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Zusammenfassung In der Literatur der vergangenen
Jahre wurde der algebraischen Behandlung der XML-
Anfragesprache XPath wenig Bedeutung zugemessen. Ei-
ne löbliche Ausnahme bildet die Natix-Algebra (NAL),
welche auf präzise Weise die Übersetzung einer XPath-
Anfrage in einen algebraischen Ausdruck definiert, und
somit die Tür zur algebraischen Optimierung dieser An-
fragesprache öffnet. Bei genauerer Betrachtung verpasst
es NAL jedoch, bekannte und vielversprechende Auswer-
tungsalgorithmen, wie zum Beispiel den

”
Holistic Twig

Join“, in den Übersetzungsprozess einzubeziehen. Die
in diesem Artikel vorgeschlagene Einführung eines lo-
gischen strukturellen Verbundes (

”
Structural Join“) be-

hebt diese Schwachstelle und erlaubt es, einen NAL-Aus-
druck in eine physische Algebra zu übersetzen, die genau
diese fehlenden Auswertungsalgorithmen enthält. Zusätz-
lich werden wichtige Regeln zur Entschachtelung von
XPath-Anfragen eingeführt. Mit Hilfe des

”
XML Tran-

saction Coodinators“ (XTC) – unserem Protoyp eines
nativen XML-Datenbanksystems – werden die zu erwar-
tenden Effizienzsteigerungen nachgewiesen.

Schlüsselwörter XML-Anfrageverarbeitung · XPath-
Algebra · XPath-Entschachtelung

Abstract Over the recent years, very little effort has
been made to give XPath a proper algebraic treatment.
One laudable exception is the Natix Algebra (NAL) which
defines the translation of XPath queries into algebraic
expressions in a concise way, thereby enabling algebraic
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optimizations. However, NAL does not capture various
promising core XML query evaluation algorithms like, for
example, the Holistic Twig Join. By integrating a logical
structural join operator, we enable NAL to be compiled
into a physical algebra containing exactly those miss-
ing physical operators. We will provide several important
query unnesting rules and demonstrate the effectivity of
our approach by an implementation in the XML Trans-
action Coordinator (XTC)—our prototype of a native
XML database system.

Keywords XML Query Processing · XPath Algebra ·
XPath Unnesting

CR Subject Classification H.2.4 · D.3.4

1 Introduction

There is one core task, common to almost all XML query
languages: the matching of path patterns against XML
documents. The performance of an XML query language
processor intrinsically depends on its path evaluation en-
gine, because path matching is a frequent and expen-
sive operation. Path matching occurs frequently, because
even multiple paths are often defined in a single query.
And it is expensive, because path evaluation requires
physical access to the document, in contrast to almost
all other constructs of an XML query language, which
are evaluated on the output generated by path match-
ings. In spite of the many algebra proposals regarding the
standard XML query language XQuery [16, 21, 25], its
path-related sublanguage XPath has unfortunately not
gained as much attention. However, because of the above
reasons, we believe that XPath should be furnished with
an algebraic basement, too: It is the core XML data ac-
cess mechanism in XQuery (and also XSLT) and it is
itself a complex language to evaluate leaving a lot of
space for algebraic optimizations. In this paper, we will
extend the Natix Algebra (NAL) [4], which is one of the
few algebras specifically dealing with the compilation of
XPath.
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What is missing in NAL? We observed that somewhat in
parallel to the progress being made in the XML algebra
community, a plethora of core algorithms for XML query
evaluation as well as indexing techniques have been pub-
lished that qualify as physical1 XML query operators.
Among them, the most prominent representatives are
the Structural Join [1, 8, 18, 19], the Holistic Twig Join
[6, 11], as well as further operators to match general
twigs [12], and the various path indexes like, for exam-
ple, the structural D(k) index [7] or the hybrid content
and structure (CAS) index [15]. While being introduced
in the context of tree-based algebras [16, 17], very little
attempt has been made to integrate these concepts into
a tuple-based XML algebra, such as NAL [21]. You may
think, why bother, the combination of a tree-based alge-
bra with the holistic twig join works perfectly, so where
is the need for a further XML algebra? We believe that
the data model of tuple algebras is more general than the
one of tree algebras and, therefore, certain XML query
language constructs can be handled more suitably. For
example, we do not know how a non-tree intermediate
result, like pairs of siblings, is represented without intro-
ducing an artificial parent node (which has to be han-
dled by subsequent operators). Furthermore, all major
RDBMS vendors are currently integrating XML query
capabilities into their (tuple-based) relational query en-
gines. For them, the integration of an equally tuple-based
XPath/XQuery algebra would be a natural thing to do2.
That is why we favor tuple algebras and think the inte-
gration of the above mentioned physical operators is of
great importance.

In this article, we will elaborate on the algebraic
treatment of XPath. We will introduce a logical struc-
tural join operator into NAL and provide essential rewrit-
ing rules to convert an algebraic expression into a format
facilitating the mapping onto the existing physical XML
strutural join and holistic twig join operators. The ex-
tended algebra will be named NALSTJ (STJ for “struc-
tural join”).

