
Integrating Structural Joins
into a Tuple-Based XPath Algebra

Christian Mathis
Databases and Information Systems
Department of Computer Science

University of Kaiserslautern, Germany
mathis@informatik.uni-kl.de

Abstract: Over the recent years, very little effort has been made to give XPath a proper
algebraic treatment. The only laudable exception is the Natix Algebra (NAL) which
defines the translation of XPath queries into algebraic expressions in a concise way,
thereby enabling algebraic optimizations. However, NAL does not capture various
promising core XML query evaluation algorithms like, for example, the Holistic Twig
Join. By integrating a logical structural join operator, we enable NAL to be compiled
into a physical algebra, containing exactly those missing physical operators. We will
provide several important query unnesting rules and demonstrate the effectivity of
our approach by an implementation in the XML Transaction Coordinator (XTC)—our
prototype of a native XML database system.

1 Introduction

There is one core task, common to almost all XML query languages: the matching of path
patterns against XML documents. The performance of an XML query language processor
intrinsically depends on its path evaluation engine, because path matching is a frequent
and expensive operation. Path matching occurs frequently,because even multiple paths
are often defined in a single query. And it is expensive, because path evaluation requires
physical access to the document, in contrast to almost all other constructs of an XML
query language, which are evaluated on the output generatedby path matchings. Despite
of the many algebra proposals regarding the standard XML query languageXQuery [12,
17, 20], its path-related sublanguage XPath has unfortunately not gained as much attention.
However, because of the above reasons, we believe that XPathshould be furnished with an
algebraic basement, too: It is the core XML data access mechanism in XQuery (and also
XSLT) and it is itself a complex language to evaluate, leaving a lot of space for algebraic
optimizations1. In this paper, we will extend the Natix Algebra (NAL) [3], which is—to
our knowledge—the only algebra, specifically dealing with the compilation of XPath.

So, what is missing in NAL? We observed that somewhat in parallel to the progress being
made in the XML algebra community, a plethora of core algorithms for XML query eval-

1As you may convince yourself throughout this article.

uation as well as indexing techniques have been published, that qualify asphysical2 XML
query operators. Among them, the most prominent representatives are the Structural Join
(STJ) [1, 7, 14, 15], the Holistic Twig Join (HTJ) [5, 10], andthe various path indexes
like, for example, the D(k) index [6]. While being introducedin the context oftree-based
algebras [12, 13], very little attempt has been made to integrate these concepts into atuple-
based XML algebra, such as NAL [17]. You may think, why bother, the combination of
a tree-based algebra with the holistic twig join works perfectly, so where is the need for
a further XML algebra? We believe that the data model of tuplealgebras is more general
than the one of tree algebras and, therefore, certain XML query language constructs can be
handled more suitably. For example, we do not know how a non-tree intermediate result,
like pairs of siblings, is represented without introducingan artificial parent node (which
has to be handled by subsequent operators). Furthermore, all major RDBMS vendors are
currently integrating XML query capabilities into their (tuple-based) relational query en-
gines. For them, the integration of an equally tuple-based XPath/XQuery algebra would
be a natural thing to do3. That is why we favor tuple algebras and think the integration of
the above mentioned physical operators is of great importance.

In this article, we will elaborate on the algebraic treatment of XPath. We will introduce a
logical structural join operator into NAL and provide essential rewriting rules to convert
an algebraic expression into a format facilitating the mapping onto the existing physical
XML operators STJ and HTJ. The extended algebra will be namedNALSTJ.

1.1 XML Algebras in the Literature

Although there is—to our knowledge—only one proposal explicitly dealing with the alge-
braic compilation and optimization of XPath queries [3], wegive an overview over existing
algebra approaches for XML queries in general and point out their XPath capabilities.

The TAX and TLC algebras [12, 13] evolve from an analogy between relations and trees.
In the relational algebra, each operator consumes and produces sets of tuples (relations),
whereas sequences of XML data trees are the basic unit of processing in TAX/TLC, i. e.,
TAX/TLC is a tree-based algebra. A core concept to all operators are pattern trees. They
can be used, for example, to define a query tree structure for aselection operator that
matches the pattern tree against a document, thereby producing a sequence of so-called
witness trees. Each witness tree in the result sequence corresponds to a match. The above
mentioned physical algorithms, STJ and HTJ, are core algorithms in the TAX/TLC physi-
cal algebra, because they do the job of pattern tree matching. TAX/TLC provides a “natu-
ral” way to process XML trees, because it is based on XML treesas intermediate results.
However, its expressive power is definitely too limited for the evaluation of XPath queries:
only the descendant and child axis are supported for the definition of a pattern tree.

The Natix Algebra (NAL) [17] takes a different approach, because it abstracts from trees
as intermediate result structures. NAL operates on sequences of (homogeneous) tuples,

2By “physical” we mean that these operators could be part of a physical XML algebra.
3See also [2] for academic research activities in this area.

start

χcn:c3

⋊⋉
−→

χc0:root(cn) ⋊⋉
−→

ϒc1:c0/a1::t1
⋊⋉
−→

σcp=cs

ϒc3:c2/a3::t3

T mpcs

χcp:position(p1)++

ϒc2:c1/a2::t2

ΠD

χcn:c3

σ

Aexists

⋊⋉
−→

χc0:cn ϒc4:c0/a4::t4

Figure 1: NAL Example

each tuple consisting of a set of attribute-to-value mappings. Similar to the notion of the
evaluation context defined in the W3C Formal Semantics [8], these mappings keep track
of the dynamic variable bindings during query processing. Reference [3] describes the
translation of an arbitrary XPath expression into NAL. Because our article heavily relies
on NAL, we will sufficiently introduce the algebra and its capabilities in the following.

The algebra presented in [20]—called RSF4 algebra in the following—employs a hybrid
approach. Its expressions contain both operator types: Tree-based operators are introduced
for intermediate XML tree handling and tuple-based operators to control the flow of tuple
streams generated by XQuery’sfor and let expressions. To ensure the compatibility be-
tween these two types, special conversion operators (MapToItem andMapFromItem5)
have to be embedded into an algebra expression. This technique avoids tuple flattening
which is often required in NAL. Because RSF expressions are generated from the XQuery
core representation defined in [8], the whole extent of XPathis covered. However, XPath-
specific optimizations, as introduced in this article, havenot been published in RSF so far.
However, their integration would be possible.

