Integrating Structural Joins
into a Tuple-Based XPath Algebra

Christian Mathis
Databases and Information Systems
Department of Computer Science
University of Kaiserslautern, Germany
mathis@informatik.uni-kl.de

Abstract: Over the recent years, very little effort has been made to give XPatipap
algebraic treatment. The only laudable exception is the Natix Algebra (NAli¢w
defines the translation of XPath queries into algebraic expressions incsearay,
thereby enabling algebraic optimizations. However, NAL does not capiamous
promising core XML query evaluation algorithms like, for example, the HoliBvig

Join. By integrating a logical structural join operator, we enable NAL todrepiled

into a physical algebra, containing exactly those missing physical opgratée will

provide several important query unnesting rules and demonstratdféntivity of

our approach by an implementation in the XML Transaction Coordinato€)x¥our
prototype of a native XML database system.

1 Introduction

There is one core task, common to almost all XML query langgsathe matching of path
patterns against XML documents. The performance of an XMargjlanguage processor
intrinsically depends on its path evaluation engine, bseguath matching is a frequent
and expensive operation. Path matching occurs frequésgbause even multiple paths
are often defined in a single query. And it is expensive, bse@ath evaluation requires
physical access to the document, in contrast to almost laératonstructs of an XML
guery language, which are evaluated on the output gendogitpdth matchings. Despite
of the many algebra proposals regarding the standard XMkygaeguagexQuery [12,
17, 20], its path-related sublanguage XPath has unforlynadt gained as much attention.
However, because of the above reasons, we believe that XReatitd be furnished with an
algebraic basement, too: It is the core XML data access nmisthan XQuery (and also
XSLT) and it is itself a complex language to evaluate, leg\ariot of space for algebraic
optimizations. In this paper, we will extend the Natix Algebra (NAL) [3], veh is—to
our knowledge—the only algebra, specifically dealing with ¢ompilation of XPath.

So, what is missing in NAL? We observed that somewhat in [&htal the progress being
made in the XML algebra community, a plethora of core algonis for XML query eval-

1As you may convince yourself throughout this article.



uation as well as indexing techniques have been publishatigtalify agpphysical? XML
query operators. Among them, the most prominent reprethezgaare the Structural Join
(STJ) [1, 7, 14, 15], the Holistic Twig Join (HTJ) [5, 10], atite various path indexes
like, for example, the D(k) index [6]. While being introduckcthe context otree-based
algebras [12, 13], very little attempt has been made to iateghese concepts intduwple-
based XML algebra, such as NAL [17]. You may think, why bother, thentbination of
a tree-based algebra with the holistic twig join works petife so where is the need for
a further XML algebra? We believe that the data model of tadebras is more general
than the one of tree algebras and, therefore, certain XMkydaaguage constructs can be
handled more suitably. For example, we do not know how a nemihtermediate result,
like pairs of siblings, is represented without introducangartificial parent node (which
has to be handled by subsequent operators). Furthermbneajar RDBMS vendors are
currently integrating XML query capabilities into theiufle-based) relational query en-
gines. For them, the integration of an equally tuple-basBdti/XQuery algebra would
be a natural thing to do That is why we favor tuple algebras and think the integratid
the above mentioned physical operators is of great impoetan

In this article, we will elaborate on the algebraic treatt@mXPath. We will introduce a
logical structural join operator into NAL and provide essential riéng rules to convert
an algebraic expression into a format facilitating the niagmnto the existing physical
XML operators STJ and HTJ. The extended algebra will be nakAdd>T.

1.1 XML Algebras in the Literature

Although there is—to our knowledge—only one proposal exgiiclealing with the alge-
braic compilation and optimization of XPath queries [3],gie an overview over existing
algebra approaches for XML queries in general and pointtait XPath capabilities.

The TAX and TLC algebras [12, 13] evolve from an analogy befwveelations and trees.
In the relational algebra, each operator consumes and pesdiets of tuples (relations),
whereas sequences of XML data trees are the basic unit oégsing in TAX/TLC, i.e.,
TAXITLC is a tree-based algebra. A core concept to all opesadre pattern trees. They
can be used, for example, to define a query tree structure $eteztion operator that
matches the pattern tree against a document, thereby pngdasequence of so-called
witness trees. Each witness tree in the result sequencespamds to a match. The above
mentioned physical algorithms, STJ and HTJ, are core dlgos in the TAX/TLC physi-
cal algebra, because they do the job of pattern tree matchi¢/TLC provides a “natu-
ral” way to process XML trees, because it is based on XML teemtermediate results.
However, its expressive power is definitely too limited foe evaluation of XPath queries:
only the descendant and child axis are supported for theitiefirof a pattern tree.

The Natix Algebra (NAL) [17] takes a different approach, dese it abstracts from trees
as intermediate result structures. NAL operates on segsenic(homogeneous) tuples,

2By “physical” we mean that these operators could be part ofyaipal XML algebra.
3See also [2] for academic research activities in this area.
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Figure 1: NAL Example

each tuple consisting of a set of attribute-to-value maggirSimilar to the notion of the
evaluation context defined in the W3C Formal Semantics [8], these mappings keef tr
of the dynamic variable bindings during query processingfeRence [3] describes the
translation of an arbitrary XPath expression into NAL. Besm our article heavily relies
on NAL, we will sufficiently introduce the algebra and its edyfities in the following.