1.1 XML Algebras in the Literature

To give an overview over all XML algebra proposals is
certainly out of the scope of this paper. Therefore we can
only focus on a few algebras that explicitely tackle the
issue of path matching and algebraic XPath treatment.

The TAX and TLC algebras [16, 17] evolve from an
analogy between relations and trees. In the relational al-
gebra, each operator consumes and produces sets of tu-
ples (relations), whereas sequences of XML data trees are
the basic unit of processing in TAX/TLC, i. e., TAX/TLC
is a tree-based algebra. A core concept to all opera-
tors are pattern trees. They can be used, for example,

1 By “physical” we mean that these operators could be part
of a physical XML algebra.

2 See also [3] for academic research activities in this area.

to define a query tree structure for a selection opera-
tor that matches the pattern tree against a document,
thereby producing a sequence of so-called witness trees.
Each witness tree in the result sequence corresponds to a
match. The above mentioned physical algorithms Struc-
tural Join and Holistic Twig Join, are core algorithms in
the TAX/TLC physical algebra, because they do the job
of pattern tree matching. TAX/TLC provides a “natu-
ral” way to process XML trees, because it is based on
XML trees as intermediate results. However, its expres-
sive power is definitely too limited for the evaluation of
XPath queries: only the descendant and child axis are
supported for the definition of a pattern tree.

The Natix Algebra (NAL) [21] takes a different ap-
proach, because it abstracts from trees as intermediate
result structures. NAL operates on sequences of (homo-
geneous) tuples, each tuple consisting of a set of attribute-
to-value mappings. Similar to the notion of the evalua-
tion context defined in the W3C Formal Semantics [9],
these mappings keep track of the dynamic variable bind-
ings during query processing. Reference [4] describes the
translation of an arbitrary XPath expression into NAL.
Because our article heavily relies on NAL, we will suffi-
ciently introduce the algebra and its capabilities in the
following.

The algebra presented in [25]—called RSF3 algebra
in the following—employs a hybrid approach. Its expres-
sions contain both operator types: Tree-based operators
are introduced for intermediate XML tree handling and
tuple-based operators to control the flow of tuple streams
generated by XQuery’s for and let expressions. To ensure
the compatibility between these two types, special con-
version operators (MapToItem and MapFromItem4) have
to be embedded into an algebra expression. This tech-
nique avoids tuple flattening which is often required in
NAL. Because RSF expressions are generated from the
XQuery core representation defined in [9], the whole ex-
tent of XPath is covered. In parallel to [20], the RSF
group has published an approach to algebraically “find”
twig-like search patterns (branching path patterns) in
general XQuery expressions [14, 23]. Those patterns are
mapped onto a logical twig join operator. While their
work and ours aims at the same target, the algebraic
equivalences in this article have not been published in
RSF so far. Their integration would be possible, though,
because RSF and NAL are closely related.

1.2 A Brief Example in NAL

In this section, we will give a brief example in the Natix
algebra and point out its strengths and weaknesses. Let
us consider the expression /a1 :: t1/a2 :: t2 [position() =

3 Named after the last names of the paper’s authors.
4 MapToItem converts a sequence of tuples to a sequence of

XML trees, while MapFromItem works in the opposite direc-
tion.
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start

χcn:c3

⋊⋉

−→
χc0:root(cn) ⋊⋉

−→

Υc1:c0/a1::t1
⋊⋉
−→

σcp=cs

Υc3:c2/a3::t3

Tmpcs

χcp:cntr(p1)++

Υc2:c1/a2::t2

ΠD

χcn:c3

σ

Aexists

⋊⋉
−→

χc0:cn Υc4:c0/a4::t4

Fig. 1 NAL Example

last()]/a3 :: t3 [a4 :: t4] depicted in Figure 1. The evalu-
ation starts with the singleton scan operator (�) which
creates a singleton sequence containing an empty tuple.
It triggers the map operator (χ) to bind the root node of
the queried tree to the c0 attribute of a new tuple. This
tuple, in turn, is consumed by the first D-join operator.
The D-Join (⋊⋉

−→
—or 〈〉 in the textual representation) is

similar to XQuery’s for construct: for each tuple t in
the left input sequence, the dependent right expression
is evaluated, binding t’s attributes to free variables in the
right expression (here c0). Then, the intermediate result
calculated for the dependent subexpression is joined with
t. In our example, the dependent expression is again a D-
Join operator whose left subexpression is an unnest map
operator (Υ ). This operator is a shortcut for a map oper-
ator (χ) followed by an unnest operator (µ). In NAL, Υ
is mainly used for the calculation of path axes. Starting
from c0 the path expression a1 :: t1 is evaluated to a sin-
gle sequence (using χ) which is immediately unnested (by
µ). Together with the D-Join, this results in the above
mentioned “flattening”.

