
Space-Efficient Indexing of XML Documents for Content-Only Retrieval

Philipp Dopichaj

Space-Efficient Indexing of XML
Documents for Content-Only Retrieval
More and more documents are stored in
semistructured formats like XML. In con-
trast to traditional information retrieval,
the documents can become quite large,
and it is often desirable to retrieve not
complete documents, but isolated ele-
ments that satisfy an information need. To
make this possible, the index structures
from traditional information retrieval
must be adapted to semistructured docu-
ments (specifically XML) so that term oc-
currences can be pinpointed to specific
elements inside the documents. This pa-
per explores several enhancements of the
index structures and evaluates the advan-
tages and drawbacks of the different ver-
sions with respect to index size and re-
trieval time.

1 Information retrieval in
digital libraries

XML has become a standard file format
for storing semistructured information; in
particular, digital libraries make use of
this format for storing their data. As with
the web, a large collection of books re-
quires good retrieval capabilities: The
best information is useless if it cannot be
found. In the digital libraries, there is not
only a large number of books, but the
books themselves are several hundred
pages long. When searching such a col-
lection, users should expect to get fo-
cused results – the hint that the sought in-
formation is somewhere in a 500-page
book is of limited value. Thus, the search
engine must be able to search and index
parts of documents like chapters or sec-
tions. Due to its hierarchical nature, XML
is a suitable format for this.

1.1 XML Retrieval

XML documents are not atomic entities,
but consist of nested elements that pro-
vide both the macro and the micro struc-
ture of the documents. For example, ele-
ments are used to demarcate the sections
in an article and to mark up phrases as “to
be printed in italics”. The logical struc-
Datenbank-Spektrum 23/2007 (preprint)
ture of the documents is of particular in-
terest for element retrieval: If a single
section satisfies the user's information
need, it should be retrieved in favor of the
complete article.
The most simplistic approach would be to
index all elements as “document”' with a
traditional information retrieval search
engine; this alone is not, however, a via-
ble approach for two reasons: First, the
index is inflated dramatically, because
the number of elements is much larger
than the number of documents. Second,
the retrieval results should not simply be
displayed in a flat list of (more or less)
relevant elements: On the one hand, the
user might not want to look at repeated
information – if, for example, the result
list contains a chapter and a section from
that chapter –, or it might make sense to
group the results by document.

1.2 Problem statement

We aim at providing good support for
simple keyword queries like they are
used for web search engines.
The authors of current full-text index
structures for XML pay little attention to
storage overhead, their main focus is on
retrieval quality. As a result, the indexes
that are used for retrieval can be several
times the size of the original document
collection, which is acceptable for re-
search prototypes, but may be impractical
for real-world uses, like digital libraries.
In digital libraries, the document collec-
tion is mostly static: Modifications of ex-
isting documents are rare (once a book is
published, it may be replaced by a revised
edition, but the original edition is not
modified), but new documents are added
frequently.
Two main forms of digital libraries are
common: online [Dopichaj 2006] and li-
braries that are sold on read-only media
like CDs and DVDs. In both cases, the
users of these libraries will want to search
them and obtain clearly focused results,
but do not need (and cannot) update the
contents of the collections. Although ex-
cessive usage of disk space may not be a
problem in the first scenario, it definitely
is important in the second one: The end
user does not want to use twice the stor-
age space for the library, and the comput-
er may not be state of the art, so efficient
processing is a must.
For obvious reasons, it is infeasible to do
a full-text scan of all documents whenev-
er a query is posed to the retrieval system;
to get acceptable performance, we need
index structures that facilitate quick ac-
cess to all relevant documents.

1.3 Contribution

In this paper, we describe and analyze
various optimizations of XML full-text
indexes based on previous work. In par-
ticular, we describe difference-based
storage of inverted lists for the XML doc-
uments and suitable storage of metadata
about the elements; the main idea is to
omit data that can easily be derived from
other data that is stored in the index.

• We support retrieval of all elements
in the collection, even very short ones
that are frequently omitted from in-
dexes. Our aim is to reduce the size of
the index significantly without nega-
tively affecting retrieval time or re-
trieval quality.

• Our main focus in this paper is not re-
trieval quality, but index size and re-
trieval speed, so our evaluation is
strongly biased towards the latter
two. Our index structures are flexible
enough to support a variety of retriev-
al models and similarity measures;
our implementation currently uses a
variant of Okapi BM25 [Spärck
Jones, Walker, and Robertson 1998],
but it could be adapted to other ap-
proaches like language modeling eas-
ily.

• We provide a detailed analysis of the
implications of the space-saving in-
dex structures and the various trade-
offs between space and time.

Although it is an interesting problem in
its own right, we do not address the com-
bination of full-text with structural re-
trieval (so-called content-and-structure
retrieval). In this form of retrieval, the
user also specifies structural constraints
1

Space-Efficient Indexing of XML Documents for Content-Only Retrieval

erm, the lexicon is consulted to find the cor-
ich is then read to determine the candidate

he metadata, the elements are grouped by
lated. The name ID in the metadata repre-
other table.

7

4

...

800

317

318

...

340

1

55

...

5

−

317

...