The algebra presented in [20]—called RSffgebra in the following—employs a hybrid
approach. Its expressions contain both operator types:-fased operators are introduced
for intermediate XML tree handling and tuple-based opesatm control the flow of tuple
streams generated by XQuery® andlet expressions. To ensure the compatibility be-
tween these two types, special conversion operakapTol t emandVapFr oml t en?)
have to be embedded into an algebra expression. This teshaipids tuple flattening
which is often required in NAL. Because RSF expressions aneigated from the XQuery
core representation defined in [8], the whole extent of Xatiovered. However, XPath-
specific optimizations, as introduced in this article, hasebeen published in RSF so far.
However, their integration would be possible.

1.2 A Brief Example in NAL

In this section, we will give a brief example in the Natix dbga and point out its strengths
and weaknesses. Let us consider the expregsipnt; /a; :: tp [position() = last()] /a3 ::

t3 [as :: t4] depicted in Figure 1. The evaluation starts with the simgletcan operator
(O) which creates a singleton sequence containing an emply. tuptriggers the map

operator f) to bind the root node of the queried tree to theattribute of a new tuple.

This tuple, in turn, is consumed by the first D-join operat®he D-Join (ﬁ—or () in

4Named after the last names of the paper’s authors.
SMapTol t emconverts a sequence of tuples to a sequence of XML treesg i Fr on t emworks in the
opposite direction.



the textual representation) is similar to XQuerfgs construct: for each tuplein the left
input sequence, the dependent right expression is evdluaitedingt’s attributes to free
variables in the right expression (hexg. Then, the intermediate result calculated for the
dependent sub-expression, is joined withn our example, the dependent expression is
again a D-Join operator whose left sub-expression is anstirmap operatorY). This
operator is a shortcut for a map operatgy followed by an unnest operatagu). In NAL,

Y is mainly used for the calculation of path axes. Startingnfigy the path expression
a; .ty is evaluated to a single sequence (usigvhich is immediately unnested (kpy).
Together with the D-Join, this results in the above mentidfflattening”.

A predicate is translated into a selection operatQr (vhere the predicate’s sub-expression
is compiled intoog’s subscript. NAL operators may be arbitrarily nested irs tlaishion.
For each input tuple, the subscript is evaluated. For almlbgiredicates, certain mea-
sures have to be taken to ensure the evaluability®subscript: In case of a relative path
expression, the current context variabfehas to be provided explicitly. This is accom-
plished by the two map operatoxgn.c, and Xc,:cn, the first one bindings to the context
variable and the second one “transferrirgy’ into the variablecy of the local context.
For positional predicates, the current context positioth tlue context size have to be cal-
culated. This is the task of the special operafScounter (py)++ and Tmp®. The first
operator simply counts the tuples in its input and attacheswaattributecp, containing
the current position, to thenT.mp®™ materializes its input to calculate the total number of
tuples in the context, before it attaches attribegecontaining this number, to each tuple.
The aggregation operat@revaluates aggregate functions, ergn(), max(), etc. More
sophisticated predicates, for example existential coispas, are possible, too. Finally,
the resulting context node is produced by a map operatorgaplicate eliminationf{i°)

is applied to comply with the XPath semantics.

NAL provides a concise algebraic basement for XPath (1.]) [@z&luation. The XPath-
to-NAL translation process is described in [3] in great detAdditionally, the authors
provided some optimization techniques like stacked teditsi for outer paths, duplicate-
elimination push down, and memoizatfonin [4], certain algebraic equivalences were
shown, which enable unnesting of queries with semi-caledlXPath predicatés

1.3 Problem Statement

In spite of the progress being made in NAL, we believe tha&tigestill room for optimiza-
tion: Our first observation is that the evaluation of a NAL egsion generates almost the
same data flow as its equivalent normalized in W3C’s XQuereC€anguage. As an ex-
ample, consider the evaluation of the select operatior Figure 1: It is evaluated for each
context node provided by the unnest map operégg, a,:1,- This impliesnode-at-a-time
calculation of the path step, embedded in the selectiorcsipbsHowever, many publica-
tions [1, 5, 7] have pointed out thagt-at-a-time processing of path steps provides better

6These optimizations have not been executed on our examplehvghpresented in the canonical translation.
“Queries with semi-correlated predicates have the forme; [e26e3], where either; or e; is a path expres-
sion depending op's outer—or global—context



performance in most cases. Another example regarding therged data flow arises
from the order in which the path processing steps are evaludtike in XQuery Core,
NAL evaluates path steps from left to right. However, as [22% shown, a reordering of
path step evaluations can substantially improve the quaggssing performance.

As a second point, we observe that the logical-to-physipatator mapping presented in
[3] does not take important classes of physical operatdcsancount, like the structural
join and the holistic twig joif. Essentially, these operators provide the above mentioned
capability to process path steps in a set-at-a-time maiiinere is reasonable doubt that,
in the face of complex queries, the algebraic represemntato facilitate a mapping onto a
physical algebra, containing exactly these operators. Ne this doubt from the fact that
nested path expressions are “hidden” in subscripts of @heoperators. Furthermore,
logically related subexpressions, e. g., the compiledspafrthe path steps like; :: t1, are
“scattered” across the operator tree (shown by the endianieas in Figure 1). Under the
assumption that the above query contains only steps nedetoithe child and descendant
axis, a reasonable evaluation approach—at the physicaHeveuld be the application
of asingle HTJ operator, followed by a subsequent selection. Howdkam the given
representation, it is unclear how the mapping onto this H¥efator can be accomplished.

1.4 Our Contribution

Our overall goal is to integrate the above mentionend ingmirtlasses of physical eval-
uation operators like structural join, holistic twig joiand path index access into NAL's
physical algebra. However, as a first step we have to “prépike at the logical level in

a way facilitating this integration. In this article we will

introduce dogical structural join operator to the NAL algebra,

provide rules to convert a NAL expression from its canoniegresentation into its
NAL ST equivalent containing structural joins,

develop rewriting rules for predicate unnesting, and

finally show the impact of our approach on the query procggsarformance in the
XML Transaction Coordinator (XTC)—our prototype of a natX®IL DBMS.

