in
the graphical notation, we use the double line for the descendant re-
lationship and the singleton line for the child relationship). Thus,
the twig represents a class of queries that only contains child and
descendant operators.

The specific problem of twig query evaluation is to find all possible
embeddings for a given twig in an XML document such that, 1) for
each embedding, a node of the twig corresponds to exactly one
XML element with the same name and vice versa, and 2) the struc-
tural relationships between the XML elements found exactly fulfill
those defined between the nodes of the twig. The result of a twig

1.3.3.7

1.3.3.7.3 1.3.3.7.5 1.3.3.7.199...

child axis
1.3.3.7.3.3 1.3.3.7.5.3 1.3.3.7.5.5 of 1.3.3.7

lock mode: R
lock value: name

Figure 3. Sample lock situation for the child axis

QT V E λ r, , ,()=
E V V×⊆ λ

λ E child{→ descendant }

a) Queries
Q1)//book[title=“Momo”]//author[“Ende”]
Q2) for $b in //book, $a in $b//author

where $b/title=“Momo” and $a=“Ende”
return ($b, $a)

b) Twig book

title

“Momo”

author

Figure 4. Sample queries and a twig

“Ende”

evaluation may be represented by a sequence of tuples. For exam-
ple, the twig from Figure 4b, evaluated on the XML document
whose fragment is shown in Figure 5, returns a sequence of tuples
with the name fields [book, title, “Momo”, author, “Ende”] and the
values [1.3, 1.3.3, 1.3.3.3, 1.3.5.3, 1.3.5.3.3], [1.3, 1.3.3, 1.3.3.3,
1.3.7.3, 1.3.7.3.3], and so on. Please note that these two tuples de-
picted only differ in the elements author and “Ende”. Because the
element book (1.3) has two such elements as descendants, all re-
maining elements matched by the twig have to be unnested and,
therefore, repeated.

3.2 Twig Algorithms and Locking Support
A large class of effective methods for twig query evaluation builds
on two basic ideas: the structural join (or containment join) [1, 22]
and the holistic twig join [4]. The first approach decomposes the
twig into a set of binary join operations, each applied to neighbor
nodes of the twig. For example, the relationship between the nodes
item and name may be evaluated by 1) accessing all elements with
the name item through a cursor C1 (e.g., by a scan over the leaf pag-
es of the corresponding node reference index, see Section 2.2), 2)
accessing all elements with the name name through C2, and 3) join-
ing these two sequences by a single iteration over C1 and C2 using
the parent-child relationship as the join predicate (which can easily
be done with SPLIDs). Intermediate results derived by the various
structural joins in the tree are then—to use the term of the authors
in [1]—“stitched” together to produce the final result. The underly-
ing algorithm implementing the structural join operator is inter-
changeable and subject to current research. [22] proposes a merge
join (the so-called Multi-Predicate Merge Join, MPMGJN), while
[1] introduces the Stack-Tree algorithm.

In [4], the authors argue that, intrinsic for the approach above, in-
termediate result sizes may get very large, even if the final result is
small, because the intermediate result has to be unnested for the
structural join approach, too, as outlined in the twig example above.
As a consequence, in the worst case, the size of an intermediate re-
sult sequence is in the order of the product of the sizes of the input
sequences. In addition to this problem, there is the need for a cost-
based query optimization to find the optimal join order. To remedy
these obstacles, the twig join (TwigStack) [4] evaluates the twig as
a whole: For each twig node n Stack Sn is initialized, as well as a
cursor Cn, which provides access to all elements that fulfil the given
node predicate pn. As in the structural join approach, the algorithm
iterates over the cursors to find twig matches, but avoids intermedi-
ate result unnesting by suitably encoding the qualified elements on
the set of stacks.

Crucial to the performance of these algorithms is the way, elements
are accessed through the cursors. Often, large ranges of elements
may be skipped, because the state of other cursors allows the calcu-
lation of the next possible match in Cn. This idea is exploited by TS-
Generic+ using a special index structure [15] and by the concept of
virtual cursor movements in the TwigOptimal algorithm [8]. For the
correct evaluation of the query, these algorithms aim to only trans-
fer as few as needed nodes from external memory.

When running such (skipping) twig join algorithms in multi-user
context, where concurrent transactions may insert/update/delete ar-
bitrary elements/subtrees in the queried XML document, appropri-

ate locking support is needed. For isolation level repeatable read3

[10], node locks (see Section 2.3) on all physically accessed ele-
ments suffice, because these elements form a superset of all result
elements, whose stability has to be assured. Therefore, in this case,
the locking characteristics for twig query evaluation (number of re-
quired locks; size of locked document ranges and, thus, the possi-
bility for concurrent modifications) heavily benefits from the inten-
tion of the proposed twig join algorithms to skip as large ranges of
elements as possible.

On the other hand, when prevention of phantoms is required in iso-
lation level serializable [10], different measures have to be taken.
Suppose, at first transaction T1 evaluates Q1 from Figure 4 against
a document, receives a result sequence Ra but does not commit.
Then T2 changes the name of a novel element (with title “Momo”
and author “Ende”) to book and commits, thus creating a new match
for the query in T1. Finally T1 poses the same query again and re-
ceives Rb. Using only node locks for T1 in this situation would not
prevent T2 from changing the novel element, because the new book
element did not exists before and could therefore not be locked. The
repeated evaluation of Q1 yields a different result sequence
() containing a phantom.

