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Abstract

Constraint-based database caching aims at correctly

answering SQL query predicates from a local cache

database by exploiting constraints that have previously

been used in selecting sets of records to be cached from

a remote database.

In this paper, we take our first steps in look-

ing at performance aspects of our prototype Adaptive

Constraint-based Cache (ACCache), which is realized

in a middleware manner on top of regular databases.

Within our measurement setup, the initial focus is on

two central ACCache functions: query processing and

cache loading. To demonstrate their time behavior and

interaction, we have chosen a scenario based on the

TPC-W specification. We conclude with a discussion

of our first measurement results.

1. Motivation

Applications that interact with real-world users

typically strive for good (or at least acceptable) re-

sponse times. This is a particular challenge if the ap-

plication routinely relies on the services of a central

backend database (DB) system that is located far from

the application, e. g., in a Web scenario where applica-

tion servers have been spread around the world at the

“edge” of the Web to reduce their (network) distance to

the users. In this scenario with usually a large number

of users, relieving the backend system of some of its

load becomes equally important.

Caching is a means to approach these two aims: By

intercepting requests to a remote system component and

constructing responses locally (from earlier responses

or prefetched data), communication costs to and pro-

cessing costs on the remote component can be saved.

Caching can be performed on various levels within an

information-system infrastructure: For example, gener-

ated Web pages (or fragments thereof) can be cached,

persistent objects within an application server, or pages

of a database in a DB buffer.

Database caching is located at the level of logical

data structures (such as tables and records in a relational

DB) and higher query languages (such as SQL). The

goal is to have a cache in the path from the applica-

tion to the backend DB that is as transparent as possible

and that is able to process SQL queries locally based on

locally stored parts of the backend DB. The constraint-

based approach to database caching maintains a selec-

tion of cache tables, each containing a subset of records

of the corresponding backend table. Cache constraints

restrict what constitutes a valid state of the cache such

that deciding what is in the cache and which predicates

can be answered becomes easy.

2. Constraint-based Database Caching

In the general database-caching scenario, there are

a backend (BE) database, which holds all data, and one

or more cache databases, which contain varying subsets

of that data. Ideally, the cache databases would contain

data needed often in the nearer future.

With our model of constraint-based DB caching,

cache groups are used to describe what data is to be

kept in the cache and what constraints the cache con-

tents have to fulfill at any time. These constraints can

later be utilized to reason about whether a query can be

(partly) answered from the cache.

For selected backend tables TB, a cache group in-

cludes a corresponding cache table T with the same

schema, i. e., for each column TB.c in the backend ta-

ble there is a column T.c of same type (incl. unique

constraints) in the cache table. (Foreign key constraints

are not copied into the cache.)

2.1. Completeness and Constraints

For DB caching, completeness is a most important

concept: Having all the records that are needed to eval-



uate a certain predicate in the cache is known under the

term predicate completeness [4]. Completeness of more

complex predicates is achieved by starting with com-

pleteness of very simple equality predicates and extend-

ing them with the help of cache constraints.

Equality predicates (EPs) of the type T.c = v,

where v is a value of column T.c, are supported by the

completeness of v. This value v is complete in a cache

column T.c if all records from TB that have this value in

c are in the cache (in T ).

A referential cache constraint (RCC) is a value-

based relationship between two columns: a source col-

umn S.a and a target column T.b. An RCC S.a → T.b
guarantees that every value in S.a (in the cache!) is

complete in T.b. This allows an equi-join (EJ) S.a = T.b
to be performed in the cache, once it has been verified

that the needed S records (specified by other predicates

such as S.b = v) are in the cache.

Basically, this procedure allows us to deal with

predicates of the form EP ∧ EJ1 ∧ EJ2 ∧ ·· · ∧ EJn in

the cache, where all of the equi-joins EJ and the equal-

ity predicate EPi are connected via some tables. More

complex predicates that can be constructed from this

simple type by con-/disjunction and by further restric-

tions could also be processed in the cache.