1.2 A Brief Example in NAL

In this section, we will give a brief example in the Natix algebra and point out its strengths
and weaknesses. Let us consider the expression/a1 :: t1/a2 :: t2 [position() = last()]/a3 ::
t3 [a4 :: t4] depicted in Figure 1. The evaluation starts with the singleton scan operator
(¤) which creates a singleton sequence containing an empty tuple. It triggers the map
operator (χ) to bind the root node of the queried tree to thec0 attribute of a new tuple.
This tuple, in turn, is consumed by the first D-join operator.The D-Join (⋊⋉

−→
—or 〈〉 in

4Named after the last names of the paper’s authors.
5MapToItem converts a sequence of tuples to a sequence of XML trees, whileMapFromItem works in the

opposite direction.

the textual representation) is similar to XQuery’sfor construct: for each tuplet in the left
input sequence, the dependent right expression is evaluated, bindingt ’s attributes to free
variables in the right expression (herec0). Then, the intermediate result calculated for the
dependent sub-expression, is joined witht. In our example, the dependent expression is
again a D-Join operator whose left sub-expression is an unnest map operator (ϒ). This
operator is a shortcut for a map operator (χ) followed by an unnest operator (µ). In NAL,
ϒ is mainly used for the calculation of path axes. Starting from c0 the path expression
a1 :: t1 is evaluated to a single sequence (usingχ) which is immediately unnested (byµ).
Together with the D-Join, this results in the above mentioned “flattening”.

A predicate is translated into a selection operator (σ), where the predicate’s sub-expression
is compiled intoσ ’s subscript. NAL operators may be arbitrarily nested in this fashion.
For each input tuple, the subscript is evaluated. For almostall predicates, certain mea-
sures have to be taken to ensure the evaluability ofσ ’s subscript: In case of a relative path
expression, the current context variablecn has to be provided explicitly. This is accom-
plished by the two map operatorsχcn:c3 andχc0:cn, the first one bindingc3 to the context
variable and the second one “transferring”cn into the variablec0 of the local context.
For positional predicates, the current context position and the context size have to be cal-
culated. This is the task of the special operatorsχcp:counter(p2)++ andT mpcs. The first
operator simply counts the tuples in its input and attaches anew attributecp, containing
the current position, to them.T mpcs materializes its input to calculate the total number of
tuples in the context, before it attaches attributecs, containing this number, to each tuple.
The aggregation operatorA evaluates aggregate functions, e. g.,min(), max(), etc. More
sophisticated predicates, for example existential comparisons, are possible, too. Finally,
the resulting context node is produced by a map operator, andduplicate elimination (ΠD)
is applied to comply with the XPath semantics.

NAL provides a concise algebraic basement for XPath (1.0 [23]) evaluation. The XPath-
to-NAL translation process is described in [3] in great detail. Additionally, the authors
provided some optimization techniques like stacked translation for outer paths, duplicate-
elimination push down, and memoization6. In [4], certain algebraic equivalences were
shown, which enable unnesting of queries with semi-correlated XPath predicates7.

1.3 Problem Statement

In spite of the progress being made in NAL, we believe that there is still room for optimiza-
tion: Our first observation is that the evaluation of a NAL expression generates almost the
same data flow as its equivalent normalized in W3C’s XQuery Core Language. As an ex-
ample, consider the evaluation of the select operatorσ in Figure 1: It is evaluated for each
context node provided by the unnest map operatorϒc3:c2/a3::t3. This impliesnode-at-a-time
calculation of the path step, embedded in the selection subscript. However, many publica-
tions [1, 5, 7] have pointed out thatset-at-a-time processing of path steps provides better

6These optimizations have not been executed on our example, which is presented in the canonical translation.
7Queries with semi-correlated predicates have the formp = e1[e2θe3], where eithere2 or e3 is a path expres-

sion depending onp’s outer—or global—context

performance in most cases. Another example regarding the generated data flow arises
from the order in which the path processing steps are evaluated. Like in XQuery Core,
NAL evaluates path steps from left to right. However, as [22]has shown, a reordering of
path step evaluations can substantially improve the query processing performance.

As a second point, we observe that the logical-to-physical operator mapping presented in
[3] does not take important classes of physical operators into account, like the structural
join and the holistic twig join8. Essentially, these operators provide the above mentioned
capability to process path steps in a set-at-a-time manner.There is reasonable doubt that,
in the face of complex queries, the algebraic representation can facilitate a mapping onto a
physical algebra, containing exactly these operators. We draw this doubt from the fact that
nested path expressions are “hidden” in subscripts of selection operators. Furthermore,
logically related subexpressions, e. g., the compiled parts of the path steps likea1 :: t1, are
“scattered” across the operator tree (shown by the encircled areas in Figure 1). Under the
assumption that the above query contains only steps referring to the child and descendant
axis, a reasonable evaluation approach—at the physical level—would be the application
of a single HTJ operator, followed by a subsequent selection. However,from the given
representation, it is unclear how the mapping onto this HTJ operator can be accomplished.

1.4 Our Contribution

Our overall goal is to integrate the above mentionend important classes of physical eval-
uation operators like structural join, holistic twig join,and path index access into NAL’s
physical algebra. However, as a first step we have to “prepare” NAL at the logical level in
a way facilitating this integration. In this article we will

• introduce alogical structural join operator to the NAL algebra,

• provide rules to convert a NAL expression from its canonicalrepresentation into its
NALSTJ equivalent containing structural joins,

• develop rewriting rules for predicate unnesting, and

• finally show the impact of our approach on the query processing performance in the
XML Transaction Coordinator (XTC)—our prototype of a nativeXML DBMS.

By introducing structural joins, we can abstract from the explicit and implicit node-at-a-
time path processing steps (e. g., the D-Join, and the selection due to a path predicate)
inherent to the Natix algebra. This abstraction allows us tochoose the adequate physical
operators for the implementation of a logical plan. From thelarge set of possibilities for
structural join implementation (i. e., stack based [1], hash based [15], index based [7],
locking aware [14], etc.), we will gain more flexibility in the logical-to-physical mapping,
and therefore extend the search space for cost-based query optimization. Surely, there will

8Although we recognize the hint towards that direction givenin [18], we did not find any approach that
properly introduces structural joins in NAL.

be situations node-at-a-time leads to a better performancethan set-at-a-time. However,
we think that this decision depends on physical properties and should, therefore, not be
decided on a logical level.

Furthermore, our predicate unnesting rules will facilitate the mapping onto more power-
ful physical operators like the holistic twig join (which can also evaluateand, or, andnot
predicates) and path-index lookups, because they expose path processing steps hidden in
selection subscripts. Additionally, unnesting enables structural join reordering to prise off
the inflexible left-to-right path evaluation. We expect ouroperator plans to be scalable,
though consisting of a large number of joins, because, in contrast to the join implementa-
tions in the relational algebra, structural joins are evaluatable in linear time [1].

In the following, we will not consider questions arising during plan generation, i. e., during
the logical-to-physical operator mapping. Specifically, we will neither show, how a holistic
twig join can be employed to replace a set of structural join operators, nor how the order
of structural joins can be selected [22]. Here, we only want to facilitate the treatment of
these important questions by introducing the structural join operator.