3.2.1 Solution 1: Document-Wide Axis Locks
A solution for this situation is the use of axis locks (see
Section 2.3): For T1 an axis lock is granted on the root element of
the document with the axis descendant-or-self for each node name
in the twig query (document-wide axis lock) before the query is
evaluated. Because T1 issues (among others) an axis lock for all
book elements in the document in our example, T2 is not allowed to
alter the set of book elements (neither by insertion nor by deletion).
This solution is independent from the strategy (algorithm) used to
evaluate the twig query. The correctness of this approach follows
from Theorem 1.

Theorem 1: The result sequence of a twig query relying on the ele-
ment sequences (cursors) C1...Cn in a transaction T1 may only be
affected by a writer transaction T2, iff T2 at least modifies one of the
element sequences accessed and vice versa. (Proof obvious).

3 Repeatable read guarantees that queries issued multiple times
within a transaction always get the same elements, i.e., no
element accessed may be modified concurrently. However, in
contrast to isolation level serializable repeatable read does not
avoid phantoms.

Ra Rb≠

bib 1

Figure 5. XML document (cut-out)

text

“Ende”

book

title

“Momo”

“Ende”

1.3

1.3.3 1.3.5
cover
1.3.7

author
1.3.5.3

author
1.3.7.3

1.3.7.3.31.3.5.3.3

1.3.3.3

novel

title

“Momo” “Ende”

1.9001

1.9001.3
author

1.9001.5

1.9001.5.31.9001.3.3

...book book

... ...

3.2.2 Solution 2: LCA Locking
Another possibility is the generation of local (i.e., non-document-
wide) locks, while the query is processed. This, however, depends
on the evaluation algorithm A and its strategy to access elements.
Suppose A is a skipping holistic twig join algorithm (like TwigOp-
timal) and consider Figure 6, where a snapshot of A processing a
twig is depicted. In this situation, A could issue the following ac-
tions: 1) Cursord is moved to dnext, and after an analysis of dnext‘s
relatives, 2) Cursorb and Cursorc would be moved to bnext and cnext
(by skipping bm and cm). Regarding the lock protocol, we have to
ask how is a concurrent transaction prevented from renaming a
node (e.g., x) to d—thus generating a phantom. Let us assume that
we correctly solved this problem for all nodes in document order
ahead of the current cursor. To prevent element x from being con-
currently modified, we have to make sure that range R between Cur-
sord‘s source s and target t is locked. This can only be accomplished
by an axis lock, because we cannot compute any nodes in R to be
protected by a node lock. The only meaningful and possible solu-
tion is to place a descendant-or-self axis lock on the least common
ancestor (LCA) of s and t4 (element a in the example). To complete
this lock strategy, a rule for the initial cursor setup has to be defined:
On each initial cursor node c1i, a preceding and an ancestor-or-self
lock has to be acquired to avoid phantoms on elements in document
order before c1i.

Obviously, both approaches constrain concurrent document modi-
fications more than necessary. In fact, both strategies behave simi-
larly: for LCA Locking, it takes only two nodes of the same name
occurring on two distinct paths in the document to place a docu-
ment-wide axis lock for that name on the root node; and this situa-
tion may occur frequently. However, when only taking node locks
and axis locks into account (and no further meta-data, e.g., structur-
al summaries), the so-far proposed solutions are the only possibli-
ties to guarantee serializability for holistic twig join algorithms.

4. LOCKING-AWARE STRUCTURAL
JOIN OPERATORS

The proposed methods for twig evaluation have led to a stepwise
improvement in performance over the time, and they are now good
candidates for physical operators supporting twig query evaluation

in XDBMSs. However, for our quest to find a more flexibly appli-
cable set of physical operators, especially considering the back-
ground of phantom prevention, let us rethink the process of twig
evaluation. Several key requirements strongly influenced the devel-
opment of our structural join operators in Section 4.3.

4.1 Key Requirements
Use pipelined query processing. Pipelining, based on the ONC pro-
tocol (open, next, close) is a well-known strategy providing simple
data and process flow mechanisms as well as low main memory us-
age, and assuring fast production of first result tuples. Our protocol
additionally dictates that each semi-join operator receives a se-
quence of elements in document order as input and provides its re-
sulting elements also in document order and as early as possible.

Design single-pass algorithms. To provide linear worst-case run-
time behavior, our algorithms should not read (even parts of) input
sequences multiple times.

Exploit the fact that not all nodes in the twig contribute to the query
result. As observed in [8], most practical queries contain only some
twig nodes (extraction points) for which output has to be generated
(e.g., the author node for the XPath query and additionally the book
node for the XQuery expression). With knowledge about extraction
points, the query optimizer is able to pick semi-join algorithms (in
many cases) instead of full joins for the generation of an operator
plan. For example, consider the operator plan in Figure 7 which em-
bodies one way to evaluate the twig in Figure 4. After we join the
title elements with the content elements “Momo”, the latter ones are
not needed anymore for the evaluation of the rest of the query.
Therefore a semi-join suffices. Note, if we wanted to evaluate the
twig for the XQuery expression, then the join operator between
book and author had to be a full join, because otherwise, we would
discard the book information at this stage of evaluation and could
not generate any output for books in the end.