By introducing structural joins, we can abstract from thplieit and implicit node-at-a-
time path processing steps (e.g., the D-Join, and the emiedtie to a path predicate)
inherent to the Natix algebra. This abstraction allows ushimose the adequate physical
operators for the implementation of a logical plan. Froml#rge set of possibilities for
structural join implementation (i. e., stack based [1],hhased [15], index based [7],
locking aware [14], etc.), we will gain more flexibility in¢hogical-to-physical mapping,
and therefore extend the search space for cost-based quteryzation. Surely, there will

8Although we recognize the hint towards that direction giveri18], we did not find any approach that
properly introduces structural joins in NAL.



be situations node-at-a-time leads to a better performtrae set-at-a-time. However,
we think that this decision depends on physical propertigsshould, therefore, not be
decided on a logical level.

Furthermore, our predicate unnesting rules will faciéittie mapping onto more power-
ful physical operators like the holistic twig join (whichrtalso evaluatend, or, andnot
predicates) and path-index lookups, because they exptisemaessing steps hidden in
selection subscripts. Additionally, unnesting enablascstiral join reordering to prise off
the inflexible left-to-right path evaluation. We expect ayerator plans to be scalable,
though consisting of a large number of joins, because, itrasnto the join implementa-
tions in the relational algebra, structural joins are exthble in linear time [1].

In the following, we will not consider questions arising thgy plan generation, i. e., during
the logical-to-physical operator mapping. Specificallg,will neither show, how a holistic
twig join can be employed to replace a set of structural jgarators, nor how the order
of structural joins can be selected [22]. Here, we only warfatilitate the treatment of
these important questions by introducing the structuiialgperator.

The remainder of this article is organized as follows: S@cprovides an overview over
the Natix algebra, which we will extend in Sect. 3. The rugeséd rewriting of NAL into
its extended version is described in Sect. 4, before Seatré&duces the core rule set for
guery unnesting. Sect. 6 provides several rules for stralgin push down. We conclude
this article with a quantitative analysis in Sect. 7.

2 NAL in a Nutshell

For your convenience, we repeat the basic definitions frojn AL operates on se-
guences of homogeneous sets of attribute-value mappingke$)t, eacht having the
same set of attributes (schema) denodt). Attribute values may be sequences, thus
NAL allows arbitrary nesting. The empty sequence is denatsdor (). For tuple modi-
fication, NAL provides the primitive§] (tuple construction) (tuple concatenation), and
|a (attribute projection). The notatidra describes the access to tupkeattributea. A(e)
andF (e) denote the schema and the set of free variables of an algeressiore. Ap-
plied to sequences, the functiossd 2, a(e), and1(e) return the concatenatiory, the
first tuple of the sequence], and the remainder of the sequencg (f eis a sequence of
non-tuple valuesgla] = [a: a(e)] & 1(e)[a] returns a sequence of tuples: g], whereg

is a tuple ofe. An overview over all relevant NAL operators can be foundia appendix.
To support the required ordering in XML, all unary operateexceptSort—keep the or-
der of their input sequences intact. The binary operat@ssgproduct x) and D-Join ())
have nested-loop semantics. The projection oper&tph@s two variants for duplicate
elimination (1°) and renamingMy-a).



3 Extending NAL to NAL ST

For our NAL extension NAE™, we introduce some new operator definitions and modify
a few existing ones. We want to keep NAI backward compatible, i. e., an expression

in NAL shall also be an expression in NAL. The new or modified operators are: the

structural selection and the structural join, node seqei@ccess, nesting, reverse, group
reverse, group sort, and finally sequence-based mejgen@ intersectr).

Structural Selection. The structural selection, i.e., the selection of a tuplestasn
some structural predicate, is embedded by extending the d&\ction operator from
Table 3:
6o(9) _:{ a(s)dop(t(s)) : Wpla(s)) =true
P> op(1(9)) . dse

where the functioi(t) evaluates predicajeon tuplet. In case p = & 0a; is a structural
predicate ¥, has the following semantics: Depending 8nthe predicate evaluates the
binary structural relation (is parent of),| (is child of), 1 (is ancestor of)} (is ancestor or
self of), | (is descendant of}, (is descendant or self o) (is preceding sibling of)- (is
following sibling of), <= (is preceding of)= (is following of), @ (is attribute of), and

(is self of). A structural predicate is evaluated¥geq, (t) :=t.a;6t.a;. Note, if we want
to express that “b is child of a” we write | a and nota | b. The order is important when
we define the structural join.

For its evaluation, an XML node identification mechanisnbéléng scheme) is beneficial
that can decide the relationship in question without a masiode access. All native
XML database systems nowadays embody such a mechanism.

In case of all other shapes of the predicptene refer to the original definition of the
selection operator in [3].

Structural Join.  With the help of the cartesian product) and the selection operator
(gp), we define the join operator in the classic way:

S| Mp S = 0p(S1 X S)

This operator becomes a structural join operator when thepjedicate checks structural
relationships over attributes of the participating tupleésewever, some care has to be taken
for certain axes that may produce duplicates. Additionahg question of output order
ariseS. For example, when using p to evaluate the ancestor axis, the output may not
reflect the document order (as required by XPath). Therefehen using the structural
join operator, we will keep these aspects in mind. The strattsemi-join & p), the
structural anti-join &), and the structural left-outer join(p) are defined accordingly.