2.2. Probing and Query Execution

When a query reaches the cache, it has to be de-

cided whether the query can be answered partially in the

cache and what part of the query result must be fetched

from the backend. Deciding on the completeness of a

(partial) predicate in the cache is done in two phases:

1. For each equality predicate T.c = v, which com-

pares a column T.c to a value v, completeness of v

is decided by probing the cache.

2. Starting from complete values providing entry

points for the query into the cache, RCCs S.a →
T.b matching equality predicates of type S.a = T.b
in the query predicate are then used to extend the

completeness to the largest predicate possible.

Probing works by issuing simple existence queries for

values in some columns: You might know from prior

analysis that all values in a cache column are com-

plete (column completeness [4]), or you can leverage

the RCCs by probing in their source columns. Either

way, the existence of a value implies its completeness

in a (possibly different) column.

Once the partial predicate that is complete in the

cache has been found, it is clear that, for the tables ref-

erenced in that predicate, their cache counterparts can

be used for executing the query. For the remaining ta-

bles, the original table at the backend must be accessed.

2.3. Loading and Unloading

Records are loaded into the cache whenever there

is a hint that they will be needed in the future. Filling

columns are responsible for providing these hints: As

soon as specific value v of a filling column f is refer-

enced in a query, v is made complete in the cache and

fulfilling RCCs make sure that a “neighborhood” of re-

lated records becomes available in the cache, too.

Loading is guided by the graph of RCCs: The sets

of records to be inserted in the cache can be determined

by following the RCCs Usually, records inserted into

the source table of an RCC demand matching records

to be loaded into the target table. The actual insertion

of those record sets into the cache tables may be per-

formed in the reverse order (bottom-up) to provide more

consistent cache states during the loading and thus bet-

ter concurrency with readers [2].

Unloading aims at reversing the process of loading

but has to cope with added difficulties due to records

being required via multiple RCCs.

2.4. Prototype ACCache

Our prototype implementation of the techniques

just sketched is called ACCache (Adaptive Constraint-

based Cache) [2]. It employs a middleware strategy to

realize the behavior of the database cache on top of two

regular databases (backend and cache) that are accessed

via JDBC: Probing, (un)loading, and maintenance of

RCCs are done via (prepared) SQL statements. Query

processing leverages the federated-query functionality

of the underlying database management system to be

able to access backend as well as cache tables within a

single SQL query that is a rewrite of the original user

query. (To the outside, ACCache implements a JDBC

interface.)

Data to be unloaded from the cache is chosen based

on access statistics, but the unloading itself is not per-

formed yet. At our current stage, we start out with an

empty cache and consider only a number of loading op-

erations and their influence on query performance.

Adaptiveness comes in two facets in ACCache:

First, ACCache adapts its contents to the query work-

load on the instance level, i. e., only useful sets of

records that will be used in the future are kept in the

cache. Second, we are planning to make ACCache

adaptive on the schema level: The cache group defini-

tion may be adapted, i. e., cache tables or RCCs may be

added or dropped if monitoring the workload provides

hints at often used join directions or at data that is often

used together (either in the same query or in multiple

queries that occur closely together in time).



In the current implementation, the cache system is

responsible for initiating the necessary loading actions

and for deciding what data has to be loaded. This ap-

proach guarantees that the backend is not additionally

burdened. Besides, for each incoming query, the prob-

ing has to be performed. In the following sections, we

would like to check the behavior and the performance

aspects of these two main cache functions. This allows

us to reflect on our design decisions later on.

3. Measurement Setup

It is a well-known fact that caching dramatically

improves the performance of query processing under

heavy workloads and high network latency. Therefore,

our main goal is not to prove this fact again, even though

this is observable in our measurements, of course. We

want to measure the behavior and the overhead of the

main functions implemented in our cache system (prob-

ing and loading). It is not overly urgent to verify the

overhead of these functions separately. On the contrary,

we should look at them together and especially at the in-

teractions between the backend and cache database un-

der the anticipated high latency.