The use of semi-joins has several benefits. Obviously, the interme-
diate result size is reduced in two ways: Because only relevant tu-
ples are forwarded to the next operator, the absolute (byte) size is
reduced. According to the XPath and XQuery standards, the result
sequences of our operators are supposed (and can be enforced by
our algorithms) to be tuplewise duplicate free. Therefore, the worst-
case complexity of the result size is linear to the size N of the for-
warded input list (as opposed to full join operators whose complex-
ity is O(N1*N2)). Due to restricted space, we will only focus on al-
gorithms for semi-joins in the remainder of this paper, although we
found similar techniques as proposed in Section 4.3 for full joins.

Avoid duplicates. Some XPath axes like parent, ancestor, and de-
scendant produce duplicates depending on the document structure

4 This may be verified by considering all combinations of axis
locks (self, parent, child, anc(-or-self), desc(-or-self), prev-sibl.,
foll-sibl.) and all computable SPLIDs on which the lock may be
set (ancestors of all so far accessed elements). Note, the axes
previous and following are prohibited, because they lock the
complete document, which is not considered “meaningful”.

prevTree

root

follTree
a

b

cnext dnextc d cm x

bm bnext

Cursorb

Cursorc Cursord

c d

b

Figure 6. Snapshot of a twig being evaluated

next TwigOptimal step

Twig

child or descendant

m:“Momo”t:title

b:book
a:author

e:“Ende”
a/e

t/m
b/t

b//a

Figure 7. Operator plan for query Q1

1

2
3

4

and the input sequence(s). Reference [9] observes that duplicates
occurring in intermediate results of an XPath query evaluation may
generate an exponential worst-case behavior depending on the size
of the query. One possible solution is the application of duplicate
removal operators after each “critical” step. However, because du-
plicate removal is an expensive operation, we want our new opera-
tors to generate a duplicate-free output for duplicate-free input.

Design symmetric algorithms. This consideration is related to the
internal element access strategy of each operator (see Section 4.3).
Join operator 1 in Figure 7, for example, could be evaluated by 1)
accessing all title elements and 2) checking for each title element t
whether or not t contains text element “Momo”. Algorithms using
this method simply filter their input sequence. Therefore, they are
called “Filters”. An alternative evaluation strategy accesses all
“Momo” text elements first and similarly performs an element-at-
a-time lookup using an index to generate the sequence of title ele-
ments which actually are parents of a text element “Momo”. Be-
cause—from the viewpoint of the initially scanned (text) element
sequence—the operator performs a step towards the parent se-
quence, we call this class “Step” operators. The decision which op-
erator to choose for plan generation has to be made by the query op-
timizer and depends on the statistical data distribution.

The requirement for symmetric algorithms is also crucial to enable
join reordering. When using only full join operators, this issue is
not a problem, because a result tuple always contains both, the par-
ent/ancestor and the child/descendant information of a structural re-
lation. For semi-joins, however, our operators have to explicitly cal-
culate the reverse axes ancestor/parent of the axes descendant/child
occurring in a twig query to support join reordering. As a conven-
tion, we will use the terms upward and downward step for the par-
ent/ancestor and the child/descendant evaluation modes, respec-
tively, and top filter or bottom filter depending on the input se-
quence filtered. Furthermore, the letter A will refer to the sequence
of possible ancestors/parents, whereas we use B for children/de-
scendants.

Avoid locking of complete element sequences. To relieve the block-
ing situations caused by the lock protocols needed, our new algo-
rithms should access as small data granules as possible and there-
fore should be aware of the lock granules implied. For this purpose,
we exploit SPLIDs and the document and element indexing tech-
niques sketched in Section 2.2. The basic idea is to initially scan,
just as TwigStack does, an (ideally small) element sequence via the
element reference index, but only for one twig node. For this access,
a document-wide axis lock is needed to prevent the scanned ele-
ment sequence from concurrent modification. However, because
this sequence is supposed to be small, e.g., the element sequence for
a very selective predicate, concurrent modifications are only slight-
ly hindered. The other twig nodes are then processed via element-
at-a-time lookup in the document or element index, thus acquiring
only node locks for upward steps and bottom filters and local axis
locks for downward steps and top filters. The resulting lock distri-
bution is then sufficient to guarantee serializability.

For example, query Q1 in Figure 4 may be evaluated in transaction
T1 using the operator plan from Figure 7 on the document in
Figure 5 in the following steps: a) All text elements with the value

“Momo” are scanned via an index access and locked with a docu-
ment-wide axis lock5. Now, a transaction T2 is not able to insert the
value “Momo” into the document. However, the novel element may
still be changed to book. This is no problem, because, if T2 commits
before T1 reaches any book element, T1 will find a regular match.
Otherwise, if T2 is still active, T1 has to wait for its commit because
of the exclusive node lock on the new book. b) For each scanned
text element, the SPLID of the parent element is calculated and ac-
cessed via the document index (upward step), causing a node lock
for this element. Of course, all elements having other names than ti-
tle are filtered out. In this state, title elements may still be inserted,
but it is not possible, to rename an existing parent of a “Momo” text
element to title, because it has a node lock. c) Using the same tech-
nique (upward step) as in b), we navigate to the book elements. Now
T2 is not able to rename the novel element anymore (but other ele-
ments, which are unrelated to the query of T1 may still be modi-
fied). d) For each book element found, we query the element refer-
ence index for all descendant elements with the name author, thus
generating a local axis lock for all intermediate book elements and
the descendant axis (downward step). e) In the last step, we use the
same technique to filter out those elements that have not value
“Ende” as author (top filter). In this state (see Figure 8), a concur-
rent transaction cannot generate a phantom. All elements reached
by an upward step, such as titles and books, are protected by a node
lock, whereas all elements reached via the node reference index in
a downward step (or top filter) are protected from modification by
local axis locks. If a conflict situation would occur while T1 pro-
cesses the query, either T1 or the other conflicting transaction
would have correctly been blocked as the following theorem states:

Theorem 2: The strategy to lock the initial and all downward direct-
ed joins (top filter/downward step) by axis locks and all upward di-
rected joins (upward step/bottom filter) by node locks guarantees
isolation level serializable for the evaluation of a twig query Q.