Why do we claim this operator to belagical operator? To answer this question, we first
have to state that the distinction between logical and glhysperators in XML algebras is

9Note, that thex operator on sequences, as defined in [3], returns an ordesatl.r



not as clear as in the relational world. Becaosier matters in XML, logical operators are
defined in a way, respecting the requirement of order ¢likeBut then, there is often only
one chance to implement a logical operator, because otteznalives do not deliver the
correct output order. Therefore, there is often no distimdbetween a logical operator and
its physical implementation. However, for the structucah joperator defined above, there
are a lot of very efficient physical algorithms present, estack based [1], hash based
[15], index based [6, 7], locking aware [14], etc. We evemlthihat the combination of
a D-Join with an unnest map operator is a physical implentientaf the strutural join
defined above. Despite the intrinsic nested loop charatitsj we think our new operator
qualifies as a logical one.

Node-Sequence Access.For the access to sequences of nodes having, for example, the
same element name, we define the auxiliary functign For simplicity, its semantics is
described in proseg,(c) is a function depending on the current evaluation comfext

It returns all nodes of a document in document order, comglwith the predicate. For

its evaluation, the function reads the current context nodedefined in the evaluation
context, and calculates’'s document root node. Then it scans the document in document
order, thereby evaluating predicgi@gainst each visited XML node. All qualifying nodes
are returned in one sequence. In the followigig will be used in combination with thg
operator. For example, the express®a Yc.q, .., ((J) returns a sequence wik(e) = ¢

and allauthor elements in the current document as values.

Nest. In the following, we will not need the complex grouping caititibs of the general
unary/binary grouping operator provided in NAL [17]. A sitemesting operator will do.
Nesting is the complementary operator to unnesting. Wenasshie grouping operator in
[17] to be defined on sets (or, more specifically, on vectdfa}tobutes A. Then, nesting
is a shorthand fovga(e) = Mg—aid(€). If we want to nest by all attributes but the ones
given in the vectoA, we usevyz(€) = I'g_a(e)\Aid(€)-

Reverse, Group Reverse, and Group Sort. The reverse operatdk simply reverses
the order of the tuples in the input sequence. If given arbate name as subscrifiy
assumes attribuigto be sequence valued. Then, it reverses the ordgs sequence. The
group reverse operatdt,cg first nests its input by the attribute li8t reverses the order in
each nesting group, and finally unnests the sequence again:

3&2(91) = Hgo 3Kg o Vg:A(el)

The same can be defined for the sort operator. Similarott.,, the operatofy sorts
the sequence valugglin ascending (document) order on the context node (cn). Then
group-based sorting can be defined as:

$%(e1) = tgoSgo Vga(er)

10Note, in the following, we omit context-parametefor simplicity



Sequence Merge and Intersect. The operators) and ™ are defined as the sequence-
based, order preserving, and duplicate eliminating unimhiatersection on sequences of
tuples having the same schema.

4 Introducing the Structural Join into a NAL Expression

In this section, we present a set of rewriting rules whichssitite D-Join operators with
structural joins. Each rule contains an operator pattetheateft-hand side. The corre-
sponding right-hand side specifies how the operator tregéchbe restructured. Note, a
direct compilation from XPath to NAY' is also possible. However, in this article we
chose a given NAL expression as the starting point, becaesgamt to ensure the equal-
ity of the resulting NAIS™ expression. Due to space restrictions, we cannot provige an
reasoning about the correctness of the following rules. dwessary proofs can be found
in the extended version of this paper [16]. After each rulgliaption, the resulting oper-
ator tree can still be evaluated, because KNlis an extension of NAL. The introduction
of structural joins is guided by the general rule:

& <¢0Yci:cj'/ai::ti (D)> = ®(ej M6y Yoiigy () (1)

At the left-hand side, the outer expressigngenerates a sequence of tuples containing
an attributecj. For each tuple, this attribute is the starting point for ¢agulation of the
axis step in the dependent unnest map expressbas.a function defined by a sequence
of already translated algebra operators (i%edoes not contain any D-Joins). Notg,
may not only contain unary operators (as our notation sugpdsit also binary ones (like
x). However, because we assuméo be already translated, the rewriting depends on the
single inner expressiochi:Cj/aq.:;ti .

At the right hand side, expressien is shifted into® forming a structural join using the
specified axis with a node sequence acoRsg, - This has the effect thab consumes a
slightly different input sequence, because it now contalae attributes fronej. While,

at the left-hand side, the evaluation contexts are neaflgra¢ed, at the right-hand side,
they are intermixed. Therefore, this rewriting is only emtrfor certain®. We enumerate
the variations of this rule for those, for which the above rule would lead to an incorrect
rewriting. In the following casesp is split into three operators, of which twd®{ and®,)
are again functions containing sub-expressions and theithihe operator of interest.

e ®=d;0Tmp*=od,. This pattern leads to the following right-hand side, whéeee
Tmpgf operator has the same semantics as in the stacked trangka®m[3]):

quOTmpg?O(DZ(ej X 65 Yoiidy (00)) (2)

Due to the rewriting, the different evaluation contexts ao¢ separated anymore.
The operator has to detect groups of attributes belongitfgeteame context. In the
rule, expressiom; binds attributec;, thus providing the outer context in which the



structural join is evaluatedTmpf:‘jS detects groups based op i. e., whenever this
attribute changes its value, the start of a new group is @tdit In the following,
we will call operators that have been modified in this wgagup aware.

o ® = D10 Xcpcounter(p)++ © P2. For this pattern, we need to make the map opera-
tor group aware. Therefore, the expressi@pcounter(p)++ has stacked-translation
semantics (as defined in [3]):