−

ID

Metadata

length name ID parent

a.xml

b.xml
like “the following keywords should ap-
pear in the bibliography”. The indexes
hold all information that is needed to
evaluate such queries, but direct access to
elements with specific structural proper-
ties is not possible, so a straightforward
extension would probably lead to bad
performance.

2 Index Structures

Our index structures shall support simple
keyword queries, that is, queries that
comprise a set of words. The aim of the
retrieval engine is to retrieve all elements
in the collection that contain at least one
of the query words and then rank the ele-
ments based on a similarity function.

For determining the candidate ele-
ments and determining the similarity to
the query, we need the following infor-
mation for effective and efficient retriev-
al (this is mostly based on standard work
in information retrieval [Witten, Moffat,
and Bell 1999]):

• Inverted lists, containing references
to the elements along with the corre-
sponding term frequencies.

• Metadata, for example information
about the positions of the elements in
their documents, typically represent-
ed by XPaths.

• The lexicon, containing information
about the terms, including document
frequencies and the pointers to the in-
verted list.

Furthermore, the similarity function may
need additional information; the Okapi
BM25 function we use also needs the
length of an element to calculate its score;
this, too, will have to be stored in the
metadata.

Using these index structures, the
search engine can efficiently answer a
query. We assume that the query is
composed of a set of query terms

. For each query term , the

search engine must perform the follow-
ing steps:

• Retrieve the lexicon entry for . This

provides us with the term’s weight
and the entry point in the inverted list
file.

• Retrieve the inverted list, starting at
the entry point from the lexicon.

q

t1 … tn, , ti

ti
2

• Determine the tree structure of the
document from the inverted list en-
tries and the metadata.

• Update the term frequencies based on
the tree structure.

After this, we can use the standard pro-
cess for calculating the similarity of each
element and apply XML-specific post-
processing operations to improve the
ranking; this is outside the scope of this
paper. Figure 1 illustrates the index struc-
tures we need to support the retrieval pro-
cess.

The remainder of this section will de-
scribe these aspects of XML indexing.

2.1 Tokenization

Before we look at the index structures
themselves, we discuss tokenization, be-
cause it has important implications for
the index structures. In order to index a
text, the indexer must first break it into
tokens, typically based on words. These
words are the entry points to the inverted
lists.

For tokenization, we consider every
sequence of Unicode letters and digits as
a term. Additionally, all tags in the input
are considered token boundaries; for ex-
ample, the XML fragment <fn>John</
fn><ln>Doe</ln> is parsed as the two to-
kens John and Doe, not as the single token
JohnDoe.

As we will see later, this is important
for difference-based storage, because it
ensures that all ancestors of an element
include at least as many instances of the
terms contained in as itself. Formal-
ly, for all elements with the respective
parent and all terms , with

Figure 1: Index structures. For each query t
responding entries in the inverted list file, wh
elements and their term frequencies. Using t
document, and the final similarities are calcu
sents the element name, which is stored in an

xml

xtc

xls

12345

99789

2967

TF file pos.term

Lexicon

4

1

3

318

340

317

tf ID

Inverted lists

e

e e

e

p e() t
 the number of occurrences of
in , the following equation holds:

Because of mixed content (that is,
sub-elements embedded within text), the
term frequencies of the parent may be
greater than the sum of the term frequen-
cies of all its children:

 Although this assumption does not
always model the intention of the docu-
ment author – for example, it fails if in-
line markup is used inside a word, like
<i>high</i>light –, it works in the majority
of cases and is frequently made in XML
retrieval research.

Furthermore, we remove stop words
and apply the Porter stemming algorithm
as implemented by the Snowball project1.

2.2 Lexicon

The lexicon provides the entry point from
the query terms to the inverted list. For
each term that occurs in the document
collection, it stores the document fre-
quency of this term and a pointer to the
position in the inverted list file where this
term’s inverted list starts.

While indexing, there is little choice
but to store the lexicon in main memory:
Documents typically contain thousands
of words, and for each term, the indexer
must determine whether the term is al-
ready in the lexicon (in this case, it uses
the old ID for the inverted list). Other-
wise, it assigns the next ID to the term
and add it to the lexicon. Even with an ef-

1. http://snowball.tartarus.org/

tf t e),() t

e
tf t p e(),() tf t e,()≥

tf t e,() tf t f,()
f c e)()∈
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

≥

Datenbank-Spektrum 23/2007 (preprint)

Space-Efficient Indexing of XML Documents for Content-Only Retrieval
ficient index structure such as a B-tree,
this will require two to three seeks, which
would increase indexing time.

While searching, the time to access
the lexicon is not critical, because most
queries only refer to a less than ten words.
Thus, it is possible to perform the search
on a machine with less main memory
than the machine used for indexing.

2.3 Inverted Lists

A large part of the index is stored in
the inverted lists; compared to traditional
information retrieval, the size of a docu-
ment in the index is much larger: It also
needs to record information about where
(that is, in which element) inside a docu-
ment a given term occurs. A straightfor-
ward approach is to simply index the tex-
tual content of each element separately,
but the cost is prohibitive (because of
nesting, the size is several times the size
of the document-level index).