The remainder of this article is organized as follows: Sect.2 provides an overview over
the Natix algebra, which we will extend in Sect. 3. The rule-based rewriting of NAL into
its extended version is described in Sect. 4, before Sect. 5 introduces the core rule set for
query unnesting. Sect. 6 provides several rules for structural join push down. We conclude
this article with a quantitative analysis in Sect. 7.

2 NAL in a Nutshell

For your convenience, we repeat the basic definitions from [3]: NAL operates on se-
quences of homogeneous sets of attribute-value mappings (tuples)t, eacht having the
same set of attributes (schema) denotedA(t). Attribute values may be sequences, thus
NAL allows arbitrary nesting. The empty sequence is denotedasε or 〈〉. For tuple modi-
fication, NAL provides the primitives[·] (tuple construction),◦ (tuple concatenation), and
|A (attribute projection). The notationt.a describes the access to tuplet ’s attributea. A(e)
andF(e) denote the schema and the set of free variables of an algebra expressione. Ap-
plied to sequences, the functionse1⊕ e2, α(e), andτ(e) return the concatenation (⊕), the
first tuple of the sequence (α), and the remainder of the sequence (τ). If e is a sequence of
non-tuple values,e[a] = [a : α(e)]⊕ τ(e)[a] returns a sequence of tuples[a : ei], whereei

is a tuple ofe. An overview over all relevant NAL operators can be found in the appendix.
To support the required ordering in XML, all unary operators—exceptSort—keep the or-
der of their input sequences intact. The binary operators cross product (×) and D-Join (〈〉)
have nested-loop semantics. The projection operator (Π) has two variants for duplicate
elimination (ΠD) and renaming (Πa′:a).

3 Extending NAL to NAL STJ

For our NAL extension NALSTJ, we introduce some new operator definitions and modify
a few existing ones. We want to keep NALSTJ backward compatible, i. e., an expression
in NAL shall also be an expression in NALSTJ. The new or modified operators are: the
structural selection and the structural join, node sequence access, nesting, reverse, group
reverse, group sort, and finally sequence-based merge (·∪) and intersect (·∩).

Structural Selection. The structural selection, i. e., the selection of a tuple based on
some structural predicate, is embedded by extending the NALselection operator from
Table 3:

σp(s) :=

{

α(s)⊕σp(τ(s)) : Ψp(α(s)) = true
σp(τ(s)) : else

where the functionΨp(t) evaluates predicatep on tuplet. In case,p = aiθa j is a structural
predicate,Ψp has the following semantics: Depending onθ , the predicate evaluates the

binary structural relation↑ (is parent of),↓ (is child of),⇑ (is ancestor of), Z⇒ (is ancestor or
self of),⇓ (is descendant of),⇐

\

(is descendant or self of),← (is preceding sibling of)→ (is
following sibling of),⇐ (is preceding of),⇒ (is following of), @ (is attribute of), andª
(is self of). A structural predicate is evaluated toΨaiθa j(t) := t.aiθ t.a j. Note, if we want
to express that “b is child of a” we writeb ↓ a and nota ↓ b. The order is important when
we define the structural join.

For its evaluation, an XML node identification mechanism (labeling scheme) is beneficial
that can decide the relationship in question without a physical node access. All native
XML database systems nowadays embody such a mechanism.

In case of all other shapes of the predicatep, we refer to the original definition of the
selection operator in [3].

Structural Join. With the help of the cartesian product (×) and the selection operator
(σp), we define the join operator in the classic way:

s1 ⋊⋉p s2 := σp(s1× s2)

This operator becomes a structural join operator when the join predicate checks structural
relationships over attributes of the participating tuples. However, some care has to be taken
for certain axes that may produce duplicates. Additionally, the question of output order
arises9. For example, when using⋊⋉p to evaluate the ancestor axis, the output may not
reflect the document order (as required by XPath). Therefore, when using the structural
join operator, we will keep these aspects in mind. The structural semi-join (⋉p), the
structural anti-join (⊲p), and the structural left-outer join (1p) are defined accordingly.

Why do we claim this operator to be alogical operator? To answer this question, we first
have to state that the distinction between logical and physical operators in XML algebras is

9Note, that the× operator on sequences, as defined in [3], returns an ordered result.

not as clear as in the relational world. Becauseorder matters in XML, logical operators are
defined in a way, respecting the requirement of order (like×). But then, there is often only
one chance to implement a logical operator, because other alternatives do not deliver the
correct output order. Therefore, there is often no distinction between a logical operator and
its physical implementation. However, for the structural join operator defined above, there
are a lot of very efficient physical algorithms present, e. g., stack based [1], hash based
[15], index based [6, 7], locking aware [14], etc. We even think that the combination of
a D-Join with an unnest map operator is a physical implementation of the strutural join
defined above. Despite the intrinsic nested loop characteristics, we think our new operator
qualifies as a logical one.

Node-Sequence Access.For the access to sequences of nodes having, for example, the
same element name, we define the auxiliary functionϕp. For simplicity, its semantics is
described in prose:ϕp(c) is a function depending on the current evaluation context10 c.
It returns all nodes of a document in document order, complying with the predicate. For
its evaluation, the function reads the current context nodecn, defined in the evaluation
context, and calculatescn’s document root node. Then it scans the document in document
order, thereby evaluating predicatep against each visited XML node. All qualifying nodes
are returned in one sequence. In the following,ϕp will be used in combination with theϒ
operator. For example, the expressione = ϒc:ϕauthor(¤) returns a sequence withA(e) = c
and allauthor elements in the current document as values.

Nest. In the following, we will not need the complex grouping capabilities of the general
unary/binary grouping operator provided in NAL [17]. A simple nesting operator will do.
Nesting is the complementary operator to unnesting. We assume the grouping operator in
[17] to be defined on sets (or, more specifically, on vectors) of attributes A. Then, nesting
is a shorthand forνg:A(e) = Γg;=A;id(e). If we want to nest by all attributes but the ones
given in the vectorA, we useνg:A(e) = Γg;=A(e)\A;id(e).

Reverse, Group Reverse, and Group Sort. The reverse operatorR simply reverses
the order of the tuples in the input sequence. If given an attribute name as subscript,Rg

assumes attributeg to be sequence valued. Then, it reverses the order ofg’s sequence. The
group reverse operatorRG

A first nests its input by the attribute listA, reverses the order in
each nesting group, and finally unnests the sequence again:

R
G
A (e1) = µg ◦Rg ◦νg:A(e1)

The same can be defined for the sort operator. Similarly toSortcn, the operatorSg sorts
the sequence valuedg in ascending (document) order on the context node (cn). Then
group-based sorting can be defined as:

S
G
A (e1) = µg ◦Sg ◦νg:A(e1)

10Note, in the following, we omit context-parameterc for simplicity

Sequence Merge and Intersect. The operators·∪ and ·∩ are defined as the sequence-
based, order preserving, and duplicate eliminating union and intersection on sequences of
tuples having the same schema.