®;0 Xcp:counter (pj)++ © q)2(ej N 05 Cj Yci Py (D)) (3)

Because the order matters for that pattern, we have to b&uttrenatch XPath's
semantics, which requires reverse document order, if dipoal predicate is evalu-
ated on a reverse axis. Thereforegiifs a reverse axis, we rewrite to:

®10 3KCG] © Xcp:counter (pj)++ © 3RcGJ © qDZ(ej X ;B Cj Yo By (@) 4)

As with theTmp®™ operator, expressiog provides the outer context, in which the
structural join is evaluated. Therefore, the group revematorﬁg) groups byc;.
Likewise, the group-awareounter () function resets its counter, when changes.
Note, we will abbreviate that function () in the following.

e ®=d; 049, o®dy. If the pattern contains an aggregate function, we have ptyap
nesting first and evaluate the aggregate function on thedestribute. Afterwards,
the nested attribute can be projected out:

@0 nﬁogx:f(ﬂig) o Vg © (e Mg 0 Cj YCiifPti @) )]

e ® = ®d;0Sorteno dy. Here, a similar situation as in the previous rule can bedoun
We sort the nested group and unnest it again:

P10 ligo &Y o Vg, 0 Da(g) g, 6a.c; Yo, () (6)

For all other shapes aob, especially whend is the identity function, rule (1) can be
applied. Also, when an operator has already been rgeae aware, as for example the
Tmp® operator, (1) is used. If arp contains multiple matchings of the given pattern, they
are applied in parallel. This typically happens for rulesd@d (3) in case of a positional
predicate, i. e.[position() = last()].

We conclude this section with the rewriting of a simplifiedsien of the previous example:
/child ::a/child :: b [position() = last()]/child :: ¢ (Figure 2). In the first stepg; and the
depending sub-expression can be identified as depictedyurd-Ra. With® being the
identity function, rule (1) can be applied. In Figure Zb,contains a structural join, a
selection, & mp®, and a map operator. Here, rules (2) and (3) are used “sinadtssly”.
For Figure 2c, rule (1) applies again. Note, the positionetiag operators have already
been made group aware in the previous step.
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Figure 2: Translation Example

5 Query Unnesting

With the introduction of the structural join into a NAL exgsgon, we abandoned the
explicit node-at-a-time path processing inherent to théoid- operator. But still, the im-
plicit node-at-a-time processing resulting from the estitin of path steps in selections is
present. In this section, we will provide a set of unnestinigs to “expose” these hidden
path step evaluations. We do not claim to have found all éstémg rewritings possible,
but we think, we cover the most common cases.

In this section, we will introduce unnesting rules for esigial, conjunctive, disjunctive,
and negated predicates. Furthermore, we will consideligatas based on aggregate func-
tions. In all nested expressions, we assume relative paifessions to be presét Our
guery unnesting strategies are not covered by the rules ih74 Both contributions do
not base their rewritings on the structural join operator.

The General Rules. By an examination of a typical operator tree, you can seeahat
pair of map operatorstn.c , Xcy:en) Often “glues” an outer expression to the subscript of a

llselections without nested path expressions are consittelelconstant or positional.



selection. Due to the XPath-to-NAL compilation, this is a8 the case when a predicate
contains a path expression (for an example, see Figure B.infer map is the starting
point for a cascade of operators, the first one of which isuagiral join (in NALS™). Our
goal is to “extract” the inner path expression and join itvitie outer expression. In some
cases, we can abandon the select operator completely.dnagbes, we have to adjust the
subscript to the new situation, using variable referengexctess necessary information,
now produced in the outer expression. In the simple casenwWieXPath predicate (and
accordingly the selection subscript) contains only onatied path expression, we use the
following generic unnesting rule:

O (i xeen()) (Xenico (€0)) = Mg © Tap(g) © Vg ag7y (€0 My, T7) (7

In the left-hand side of this rule, you can find the above nosweiil pair of map op-
erators: The outer expressi@y binds attributecy, which is then mapped onten; in
the inner expressiorgy is reestablished from the context attribute Variablerris a
NAL ST path expression depending on the context node given by tte expression,
i€, 1= ((Xcp:en(ED) Xcy0,¢0 €1)--- Menng, €n). P is—as in the previous rewriting rules—a
sequence of NAE™ operators, but this time, it may not be the identity functiéx the
right-hand side we find a modified. The inner path expressianis extracted and joined
with the outerey, using attributec; of 7T in the join condition. Note, there is no need
for map operators anymore, i. @1, does not depend 0fc,.cn(0J). This means thatr
now has the fornt’ = ((e1 Xc,g,c; €2)--- Mca6nc, €n). We denote this circumstance by the
omission of the argument af . Furthermore, in the following, we will simply abbrevi-
ate 11 Xc,:en((J))) occurring in a selection subscript by To handle different evaluation
contexts, a nest operator is inserted, which groups by tibates, except those af’.
The selection is now executed on the groupgdreferencing the group by the variable
$g. After the selection, no information about the paths required anymore. Therefore,
it is projected out. While this rule is directly applicableete are further refinements for
special cases that provide for better performance results.

In contrast to all previous rewriting rule® may not be unary anymore, because in one
predicate, several path expressions can be evaluatedltaimaausly”. This leads to a
generic unnesting rule for the complex case, when multipt pxpressions are located
in a single attribute:

0@(;1{,_,._,71;’{)(ch:00(90)) (8)

Here,® is n-ary, depending on a set of path expressions. Because llepptessions are
evaluated in the same local context, the depicted nestiactisglly possible: no nesting of
already nested sequences may occur. The only critical &ssiag is the calculation of a
nesting, where attributes compared for equality may beesezpivalued. This is, however,
not a problem of the logical algebra, but has to be solvedegpltlysical level. One strategy,
for example, would be to abandon the nest operators and yibdifsubsequent operators
to make thengroup aware!?. Another possible solution is to integrate the generation o
nested groups into physical structural join operatorskaghed in [13].