Many search engines for XML re-
trieval do not index small elements up to
a given length in tokens, but this does not
alleviate the problem much; the size is
still about six times as large as the docu-
ment-level index. One should note that
the authors of these search engines typi-
cally do not give index size as an argu-
ment in favor of omitting these elements.
Instead, they argue that these elements
are never good retrieval results that the
users want. Although this may be the case
for typical element retrieval scenarios,
this alone is not a sufficient reason, as it is
always possible to filter these elements
from the results.

We should consider that some retriev-
al approaches use the small elements to
improve the quality of the retrieval re-
sults, even if they are not eturned to the
user [Ramírez, Westerveld, and de Vries
2006, Dopichaj 2007]. In addition, if we
broaden our scope just a little to include
content-and-structure queries, the small
elements may be vital to achieve accept-
able retrieval results: Content-and-struc-
ture queries often reference metadata ele-
ments like authors’ names or titles. These
metadata elements are by their nature
short, and if they are not included in the
index, it becomes impossible to answer
such queries.
Datenbank-Spektrum 23/2007 (preprint)
Thus, there are good reasons for in-
cluding all elements in the index, if we
can make sure that this does not increase
its size too much. The difference-based
method we describe in this section is still
significantly larger than a document-lev-
el index, but this is unavoidable; at least it
tries to minimize redundant storage of in-
formation.

The basic idea is to omit data that can
be derived by using the tree-structure of
the XML documents. Thus, for an ele-
ment , we only store the term frequen-
cies that result from the text nodes direct-
ly below , excluding text contained in
child elements. Thus, for elements with
child elements, the stored term frequency

 of term in element is:

For elements without children, the
stored term frequency is the real term fre-
quency: . Figure 2 il-
lustrates this.

It may happen that a term does not oc-
cur in text node children of , but only in
element children; in this case, the stored
term frequency is zero, and no inverted
list entry for this element is stored in the
index. In the extreme case, if the element
does not have text nodes as children, it
will not occur in the inverted lists at all.
This happens for higher-level structural

e

e

stf t e,() t e

stf t e,() tf t e,() tf t f,()
f c e()∈
∑–=

stf t e,() tf t e,()=

Indexed document; the superscripted num-
bers at the start tags are the element IDs.

Inverted lists for this document. Observe
that the section element’s (ID 1) entries can
all be omitted.

1<section>
2<title>Inverted lists</title>

3<p>Inverted lists are an
4index structure.</p>

</section>

Term Element ID tf stf

index 1 1 0
index 3 1 0
index 4 1 1
inverted 1 2 0
inverted 2 1 1
inverted 3 1 1
...

Figure 2: Example of indexing.

e

elements, like chapters.
During retrieval, a post-processing

step is needed to reconstruct the original
term frequencies from the stored term
frequencies, as Figure 3 shows

Using this storage technique leads to
significant savings in the number of en-
tries in the inverted lists and, consequent-
ly, in the total size of the inverted lists.
Although a post-processing step is re-
quired after retrieving the term frequen-
cies from the inverted lists, the cost of
this step is offset by the reduced time
needed to read the entries from disk.

2.4 Building the inverted lists

The document collections to be
searched can get large, too large to be in-
dexed in main memory alone. Thus, it is
necessary to keep large parts of the data
on disk while indexing.

2.5 Metadata

The lexicon and the inverted list only
contain information about term occur-
rences, but not about the structure of the
XML document. This is a deliberate de-
sign decision; many search engines use
index structures that store the structural
information in the inverted lists, but this
unnormalized form of storage increases
the size of the index.

Instead, we normalize the schema and
only store IDs for the elements in the in-

(1)

(2) (3)

(4) (5)

2 0 1 3 0 1 4 1 0

1 ? ? 1 ? ?

2 0 1 3 0 1 2 0 1 3 1 1

4 1 04 1 0

1 0 1 1 1 2

2 0 1 3 1 1 2 0 1 3 1 1

4 1 0 4 1 0

Figure 3: Reconstruction of term frequen-
cies. Each box contains the element ID and
the frequencies for “index” and “invert-
ed”. First, the stfs are retrieved as a flat list
(1), next, the document structure is recon-
structed from the metadata, including
missing nodes (2). Finally, the tree is tra-
versed bottom-up; for each node, the tfs
are added to the parent’s tfs (3,4,5).
3

Space-Efficient Indexing of XML Documents for Content-Only Retrieval
verted list. This alone is obviously not
sufficient: At least, the search engine
needs to get the name of the document
and the position of the fragment inside
the document – typically an XPath – to
display the results.

Even before that point, it may be nec-
essary to obtain more detailed informa-
tion. For example, if the search engine
must avoid presenting nested elements,
like a chapter and a section from that
chapter, to the user in its result list, it
needs data about results’ parent–child re-
lations, and exploiting small elements, as
mentioned earlier, also requires this in-
formation. Many similarity measures, for
example Okapi BM25, use the length of
an element’s text to adjust its similarity.
And, of course, if we store only the differ-
ences of the term frequencies for inner el-
ements, we must know the structure of
the documents.