4 Introducing the Structural Join into a NAL Expression

In this section, we present a set of rewriting rules which substitute D-Join operators with
structural joins. Each rule contains an operator pattern atthe left-hand side. The corre-
sponding right-hand side specifies how the operator tree hasto be restructured. Note, a
direct compilation from XPath to NALSTJ is also possible. However, in this article we
chose a given NAL expression as the starting point, because we want to ensure the equal-
ity of the resulting NALSTJ expression. Due to space restrictions, we cannot provide any
reasoning about the correctness of the following rules. Thenecessary proofs can be found
in the extended version of this paper [16]. After each rule application, the resulting oper-
ator tree can still be evaluated, because NALSTJ is an extension of NAL. The introduction
of structural joins is guided by the general rule:

e j

〈

Φ◦ϒci:c j/ai::ti(¤)
〉

= Φ(e j ⋊⋉ciθai c j ϒci:ϕti
(¤)) (1)

At the left-hand side, the outer expressione j generates a sequence of tuples containing
an attributec j. For each tuple, this attribute is the starting point for thecalculation of the
axis step in the dependent unnest map expression.Φ is a function defined by a sequence
of already translated algebra operators (i. e.,Φ does not contain any D-Joins). Note,Φ
may not only contain unary operators (as our notation suggests), but also binary ones (like
⋊⋉). However, because we assumeΦ to be already translated, the rewriting depends on the
single inner expressionϒci:c j/ai::ti .

At the right hand side, expressione j is shifted intoΦ forming a structural join using the
specified axis with a node sequence accessϒci:ϕti

. This has the effect thatΦ consumes a
slightly different input sequence, because it now containsalso attributes frome j. While,
at the left-hand side, the evaluation contexts are neatly separated, at the right-hand side,
they are intermixed. Therefore, this rewriting is only correct for certainΦ. We enumerate
the variations of this rule for thoseΦ, for which the above rule would lead to an incorrect
rewriting. In the following cases,Φ is split into three operators, of which two (Φ1 andΦ2)
are again functions containing sub-expressions and the third is the operator of interest.

• Φ = Φ1◦T mpcs ◦Φ2. This pattern leads to the following right-hand side, wherethe
T mpcs

c j
operator has the same semantics as in the stacked translation (see [3]):

Φ1◦T mpcs
c j
◦Φ2(e j ⋊⋉ciθai c j ϒci:ϕti

(¤)) (2)

Due to the rewriting, the different evaluation contexts arenot separated anymore.
The operator has to detect groups of attributes belonging tothe same context. In the
rule, expressione j binds attributec j, thus providing the outer context in which the

structural join is evaluated.T mpcs
c j

detects groups based onc j, i. e., whenever this
attribute changes its value, the start of a new group is indicated. In the following,
we will call operators that have been modified in this waygroup aware.

• Φ = Φ1 ◦ χcp:counter(p)++ ◦Φ2. For this pattern, we need to make the map opera-
tor group aware. Therefore, the expressionχcp:counter(pi)++ has stacked-translation
semantics (as defined in [3]):

Φ1◦χcp:counter(pi)++ ◦Φ2(e j ⋊⋉ciθai c j ϒci:ϕti
(¤)) (3)

Because the order matters for that pattern, we have to be careful to match XPath’s
semantics, which requires reverse document order, if a positional predicate is evalu-
ated on a reverse axis. Therefore, ifai is a reverse axis, we rewrite to:

Φ1◦R
G
c j
◦χcp:counter(pi)++ ◦RG

c j
◦Φ2(e j ⋊⋉ciθai c j ϒci:ϕti

(¤)) (4)

As with theT mpcs operator, expressione j provides the outer context, in which the
structural join is evaluated. Therefore, the group reverseoperator (RG

c j
) groups byc j.

Likewise, the group-awarecounter() function resets its counter, whenc j changes.
Note, we will abbreviate that function byct() in the following.

• Φ = Φ1 ◦Ax: f ◦Φ2. If the pattern contains an aggregate function, we have to apply
nesting first and evaluate the aggregate function on the nested attribute. Afterwards,
the nested attribute can be projected out:

Φ1◦Πg ◦Ax: f ($g) ◦νg:c j ◦Φ2(e j ⋊⋉ciθai c j ϒci:ϕti
(¤)) (5)

• Φ = Φ1◦Sortcn ◦Φ2. Here, a similar situation as in the previous rule can be found.
We sort the nested group and unnest it again:

Φ1◦µg ◦S
G
g ◦νg:c j ◦Φ2(e j ⋊⋉ciθai c j ϒci:ϕti

(¤)) (6)

For all other shapes ofΦ, especially whenΦ is the identity function, rule (1) can be
applied. Also, when an operator has already been madegroup aware, as for example the
T mpcs operator, (1) is used. If anyΦ contains multiple matchings of the given pattern, they
are applied in parallel. This typically happens for rules (2) and (3) in case of a positional
predicate, i. e.,[position() = last()].

We conclude this section with the rewriting of a simplified version of the previous example:
/child :: a/child :: b [position() = last()]/child :: c (Figure 2). In the first step,e1 and the
depending sub-expression can be identified as depicted in Figure 2a. WithΦ being the
identity function, rule (1) can be applied. In Figure 2b,Φ contains a structural join, a
selection, aT mpcs, and a map operator. Here, rules (2) and (3) are used “simultaneously”.
For Figure 2c, rule (1) applies again. Note, the position-handling operators have already
been made group aware in the previous step.

a) b)

c)d)

.

e1

e1

e1

sub-expression

sub-expression

sub-expression

Φ

Φ⋊⋉
−→

χco :root(cn) ⋊⋉
−→

ϒc1:c0/a ⋊⋉
−→

σcp=cs ϒc3:c2/c

T mpcs

χcp:position(p1)++

ϒc2:c1/b

⋊⋉
−→

⋊⋉
−→

χc0:cn

χc0:cn

χc0:cn

⋊⋉
−→

ϒc1:c0/a

ϒc1:c0/a

⋊⋉c3↓c2

⋊⋉c3↓c2

⋊⋉c3↓c2

σcp=cs

σcp=cs

σcp=cs

ϒc3:ϕc

ϒc3:ϕc

ϒc3:ϕc

T mpcs

χcp:counter(p1)++

χcp:counter(p1)++

χcp:counter(p1)++

ϒc2:c1/b

⋊⋉c2↓c1

⋊⋉c2↓c1

ϒc2:ϕb

ϒc2:ϕb

T mpcs
c1

T mpcs
c1

⋊⋉c1↓c0

ϒc1:ϕa

Figure 2: Translation Example

5 Query Unnesting

With the introduction of the structural join into a NAL expression, we abandoned the
explicit node-at-a-time path processing inherent to the D-Join operator. But still, the im-
plicit node-at-a-time processing resulting from the evaluation of path steps in selections is
present. In this section, we will provide a set of unnesting rules to “expose” these hidden
path step evaluations. We do not claim to have found all interesting rewritings possible,
but we think, we cover the most common cases.