Proof (Idea): Theorem 2 can be proven by induction over the se-
quence of joins needed. Each intermediate processing state is the re-
sult of a part (subtree) of Q, for which we assume that it is correctly
locked. For the next join S, we can show that a concurrent transac-
tion may not generate any phantom before, while, and after S is in
process.

5 In the current development phase of our XTC system, no content
indexes are available. However, the extension of the proposed
concepts to support content queries is straightforward.

text

“Ende”

book

“Ende”

1.3

1.3.5
cover
1.3.7

author
1.3.5.3

author
1.3.7.3

1.3.7.3.31.3.5.3.3

1.3.3.3

novel

title

“Momo” “Ende”

1.9001

1.9001.3
author

1.9001.5

1.9001.5.31.9001.3.3

...book book

... ...title
1.3.3

bib 1

“Momo”

Protected by an axis lock:

Protected by a node lock:

Figure 8. Lock state after evaluation of Q1

Not locked!

4.2 A Classification of Semi-Join Algorithms
By examining the operator plan in Figure 7 we can infer three
(mainly) orthogonal degrees of freedom for locking-aware structur-
al semi-join algorithms: the axis which has to be evaluated
(child/descendant/parent/ancestor); the assumed role of the given
join input from which the navigational operations start (i.e., the in-
put acts as ancestor/parent or child/descendant); and the index
structure to use (document index or element index) for evaluation.
A combination of these concepts results in a total number of 12 dif-
ferent structural semi-join algorithms. We use the following nam-
ing scheme for the operators: <axis> + <input> + <in-
dex>: {Parent|Ancestor|Child|Desc} {A|B}
{Doc|El}. For example, operator 1 in Figure 7 may be expressed
by a ParentBDoc operator, because it calculates the parent axis,
operates on an input sequence with the role of the child (B), and
uses the document index for this calculation. Note, for brevity, we
only include the information about the index in an operator’s name,
if the document index is used and omit it, in case of element index
usage. For an overview of all possible6 operators grouped into four
classes, refer to Table 1. The row header defines which input for the
operator is assumed, whereas the column header defines the output.
For clarification of the semantics, each operator is additionally de-
scribed by an XPath expression where the assumed input element
sequence’s name is marked in bold face.

4.3 Implementation of Selected Operators
The two most challenging problems for the implementation of the
twelve operators are a duplicate-free output which is additionally
sorted in document order. To guarantee a linear worst-case com-
plexity, the input must not be scanned multiple times (not even par-
tially) and the output order has to be achieved without explicit use
of sorting techniques.

4.3.1 Filter Algorithms
The simplest algorithms possible are those, which just act as filters
for their input element sequences. For each input element, they

check for the existence of a structurally related element with a cer-
tain name or predicate, either among relative parent/ancestor ele-
ments (BottomFilter) or their child/descendant elements (TopFil-
ter). For an example, consider operator 4 in Figure 7. Its purpose is
to filter out those author elements that do not have the value “Ende”
as content. Filter algorithms provide a duplicate-free output, whose
order is the same as the input order. Essentially, the input is only
read, filtered and forwarded, as you can check out by tracing the
pseudocode in Figure 9. We process each element at a time using
either a document index lookup or an element index lookup. Note,
the document index may only be used for the existence check of
possible ancestors and parents. In contrast, if we try to find match-
ing elements in the child and descendant axes, we potentially have
to navigate large subtrees, which results in prohibitively high access
costs. Using the document index or alternatively the element index
(line 11) we search for ancestor/parent elements that fulfill the giv-
en predicate. Therefore, appropriate (lists of) SPLIDs have to be
calculated (lines 6 and 8). Each document index access results in a
node lock for the probed element.The element index can be effi-
ciently queried for all four axes in question. Downward queries
(child/descendant) result in simple range scans over the correspond-
ing node reference index for name. Queries for upward navigation
precalculate the list of possible (ancestor/parent) elements and
check for their existence in the corresponding node reference index
(similarly to lines 5 to 8 in Figure 9). Essentially, downward pro-
cessing steps result in local axis locks for the queried name, where-
as upward queries are protected by node locks.

4.3.2 Downward Step Algorithms
In this case, the algorithm processes a sequence of possible ances-
tors/parents and produces their descendants/children, if they satisfy
the given predicate p. For the same reason as above, the element in-
dex has to be used for this task. The algorithm for the descendant
axis (DescendantA) works as follows: For the first incoming ele-
ment e, we use an element index access to return in document order
all its descendants that fulfil p. Then we compare the next element
of the input e’ with e. If e’ is a descendant of (or equal to) e (due to

6 There are only 12, not 16 different operators, because the option
of the index to use is only orthogonal in classes III and IV.