Thus, we need to store element-spe-
cific information in the index in a space-
and time-efficient format. The simplest
approach is to simply store the informa-
tion per fragment ID:

• The structural information can be re-
duced to the ID of an element’s parent
(encoded as the difference to the par-
ent’s ID to save space).

• The element’s length can be stored
as-is.

• If we need the XPath for identifica-
tion purposes, we must also store the
ID of the tag name.

The IDs of the elements themselves need
not be stored, the metadata entries are
simply stored in order, so that the ID can
be derived from the position in the list.
This is possible because we must read the
complete metadata for a document any-
way to obtain the structural information.

A minor optimization is to apply the
same technique we used for the inverted
lists and only store the difference to the
child elements’ lengths for a parent ele-
ment. In this case, we still have to keep
elements whose text is completely con-
tained in children in the metadata index,
because the link to the parent’s parent and
the tag ID must still be available.

2.6 Index Compression

On the level of actually storing inte-
4

gral values in files, we can save space if
we know some characteristics of the
numbers to be stored: If most of the num-
bers are small, it is advisable to use a cod-
ing method that stores small values in
fewer bits at the expense of using more
bits than necessary for larger values that
occur infrequently.

We use unary coding, which stores
 of one-bits followed by one zero-

bit to store a number , coding,
which breaks the number into an expo-
nent part and a remainder: .

The exponent is the stored as the una-
ry code for , where is the
floor function, followed by the value of

 in binary, in as many bits as
needed. The coding uses the same
breakdown of the number, but stores the
exponent in coding instead of unary.
See Bentley and Yao [1976] and Elias
[1975] for details.

It is customary to store the difference
of the document IDs in the inverted lists
instead of the IDs themselves; for exam-
ple, if a term occurs in documents 2, 6, 7,
and 24, the following values would be
stored in the index: 2, 4, 1, 17. Assuming
that terms occur in clusters, we can ex-
pect that the numbers to be stored are
small in magnitude. This assumption has
proved to be accurate for traditional in-
formation retrieval, and it is even more
relevant for XML retrieval.

Term occurrences are more localized
in XML retrieval if we use a consecutive
numbering of elements, because all ele-
ments from the same document – whose
IDs are close to each other – are typically
about the same topic, so they contain sim-
ilar terms.

Furthermore, the term frequencies of
elements that are deeper in the document
tree tend to be extremely small in magni-
tude because the elements are quite short.

Depending on the expected distribu-
tions of values, different encoding func-
tions can be used [Witten, Moffat, and
Bell 1999]. In our scenario, we expect
many term frequencies to be close to 1, so
a unary encoding is most suitable. The
differences of the document IDs are
somewhat bigger, so the search engine

n 1–

n 1≥ ϒ

n 2 nlog n 2 nlog–()+=

nlog 1+ x

n 2 nlog–

δ

ϒ

uses a coding.

Much more data is read from the
metadata index than from the inverted
lists, so the decoding overhead of the bit-
based unary, , and codings is more
noticeable. These encodings are expen-
sive because they require expensive shift
and mask operations. Thus, we also eval-
uate a byte-based encoding as an alterna-
tive: A sequence of bytes with the high
bit set followed by a byte with the high bit
clear forms the value; the lower seven
bits of each byte are concatenated to ob-
tain the value.

Adaptive coding methods like arith-
metic coding cannot be used for our pur-
poses: When decompressing, it assumes
that all data is read sequentially; in our
application, however, we must be able to
read isolated runs from the inverted files
without also reading all the preceding
runs. Thus, it would only be possible to
use arithmetic coding within a single run,
but – because the runs are relatively short
– it is unlikely to achieve a good com-
pression ratio then.

Huffman coding [Huffman 1952] is
more realistic for our scenario, because it
is based on a static model of the frequen-
cies, so the same decoding table is used
for all runs in the inverted file. The fre-
quency information can be collected
while writing the final merged run file,
and then another pass is needed to copy
this run file to the final file with the Huff-
man coding.

Experiments show that for the high-
frequency values up to five, the Huffman
encoding takes the same number of bits
for storage. On the other hand, there are
large gaps between extant term frequency
values in the higher ranges; thus, using a
fixed coding table or function, the encod-
ings will use more bits than is necessary.

Table 1 shows that Huffman coding is
indeed the most effective encoding for
the term frequencies, as was to be expect-
ed. The differences can be significant for
the baseline – 20 percent for IEEE and 5
percent for Wikipedia –, but for the dif-
ference-based encoding, it is virtually in-
distinguishable from the unary encoding.
This behavior can be explained by the ex-
treme bias towards low term frequency
values in the difference-based index.

δ

δ ϒ
Datenbank-Spektrum 23/2007 (preprint)

Space-Efficient Indexing of XML Documents for Content-Only Retrieval
Thus, there is little benefit in using
Huffman for encoding the term frequen-
cies, but the additional overhead while
indexing suggests the use of the simpler
unary encoding.

Using Huffman coding for the ele-
ment ID deltas is infeasible because there
is a large range of possible values; this
leads to an enormous code tree that has to
be stored in main memory.

The encodings described above
strongly favor small numbers, but the el-
ement name IDs are assigned in the order
they occur in the document collection.
Depending on the collection, the numbers
can get quite large; the INEX Wikipedia
collection, for example, has 1,257 differ-
ent element names. This will be even
more pronounced if different collections
with diverse schemas are stored in the
same index.