In this section, we will introduce unnesting rules for existential, conjunctive, disjunctive,
and negated predicates. Furthermore, we will consider predicates based on aggregate func-
tions. In all nested expressions, we assume relative path expressions to be present11. Our
query unnesting strategies are not covered by the rules in [4, 17]. Both contributions do
not base their rewritings on the structural join operator.

The General Rules. By an examination of a typical operator tree, you can see thata
pair of map operators (χcn:ci , χc0:cn) often “glues” an outer expression to the subscript of a

11Selections without nested path expressions are consideredto be constant or positional.

selection. Due to the XPath-to-NAL compilation, this is always the case when a predicate
contains a path expression (for an example, see Figure 1). The inner map is the starting
point for a cascade of operators, the first one of which is a structural join (in NALSTJ). Our
goal is to “extract” the inner path expression and join it with the outer expression. In some
cases, we can abandon the select operator completely. In other cases, we have to adjust the
subscript to the new situation, using variable references to access necessary information,
now produced in the outer expression. In the simple case, when the XPath predicate (and
accordingly the selection subscript) contains only one relative path expression, we use the
following generic unnesting rule:

σΦ(π(χc0:cn(¤)))(χcn:c0(e0)) = Πg ◦σΦ($g) ◦νg:A(π ′)(e0 ⋊⋉c1θc0 π ′) (7)

In the left-hand side of this rule, you can find the above mentioned pair of map op-
erators: The outer expressione0 binds attributec0, which is then mapped ontocn; in
the inner expression,e0 is reestablished from the context attributecn. Variableπ is a
NALSTJ path expression depending on the context node given by the outer expression,
i. e.,π = ((χc0:cn(¤) ⋊⋉c1θ1c0 e1)... ⋊⋉cnθnc0 en). Φ is—as in the previous rewriting rules—a
sequence of NALSTJ operators, but this time, it may not be the identity function. At the
right-hand side we find a modifiedπ ′. The inner path expressionπ is extracted and joined
with the outere0, using attributec1 of π in the join condition. Note, there is no need
for map operators anymore, i. e.,π ′ does not depend onχc0:cn(¤). This means thatπ ′

now has the formπ ′ = ((e1 ⋊⋉c2θ1c1 e2)... ⋊⋉cnθnc0 en). We denote this circumstance by the
omission of the argument ofπ ′. Furthermore, in the following, we will simply abbrevi-
ateπ(χc0:cn(¤))) occurring in a selection subscript byπχ . To handle different evaluation
contexts, a nest operator is inserted, which groups by all attributes, except those ofπ ′.
The selection is now executed on the groupedπ ′, referencing the group by the variable
$g. After the selection, no information about the pathπ ′ is required anymore. Therefore,
it is projected out. While this rule is directly applicable, there are further refinements for
special cases that provide for better performance results.

In contrast to all previous rewriting rules,Φ may not be unary anymore, because in one
predicate, several path expressions can be evaluated “simultaneously”. This leads to a
generic unnesting rule for the complex case, when multiple path expressions are located
in a single attribute:

σΦ(πχ
1 ,...,πχ

n)(χcn:c0(e0)) (8)

= ΠA(e0) ◦σΦ($g1,...,$gn) ◦νg1:A(π ′
1)
◦ · · · ◦νgn:A(π ′

n)((e01c1θc0 π ′
1) · · ·1cnθc0 (π ′

n))

Here,Φ is n-ary, depending on a set of path expressions. Because all path expressions are
evaluated in the same local context, the depicted nesting isactually possible: no nesting of
already nested sequences may occur. The only critical issuearising is the calculation of a
nesting, where attributes compared for equality may be sequence valued. This is, however,
not a problem of the logical algebra, but has to be solved at the physical level. One strategy,
for example, would be to abandon the nest operators and modify the subsequent operators
to make themgroup aware12. Another possible solution is to integrate the generation of
nested groups into physical structural join operators, as sketched in [13].

12This technique has already been applied in the stacked translation, where theT mpcs operator is converted to
a group-awareT mpcs

ci
operator

By analyzing the most common cases in NALSTJ, we identify Φ and provide specific
unnesting redefinitions of the previous rules in the following.

Rewriting Conjunctive Predicates. Whenever possible, we normalize the subscripts
of selections into a disjunctive form, i. e.,e1 ∧ (e2 ∨ e3) = (e1 ∧ e2)∨ (e1 ∧ e3). We are
aware that, by multiplyinge1, common sub-expressions are introduced. Again, this is not
a problem for the logical algebra, but the physical plan generator has to deal with it. Every
time we have to introduce common sub-expressions, we give the plan generator a hint to
signal their correspondence.

The first rewriting handles conjunctive expressions. For them, we rewrite the query using
the well-known equivalence:

σe2∧e3(e1) = σe2 ◦σe3(e1) = σe3 ◦σe2(e1) (9)

Rewriting Disjunctive Predicates. Disjunctive predicates may be handled similarly to
conjunctive ones using the sequence merge operator:

σe2∨e3(e1) = σe2(e1) ·∪σe3(e1) = σe3(e1) ·∪σe2(e1) (10)

Again, this rewriting requires special care from the plan generator to handle the multiplied
occurrences of expressione1. When sub-expressions of the disjunction are aggregated
using theexists() function, they can be extracted by using left-outer joins:

σAx:exists(πχ)∨e2
(χcn:c0(e0)) = ΠD

A(e0)
◦σ(A(π ′) 6=ε)∨e2

(e01c1θc0 π ′) (11)

The notationA(π ′) 6= ε essentially has the meaning∀a∈A(π ′) : a 6= ε, i. e.,π ′ has provided
a join partner in the left outer join. In all other cases, whenmultiple path expressions in a
general disjunction may occur, the query can be rewritten as:

σΦ1(πχ
1)∨Φ2(π

χ
2)(χcn:c0(e0)) (12)

= ΠA(e0) ◦σ(Φ1($g1)∨Φ2($g2)) ◦νg1:A(π ′
1)
◦νg2:A(π ′

2)
((e01c1θc0 π ′

1)1c2θc0 π ′
2)

In the following, every time a path expression participatesin a disjunction, we use a left
outer join operator instead of a full join. This guarantees,that we do not accidentally
“throw away” intermediate results. For example, in the expressiona[b∨ c] we may not
use an ordinary join betweena andb, because then we would miss alla elements which
should be part of the final result due toc.