A predicate is translated into a selection operator (σ),
where the predicate’s subexpression is compiled into σ’s
subscript. NAL operators may be arbitrarily nested in
this fashion. For each input tuple, the subscript is eval-
uated. For almost all predicates, certain measures have
to be taken to ensure the evaluability of σ’s subscript:
In case of a relative path expression, the current con-
text variable cn has to be provided explicitly. This is ac-
complished by the two map operators χcn:c3 and χc0:cn,
the first one binding c3 to the context variable and the
second one “transferring” cn into the variable c0 of the
local context. For positional predicates, the current con-
text position and the context size have to be calculated.
This is the task of the special operators χcp:cntr(p1)++

and Tmpcs. The first operator simply counts the tuples
in its input and attaches a new attribute cp, containing
the current position, to them. Tmpcs buffers its input
to calculate the total number of tuples in the context,
before it attaches attribute cs, containing this number,
to each tuple. The aggregation operator A evaluates ag-

gregate functions, e. g., min(), max(), etc. More sophis-
ticated predicates, for example existential comparisons,
are possible, too. Finally, the resulting context node is
produced by a map operator, and duplicate elimination
(ΠD) is applied to comply with the XPath semantics.
NAL provides a concise algebraic basement for XPath
(1.0 [28]) evaluation. The XPath-to-NAL translation pro-
cess is described in [4] in great detail. Additionally, the
authors provided some optimization techniques like
stacked translation for outer paths, duplicate-elimination
push down, and memoization5. In [5], certain algebraic
equivalences were shown, which enable unnesting of que-
ries with semi-correlated XPath predicates6.

1.3 Problem Statement

In spite of the progress being made in NAL, we believe
that there is still room for optimization: Our first obser-
vation is that the evaluation of a NAL expression gener-
ates almost the same data flow as its equivalent normal-
ized in W3C’s XQuery Core Language. As an example,
consider the evaluation of the select operator σ in Figure
1: It is evaluated for each context node provided by the
unnest map operator Υc3:c2/a3::t3 . This implies node-at-a-
time calculation of the path step, embedded in the selec-
tion subscript. However, many publications [1, 6, 8] have
pointed out that set-at-a-time processing of path steps
provides better performance in most cases. Another ex-
ample regarding the generated data flow arises from the
order in which the path processing steps are evaluated.
Like in XQuery Core, NAL evaluates path steps from
left to right. However, as [27] has shown, a reordering
of path step evaluations can substantially improve the
query processing performance.

As a second point, we observe that the logical-to-
physical operator mapping presented in [4] does not take
important classes of physical operators into account, like
the Structural Join and the Holistic Twig Join7. Essen-
tially, these operators provide the above mentioned ca-
pability to process path steps in a set-at-a-time man-
ner. There is reasonable doubt that, in the face of com-
plex queries, the algebraic representation can facilitate
a mapping onto a physical algebra containing exactly
these operators. We draw this doubt from the fact that
nested path expressions are “hidden” in subscripts of se-
lection operators. Furthermore, logically related subex-
pressions, e. g., the compiled parts of the path steps like
a1 :: t1, are “scattered” across the operator tree (shown

5 These optimizations have not been executed on our ex-
ample, which is presented in the canonical translation.

6 Queries with semi-correlated predicates have the form p =
e1[e2θe3], where either e2 or e3 is a path expression depending
on p’s outer—or global—context

7 Although we recognize the hint towards that direction
given in [22], we did not find any approach that properly
introduces structural joins in NAL.
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by the encircled areas in Figure 1). Under the assump-
tion that the above query contains only steps referring
to the child and descendant axis, a reasonable evaluation
approach—at the physical level—would be the applica-
tion of a single holistic twig join operator, followed by a
subsequent selection. However, from the given represen-
tation it is unclear, how the mapping onto this holistic
twig join operator can be accomplished.

1.4 Our Contribution

Our overall goal is to integrate the above mentionend
important classes of physical evaluation operators like
Structural Join, Holistic Twig Join, and path index ac-
cess into NAL’s physical algebra. However, as a first step
we have to “prepare” NAL at the logical level in a way
facilitating this integration. In this article we will

• introduce the structural join operator to the NAL
algebra,
• provide rules to convert a NAL expression from its

canonical representation into its NALSTJ equivalent
containing structural joins,
• develop rewriting rules for predicate unnesting, and
• finally show the impact of our approach on the query

processing performance in the XML Transaction Co-
ordinator (XTC)—our prototype of a native XML
DBMS.

With the introduction of structural joins, we add another
promising evaluation strategy for XML queries to the
Natix Algebra: set-at-a-time (or bulk) processing. Due
to the many available alternatives for structural join im-
plementation (i. e., stack based [1], hash based [19], index
based [8], locking aware [18], etc.), we multiply the num-
ber of possible (physical) query plans. This results in a
larger search space (hopefully containing a better plan)
and in an increased evaluation flexibility. Furthermore,
our predicate unnesting rules will facilitate the mapping
onto more powerful physical operators like the holistic
twig join (which can also evaluate and, or, and not predi-
cates) and path-index lookups, because they expose path
processing steps hidden in selection subscripts. Addition-
ally, unnesting enables structural join reordering to prise
off the inflexible left-to-right path evaluation. We expect
our operator plans to be scalable, though consisting of a
large number of joins, because, in contrast to the join im-
plementations in the relational algebra, structural joins
are evaluatable in linear time [1].