Table 1.Classification of semi-join operators

Output

Input ancestor/parent descendant/child

Class I: TopFilter Class II: DownwardStep

parent //a[b]

ParentA

//a/b

ChildA

ancestor //a[.//b]

AncestorA

//a//b

DescendantA

Class III: UpwardStep Class IV: BottomFilter

child //a[b]

ParentB(Doc)

//a/b

ChildB(Doc)

descendant //a[.//b]

AncestorB(Doc)

//a//b

DescendantB(Doc)

Input: Seq elements, Axis axis, Pred p, Idx idx
Output: Seq results
01 foreach elem in elements do
02
03 // bottom filter
04 if(axis == child or axis == descendant)
05 if(axis == child)
06 Seq s = calculate parent SPLID for elem;
07 else if(axis == descendant)
08 Seq s = calculate ancestor SPLIDs for elem;
09 foreach x in s do
10 // element or document index lookup
11 if(idx.lookup(x, p) is not empty)
12 add elem to results;
13
14 // top filter
15 else
16 // element index lookup
16 if(idx.lookup(elem, axis, p) is not empty)
17 add elem to results;

Figure 9. Filter operators

element nesting), we may safely skip e’, because its descendants
have already been returned. Otherwise, we proceed with e’ in the
same way as e. Because of the ordered input, we can be sure that, if
e’ was not a descendant of e, no further descendants of e may occur
after e’. Therefore, the output is also in document order and no du-
plicates are generated.

The pseudo code of the ChildA operator is depicted in Figure 10.
For the child axis, the key issue is the occurrence of nested elements
in the input sequence. Suppose, there is a descendant element e’ fol-
lowing e in the input. Then, the children of e which fulfil the pred-
icate p may partly be located in document order before the children
of e’ and partly after them. Therefore all elements smaller than e’
may be directly returned as a result, whereas the others have to be
stored for later output (see function placeChildrenFor()
where e’ is kept in a look-ahead variable). The rest of the code is
responsible for the correct input (using stack) and element result
handling (using postStack). As all algorithms described above,
this algorithm is also transformable to meet the ONC protocol, op-
erates in a linear fashion, produces no duplicates, and delivers the
correct output order

4.3.3 Upward Step Algorithms
For this class, we can only sketch the ParentB operator. Here, the
same problem occurs as for ChildA above, but from the child ele-
ment sequence’s point of view: Several (sibling) child elements
may have the same qualifying parent element; therefore, we have to
assure that each parent is only returned once. It is not possible to
simply memorize the last returned parent and compare the current
one for equality, because between sibling elements at level L1 in the
input may—due to the document order—reside other elements
which could also return (distinct) parent elements and have a level
L2>L1. An alternative strategy to scan the set of already identified
result elements for duplicate elimination is prohibitively costly.

To remedy these problems, we explore the concept of SPLIDs in the
following way (see also Figure 11): for the current child element e,
we use an index lookup to check whether the parent ep element ful-
fills predicate p (line 5). If so, then each ancestor from the root ele-

ment to ep is pushed onto a stack (this is possible, because we can
compute all the SPLIDs of these ancestors). Then ep is marked as
an already-found result element and also pushed. As the algorithm
proceeds, the stack may grow or shrink. For an element e’ following
e in the input, four possibilities occur: 1) ep’ (the parent of e’) may
be equal to the top t of the stack (ep’ = t = ep, line 6). Nothing has
to be done here. 2) ep’ is a descendant of the top of the stack t (line
7). Then the stack grows by pushing all “intermediate” ancestors
between t and ep’ also on the stack and finally adding a marked ep’.
3) ep’ is an ancestor t (line 9). Now, the stack has to shrink, and the
(newly) found ep’ is marked. During the shrinking process, only the
marked elements popped from the stack have to be memorized, be-
cause they are actual results. This is accomplished with the help of
a second stack (inheritLists). The exact protocol, how the
lists on this stack are handled, can be drawn from the algorithm
(lines 23 to 31). 4) ep’ is neither an ancestor nor a descendant of top
t of the stack, but follows after t in document order. Then the stack
has to shrink to the least common ancestor between ep’ and t, and
then grow to ep.

Finally, the result can be found in its stack inheritLists by
using the shrinkStack function up to the root element of the
document. Note, this is the only semi-join operator which is a pipe-
line breaker, i.e., it has to read all elements before producing any
result elements. The problem is intrinsic for this operator and has

Input: Seq elements as Parents, ElIdx idx, Pred p
Output: Seq results as Children
01 Stack stack, postStack; // for element handling
02 Element la; // one element lookahead
03
04 foreach elem in elements do
05 la = elem.next();
06 if (stack.isEmpty() or elem.isDescOf(stack.top())
07 placeChildrenFor(elem);
08 else
09 while (not stack.isEmpty() and
10 not elem.isDescOf(stack.top())) do
11 add postStack.pop() to results;
12 placeChildrenFor(elem);
13
14 function placeChildrenFor (Element elem)
15 List children = idx.lookup(elem, Child, p);
16 foreach child in children do
17 if (child < la) add child to result;
18 else add child to Queue q;