12This technique has already been applied in the stackedatims where thd mp® operator is converted to
a group-award mpg® operator



By analyzing the most common cases in NA!, we identify ® and provide specific
unnesting redefinitions of the previous rules in the follogyi

Rewriting Conjunctive Predicates. Whenever possible, we normalize the subscripts
of selections into a disjunctive form, i.e; A (e2V e3) = (e1A€) V (e1A€3). We are
aware that, by multiplying@;, common sub-expressions are introduced. Again, this is not
a problem for the logical algebra, but the physical plan gatioe has to deal with it. Every
time we have to introduce common sub-expressions, we ge&/@lin generator a hint to
signal their correspondence.

The first rewriting handles conjunctive expressions. Fenthwe rewrite the query using
the well-known equivalence:

Oynes(€1) = O, © Oy (€1) = Ogy © T, (€1) 9)

Rewriting Disjunctive Predicates. Disjunctive predicates may be handled similarly to
conjunctive ones using the sequence merge operator:

Og,ve;(€1) = Oe,(€1)U0e;(€1) = Oy (€1) U0, (€1) (10)

Again, this rewriting requires special care from the planagator to handle the multiplied
occurrences of expressiaa. When sub-expressions of the disjunction are aggregated
using theexists() function, they can be extracted by using left-outer joins:

O e vy (Xenico(€0)) = MR (ey) © T(A()2e)ves (80 Xy, TT) (11)

The notatiomA(17) # € essentially has the meanidig € A(17') : a# ¢, i. e., 17 has provided
a join partner in the left outer join. In all other cases, whaultiple path expressions in a
general disjunction may occur, the query can be rewritten as

O, (12 )vady() (Xenico (€0)) (12)
= Mate) © 01 (301)v@2(302) © Vo, A7) © Vepeay ((80 s ) Hogec T)

In the following, every time a path expression participatea disjunction, we use a left
outer join operator instead of a full join. This guarantetbsit we do not accidentally
“throw away” intermediate results. For example, in the esgionalb\/ c] we may not

use an ordinary join betweemandb, because then we would miss alelements which

should be part of the final result duedo

Unnesting Existential Predicates. Sometimes plain path predicates likeajb/c] occur.
In NAL ST those expressions are compiled to an aggregation in catidwirwith anexists
in the selection subscript. They can be unnested with tHewiaig rule, introducing a
semi-join operator:

Opyexists(TX) (ch:co(eo)) = €0 X¢,0c9 s (13)



Note, on the right-hand sider is evaluated first, before the structural join is computed.
Essentially this means, that is not evaluated in the context ef anymore. This could be
problematic, ifrt’ returns a large number of intermediate tuples. Anothettisolis viable

as well, where path expressiaris exposed:

Opyeigs(X) (Xenco (€0)) = I'I/'3<eo)((eo Mci0co 1)+ Xoncy_y En) (14)
In the case of a negated path predicate, e[gat(b/c)|, we use an anti-join operator:

UAX;ﬂigs(nX)(ch:co(eO)) =€ P>¢6cq s (15)

Unnesting Path Comparison Expressions. In the NAL compilation process, predicates
of the form[e; 0ey] are translated into afx.eqigs predicate. Therefore, with the first rule
above, we can also unnest predicates that contain a compafsa path with a con-
stant & mple path comparison expression). For example, the qafiry 3] can be trans-
lated and unnested into the NAL expressiot® NP (Xcnc, ((Xepen Moy lco Yer:ta) Xcaley
(0-3(Yey9,))). However, becaus® is unary, this rewriting rule does not provide any
help in case otomplex path comparison expressions lifi/text() = c/text()]. In such

a case, the following unnesting rule can be applied.

O gy5000 () (Xerrco (€0)) = MR(gy) © Oy o5cy) (€0 My TH) Xcpocy o) (16)

In this rule®y is the compilation of the existential comparison as intietlin [3]. For
examplern = @ would be compiled int@eigs78 X TH. Rule (13) is promising, because it
may be implemented very efficiently. At the right-hand sithe, selection operator simply
compares two attributes. This comparison has non-exiatesgmantics, in contrast the
existential semantics on the left-hand side. The genetafgd stream is in document
order. Therefore, the duplicate elimination operatorngady a buffered filter with a buffer
size of one tuple. This is also true for the duplicate elirtiorain rule (14).

Unnesting Predicates with Aggregate Functions. If the nested sub-expression contains
an aggregate function, e. g., asjeount (b) = 3], we can unnest this query using a group-
by in combination with the aggregate function:

%(gx,(nx» (ch:co(eo)) = I_IA(eo) © Og($x) © rx;:A(eO);f (e Ny B¢ nl) (17)

An Unnesting Example. We will conclude the discussion of query unnesting with an
example. To save space, this example is presented usingllBsmConsider the XPath
expressiorydesc :: a[child :: ¢ = “foo” \ count (desc :: b) > 3]. The nested NAE™ query
is:
O(s1)V(sp) © Xeniey (en) where €= Xco:root(cn)(D) Meyleo Yor:ga(0D)
S = gx:exists((Xco:cn(D) Xy lco Ycz::pc(D)) x “fo0” )
S = Ay.count (Xcozcn(D) N csllcy Y03:¢b(|:])) >3

13Because 3 is a constant, we do not compile it using an aggoegmig.,gm”<3), as suggested in [3].