The question, whether a particular query or predicate
should be evaluated node-at-a-time or set-at-a-time, can-
not be answered without an (at least rough) estimation
of the document’s structure. This is clearly not the aim of
this article. We just want to provide the necessary alge-
braic preconditions to enable both evaluation strategies
in NAL.

In the following, we will not consider questions aris-
ing during plan generation, i. e., during the logical-to-

physical operator mapping. Specifically, we will neither
show how a holistic twig join can be employed to replace
a set of structural join operators, nor how the order of
structural joins can be selected [27]. Here, we only want
to facilitate the treatment of these important questions
by introducing the structural join operator.

The remainder of this article is organized as follows:
Sect. 2 provides an overview over the Natix algebra,
which we will extend in Sect. 3. The rule-based rewriting
of NAL into its extended version is described in Sect. 4,
before Sect. 5 introduces the core set of algebraic equiva-
lences for query unnesting. Sect. 6 provides several rules
for structural join push down. We conclude this article
with a quantitative analysis in Sect. 7.

2 NAL in a Nutshell

For your convenience, we repeat the basic definitions
from [4]: NAL operates on sequences of homogeneous
sets of attribute-value mappings (tuples) t, each t hav-
ing the same set of attributes (schema) denoted A(t).
Attribute values may be sequences, thus NAL allows
arbitrary nesting. The empty sequence is denoted as ǫ
or 〈〉. For tuple modification, NAL provides the primi-
tives [·] (tuple construction), ◦ (tuple concatenation8),
and |A (attribute projection). The notation t.a describes
the access to tuple t’s attribute a. A(e) and F (e) de-
note the schema and the set of free variables of an al-
gebra expression e. Applied to sequences, the functions
e1 ⊕ e2, α(e), and τ(e) return the concatenation (⊕),
the first tuple of the sequence (α), and the remainder of
the sequence (τ). If e is a sequence of non-tuple values,
e[a] = [a : α(e)] ⊕ τ(e)[a] returns a sequence of tuples
[a : ei], where ei is a tuple of e. An overview over all
relevant NAL operators can be found in Table 1. To sup-
port the required ordering in XML, all unary operators—
except Sort—keep the order of their input sequences in-
tact. The binary operators cross product (×) and D-Join
(〈〉) have nested-loop semantics. The projection operator
(Π) has two variants for duplicate elimination (ΠD) and
renaming (Πa′:a).

3 Extending NAL to NALSTJ

For our NAL extension NALSTJ, we introduce some new
operator definitions and modify a few existing ones. We
want to keep NALSTJ backward compatible, i. e., an ex-
pression in NAL shall also be an expression in NALSTJ.
The new or modified operators are: the structural selec-
tion and the structural join, node sequence access, nest-
ing, reverse, group reverse, group sort, context size and
context position calculation, and finally sequence-based
merge and intersect.

8 Note, the ◦ operator is overloaded and also used for the
composition of functions.
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Table 1 Relevant NAL Operators taken from [4]

Operator Definition

Selection σp(e) :=

8

<

:

α(e) ⊕ σp(τ(e)) : p(α(e)) = true

σp(τ(e)) : else

Projection ΠA(e) := α(e)|A ⊕ΠA(τ(e))

Map χa:e2 (e1) := α(e1)|Attr(e1)\{a} ◦ [a : e2(α(e1))]⊕ χa:e2 (τ(e1))

Cross Product e1 × e2 :=
`

(α(e1))×e2

´

⊕ (τ(e1)×e2)

D-Join e1 〈e2〉 := α(e1)×e2(α(e1))⊕ τ(e1) 〈e2〉

Product t1×e2 := (t1 ◦ α(e2))⊕ (t1×τ(e2))

Semi-Join e1 ⋉p e2 :=

8

<

:

α(e1)⊕ (τ(e1) ⋉p e2) : ∃x ∈ e2 : p(α(e1) ◦ x)

τ(e1) ⋉p e2 : else

Anti-Join e1 ⊲p e2 :=

8

<

:

α(e1)⊕ (τ(e1) ⊲p e2) : 6 ∃x ∈ e2 : p(α(e1) ◦ x)

τ(e1) ⊲p e2 : else

Unnesting µg(e) := (α(e)|
{g}
× α(e).g) ⊕ µg(τ(e))

Unnest-Map Υa:e2 (e1) := µg(χg:e2[a](e1))

Binary Grouping e1Γg;A1θA2;f e2 := α(e1) ◦ [g : G(α(e1))]⊕ (τ(e1)Γg;A1θA2;f e2)

where G(x) := f(σx|A1
θA2

(e2))

Unary Grouping Γg;θA;f (e) := ΠA:A′ (ΠD
A′:A

(ΠA(e))Γg;A′θA;f e

Aggregation Aa:f (e) := [a : f(e)]

Sort Sorta(e) := Sorta(σa<α(e).a(τ(e)))⊕ α(e) ⊕ Sorta(σa≥α(e).a(τ(e)))

Context Size Tmpcs(e) := Acs;count(e)×e

Singleton Scan � := {[]}

Structural Selection. The structural selection, i. e., the
selection of a tuple based on some structural predicate,
is embedded by extending the NAL selection operator
from Table 1:

σp(s) :=

{

α(s)⊕ σp(τ(s)) : Ψp(α(s)) = true
σp(τ(s)) : else

where the function Ψp(t) evaluates predicate p on tuple
t. In case, p = aiθaj is a structural predicate, Ψp has
the following semantics: Depending on θ, the predicate
evaluates the binary structural relation ↑ (is parent of),

↓ (is child of), ⇑ (is ancestor of), Z⇒ (is ancestor or self

of), ⇓ (is descendant of), ⇐
\

(is descendant or self of), ←
(is preceding sibling of) → (is following sibling of), ⇐
(is preceding of),⇒ (is following of), @ (is attribute of),
and 	 (is self of). A structural predicate is evaluated to
Ψaiθaj (t) := t.aiθt.aj . Note, if we want to express that
“b is child of a” we write b ↓ a and not a ↓ b. The
order is important when we define the structural join. For
the evaluation of the structural selection, an XML node
identification mechanism (labeling scheme) is beneficial
that can decide the relationship in question without a
physical node access. Almost all XML database systems
nowadays embody such a mechanism (e. g., OrdPath [24],
DLN [2], SPLID [13], Pre/Post Numbering [3], etc.). In
case of all other shapes of the predicate p, we refer to
the original definition of the selection operator in [4].

Structural Join. With the help of the Cartesian product
(×) and the selection operator (σp), we define the join
operator in the classic way:

s1 ⋊⋉p s2 := σp(s1 × s2)

This operator becomes a structural join operator when
the join predicate checks structural relationships over at-
tributes of the participating tuples. Note, the semantics
of the structural join depends on the semantics of the
ordered product (×). Therefore, the output order of the
structural join is significant. The structural semi-join
(⋉p), the structural anti-join (⊲p), and the structural
left-outer join (1p) are defined accordingly.

An interesting issue arises when thinking about the
role of this new operator in NAL: Is the structural join a
logical operator? To answer this question, we first have
to state that the distinction between logical and physical
operators in XML algebras is not as clear as in the rela-
tional world. Because order matters in XML, logical op-
erators are defined in a way, respecting the requirement
of order (like ×). But then, there is often only one chance
to implement a logical operator, because other alterna-
tives do not deliver the correct output order. Therefore,
there is often no distinction between a logical operator
and its physical implementation. However, for the struc-
tural join operator defined above, there are a lot of very
efficient physical algorithms present. We even think that
the combination of a D-Join with an unnest map oper-
ator is a physical implementation of the strutural join
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defined above. Despite the intrinsic nested loop charac-
teristics, we think our new operator qualifies as a logical
one.

Node-Sequence Access. For the access to sequences of
nodes having, for example, the same element name, we
define the auxiliary function ϕp. For simplicity, its se-
mantics is described in prose: ϕp(c) is a function depend-
ing on the current evaluation context c. In the following,
we omit context-parameter c for simplicity. It returns
all nodes of a document in document order that com-
ply with the predicate. For its evaluation, the function
reads the current context node cn defined in the evalu-
ation context, and calculates cn’s document root node.
Then it scans the document in document order, thereby
evaluating predicate p against each visited XML node.
All qualifying nodes are returned in one sequence. In the
following, ϕp will be used in combination with the Υ
operator. For example, the expression e = Υc:ϕauthor

(�)
returns a sequence with A(e) = c and all author elements
in the current document as values. This functionality is
required to provide bulk access to node sequences for the
structural join operator, as similarly described in [6].

Nest. In the following, we will not need the complex
grouping capabilities of the general unary/binary group-
ing operator provided in NAL [21]. A simple nesting
and a simple grouping operator will do. Nesting is the
complementary operator to unnesting. We assume the
grouping operator in [21] to be defined on sets (or, more
specifically, on vectors) of attributes A. Then, nesting
is a shorthand for νg:A(e) = Γg;=A;id(e). If we want to
nest by all attributes but the ones given in the vector
A, we use νg:A(e) = Γg;=A(e)\A;id(e). Grouping will only
occur in the form of unary, equality-based grouping, i. e.,
Γg;=A;f (e).

Reverse, Group Reverse, and Group Sort. The reverse
operator R simply reverses the order of the tuples in the
input sequence. If given an attribute name as subscript,
Rg assumes attribute g to be sequence valued. Then,
it reverses the order of g’s sequence. The group reverse
operator RG

A first nests its input by the attribute list
A, reverses the order in each nesting group, and finally
unnests the sequence again9:

R
G
A(e1) = µg ◦Rg ◦ νg:A(e1)

The same can be defined for the sort operator. Similarly
to Sortcn, the operator Sg sorts the sequence valued g
in ascending (document) order on the context node (cn).
Then group-based sorting can be defined as:

S
G
A(e1) = µg ◦Sg ◦ νg:A(e1)

9 Note, in contrast to [4] and [20] we do not use the “heavy”
symbols R, A, and S here. Instead, we employ the more con-
venient symbols R, A, and S.

a) Query

b) Document

c) NAL Tree

d) Correct Tuple Stream

//a//b/c[pos() = last()]

Φ

Ω

a1

a2

b1 b2

c1 c2 c3 c4

. . .