Figure 10. ChildA downward step operator

Input: Seq elements as Children, ElIdx idx
Output: Seq results as Parents
01 Stack stack, inheritLists;
02 stack.push(rootSPLID);
03 inheritLists.push(NULL);
04 foreach elem in elements do
05 par = idx.lookup(elem, Parent, p);
06 if(par != null and stack.top() != par)
07 if(par.isDescOf(stack.top())
08 growStack(par);
09 else if (stack.top().isDescOf(par))
10 shrinkStack(par);
11 set mark on stack.top();
12 else if(stack.top() < par)
13 SPLID lca = calcLCA(stack.top(), par);
14 shrinkStack(lca);
15 growStack(par);
16
17 function growStack(Elem elem)
18 push each relative between top and
19 elem onto stack;
20 mark elem and push it;
21 inheritLists.push(NULL); // keep up with stack
22
23 function shrinkStack(Elem elem)
24 while(stack.top().isDescOf(elem)) do
25 if(stack.top() is marked)
26 add stack.top() to Queue q;
27 add Queue from inheritLists.pop() to q;
28 else
29 inheritLists.pop();
30 stack.pop();
31 append q to inheritLists.top();

Figure 11. ParentB upward step operator

the following explanation: Suppose, the root element of the docu-
ment fulfils predicate p and the last element eL of the input se-
quence is the last element in the document. Then the root element
is matched as the last document but would have been the first one
in the result. Because we cannot know this circumstance before ac-
cessing eL, returning the result has to be delayed.

The algorithms for the remaining operators work in a similar fash-
ion and have the same properties as those proposed here. As a con-
clusion we can state that our operators lead to a very desirable lock-
ing situation during query processing, because only small locking
granules are required. Therefore, we call them locking-aware. De-
spite this favorable behavior, the query optimizer finally choosing
suitable operators for plan assembly must take special care. Using
element-at-a-time primitives may become expensive, because for
each element lookup at least one page reference is required, if we
assume that the higher-level pages of our indexes reside in the da-
tabase buffer. However, as our performance results reveal, our al-
gorithms provide significant advantages for selective queries
(which form a huge class in real-world scenarios).

5. QUANTITATIVE RESULTS
To substantiate our findings, we compared the different algorithms
listed in Table 1 in two ways: by one-to-one operator comparison
on a single-user system and by comparison in a distributed environ-
ment. All tests were run on an Intel XEON computer (four 1.5 GHz
CPUs, 2 GB main memory, 300 GB external memory, Java Sun
JDK 1.5.0) as the XDBMS server machine and three PCs (1.4 GHz
Pentium IV CPU, 512 MB main memory, JDK 1.5.0) as clients,
connected via a 100 MBit ethernet cable to the server.

To test the dependency between the run-time performance of our
operators and the selectivity of the queries, we generated a collec-
tion of synthetic XML documents, whose structure is partly depict-
ed in Figure 12. For each operator (query), we varied the selectivity
of the structural join between its input nodes by the following val-
ues: 0.01%, 0.05%, 0.1%, 0.5%, and 1%. For example, for the que-
ry //book[title], selectivity 0.1% means that 0.1% of all title

elements have a book element as their parent (all others have the ar-
ticle element as parent). Additionally, we created 10% “noise” on
each input node. In the example, 10% of all book elements have the
child booktitle instead of title. On our sample document, we consid-
ered a smaller query (Q1) and a larger, more selective one (Q2):

• Q1://author[.//funafuti]//name
• Q2://book[.//author//address[.//funafuti]

 [.//andorra]]//title.
The result size for Q1 varies with the selectivity of the join between
author and funafuti, whereas the result size for Q2 is always 1 (al-
though the selectivities—e.g., between funafuti and address—vary
in the given ranges).

5.1 Single-User Comparison of Operators
To investigate the response time dependency of our operators on the
query selectivity and the document size, we measured the number
of page references for three document sizes and five selectivities to-
gether with the response time of the structural join operators. All
measurements were performed with a cold buffer of 250 pages each
of 16 KB size, so the buffer size was large enough to avoid page re-
placement during join processing. In our measurements, we ob-
served for all semi-join operators implemented the same perfor-
mance characteristics as a function of size and selectivity. There-
fore, we can essentially restrict our performance study to a single
operator for which we chose the ChildB operator.

The logical page references (consisting of buffer page references
plus external page references) show a linear behavior w.r.t. selec-
tivity and document size (see Figure 13), i.e., when the selectivity
(document size) doubles, the number of page references also dou-
bles. However, the dominating factor for the runtime perfor-

bib

book+ journal+

author+

{booktitle|title} journalnamearticle+

{arttitle|title}

name organization

address
city

{london|seattle|ordino|funafuti|...}

{usa|france|andorra|tuvalu|...}

TopFilter and DownwardStep Queries:
1) //book[title] or //book/title
2) //journal[.//title] or //journal//title

BottomFilter and UpwardStep Queries:
1) //author[tuvalu] or //author/tuvalu
2) //organization[.//andorra] or
 //organization//andorra

Figure 12. Structure of a sample document and queries

Figure 13. Page References for the ChildB Operator

Figure 14. Response time of the ChildB operator

mance—the number of external page references—shows a different
behavior: When comparing the external page access for selectivity
0.5% and 1%, roughly the same number of pages is transferred into
main memory. This effect can be attributed to the page mapping of
the accessed elements, i.e., their distribution across external pages,
and, in turn, to the increased locality of reference.

The same general behavior can also be observed in Figure 14 which
confirms the scalability of our algorithms. On the other hand, the
comparison of both types of measurement clearly reveals the dom-
inance of the external page references on the response time. Again,
compare the results of 0.05% to 0.1% and 0.5% to 1%, respectively.