Unnesting Existential Predicates. Sometimes plain path predicates like ina[b/c] occur.
In NALSTJ, those expressions are compiled to an aggregation in combination with anexists
in the selection subscript. They can be unnested with the following rule, introducing a
semi-join operator:

σAx:exists(πχ)(χcn:c0(e0)) = e0 ⋉c1θc0 π ′ (13)

Note, on the right-hand side,π ′ is evaluated first, before the structural join is computed.
Essentially this means, thatπ ′ is not evaluated in the context ofe1 anymore. This could be
problematic, ifπ ′ returns a large number of intermediate tuples. Another solution is viable
as well, where path expressionπ is exposed:

σAx:exists(πχ)(χcn:c0(e0)) = ΠD
A(e0)

((e0 ⋊⋉c1θc0 e1) · · · ⋊⋉cnθcn−1 en) (14)

In the case of a negated path predicate, e. g.,a[not(b/c)], we use an anti-join operator:

σAx:¬exists(πχ)(χcn:c0(e0)) = e0 ⊲c1θc0 π ′ (15)

Unnesting Path Comparison Expressions. In the NAL compilation process, predicates
of the form[e1θe2] are translated into anAx:exists predicate. Therefore, with the first rule
above, we can also unnest predicates that contain a comparison of a path with a con-
stant (simple path comparison expression). For example, the querya[b > 3] can be trans-
lated and unnested into the NALSTJ expression13 ΠD(χcn:c1((χc0:cn ⋊⋉c1↓c0 ϒc1:ϕa) ⋉c2↓c1

(σ>3(ϒc2:ϕb))). However, becauseΦ is unary, this rewriting rule does not provide any
help in case ofcomplex path comparison expressions likea[b/text() = c/text()]. In such
a case, the following unnesting rule can be applied.

σAx:exists◦Φθ (πχ
1 ,πχ

2))
(χcn:c0(e0)) = ΠD

A(e0)
◦σ($c1θ$c2)((e0 ⋊⋉c1θc0 π ′

1) ⋊⋉c2θc0 π ′
2) (16)

In this ruleΦθ is the compilation of the existential comparison as introduced in [3]. For
exampleπ1 = π2 would be compiled intoAexistsπ1 ⋉π2. Rule (13) is promising, because it
may be implemented very efficiently. At the right-hand side,the selection operator simply
compares two attributes. This comparison has non-existential semantics, in contrast the
existential semantics on the left-hand side. The generatedtuple stream is in document
order. Therefore, the duplicate elimination operator is simply a buffered filter with a buffer
size of one tuple. This is also true for the duplicate elimination in rule (14).

Unnesting Predicates with Aggregate Functions. If the nested sub-expression contains
an aggregate function, e. g., as ina[count(b) = 3], we can unnest this query using a group-
by in combination with the aggregate function:

σΦ(Ax: f (πχ))
(χcn:c0(e0)) = ΠA(e0) ◦σΦ($x) ◦Γx;=A(e0); f (e0 ⋊⋉c1θc0 π ′) (17)

An Unnesting Example. We will conclude the discussion of query unnesting with an
example. To save space, this example is presented using formulas. Consider the XPath
expression/desc :: a[child :: c = “foo” ∨ count(desc :: b) > 3]. The nested NALSTJ query
is:

σ(s1)∨(s2) ◦χcn:c1(e0) where e0 = χc0:root(cn)(¤) ⋊⋉c1⇓c0 ϒc1:ϕa(¤)

s1 = Ax:exists((χc0:cn(¤) ⋊⋉c2↓c0 ϒc2:ϕc(¤))⋉ “foo”)

s2 = Ax:count(χc0:cn(¤) ⋊⋉c3⇓c0 ϒc3:ϕb(¤)) > 3

13Because 3 is a constant, we do not compile it using an aggregation, e. g.,Amaxcn(3), as suggested in [3].

In the first step, we use Rule (11) to extract theexists() part of the disjunction:

Πc0,c1 ◦σ(c2 6=ε)∨(s2) ◦χcn:c1(e1) where e1 = (e0)1c2↓c1 (ϒc2:ϕc(¤)⋉ “foo”)

s2 = Ax:count()(χc0:cn(¤) ⋊⋉c3⇓c0 ϒc3:ϕb(¤)) > 3

In the second step, we use Rule (17) to extract the aggregate function from the disjunction:

Πc0,c1 ◦σc2 6=ε∨($x>3) ◦Γx;={c0,c1,c2};count(e2) where e2 = (e1)1c3⇓c0 ϒc3:ϕb(¤)

Finally, a slight optimization regarding expressione1 can be pointed out:ϒc2:ϕc ⋉ “foo” =
ϒc2:ϕc∧“foo” , i. e., the check for “foo” can simply be integrated into the node sequence
access. In a physical algebra, this type of access could be supported by an index.

6 Pushing Down Structural Joins

The mapping of a logical algebra expression to its corresponding physical one is out of the
scope of this paper. However, when thinking about this mapping, two interesting questions
arise: How can alogical expression be “prepared” to facilitate the logical-to-physical al-
gebra mapping and how can the problem of structural join order selection be tackled? We
think the answer to these questions lies in a special operator tree format, where the tuple-
generating structural joins are located at the bottom of thetree, and filtering/selection
operators occur as inner nodes. In this representation, logically related path processing
operators are situated close to each other. Because no selections or other operators inter-
fere, it is easy to determine the different parts to be mappedonto a HTJ join operator, a
path index access, or onto the STJ operator. This operator tree format can be generated
by lifting non-structural join operators out of either sideof a structural join operator. For
example, in Figure 2d, from the left side of the final structural join, the selection,T mp,
andχ operators could be lifted, pushing down the structural jointo the bottom of the tree.
In Table 1 we provide rewriting rules to accomplish such restructurings. We are aware
that these rules have an immediate impact on the costs of the query, because the evaluation

Table 1: Join Push-Down Equivalences

Operator Rule Condition

σp (Selection) σp(e1) ⋊⋉c2θc1 e2 = σp(e1 ⋊⋉c2θc1 e2) F(p)∩A(e2) = /0

ΠA (Projection) ΠA(e1) ⋊⋉c2θc1 e2 = ΠA∪A(e2)(e1 ⋊⋉c2θc1 e2) c1 ∈ A

ΠD (Dup. Elim.) ΠD(e1) ⋊⋉c2θc1 e2 = ΠD(e1 ⋊⋉c2θc1 e2) e2 duplicate free

ΠA (Projection) ΠA(e1) ⋊⋉c2θc1 e2 = ΠA(e1 ⋊⋉c2θc1 e2) A∩A(e2) = /0∧ c1 6∈ A

Γx;=A; f (Group) Γx;=A; f (e1) ⋊⋉c2θc1 e2 = Γx;=A∪A(e2); f (e1 ⋊⋉c2θc1 e2) c1 ∈ A

νg:A (Nest) νg:A(e1) ⋊⋉c2θc1 e2 = νg:A∪A(e2)(e1 ⋊⋉c2θc1 e2) c1 ∈ A

µg (Unnest) µg(e1) ⋊⋉c2θc1 e2 = µg(e1 ⋊⋉c2θc1 e2) c1 6∈ A(g)

of selections—minimizing the intermediate result size—is deferred. However, using the
same set of rules, these selections may be pushed back into their original places, after the
logical-to-physical mapping has been performed.