⋊⋉
−→

χc0:root(cn) ⋊⋉

−→
Υc1:c0//a ⋊⋉

−→

σcp=csΥc2:c1//b

Tmpcs

χcp:cntr(p)++

Υc3:c2/c

ci−2 ci−1 ci cs cp

a1 b1 c1 2 1

a1 b1 c2 2 2

a1 b2 c3 2 1

a1 b2 c4 2 2

a2 b1 c1 2 1

a2 b1 c2 2 2

a2 b2 c3 2 1

a2 b2 c4 2 2

Fig. 2 Query, Document, NAL Tree, and Tuple Stream

Sequence Merge and Intersect. The operators ·∪ and ·∩
are defined as the union and intersection of tuple se-
quences having the same schema.

Context Position and Context Size Calculation. The
modifications on these two operators would have been
discussed best after the next section. However, logically
they belong here. Therefore, you may skip this part and
return to this point after Section 4.

In the Natix Algebra, the special function cntr(pk)++
is used in the subscript of a map operator (χ) to calculate
the current content position (cp) for positional predicate
pk. Likewise, the Tmpcs operator calculates the context
size (cs). In the stacked translation semantics [4] and also
for the replacement of the structural join [20], these op-
erators are redefined to recognize group boundaries. The
Tmpcs operator is redefined to a Tmpcs

c operator with
the following semantics: Tmpcs

c = eΓcs;c=c′;countΠc′:c(e).
According to [4], this operator is used in the same way
as the original operator, except that it is parameterized
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with the input context node ci−1, i. e., as Tmpcs
ci−1

. Fur-
thermore, the function calculating the current context
position has to be altered for stacked translation. Ref-
erence [4] states that the function’s internal counter has
to be set to zero, when a new group is detected, i. e.,
when input context node (ci−1) changes its value. Un-
fortunately, both operator semantics may lead to wrong
results. As an example, consider Fig. 2. During the eval-
uation of the query in stacked translation mode, a tuple
stream as shown in the first three columns (ci−2 to ci)
of the table is generated for the given query and doc-
ument. For this stream, the context position and the
context size have to be calculated. The correct values
are shown in the remaining two columns of the table.
However, the Tmpcs

ci−1
operator as defined in [4] and [20]

would return a wrong result in this case, because the
binary grouping by ci−1 would compute group size of 4
instead of 2. A counter example for the count method
can be constructed from the above example, too: when
subtree rooted at b2 would be absent, no group bound-
ary could be detected on attribute ci−1 (because this
attribute would always contain the value b1, although 2
groups are present).

Both operators are also required in this article for
the introduction of the structural join operator to sub-
stitute D-Joins. To remedy these problems, we redefine
them. Group-boundary detection is now based on a set
of attributes A instead of a single one:

Tmpcs
A (e) = eΓcs;A=A′;countΠA′:A(e)

For the context position calculation, we substitute the
count function with a countA function, which resets its
internal counter based on a group-boundary detection
regarding all attributes in A.

4 Introducing the Structural Join into a NAL

Expression

In this section, we want to get rid of those D-Join op-
erators that were initially compiled into a NAL expres-
sion for the calculation of path steps. With the following
rewriting rule, the inherent node-at-a-time processing in-
troduced by the D-Join is replaced by a set-at-a-time
processing strategy which relies on the structural join.

ej

〈

Φ ◦ Υci:cj/ai::ti
(�)

〉

= Φ′(ej ⋊⋉ciθai
cj Υci:ϕti

(�)) (1)

This rule has to be applied in an iterative fashion, thus
substituting one D-Join operator at a time. Note, a di-
rect compilation from XPath to NALSTJ is also possible.
However, in this article we chose a given NAL expres-
sion as the starting point, because we want to ensure the
equality of the resulting NALSTJ expression. After each
application of the given rule, the resulting operator tree
can still be evaluated, because NALSTJ is an extension
of NAL.

The rule’s pattern expression at the left-hand side is sub-
ject of the first lemma:

Lemma 1 Let Ω be a NALSTJ expression resulting from
the XPath-to-NAL translation process described in [4]
and a sequence of zero or more applications of Rule (1).
If Ω (still) contains the calculation of a path step based
on a D-Join, then Ω contains a subexpression
ej

〈

Φ ◦ Υci:cj/ai::ti
(�)

〉

, with the following properties:

• free variable cj of the D-Join’s inner expression is
defined in its outer expression ej,
• subexpression Φ does not contain any D-Join,
• subexpression Φ is maximal, i. e., Φ is not contained

in any other NAL operator in the dependent part of
the D-Join.

Proof (Sketch): This lemma can be shown by an induc-
tion over the set of all XPath-to-NAL compilation rules
and Rule (1). In each step, the existence of a Φ with the
given properties can be shown. ⊓⊔

In other words, in the rule’s pattern expression at the
left-hand side, outer expression ej generates a sequence
of tuples containing an attribute cj . For each tuple t,
this attribute is the starting point for the calculation of
the axis step in the dependent unnest-map expression.
The result of the axis step is then processed by some
subexpression Φ before the product with the tuple t is
computed.