Measurements with a setup where there is almost

no latency give us only a feeling of how much over-

head the cache system generates. The more interesting

part is to analyze how much time the loading process

takes to enable a significant caching effect as soon as the

needed data is available in the cache: Such results can

help to improve the way data is loaded into the cache.

In addition, the results can assist us in finding optimiza-

tion rules so that we can improve the adaptivity of the

cache system. For example, assuming we implement

advanced loading methods, it will be possible to switch

the loading method automatically to the appropriate im-

plementation dependent on the observed latency.

3.1. Capturing Measured Values

For performing measurements in the ACCache sys-

tem, we use a framework developed in-house [5]. It

supports a developer in setting up and executing mea-

surements for a distributed system. The framework’s

components offer a wide range of functionality for mea-

suring distributed structures.

In our measurement framework we use a working

node to represent an application within the distributed

system we want to measure: For our first measure-

ment, we have built three working nodes representing

the backend database system, the ACCache system, and

a simulated client, which generates the workload dur-

ing the measurement (see also Fig. 1). To capture val-

ues from an application represented by a working node,

an observer needs to be defined. The captured values

are associated with execution contexts that model their

semantics and dependencies among each other.

For our ACCache measurements, our overall setup

including the measured components (square boxes) as

well as the measuring components (curved boxes),

which are spread over four separate network nodes, is

shown in Fig. 1. It also sketches two of our parameters

that will be explained in the following: network delay

and cache bypass.

3.2. Parameters

As it is difficult for us to actually maintain and use

a backend DB in some remote part of the world, we em-

ploy a network emulator to approximate the characteris-

tics of the network between backend and cache: NetEm

is an enhancement of the traffic control facilities of the

Linux kernel that allows adding delay, packet loss and

other scenarios. [3]

The round-trip delay inherent in our real network

between backend and cache node is about 0.2 ms. Dur-

ing our measurements we raised this round-trip delay by

an amount of µ ±σ according to a normal distribution

with a standard deviation of σ = µ/10 and a correla-

tion ρ = 25%. The mean round-trip delay µ was chosen

from 0, 40, and 100 ms.

3.3. Backend Schema and Cache Group

As a baseline, we performed all measurements a

second time with our cache still in the path from client

to backend but with the main caching functionality by-

passed (i. e., no query analysis, probing, rewriting, etc.,

were performed but every query was immediately exe-

cuted at the backend). In this case, our cache acted as a

kind of forwarding proxy.

client

observer observer

caching
JDBC

backend
JDBC

delayed

ACCache

measurement
manager

bypass

JMS

contexts

Figure 1. Measurement setup on four nodes: client,

ACCache, backend, and measurement manager



The scenario for our measurements is loosely based

on the TPC-W benchmark [8], which models an online

store. We use its database schema (with tables for cus-

tomers, orders, items, etc.) and data in the backend DB

(100000 items).

As a cache group, we use the one given in Fig. 2,

which ensures that for any order loaded into the cache

the corresponding order lines, addresses, and items are

loaded, too. Furthermore, every item loaded into the

cache will be accompanied by its author. Orders and

items get into the cache only if referenced specifically

by their primary keys (id columns).

3.4. Queries: Order Display

The queries that we pose to the cache are inspired

by the web interaction “order display” of TPC-W. First

of all, we display the details of a selected order includ-

ing the referenced addresses:

select O.id, O.c_id, O.status, O.date,

O.total, bill.*, ship.*
from orders O, address bill, address ship

where (O.bill_addr_id = bill.id)

and (O.id = 〈order id〉)
and (O.ship_addr_id = ship.id)

We then need a listing of all order lines belonging to

that order where we include some basic information on

the ordered items:

select OL.id, OL.qty, OL.discount,

OL.comments, I.id, I.title, I.desc

from order_line OL, item I

where (OL.o_id = 〈order id〉)
and (OL.i_id = I.id)

Finally, we simulate the user requesting the item details

for each displayed order line in turn with multiple in-

stances of the following statement.

select I.*, A.*
from item I, author A

where (I.id = 〈item id〉) and (I.a_id = A.id)

3.5. Measured Values

We designed two observers (for the client and

cache), which transmit measured values to the manager.