The first thing that comes to mind is
to assign the element name IDs in de-
creasing order of frequency in the collec-
tion, instead of in sequence. This requires
another pass over the metadata index at
indexing time, but does not affect retriev-
al time. Although the global distribution
may not be optimal in the general case –
different documents may use different
tags, depending on the author or the sche-
ma –, it should work for our test collec-
tions, both of which use a single schema
with a limited vocabulary.

2.7 Related work

Many of the optimizations that were
proposed for atomic-document retrieval
are not applicable for element retrieval
without modification, because they as-
sume that each document is independent

Table 1: Storage sizes of the term
frequencies in the inverted lists using
different encodings, in megabits. Note
that the numbers do not include padding
between the runs; the Huffman figure
excludes the size for the code table.

IEEE Wikipedia

Baseline Diff Baseline Diff

unary 248 49 690 159
215 53 699 167

Huffman 208 49 662 159
ϒ

Datenbank-Spektrum 23/2007 (preprint)
of each other document.
Most of the researchers working on

XML retrieval pay little attention to
space or time savings; a commonly used
approach is to store the indexes in an
SQL database [Geva 2006, Theobald
2006].

The GPX retrieval engine [Geva
2006] only stores nodes with text chil-
dren in the index, but does not attempt to
obtain the correct term frequencies for
their ancestors. Instead, it calculates their
retrieval score based on a completely dif-
ferent formula than that for the leaves, by
simply summing the children’s scores
and applying a dampening factor. Al-
though evaluation results indicate that
this model works well in the tested sce-
narios, it does not support the retrieval of
small elements at all (elements of types
like italics are simply not included in the
index), so if a query demands that some
text occurs in a title element, GPX’s index
structures cannot answer this query.

Most of the research on index struc-
tures optimized for semistructured data
goes back to the early days of XML or
even SGML. The idea of calculating the
term frequency values of inner nodes
from the term frequency values of their
children is not new. Shin, Jang, and Jin
[1998] use this approach (but they do not
discuss mixed-content elements). Their
storage structure for the inverted lists is
not particularly space-efficient: For each
entry in the inverted list, they store the
document ID, a unique element ID that
also encodes the position in the docu-
ment, the element’s level in the docu-
ment’s DOM tree, and an ID of the ele-
ment type. This storage format leads to a
lot of redundancy, as it is repeated for
each term in a given element.

Furthermore, although the idea of a
simple element ID that can be used to cal-
culate the parent’s ID using a simple for-
mula is nice, their implementation is sim-
ply not practical for arbitrary document
collections. They assume a -ary tree
structure – that is, each element can have
only up to children. A fixed limit for
the number of children is problematic,
because it has to be rather large in order
to accommodate all conceivable docu-
ments. If we use a single value for all

k

k

documents, it would have to be large: For
the INEX test collections we used for
evaluation, would have to be 1023
(IEEE collection) respectively 8503
(Wikipedia collection). Even if is de-
termined separately for each document,
new problems arise: Because has to be
known to determine the parent’s ID, it has
to be stored somewhere for each docu-
ment, either redundantly in the inverted
list or in a separate index structure.

This implies that the element IDs get
large, and they do not lend themselves to
delta encoding, so they take up much
space in the index. The element type is
obviously redundant, and although the
authors state that they use a length-based
normalization for scores, they do not
mention where the length is stored; either
it too is part of the index, in which case it
is another redundant number in the index,
or it is stored separately in an unspecified
place.

Lee, Yoo, Yoon, and Berra [1996]
present a space-saving full-text index
structure for structured documents. The
basic idea is to reduce storage require-
ments by not storing term occurrences
that can be derived from other index
nodes. Unfortunately, their index struc-
tures only support boolean queries, so
they do not provide for term frequencies.
Furthermore, they do not take into ac-
count that non-leaf nodes may also con-
tain text in mixed content, so their index
structures are not applicable in all cir-
cumstances.

Myaeng, Jang, Kim, and Zhoo
[1998], too, ignore mixed-content ele-
ments for their index structures. Further-
more, they store the complete element
type information for each term occur-
rence; this is a significant waste of space.
Jang, Kim, and Shin [1999] and Shin,
Jang, and Jin [1998] also describe differ-
ence-based indexing, but they store ele-
ment-level metadata redundantly in the
inverted list.

3 Evaluation

To show that our index structures are in-
deed useful, we evaluate its properties on
standard test collections. As we have
mentioned before, our main focus is on

k

k

k

5

Space-Efficient Indexing of XML Documents for Content-Only Retrieval

 collection is the collection that was used
he collection that was used for INEX 2006.

f ... Mean length of

nct terms dist. el. names a document

280,980 178 2,917
2,337,819 1,257 241
index size and retrieval time. We made
sure that all versions of the search engine
yield exactly the same results.

3.1 Implementation and test
environment

We implemented the retrieval system in
Java. The tests were executed on a 3.2
GHz Pentium 4 system with 1 GB RAM
on an ext3 file system on two SATA hard
drives in a RAID 0 under Ubuntu Linux
6.10.