At the right-hand side of Rule (1), expression ej is
shifted into Φ′, forming a structural join using the spec-
ified axis with a node sequence access Υci:ϕti

. This has

the effect that Φ′ consumes a slightly different input se-
quence, because it now contains also attributes from ej .
As an example, consider the query tree depicted in Fig-
ure 2c, which is evaluated on the given document. Here
Φ is a cascade of operators, containing a selection, a con-
text size, and a context position operator. During query
evaluation, Φ is repeatedly executed on sequences of c
elements, each sequence of which contains the children
of a particular b element (e. g., 〈c1, c2〉 and 〈c3, c4〉). In
this way, the groups of siblings are neatly separated. If we
now want to employ a structural join instead of a D-Join
for the evaluation of subtree Ω, Φ operates on a sequence
of b–c tuples (e. g., 〈〈b1, c1〉 , 〈b1, c2〉 , . . . , 〈b2, c4〉〉). There-
fore, Φ has to be transformed into expression Φ′ to rec-
ognize the now implicit group-boundaries correctly. This
transformation is defined by mapping function T on the
operators contained in Φ. Function T will be identified
by enumerating all mappings of interest. The correctness
of the corresponding instances of Rule (1) will be shown.

Definition 1 Table 2 defines function T that maps a
NALSTJ operator symbol onto another NALSTJ opera-
tor symbol. T depends on the input symbol Ψ , the outer
expression ej , and the axis direction of the axis calcu-
lated by the inner expression Υ as identified in Lemma
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Table 2 Definition of NALSTJ Translation Function T

tuple-based ops. group-based operators NALSTJ operators

T [id ] = id T [Tmpcs, ej ] = Tmpcs
A(ej) T [Tmpcs

A , ej ] = Tmpcs
A∪A(ej )

T [σp] = σp T [χcn:cntr(p)++, ej ,−→a ] = χ
cn:cntr

A(ej )
(p)++

T [χ
cp:cntrA(p)++

, ej ] = χ
cp:cntr

A∪A(ej )
(p)++

T [χcn:ci
] = χcn:ci

T [χcn:cntr(p)++, ej ,←−a ] = R
G
A(ej ) ◦ χ

cn:cntr
A(ej )

(p)++
◦R

G
A(ej ) T [νg:A, ej ] = νg:A∪A(ej )

T [µg ] = µg T [Ax:f , ej ] = Γx;=A(ej);f T [RG
A , ej ] = R

G
A∪A(ej )

T [ΠA] = ΠA T [Γx;=A;f , ej ] = Γx;=A∪A(ej);f T [SG
A , ej ] = S

G
A∪A(ej )

T [Sortcn, ej ] = µg ◦S
G
g ◦ νg:A(ej ) T [⋊⋉p ek] =⋊⋉p ek

1. Symbol −→a is used for forward axes and ←−a for back-
ward axes10.

Theorem 1 Let subexpression Φ = Φ1 ◦ · · · ◦ Φn be a
NALSTJ expression as defined in Lemma 1 and no Φi is
an aggregation operator11. Then, Rule (1) is correct for
Φ′ = T [Φ1] ◦ · · · ◦ T [Φn].

Proof : The correctness of the theorem relies on two
properties: 1) the possibility to extract subexpression
Φ out of the D-Join, thus generating Φ′—i. e., the cor-
rectness of all instances of the more general equality
e1 〈Φ ◦ e2〉 = Φ′(e1 〈e2〉)—and 2) the equivalence of the
resulting D-Join with the structural join as defined in (1),
i. e., ej

〈

Υci:cj/ai::ti
(�)

〉

= ej ⋊⋉ciθai
cj Υci:ϕti

(�). The lat-
ter equality is clear from the definition of the participat-
ing operators: On the left-hand side, for each ej the axis
step is evaluated and the resulting intermediate sequence
is joined with the input tuple. The right-hand side com-
putes the same result employing an ordered cross prod-
uct and a subsequent selection, which filters all tuples
that do not conform to the axis specification.

For the proof of property 1), we decompose Φ into
a sequence of operators, i. e., Φ = Φ1 ◦ · · · ◦ Φn and ex-
tract each single operator Φi = Ψ out of the D-Join, i. e.,
we show e1 〈Ψ ◦ e2〉 = Ψ ′(e1 〈e2〉). The operators Ψ in
question can be divided into three classes:

• tuple based : operators that require one tuple at a time
to compute the result for that tuple, for example,
the selection operator σ which decides on each single
tuple in the input sequence.
• group based : operators that require to process a group

of tuples which belong to the same evaluation con-
text, for example, the sort operator Sort which needs
to “know” the complete group of tuples to be sorted.
• NALSTJ: operators that are introduced by some map-

ping rule defined for one of the other two groups, i. e.,
that were introduced by an application of Rule (1).