In the first step, we use Rule (11) to extract &tests() part of the disjunction:

Meo.c1 © O(cyte)v(sy) © Xomey (€1)  Where €1 = (€p) N, e, (Yep:e (L) x “f00”)
S = gx:count()(Xco:cn(D) Neszllcy YC3:¢b(D)) >3

In the second step, we use Rule (17) to extract the aggragatédn from the disjunction:

rlco,cl 0 Ocy£ev($x>3) © rx;:{co,cl,cz};count(eZ) where €, = (el) MNegeo Y032¢b(|:|)

Finally, a slight optimization regarding expressi@rcan be pointed outYc,:, x “foo” =
Ye 0000 s 1. €., the check for “foo” can simply be integrated into theda sequence
access. In a physical algebra, this type of access coulddmoded by an index.

6 Pushing Down Structural Joins

The mapping of a logical algebra expression to its corredipgrphysical one is out of the
scope of this paper. However, when thinking about this nrappivo interesting questions
arise: How can &ogical expression be “prepared” to facilitate the logical-to-gilegl al-
gebra mapping and how can the problem of structural joinrasekection be tackled? We
think the answer to these questions lies in a special operawformat, where the tuple-
generating structural joins are located at the bottom ofttee, and filtering/selection
operators occur as inner nodes. In this representatioigalbgrelated path processing
operators are situated close to each other. Because néiaesear other operators inter-
fere, it is easy to determine the different parts to be mamped a HTJ join operator, a
path index access, or onto the STJ operator. This opera&®ifdrmat can be generated
by lifting non-structural join operators out of either sioea structural join operator. For
example, in Figure 2d, from the left side of the final struatyoin, the selectionT mp,
andy operators could be lifted, pushing down the structural foithe bottom of the tree.
In Table 1 we provide rewriting rules to accomplish suchregtirings. We are aware
that these rules have an immediate impact on the costs ofihg,decause the evaluation

Table 1: Join Push-Down Equivalences

Operator Rule Condition

op (Selection) Op(€1) Xc,0¢, €2 = Op(€1 Mcyoc, €2) F(p)NA(e2) =0

Ma (Projection) Ma(€1) Xcy6c, €2 = Mauacey) (B1 Xcy0¢; €2) c1 €A

MP (Dup. Elim.) MP(e1) Me,0c, & = MP (&1 M, 00, ) e duplicate free

My (Projection) Mx(e1) Xey0c, € = Mz(€1 Xey0c, €2) ANA(e) =0Nc1 € A
Mx—a;t (Group) Mx=Aif (€1) Mcy0c; € = M—pun(e,);f (B1 Mcy6c, €2)  CLEA

Vga (Nest) Vga(€1) Xe,6c; €2 = Vgaua(ey) (B1 Xcy6c; €2) c1 €A

Hg (Unnest) Hg(€1) Me,0c, €2 = Hg(€1 Mcyoc, €2) ¢ €A9)




of selections—minimizing the intermediate result size—iteded. However, using the
same set of rules, these selections may be pushed back éntotiginal places, after the
logical-to-physical mapping has been performed.

Because these equivalences may be read from either sidealde provide a way to
push down non-structural operators. Again, we do not claitmaive found all interesting
rewritings possible here. In addition to the rules depiéte@able 1, we have found rules
to push down a join over the special operatﬂimpgjs and Xcp.ct(p)++- However, their
discussion is beyond the scope of this paper.

7 Quantitative Results

To substantiate our findings, we compared the differentuaetan strategies by a one-to-
one comparison on a single-user system. We implementedpi@tors of the NABTY
algebra in the XTC system. Because we wanted to keep the cmoipdetween a pure
NAL expression and the NAY Y variants of a query simple and, because we do not elabo-
rate on a sophisticated logical-to-physical algebra mappi this paper, we just used the
algorithm presented in [1] for the implementation of theistural join.

System Testbed. XTC is one of the few native database systems, providingdiaéed
transaction isolation over shared XML documents. In XT@hedML node has a unique
stable path labeling identifier (SPLID [11]). We refined thRIIPATH [19] concept for
the implementation of SPLIDs. For document storage, eadk iomapped onto a record,
containing the SPLID and the encoded node data. All recdrdslocument are stored in
a B*-Tree, comprising thdocument container.

Furthermore, thelement index provides for fast
access to elements with the same element name
(see Figure 3). It is a two-way index, consist-
ing of a name directory (B-Tree) and a set of
node-reference indexes. Given a context node
cn, the element index can be used to calculate
the sequence of all elements having a specific Figure 3: Element Index

name on a specific axis. Such queries are simply

translated to range queries over a particular node-refererdex. This is exactly, how
we implemented the evaluation of tiveoperator. XPath predicates subject to the value
content of XML nodes are evaluated on the document index.

00k name dir
autho i (B-tree)

node-reference

indices

(B*-trees)
—_—

each sorted in docorder

Query Workload. The query workload depicted in Table 2 was run on four XMark
[21] documents of size 120 KB, 1.2 MB, 12 MB, and 112 MB (fast6r001, 0.01, 0.1,
1). To compare the raw performance of the given strategiesswitched off isolation
mechanisms in XTC, thus, no locking overhead occurs. Eaehnyquas compiled into
the pure NAL stacked translation and into its (optimized)ested equivalent in NAY™.

To address various XPath use cases, we tested the folloyas of queries: a purely
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Figure 4: Queries Q1, Q2, Q3, and Q4

structural query, a query relying on position, a contergeohquery, and a query with
aggregations. For the structural query, the NAL expressi@s not examine all dependent
paths in the path predicate. When the first matching path isdfptine evaluation of the
predicate is accomplished.