On the client, we have only a single execution context

for executing a query. For each query, we capture three

timestamps: before the query processing starts, when

the first row of the query result has been fetched (first-

row time), and after fetching and printing all resulting

rows (all-rows time).

For the cache, we built the execution contexts

“query”, “analysis”, and “load”. In the query context,

we capture the start and end timestamp of the query

id city zip Address

id total bill_addr_id ship_addr_idOrders

id fname lnameAuthor

id title a_id costItem

o_id i_id qtyidOL

(filling)

(filling)

Figure 2. A cache group for the TPC-W schema [8]

(with five cache tables, two filling columns O.id and

I.id, and five RCCs)

processing and a reference to the client query execu-

tion context that caused the execution on the ACCache

system. One of the parts of processing a query is the

analysis phase (probing, query rewriting). Therefore,

an analysis context is created as a child context of the

query and the start and the end of this phase are cap-

tured. Furthermore, the analysis phase might decide

that tuples should be loaded into the cache: Each load-

ing job created within our system is mirrored into a load

execution context. This execution context captures the

start and end timestamps and, additionally, the pair of

column and value that is the starting point for the load-

ing job.

Timestamps are retrieved with Java’s nanoTime

method, which has an accuracy of about ±3 µs on our

nodes. This means that the error in calculated durations

will be twice that much and thus is negligible (com-

pared with durations of about 30 ms and more).

4. Results

In our concrete setup, we executed the work unit

“order display” five times in a row per measurement run

without any delays between the queries: After display-

ing an order (O) and the retrieval of the corresponding

order lines (OL), all of the related five items (I) were

accessed. This work unit was then repeated for the very

same order id.

As described above, we varied the round-trip de-

lay between backend and cache and enabled or disabled

our cache bypass: The six resulting configurations were

repeated three times each, resulting in 18 measurement

runs in total.

Figure 3 shows the average times spent on read-

ing and displaying the query results in all measure-

ment runs. The actual measured values lie within about

±10 ms around this average. Figure 4 shows the timing

and the duration of client queries and load operations at
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Figure 4. Query execution/loading times and se-

quence of events (round-trip 40 ms, no bypass)

the cache in a selected measurement run with a round-

trip delay of 40 ms where the cache is not bypassed.

The crosses mark significant points of time within the

processing of a query, namely start of the query, the

first-row time, and the all-rows time. However, these are

only visible separately in the case of an order-line query

(OL). The other queries deliver only one row, which

makes first-row time and all-rows time almost coincide.

As expected, the cache dramatically improves the

response time of the queries if the cache loading for

the order under consideration has finished. Interest-

ingly, the cache can already be used to process the first

five item queries when the loading has not yet finished

(compare Figs. 3 and 4). This is due to the fact that,

in the current implementation, loading is performed

bottom-up (as sketched in Sect. 2.3). That is, with our

cache group, loading starts at the author and address ta-

bles and proceeds to the orders table. Therefore, the

items related to the order requested become available
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Figure 5. Cache loading times (for an order plus

dependent records)

(and usable) in the cache before the order itself does.

As can be seen in Fig. 4, the loading is complete shortly

after the second O query (which corresponds to the sec-

ond set of peaks in Fig. 3); from then on, all following

queries benefit from the cache contents.

For reference, the lower part of Fig. 3 shows the

measurement runs with no latency (0 ms). The differ-

ence between the runs with and without bypass clearly

identifies the overhead inherent in our cache process-

ing steps: Without delay (i. e., with a non-remote back-

end database), the cache needs 5 to 10 ms more time to

answer a query than in the bypassing scenario. This

is caused by the analysis phase and in particular the

probing, which is always performed if a query could

potentially be executed in the cache. When the delay

increases, the costs involved in the probing are more

than compensated by the savings due to the avoidance

of remote accesses to the backend.