To compare the “best” structural join algorithms with our operators,
we implemented TwigOptimal (TwigOpt) [8] and the original
TwigStack algorithm (TwigOld) [4] in our XTC system. All single-
user tests were run on our server machine, where we picked the best
query evaluation plan for our own strategy (Locking-Aware) and—
to assure fairness—gave TwigOpt the necessary hints, to pick the
next cursor for the best movement.

Figure 15 shows the performance results of queries Q1 and Q2
where the 5 selectivities are grouped together for each document
size explored. Running the lower-selectivity query Q1, Locking-
Aware algorithms are comparable to TwigOpt in the entire range
and to TwigOld up to selectivity 0.1%. For higher selectivity values,
TwigOld has a striking performance advantage to be easily ex-
plained by its sequential access strategy. Because it scans the entire
document, it achieves for a given document size roughly constant
response times. In contrast, Locking-Aware and TwigOpt strongly
depend on the query selectivity which determines the number of in-

dex accesses. Hence in our measurements, selectivity 0.1% embod-
ies the well-known break-even point between sequential access
(TwigStack) and indexed/random access (TwigOptimal7, Locking-
Aware operators) [10]. For the very selective query Q2, our ap-
proach is clearly the winner on all shown document sizes and (in-
ternal) selectivities.

5.2 Multi-User Comparison of Operators
Because TwigOld scans the entire document to be evaluated, it is
obvious that it has to acquire a document lock in multi-user envi-
ronments. TwigOpt, however, proceeds across the document from
left to right thereby skipping large ranges of elements whenever
cursor calculations reveal that matches are not possible (see
Section 3.2). Yet in a multi-user environment, these document
ranges—so far not contributing to the current query evaluation—
have to be locked, too. Otherwise, a concurrent transaction could
insert a subtree in such a range which could contain new matches
and therefore could provoke phantoms for the same or a subsequent
query of the transaction considered. Hence, these ranges have to be
locked resulting in a document lock in most cases. In contrast,
Locking-Aware operators proceed in subtrees top-down, bottom-
up, or in both directions at the same time. Hence, selective locking
via axis and node locks becomes possible.

To demonstrate the effective locking behavior of our query evalua-
tion plans, we gave both twig join strategies an advantage: They
only have to open the document and access the first element of each
defined input cursor, thereby generating a document-wide axis lock
(we call this operator the TwigFake operator). Note, in our compar-
ison we refer to the best case of a TwigFake evaluation, because it
does not need to compute any results.

In our experimental setup, each of the three clients runs a certain
transaction mix consisting of three long running update transactions
that insert new (name/address/author/...) elements, and a fourth
transaction that executes query Q2 either using the Locking-Aware
or the TwigFake operators, respectively. The results for the differ-
ent selectivites in the 50 MB document gathered in a two-minute in-
terval are shown in Figure 16. Our locking-aware operators can
generate 30% to 60% more total throughput than the TwigFake op-
erator. For the throughput of Q2 itself, up three times higher rates
can be observed.

Q1:

Q2:

Figure 15. Timing Results of queries Q1 and Q2

7 TwigOptimal needs indexed access on its posting lists (see [8]).

Figure 16. Throughput rates for Q2

6. CONCLUSIONS
In this paper, we primarily considered the improvement of twig pat-
tern queries—a key requirement for XML query evaluation. For
this purpose, we have substantially extended the work on structural
joins and holistic twig joins thereby focussing on so far forgotten
processing aspects, i.e., optimization of path processing steps in
multi-user environments.

While processing twig patterns, our algorithms, supported by ap-
propriate document store and index structures, aim at touching as
small data granules as possible and are, therefore, aware of and help
to optimize the work of the lock manager. SPLIDs flexibly enable
and improve path processing steps in a threefold way:

• They enhance the expressiveness of document and element
indexes. For example, they are able to accelerate various
navigation steps in the document itself and, in combination
with a structural summary, to upgrade element index refer-
ences to complete path index references.

• They introduce several new degrees of freedom when de-
signing physical operators for path processing steps. This
newly gained flexibility considerably increases the solution
space for novel algorithms. In particular, they allow the com-
putation and in-memory checking of all axes relationships
required for the evaluation of XQuery and XPath expres-
sions.

• They carry path information for all path nodes up to the root
which is indispensable for the work of an XDBMS lock man-
ager. Because of the prevalent index access, which is a ne-
cessity of all XML language models, jumps to inner tree
nodes occur with very high frequency. These accesses have
to be isolated by intention locks along the entire ancestor
path. This salient feature supported by SPLIDs is missing in
all other labeling schemes proposed so far.

We have successfully implemented SPLIDs and concurrency con-
trol in our XTC system such that all experiments can be processed
under realistic conditions in a complete XDBMS environment.

Performance measurements approved our considerations about
locking-aware operators. They are, for a certain query selectivity
<0.5%, not only faster in direct comparison, but also lead to sub-
stantial throughput increases. Building on our new as well as on ex-
isting evaluation algorithms, we are now prepared for the challenge
of cost-based query optimization.