As the baseline, we use an index with
all elements stored in the inverted lists,
with the inverted lists compressed using
bit-based compression and the digest
compressed using byte-based compres-
sion. We compare that baseline to the dif-
ference-based indexing scheme with two
variants of the compression of the meta-
data, bit-based and byte-based.

To make our comparison fair, most of
the code is shared in the implementa-
tions. One notable difference is the prop-
agation of term frequencies: In the base-
line version, it is not needed at all, so we
made sure that the corresponding code is
not executed at all, in order to avoid the
(slight) penalty it incurs.

To smooth out random effects on re-
trieval time, all topics were executed in
sequence five times and the mean time
was used for our evaluation. (Note that
the executions of the same topics were
not adjacent, but all the other topics were
in between; this avoids possible caching
effects.)

3.2 INEX

For a scientific approach to XML retriev-
al, new test collections were needed be-
6

A: Baseline
B: Difference-based inverted list, byte-compresse
metadata
C: Difference-based inverted list, bit-compresse
metadata
D: Difference-based inverted list, bit-compresse
metadata, sorted element name IDs

The boxes are, from bottom to top, the lexicon, th
metadata index, and the inverted list.

Figure 4: Index sizes, in relation to the size
cent the size of the original XML files.
cause the existing ones (notably TREC)
did not support element retrieval. Thus,
the Initiative for the Evaluation of XML
Retrieval (INEX) was started in 2002
[Fuhr, Gövert, Kazai, and Lalmas 2002]
in order to establish a testbed for XML
retrieval methods, along the lines of
TREC.

Each year, a new set of test data is
created and used for evaluation the par-
ticipants’ retrieval engines:

• A collection of documents that is
searched; until 2005, this was a col-
lection of IEEE journal articles [Fuhr,
Lalmas, Malik, and Szlávik 2005],
from 2006 on, a conversion of Wiki-
pedia2 to XML format is used [De-
noyer and Gallinari 2006].

• A set of topics comprising a descrip-
tion of an information need and corre-
sponding queries.

• A set of relevance assessments,
where the authors of the topics assign
a level of relevance to (a subset of)
the elements in the collection.

We use the test collections from INEX
2005 and INEX 2006. Table 2 gives an
overview of the properties of these col-
lections. The two collections differ in
several important qualities:

• The Wikipedia collection has about

2.http://wikipedia.org

Table 2: Test collections statistics. The IEEE
for INEX 2005, the Wikipedia collection is t
The token count excludes stop words.

Number o

documents elements disti

IEEE 16,819 11,411,134
Wikipedia 659,388 52,562,497
A B C D

0

50

100

150

200

INEX 2005 data (IEEE)

d

d

d

e

 of the original XML files. For example, the sm
forty times as many documents as the
IEEE collection, but the average
length of a document is only a tenth.

• The Wikipedia collection has about
eight times as many distinct index
terms.

• Although the Wikipedia collection
has many more distinct element
names, the average number that is
used in each document is smaller.

3.3 Index size

It is clear that less storage is required if
less data is stored in the index. Figure 4
shows that the savings are significant:
The index size is reduced to 56 percent of
the baseline index size for the Wikipedia
collection (from 871 megabytes to 485
megabytes) and to 50 percent for the
IEEE collection (from 202 megabytes to
99 megabytes).

The lexicon and the metadata are not
different between the baseline and the
difference-based index. The size of the
lexicon is negligible compared to the oth-
er parts of the index, but the metadata has
a size comparable to that of the inverted
list. Using a bit-based encoding for the
metadata file reduces the size of it by
about 25 to 30 percent but increases re-
trieval time by about 10 to 15 percent.

Re-ordering the element names by
decreasing frequency of occurrence in

A B C D

0

200

400

600

800

1000

INEX 2006 data (Wikipedia)
allest Wikipedia index (D) is about 8 per-
Datenbank-Spektrum 23/2007 (preprint)

Space-Efficient Indexing of XML Documents for Content-Only Retrieval

Datenbank-Spektrum 23/2007 (preprint)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5

ti
m

e
 s

p
e

n
t

re
c
o

n
s
tr

u
c
ti
n

g
 m

is
s
in

g
 e

n
tr

ie
s
 (

in
 s

)

time saved by smaller list (in s)

INEX 2006

e does not change much: The time needed
 axis), but this is offset by the time needed
 in the index (y axis). Points below the
ery, points above the line indicate a net

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

pr
oc

es
si

ng
 ti

m
e

pe
r

qu
er

y
fo

r
th

e
di

ffe
re

nc
e-

ba
se

d,
 c

om
pr

es
se

d
in

de
x

(in
 s

)

processing time per query for the baseline index (in s)

t data (IEEE)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

pe
r

qu
er

y
fo

r
th

e
di

ffe
re

nc
e-

ba
se

d
in

de
x

(in
 s

)

processing time per query for the baseline index (in s)

ata (Wikipedia)

fference-based. Each point represents the
y; for points that lie below the dashed line,
ster. The diagrams on the left compare the
yte-compressed metadata, the diagrams on
nce-based index with bit-compressed meta-
the collection only leads to minor savings
of about 0.2 percent of the metadata in-
dex size for IEEE and less than 0.001 per-
cent for Wikipedia with byte-based en-
coding. This is no big surprise for the
IEEE collection, which only has 178 dis-
tinct element names, but for Wikipedia, a
better compression ratio could have been
expected. However, of the Wikipedia col-
lection’s 1,257 element names, 1,052
(more than 80 percent) occur at most
three times each, because of peculiarities
of the conversion program (it regarded all
text occurring in angle brackets as ele-
ment names, leading to element names
like stdio.h). Because the vocabulary of
the original markup is quite limited, the
most-used element names have low num-
bers anyway, so the savings that can be
expected are rather low. For the bit-based
encoding, the savings are more signifi-
cant: about 12 percent (Wikipedia) and
16 percent (IEEE).