Because these equivalences may be read from either side, they also provide a way to
push down non-structural operators. Again, we do not claim to have found all interesting
rewritings possible here. In addition to the rules depictedin Table 1, we have found rules
to push down a join over the special operatorsT mpcs

c j
and χcp:ct(p)++. However, their

discussion is beyond the scope of this paper.

7 Quantitative Results

To substantiate our findings, we compared the different evaluation strategies by a one-to-
one comparison on a single-user system. We implemented the operators of the NALSTJ

algebra in the XTC system. Because we wanted to keep the comparison between a pure
NAL expression and the NALSTJ variants of a query simple and, because we do not elabo-
rate on a sophisticated logical-to-physical algebra mapping in this paper, we just used the
algorithm presented in [1] for the implementation of the structural join.

System Testbed. XTC is one of the few native database systems, providing fine-grained
transaction isolation over shared XML documents. In XTC, each XML node has a unique
stable path labeling identifier (SPLID [11]). We refined the ORDPATH [19] concept for
the implementation of SPLIDs. For document storage, each node is mapped onto a record,
containing the SPLID and the encoded node data. All records of a document are stored in
a B*-Tree, comprising thedocument container.

Furthermore, theelement index provides for fast

(B*−trees)

(B−tree)
book

author title

1.3.5 1.3 1.3.7

each sorted in docorder

name dir

node-reference
indices

Figure 3: Element Index

access to elements with the same element name
(see Figure 3). It is a two-way index, consist-
ing of a name directory (B-Tree) and a set of
node-reference indexes. Given a context node
cn, the element index can be used to calculate
the sequence of all elements having a specific
name on a specific axis. Such queries are simply
translated to range queries over a particular node-reference index. This is exactly, how
we implemented the evaluation of theϒ operator. XPath predicates subject to the value
content of XML nodes are evaluated on the document index.

Query Workload. The query workload depicted in Table 2 was run on four XMark
[21] documents of size 120 KB, 1.2 MB, 12 MB, and 112 MB (factors 0.001, 0.01, 0.1,
1). To compare the raw performance of the given strategies, we switched off isolation
mechanisms in XTC, thus, no locking overhead occurs. Each query was compiled into
the pure NAL stacked translation and into its (optimized) unnested equivalent in NALSTJ.
To address various XPath use cases, we tested the following types of queries: a purely

Figure 4: Queries Q1, Q2, Q3, and Q4

structural query, a query relying on position, a content-based query, and a query with
aggregations. For the structural query, the NAL expressiondoes not examine all dependent
paths in the path predicate. When the first matching path is found, the evaluation of the
predicate is accomplished.

Results. Our tests were carried out on an Intel XEON computer (four 1.5GHz CPUs, 2
GB main memory, 300 GB external memory, Java Sun JDK 1.5.0) asthe XDBMS server
machine and a PC (1.4 GHz Pentium IV CPU, 512 MB main memory, JDK 1.5.0) as the
client, connected via 100 MBit ethernet to the server. All tests were issued on a hot DB
buffer of 250 16KB-sized pages.

Our first observation is that the figures of all queries look very similar. On the small docu-
ment, both NAL and NALSTJshow the same performance. However, as the documents and
the result sizes grow larger, the NALSTJ optimized expressions are roughly one magnitude

Table 2: Query Workload

No Query Characteristics

Q1 //closed auction/annotation/description[parlist/listitem/text/keyword] purely structural

Q2 //open auctions/open auction/bidder[position() = last()∨ position() = 1] positional

Q3 //item[.//date = “20/07/2000”∧ ./payment = “Creditcard”] content based

Q4 //item[count(.//text//bold) > 5∨ count(.//mail) > 3] aggregational

faster (note, we used the log scale on the x-axis and the y-axis). The only exception is the
content-based query Q3. Furthermore, we notice that both strategies scale with respect to
the size of the input document.

The major explanation for the above effects is the relation betweennode-at-a-time path
processing (D-Joins in NAL) andset-at-a-time path processing (structural joins in NALSTJ).
For example in NAL, query Q4 is evaluated by accessing allitem elements and, for each
such element, evaluating the predicate. This implies a repeated access to the element index
to scan the depending predicate paths. In contrast to this, set-at-a-time requires only few
element index scans which are carried out in a sequential fashion. On small documents
where only a few intermediate tuples occur, the distinctionbetween the two processing
styles does not carry much weight. However, when the elementindex has to be accessed
over and over again, e. g., due to a large input in a selection predicate, access costs explode.

The problem with query Q3 is that for NALSTJ, Q3 also requires node-at-a-time processing
to evaluate the content predicate. This is due to the lack of acontent index in the XTC
system. If we could access text nodes carrying the same content as easily as element
nodes with the same element name, then it would also be possible to evaluate the equality
predicate using a structural join.

We are aware that all presented queries could be evaluated faster, if suitable measures on
the mapping from the logical to the physical algebra were taken. For example, Q1 could
be answered more easily with the help of a structural index, even if only a sub-path of
the query could be evaluated by that index. For queries with positional predicates, special
evaluation algorithms resembling structural joins have been proposed [24]. In query Q3,
a text index, as sketched above, would be very beneficial. A structural join reordering
could take the selectivity of the text predicate into account and start the evaluation by the
computation of a structural join between thedate elements and the value “07/05/2005”.
However, to keep the two strategies comparable, we contented ourselves with the simple
mapping sketched above.

8 Conclusions

To the best of our knowledge, this is the first article dealingwith the introduction of the
structural join operator into a tuple-based XPath algebra.With our contribution, we hope
we can bridge the gap between the many promising algebra proposals on one side and the
equally many proposals on evaluation algorithms (physicaloperators) for XML queries
on the other side. We are aware that this is only an initial step towards the integration of
these valuable concepts, because many problems regarding the logical-to-physical algebra
mapping are still left out, e. g., join reordering, cost-based optimization, etc.

With the structural join, it is now possible to free an operator plan from implicit (selections)
and explicit (D-Join) node-at-a-time processing steps. Note, this is accomplished at the
logical level only; a physical implementation may freely choose to implement a structural
join in a node-at-a-time manner [14], nevertheless. Even hash-based strategies may be
applied [15]. But the decision to do so depends on physical issues and should not be
determined at the logical level.