REFERENCES

[1] Al-Khalifa, S., Jagadish, H. V., Patel, J. M., Wu, Y., Koudas,
N., and Srivastava, D. Structural Joins: A Primitive for Effi-
cient XML Query Pattern Matching. In Proc. ICDE: 141-
152 (2002)

[2] Beyer, K. S., Cochrane, R., Josifovski, V., Kleewein, J., La-
pis, G, Lohman, G. M., Lyle, B., Ozcan, F., Pirahesh, H.,
Seemann, N., Truong, T. C., Van der Linden, B., Vickery,
B., and Zhang, C. System RX: One Part Relational, One Part
XML. In Proc. SIGMOD Conference: 347-358 (2005)

[3] Böhme, T., and Rahm, E. Supporting Efficient Streaming
and Insertion of XML Data in RDBMS. In Proc. 3rd DIWeb
Workshop: 70-81 (2004)

[4] Bruno, N., Koudas, N., and Srivastava, D. Holistic twig
joins: optimal XML pattern matching. In Proc. SIGMOD
Conference: 310-321 (2002)

[5] Christophides, V., Plexousakis, D., Scholl, M., and Tourtou-
nis, S. On Labeling Schemes for the Semantic Web. In Proc.
12th Int. WWW Conference: 544-555 (2003)

[6] Dewey, M. Dewey Decimal Classification System.
http://www.mtsu.edu/~vvesper/dewey.html

[7] Cohen, E., Kaplan, H., and Milo, T. Labeling Dynamic XML
Trees.In Proc. PODS Conference: 271-281 (2002)

[8] Fontoura, M., Josifovski, V., Shekita, E., and Yang, B. Opti-
mizing Cursor Movement in Holistic Twig Joins, In Proc.
14th CIKM: 784-791 (2005)

[9] Gottlob, G., Koch, C., Pichler, R. Efficient Algorithms for
Processing XPath Queries, In Proc. VLDB Conference: 95-
106 (2002)

[10] Gray, J. and Reuter, A. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann (1993)

[11] Härder, T., Haustein, M., Mathis, C., and Wagner, M. Node
Labeling Schemes for Dynamic XML Documents Reconsid-
ered, Data & Knowl. Engineering, Elsevier (2006)

[12] Haustein, M. Fine-Ganular Transaction Isolation in Native
XML DBS (in German). Ph.D. Thesis, Univ. Kaiserslautern
(2005)

[13] Haustein, M., and Härder, T. Adjustable Transaction Isola-
tion in XML Database Management Systems. In Proc. 2nd
Int. XML Database Symposium: 173-188, LNCS 3186,
Springer (2004)

[14] Haustein, M., Härder, T., Mathis, C., and Wagner, M. Dew-
eyIDs—The Key to Fine-Grained Management of XML
Documents. In Proc. 20th Brasilian Symposium on Databas-
es: 85-99 (2005)

[15] Jiang, H., Wang, W., Lu, H., and Xu Yu, J. Holistic Twig
Joins on Indexed XML Documents. In Proc. VLDB Confer-
ence: 273-284 (2003)

[16] Jiang, H., Lu, H., and Wang, W. Efficient Processing of
XML Twig Queries with OR-Predicates. In Proc. SIGMOD
Conference: 59-70 (2004)

[17] Mohan, C. ARIES/KVL: A Key-Value Locking Method for
Concurrency Control of Multiaction Transactions Operating
on B-Tree Indexes. In Proc. VLDB Conference: 392-405
(1990)

[18] O'Neil, P. E., O'Neil, E. J., Pal, S., Cseri, I., Schaller, G., and
Westbury, N. ORDPATHs: Insert-Friendly XML Node La-
bels. In Proc. SIGMOD Conference: 903-908 (2004)

[19] Schmidt, A. R., Waas, F., Kersten, M. L., Carey, M. J.,
Manolescu, I., and Busse, R. XMark: A Benchmark for XML
Data Management. In Proc. VLDB Conference: 974-985
(2002)

[20] Tatarinov, I., Viglas, S., Beyer, K. S., Shanmugasundaram,
J., Shekita, E. J., and Zhang, C. Storing and Querying Or-
dered XML Using a Relational Database System. In Proc.
SIGMOD Conference: 204-215 (2002)

[21] W3C Recommendations. http://www.w3c.org (2004)
[22] Zhang, C., Naughton, J., DeWitt, D., Luo, Q., and Lohmann,

G M. On Supporting Containment Queries in Relational Da-
tabase Management Systems. In Proc. SIGMOD Confer-
ence: 425-436 (2001)

	Locking-Aware Structural Join Operators for XML Query Processing
	ABSTRACT
	1. MOTIVATION
	1.1 Required System Support
	1.2 Our Contribution

	2. SYSTEM TESTBED
	2.1 Path Labels
	2.2 Fine-Grained Access to XML Documents
	2.3 Locking Documents and Indexes
	2.4 Empirical Results of SPLID Use

	3. TWIG QUERY MATCHING
	3.1 Twig Queries
	3.2 Twig Algorithms and Locking Support
	3.2.1 Solution 1: Document-Wide Axis Locks
	3.2.2 Solution 2: LCA Locking

	4. LOCKING-AWARE STRUCTURAL JOIN OPERATORS
	4.1 Key Requirements
	4.2 A Classification of Semi-Join Algorithms
	4.3 Implementation of Selected Operators
	4.3.1 Filter Algorithms
	4.3.2 Downward Step Algorithms
	4.3.3 Upward Step Algorithms

	5. QUANTITATIVE RESULTS
	5.1 Single-User Comparison of Operators
	5.2 Multi-User Comparison of Operators

	6. CONCLUSIONS