Results. Our tests were carried out on an Intel XEON computer (four@t& CPUs, 2
GB main memory, 300 GB external memory, Java Sun JDK 1.5.6)eaXDBMS server
machine and a PC (1.4 GHz Pentium IV CPU, 512 MB main memori{ 1[3.0) as the
client, connected via 100 MBIt ethernet to the server. Adtsewvere issued on a hot DB
buffer of 250 16KB-sized pages.

Ouir first observation is that the figures of all queries look\a@milar. On the small docu-
ment, both NAL and NAE™ show the same performance. However, as the documents and
the result sizes grow larger, the NALY optimized expressions are roughly one magnitude

Table 2: Query Workload
No  Query Characteristics

Q1 //closed_auction/annotation/description[parlist/listitem/text /keyword)] purely structural
Q2 //open.auctions/open_auction/bidder position() = last() Vv position() = 1] positional

Q3 //item[.//date=“20/07/2000"A ./payment = “Creditcard”| content based
Q4 //item[count(.//text//bold) > 5V count(.//mail) > 3] aggregational




faster (note, we used the log scale on the x-axis and thes)-aikne only exception is the
content-based query Q3. Furthermore, we notice that badtegies scale with respect to
the size of the input document.

The major explanation for the above effects is the relatietwbennode-at-a-time path
processing (D-Joins in NAL) arsgit-at-a-time path processing (structural joins in NAL).
For example in NAL, query Q4 is evaluated by accessingtaih elements and, for each
such element, evaluating the predicate. This implies aategeaccess to the element index
to scan the depending predicate paths. In contrast to #tigtsa-time requires only few
element index scans which are carried out in a sequentiliofas On small documents
where only a few intermediate tuples occur, the distincbhetween the two processing
styles does not carry much weight. However, when the elemédek has to be accessed
over and over again, e. g., due to alarge input in a selectexfigate, access costs explode.

The problem with query Q3 is that for NA™Y, Q3 also requires node-at-a-time processing
to evaluate the content predicate. This is due to the lackaafrdent index in the XTC
system. If we could access text nodes carrying the same rdoaseeasily as element
nodes with the same element name, then it would also be pessibvaluate the equality
predicate using a structural join.

We are aware that all presented queries could be evaluadtst,fd suitable measures on
the mapping from the logical to the physical algebra weretiak-or example, Q1 could
be answered more easily with the help of a structural indean éf only a sub-path of
the query could be evaluated by that index. For queries vatitipnal predicates, special
evaluation algorithms resembling structural joins haverbgroposed [24]. In query Q3,
a text index, as sketched above, would be very beneficial. réctstral join reordering
could take the selectivity of the text predicate into ac¢@md start the evaluation by the
computation of a structural join between ttiate elements and the value “07/05/2005".
However, to keep the two strategies comparable, we comtenteselves with the simple
mapping sketched above.

8 Conclusions

To the best of our knowledge, this is the first article dealiith the introduction of the
structural join operator into a tuple-based XPath algeWh our contribution, we hope
we can bridge the gap between the many promising algebragatgpon one side and the
equally many proposals on evaluation algorithms (physparators) for XML queries
on the other side. We are aware that this is only an initigd sbevards the integration of
these valuable concepts, because many problems reganéifagical-to-physical algebra
mapping are still left out, e. g., join reordering, costdmsptimization, etc.

With the structural join, itis now possible to free an opergtian from implicit (selections)
and explicit (D-Join) node-at-a-time processing stepsteNihis is accomplished at the
logical level only; a physical implementation may freelyolse to implement a structural
join in a node-at-a-time manner [14], nevertheless. Eveshfieased strategies may be
applied [15]. But the decision to do so depends on physicaleis and should not be
determined at the logical level.



Finally, even with the given simple mapping from a logicgetira expression to a physical
one (taking only the algorithm from [1] into account), wergzd an order of magnitude in
the performance of query evaluation. And more sophistitatappings are still to come,
from which we hope to gain further improvements.
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A NAL Overview

Table 3: Relevant NAL Operators taken from [3]

Operator Definition
Selection an(6) 1= { a(e)®op(t(e)) : pla(e)=true
ap(1(e)) . dse
Projection Ma(e) :=a(e)|a®MNa(t(e))
Map Xaey (€1) 1= a1 (€1)|tr(eg)\ 2y © [8: €2(Q(€1))] B Xare, (T(E1))
Cross Product e x & = (a(e))xe) & (1(e1) X&)
D-Join e (&) == a(e)xex(a(er)) ©1(er) (e)
Product t1xex = (t1oa(e)) © (t1x1(e2))
o ) a(@@(r(e) xpep) @ IXee:p(aler)ox)
Semi-Join €1 Xpe =
T(€1) Xp€ : ese
A e | F@OTEIZR) o Bxee:paE@)on
1(€1) >p€ : dse
Unnesting Ho(8) 1= (a(E) g7 x @(€).0) & o(T(6))
Unnest-Map Yae, (€1) = Hg(Xgey[a) (€1))
Binary Grouping el ga a2 = a(er)o[g: G(a(er)) @ (T(er)lga 0ay:1€2)

Unary Grouping
Aggregation
Sort

Singleton Scan

whereG(x) = f(0y, 0Ax(er))
Fgoat(€) :=Man (M5 A(MA(®) gaen )
Qai(e):=[a: f(e)]
Sorta(€) := S0rta(Tacq(e)a(T(€))) @ 1(€) & SOrta(Taz a(e).a(T(€)))
0:=[{}]