Figure 5 shows how the time needed to load the re-

quested order into the cache and to fulfill the RCCs by

loading dependent records changes with the (network)

distance between cache and backend DB. As can be

seen, the loading time increases almost linearly with the

round-trip delay. With 0 ms delay, the cache is loaded

almost instantly (after 37 ms); with a delay of 100 ms,

it takes 2 s. This might mean that in some cases the

cached data could be available too late to answer queries

that have occurred in the meantime.

You might wonder why there are two loading oper-

ations in Fig. 4, which actually refer to the same order.

The second loading operation is initiated at a time (ca.

700 ms) when the first operation has not yet succeeded

in loading the order into the cache. When this first oper-

ation finishes at about 900 ms, a quick check suffices to

see that there is not any work left. (Loading operations

are executed strictly sequentially at the moment.)

From this behavior, we can draw the conclusion

that we should look into other ways of performing the

cache loading. Moreover, we need to know or make

assumptions about typical workloads and the delay be-

tween queries associated to each other via data local-

ity; only then can we decide whether our loading is

fast enough or whether loading should be coupled with



query execution (i. e., data would simultaneously be

used to answer a query and load the cache).

5. Related Work

Meanwhile, the most important database vendors

IBM, Microsoft and Oracle have developed their own

approaches to database caching in addition to existing

replication methods. Recent development has shown

that using cache groups is one of the standard ap-

proaches. IBM and Oracle both allow sub-table-level

caching via cache groups in their prototypes/products

(DBCache from IBM, Times Ten In-Memory Database

from Oracle). IBM measured its prototype’s function-

ality [1] and showed that the overhead of probing and

loading has low significance: The response time in-

creases only by up to 6 % for join queries. This result

compares to our observation (with a latency of 0 ms).

But the influence of high latency between backend and

cache on the loading process is not discussed.

For the Oracle In-Memory Database TimesTen, we

did not find any significant measurements. For the tim-

ing values given in the technical whitepaper [7], it is un-

clear to which tested functionalities they refer exactly.

Microsoft has built a caching solution called MT-

Cache [6]. This solution does not use the concept of

cache groups as its basis. Instead, materialized views

are used together with standard replication methods to

build a cache mechanism. Keeping subsets of base ta-

bles in the cache in a way similar to a cache group can

be modeled via stacking views. Since the presented

measurements of the MTCache system aim at the per-

formance of the entire system, they cannot be directly

compared with our measurements. Anyway, there is no

description of the cache functions’ behavior when a sig-

nificant latency to the backend database exists.

6. Conclusion

We have subjected our ACCache prototype to a first

series of measurements to get an indication of its poten-

tials. Our results are encouraging: Already with small

delays to the backend database server, our constraint-

based cache is able to save query processing time, even

for queries that are only related to an initiating query:

Expected locality in database accesses can be conve-

niently modeled through cache groups, especially with

cache constraints like RCCs that define an environment

of related tuples.

The observed time spent on loading all needed data

into the cache, which depends linearly on the latency

between cache and backend, could become a problem

if the latency is too high. Because we can expect a

high bandwidth, another possibility to load data into the

cache is, for example, to compose a single package of

data related to a cache miss at the backend database:

Then the backend database is responsible for resolving

all RCC dependencies. But as an advantage, all of the

data dependent on a cache miss can be transferred at

once (perhaps bundled with the result of the initiating

query) and just a notification of the cache miss may be

sent to the backend.

This idea of improving the loading process, which

directly results from our measurements, shows that an-

alyzing the effects of latency cannot be neglected as

earlier analyses of caching products tended to do (cf.

Sect. 5). High latency is one of the fundamental as-

sumptions in scenarios that caching is designed for;

hence, there is no point in performing measurements in

no-delay setups.

We also learned from these measurements that set-

ting up a general, automated measurement environ-

ment for a distributed system is a complex and time-

consuming task. But after all, the possibility of design-

ing well-suited execution contexts for tracing the work

performed on the working nodes and their dependen-

cies will assist us in setting up future measurement runs

more quickly.
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