3.4 Retrieval time

For timing, we use the official query sets
from 2005 and 2006, using the title field
of the topics (that is, the keyword-based
query without structural constraints, see
[Trotman and Sigurbjörnsson 2004]).

We cannot expect retrieval time to
drop, because the reduced storage re-
quirements and shorter read times are off-
set by the reconstruction of the missing
elements. Retrieval time should not,
however, increase compared to the base-
line. This is confirmed by our measure-
ments, as Figure 6 shows: The retrieval
time does not increase noticeably for any
topic, in fact, we get a minor reduction of
retrieval time (about 5 percent). Figure 5
shows that indeed the time needed to read
the inverted list entries from the index is
reduced, but extra time is required to re-
construct the entries.

 One important observation is that the
search engine spends a significant por-
tion, from 55 up to 85 percent, of the total
time it needs to process a query in obtain-
ing metadata.

 As a side note, the time needed to
create the index is reduced by about 40
percent for difference-based indexes, be-
cause the inverted lists are significantly
shorter, so less data has to be sorted on
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ti
m

e
 s

p
e

n
t

re
c
o

n
s
tr

u
c
ti
n

g
 m

is
s
in

g
 e

n
tr

ie
s
 (

in
 s

)

time saved by smaller list (in s)

INEX 2005

Figure 5: Explanation why the retrieval tim
to read the inverted list entries is reduced (x
to reconstruct the nodes that are not stored
dashed line indicate a net saving for that qu
loss.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

pr
oc

es
si

ng
 ti

m
e

pe
r

qu
er

y
fo

r
th

e
di

ffe
re

nc
e-

ba
se

d
in

de
x

(in
 s

)

processing time per query for the baseline index (in s)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

pe
r

qu
er

y
fo

r
th

e
di

ffe
re

nc
e-

ba
se

d
in

de
x

(in
 s

)

processing time per query for the baseline index (in s)

INEX 2005 tes

INEX 2006 test d

Figure 6: Retrieval time: baseline versus di
time needed to process one particular quer
retrieval on the difference-based index is fa
baseline to the difference-based index with b
the right compare the baseline to the differe
data.
7

Space-Efficient Indexing of XML Documents for Content-Only Retrieval
disk. Indexing the complete Wikipedia
collection takes about 130 minutes, in-
dexing the IEEE collection takes about
25 minutes.

3.5 Comparison to traditional
information retrieval

Witten, Moffat, and Bell [1999] give fig-
ures for the index size in relation to the
size of the original documents for tradi-
tional information retrieval. The size of
the index structures – inverted files and
auxiliary files – is about 10 to 25 percent
of the size of the documents for four col-
lections with different characteristics.
Compared to the uncompressed XML
files, XML retrieval indexes are in the
same range, at about 10 to 15 percent, al-
though they store considerably more da-
ta. The main reason is, of course, that
XML is a very verbose format; the mark-
up takes up a large fraction of the file, and
whitespace is often used to make the
XML file more attractive.

3.6 Conclusions and future
work

 We have shown that it is possible to sig-
nificantly reduce the space overhead of
XML full-text indexes without affecting
the results or increasing retrieval time –
in fact, retrieval time is slightly reduced
compared to the baseline. Our index
structures support retrieval of all element
types, including very short elements.
This enables our search engine to support
queries that target these small elements.

In the future, we will need to further
reduce the retrieval time; our experi-
ments clearly show that for our index
structures, obtaining the metadata is the
most costly operation, so applying top-
methods to avoid getting the metadata for
all results seems promising. The rationale
is that we are hardly ever interested in all
retrieval results, but only in the best ;
for typical interactive retrieval scenarios,

 will typically be just large enough to
cover a few result pages.

Furthermore, as we have mentioned,
the index structures are not update-
friendly; if the usage scenario differs
from our expected scenario of unchang-
ing documents, the index structures will

k

k

k

8

have to be adapted to deal with this.

4 References
[Bentley and Yao 1976] Bentley, J. L.; Yao, A. C.-

C.: An almost optimal algorithm for un-
bounded searching. Information Processing
Letters, 5(3):82–87, 1976.

[Denoyer and Gallinari 2006] Denoyer, L.; Gall-
inari, P.: The Wikipedia XML corpus. SI-
GIR Forum, 40(1):64–69, 2006.

[Dopichaj 2006] Dopichaj, P.: The University of
Kaiserslautern at INEX 2005. In [Fuhr, Lal-
mas, Malik, and Kazai 2006].