Finally, even with the given simple mapping from a logical algebra expression to a physical
one (taking only the algorithm from [1] into account), we gained an order of magnitude in
the performance of query evaluation. And more sophisticated mappings are still to come,
from which we hope to gain further improvements.

Acknowledgements. I would like to thank Theo Ḧarder, Jose de Aguiar Moraes Filho
and the anonymous referees for their valuable comments on this paper. The support of
Andreas B̈uhmann while formatting the final version is appreciated.

References

[1] S. Al-Khalifa et al.: Structural Joins: A Primitive for Efficient XML Query Pattern Matching.
Proc. ICDE: 141–152 (2002)

[2] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, J.Teubner: Mon-
etDB/XQuery: a fast XQuery processor powered by a relational engine. Proc. SIGMOD: 479–
490 (2006)

[3] M. Brantner, C.-C. Kanne, S. Helmer, G.Moerkotte: Full-fledgedAlgebraic XPath Processing
in Natix. Proc. ICDE: 705–716 (2005)

[4] M Brantner, C.-C. Kanne, S. Helmer, G. Moerkotte: Algebraic Optimization of Nested XPath
Expressions. Proc. ICDE: 128 (2006)

[5] N. Bruno, N. Koudas, D. Srivastava: Holistic twig joins: Optimal XML pattern matching. Proc.
SIGMOD: 310–321 (2002)

[6] Q. Chen, A. Lim, K. W. Ong: D(k)-Index: An Adaptive StructuralSummary for Graph-
Structured Data. Proc. SIGMOD: 134–144 (2003)

[7] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, C. Zaniolo: Efficient Structural Joins on
Indexed XML Documents. Proc. VLDB: 263–274 (2002)

[8] D. Draper, et. al.: XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Specification.
http://www.w3.org/TR/xquery-semantics/

[9] M. F. Fernandez, J. Hidders, P. Michiels, J. Simeon, R. Vercammen: Optimizing Sorting and
Duplicate Elimination. Proc DEXA: 554-563 (2005)

[10] M. Fontoura, V. Josifovski, E. Shekita, B. Yang: Optimizing Cursor Movement in Holistic
Twig Joins. Proc. 14th CIKM: 784–791 (2005)

[11] T. Härder, M. Haustein, C. Mathis, M. Wagner: Node Labeling Schemes forDynamic XML
Documents Reconsidered. Data & Knowledge Engineering 60: 126–149(2007)

[12] H. Jagadish and L. Lakshmanan and D. Srivastava and K. Thompson: TAX: A Tree Algebra
for XML. Proc. DBPL: 149–164 (2001)

[13] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, H. V. Jagadish: Tree Logical Classes for Efficient
Evaluation of XQuery. Proc. SIGMOD: 71–82 (2004)

[14] Mathis, Ch., Ḧarder, T., Haustein, M.: Locking-Aware Structural Join Operators for XML
Query Processing. Proc. SIGMOD: 467–478 (2006)

[15] Mathis, Ch., Ḧarder, T.: Hash-Based Structural Join Algorithms, Proc. DATAX’06, LNCS
4254, Springer-Verlag, 136–149 (2006)

[16] Mathis, Ch.: Extending a Tuple-Based XPath Algebra to Enhance Evaluation Flexibility. In-
ternal Report. http://wwwdvs.informatik.uni-kl.de/pubs/papers/M07.Internal.html

[17] N. May, S. Helmer, G. Moerkotte: Nested Queries and Quantifiers inan Ordered Context. Proc.
ICDE: 239–250 (2004)

[18] N. May, M. Brantner, A. B̈ohm, C.-C. Kanne, G. Moerkotte: Index vs. Navigation in XPath
Evaluation. Proc. XSym: 16–30 (2006)

[19] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, N. Westbury: ORDPATHs: Insert-
friendly XML node labels. Proc. SIGMOD: 903–908 (2004)

[20] C. Re, J. Siḿeon, M. Ferńandez: A Complete and Efficient Algebraic Compiler for XQuery.
Proc. ICDE: 14 (2006)

[21] A. Schmidt, et. al: XMark: A Benchmark for XML Data Management.Proc. VLDB: 974–985
(2002)

[22] Y. Wu, J. M. Patel, H. V. Jagadish: Structural Join Order Selectionfor XML Query Optimiza-
tion. Proc. ICDE: 443–454 (2003)

[23] W3C Recommendation: XML Path Language (XPath), Version 1.0 (1999).
http://www.w3.org/TR/xpath

[24] V. Zografoula, et. al: Efficient Handling of Positional Predicates within XML Query Process-
ing. Proc. XSym: 68–83 (2005)

A NAL Overview

Table 3: Relevant NAL Operators taken from [3]
Operator Definition

Selection σp(e) :=







α(e)⊕σp(τ(e)) : p(α(e)) = true

σp(τ(e)) : else

Projection ΠA(e) := α(e)|A ⊕ΠA(τ(e))

Map χa:e2(e1) := α(e1)|Attr(e1)\{a} ◦ [a : e2(α(e1))]⊕χa:e2(τ(e1))

Cross Product e1× e2 := (α(e1))×e2)⊕ (τ(e1)×e2)

D-Join e1 〈e2〉 := α(e1)×e2(α(e1))⊕ τ(e1)〈e2〉

Product t1×e2 := (t1 ◦α(e2))⊕ (t1×τ(e2))

Semi-Join e1 ⋉p e2 :=







α(e)⊕ (τ(e1)⋉p e2) : ∃x ∈ e2 : p(α(e1)◦ x)

τ(e1)⋉p e2 : else

Anti-Join e1 ⊲p e2 :=







α(e)⊕ (τ(e1)⊲p e2) : 6 ∃x ∈ e2 : p(α(e1)◦ x)

τ(e1)⊲p e2 : else

Unnesting µg(e) := (α(e)|{g}×α(e).g)⊕µg(τ(e))

Unnest-Map ϒa:e2(e1) := µg(χg:e2[a](e1))

Binary Grouping e1Γg;A1θA2; f e2 := α(e1)◦ [g : G(α(e1))]⊕ (τ(e1)Γg;A1θA2; f e2)

whereG(x) := f (σx|A1
θA2(e2))

Unary Grouping Γg;θA; f (e) := ΠA:A′ (ΠD
A′ :A(ΠA(e))Γg;A′θA; f e)

Aggregation Aa: f (e) := [a : f (e)]

Sort Sorta(e) := Sorta(σa<α(e).a(τ(e)))⊕α(e)⊕Sorta(σa≥α(e).a(τ(e)))

Singleton Scan ¤ := [{}]