[Dopichaj 2007] Dopichaj, P.: Improving con-
tent-oriented XML retrieval by applying
structural patterns. In ICEIS 2007 – Pro-
ceedings of the Ninth International Confer-
ence on Enterprise Information Systems.
2007.

[Elias 1975] Elias, P.: Universal codeword sets
and representations of the integers. IEEE
Transactions on Information Theory,
21(2):194–203, 1975.

[Fuhr, Gövert, Kazai, and Lalmas 2002] Fuhr, N.;
Gövert, N.; Kazai, G.; Lalmas, M. (eds.).:
Proceedings of the 1st INEX Workshop. ER-
CIM, 2002.

[Fuhr, Lalmas, Malik, and Kazai 2006] Fuhr, N.;
Lalmas, M.; Malik, S.; Kazai, G. (eds.).: Ad-
vances in XML Information Retrieval and
Evaluation: Fourth Workshop of the INitia-
tive for the Evaluation of XML Retrieval (IN-
EX 2005). Springer, 2006.

[Fuhr, Lalmas, Malik, and Szlávik 2005] Fuhr,
N.; Lalmas, M.; Malik, S.; Szlávik, Z. (eds.).:
Advances in XML Information Retrieval:
Third International Workshop of the Initia-
tive for the Evaluation of XML Retrieval (IN-
EX 2004). Springer, 2005.

[Geva 2006] Geva, S.: GPX – gardens point
XML IR at INEX 2005. In [Fuhr, Lalmas,
Malik, and Kazai 2006], pp. 240–253.

[Huffman 1952] Huffman, D.: A method for the
construction of minimum-redundancy codes.
In Proc. of the I.R.E., 40(9):1098–1101

[Jang, Kim, and Shin 1999] Jang, H.; Kim, Y.;
Shin, D.: An effective mechanism for index
update in structured documents. In CIKM
1999 proceedings. 1999.

[Lee, Yoo, Yoon, and Berra 1996] Lee, Y. K.; Yoo,
S.-J.; Yoon, K.; Berra, P. B.: Index structures
for structured documents. In Proc. DL 1996,
pp. 91–99. 1996.

[Myaeng, Jang, Kim, and Zhoo 1998] Myaeng, S.
H.; Jang, D.-H.; Kim, M.-S.; Zhoo, Z.-C.: A
flexible model for retrieval of SGML docu-
ments. In W. B. Croft; A. Moffat; C. J. van
Rijsbergen; R. Wilkinson; J. Zobel (eds.),
SIGIR 1998 proceedings, pp. 138–145. ACM
Press, 1998.

[Ramírez, Westerveld, and de Vries 2006]
Ramírez, G.; Westerveld, T.; de Vries, A. P:.
Using small XML elements to support rele-
vance. In E. N. Efthimiadis; S. T. Dumais; D.
Hawking; K. Järvelin (eds.), SIGIR 2006
proceedings. ACM, 2006.

[Shin, Jang, and Jin 1998] Shin, D.; Jang, H.; Jin,
H.: BUS: an effective indexing and retrieval
scheme in structured documents. In DL
1998 proceedings. 1998.

[Spärck Jones, Walker, and Robertson 1998]
Spärck Jones, K.; Walker, S.; Robertson, S.
E.: A probabilistic model of information re-
trieval: development and status. Technical re-
port, Computer Laboratory, University of
Cambridge, 1998.

[Theobald 2006] Theobald, M.: TopX – Efficient
and Versatile Top-k Query Processing for
Text, Structured, and Semistructured Data.
Ph.D. thesis, Universität des Saarlandes,
2006.

[Trotman and Sigurbjörnsson 2005] Trotman, A.;
Sigurbjörnsson, B.: Narrowed extended
XPath I (NEXI). In [Fuhr, Lalmas, Malik,
and Szlávik 2005].

[Witten, Moffat, and Bell 1999] Witten, I. H.;
Moffat, A.; Bell, T. C.: Managing Gigabytes.
Morgan Kaufmann, 1999.

Philipp Dopichaj
Universität Kaiserslautern
Fachbereich Informatik
Gottlieb-Daimler-Str.
67663 Kaiserslautern
dopichaj@informatik.uni-kl.de
http://wwwlgis.informatik.uni-kl.de

Philipp Dopichaj is a scientific
staff member of the database
and information systems group
(DBIS) at the University of Kai-
serslautern. He is currently fin-
ishing his Ph. D. thesis on con-
tent-oriented XML retrieval.
Datenbank-Spektrum 23/2007 (preprint)

	1 Information retrieval in digital libraries
	1.1 XML Retrieval
	1.2 Problem statement
	1.3 Contribution
	2 Index Structures
	2.1 Tokenization
	2.2 Lexicon
	2.3 Inverted Lists
	2.4 Building the inverted lists
	2.5 Metadata
	2.6 Index Compression
	2.7 Related work
	3 Evaluation
	3.1 Implementation and test environment
	3.2 INEX
	3.3 Index size
	3.4 Retrieval time
	3.5 Comparison to traditional information retrieval
	3.6 Conclusions and future work
	4 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