For the proofs of all operators rewritings, we define a
family of auxiliary functions α〈i〉 on a sequence e, where

10 When a particular mapping does not depend on ej and
a, those arguments are simply omitted.
11 This circumstance will be discussed at the end of this
section.

ai returns the i-th element. With αi we can rewrite the
D-Join in the above term:

e1 〈Ψ ◦ e2〉 =

n
⊕

i=1

αi(e1)×Ψ
(

e2(αi(e1))
)

Our goal is now to extract the inner expression Ψ . We
will distinguish the different operator groups:

• Because tuple-based operators only process one tu-
ple at a time, it is easy to see that this processing
can be “deferred” after the product with αi(e1) is
computed, and, furthermore, after the intermediate
tuple sequences (generated for each term) are con-
catenated. This means, we can transform the above
equality to

n
⊕

i=1

Ψ
(

αi(e1)×
(

e2(αi(e1))
)

)

=

Ψ
(

n
⊕

i=1

(

αi(e1)×(e2(αi(e1)))
)

)

= Ψ(e1 〈e2〉)

• For group-based operators the situation is slightly
different. As above, we can extract Ψ out of the in-
ner expression, because the intermediate results after
the product with αi(e1) has been computed have the
same properties as before (i. e., the same size, order,
etc.). But then, when Ψ has to be extracted out of
the concatenation, the group boundaries do not exist
anymore. Therefore, they have to be re-established
by an additional nest operator. We get

n
⊕

i=1

Ψ
(

αi(e1)×
(

e2(αi(e1))
)

)

=

µg ◦ Ψ$g ◦ νg:A(e1) ◦

n
⊕

i=1

(

αi(e1)×
(

e2(αi(e1))
)

)

=

µg ◦ Ψ$g ◦ νg:A(e1)(e1 〈e2〉)

The notation Ψ$g indicates that this operator is now
evaluated on the group bound by attribute g. This
transformation is only possible, when expression e1

does not produce any duplicates, because otherwise it
would not be possible to distinguish different groups
(produced for a duplicate tuple of e1) properly. This
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is also the reason, why it was not sufficient for Tmpcs
c

to check for variable binding ci−1 only. All rewritings
presented in Table 2 for group-based operators are
specializations of the term shown above. Note, back-
ward axes together with the cp counter are rewritten
using the group reverse operator RG

A. This is neces-
sary to comply with the XPath semantics.
• Of the NALSTJ operators, all but one are group-

based. They are simply rewritten to recognize the
“new” group boundaries introduced by ej . The struc-
tural join operator ⋊⋉ ek (where, according to the defi-
nition of Φ, ek may not contain any D-Join operators)
is not group-based. Its rewriting is equal to the one
given for tuple-based operators. �

There is one circumstance related to the aggregation
operator, in which the application of Rule (1) would
not lead to a correct result. Therefore, aggregations are
excluded in Theorem 1. For an example assume query
//a/count(b) which returns a sequence of integers, each
of which represents the number of children under an a
element. If we used Rule (1) on the NAL representation
of this query, we would form a structural join between
a and b elements and later on evaluate the aggregation.
This, however, would lead to a wrong result, because
the structural join discards those a elements for which
no child b can be found, i. e., for which the answer of
the aggregation should be zero. As a solution for this
problem, we partition the aggregation functions into two
groups: a) functions that generate a meaningful answer
on an empty input (like, count , exists , . . . ), and b) all
others (e. g., min,max , . . . ). If an aggregation based on
one of the functions of group a) occurs in Φ, we alter
Rule (1) to

ej

〈

Φ ◦ Υci:cj/ai::ti
(�)

〉

= Φ′(ej 1ciθai
cj Υci:ϕti

(�)) (2)

For all other aggregations, Rule (1) is correct. The appli-
cability of Rule (1) is another interesting question, which
is subject to the next theorem:

Theorem 2 All D-Join operators initially compiled into
a NAL expression Ω for the calculation of a path step as
described in [4] can be substituted by a structural join as
defined by Rule (1).

Proof : Follows from Lemma 1. ⊓⊔
We conclude this section with the rewriting of a sim-

plified version of the previous example: /child :: a/child ::
b [position() = last()]/child :: c (Figure 3). In the first
step, e1 and the depending subexpression can be iden-
tified as depicted in Figure 3a. Φ is the identity func-
tion, therefore, only the D-Join symbol is replaced. In
Figure 3b, Φ contains a structural join (where the right
branch does not contain any D-Join operator), a selec-
tion, a Tmpcs, and a map operator. Here, the according
transformations as defined in Table 2 are processed one
at a time, resulting in Figure 3c. Although, the position-
handling operators have already been made group aware

a)

b)

c)

d). . .
. . .

. . .

. . .

e1

e1

e1

subexpression

subexpression

subexpression

Φ

Φ

⋊⋉
−→

χco:root(cn) ⋊⋉

−→
Υc1:c0/a ⋊⋉

−→

σcp=cs Υc3:c2/c

Tmpcs

χcp:position(p1)++

Υc2:c1/b

⋊⋉
−→

⋊⋉
−→

χc0:cn

χc0:cn

χc0:cn

⋊⋉

−→
Υc1:c0/a

Υc1:c0/a

⋊⋉c3↓c2

⋊⋉c3↓c2

⋊⋉c3↓c2

σcp=cs

σcp=cs

σcp=cs Υc3:ϕc

Υc3:ϕc

Υc3:ϕc

Tmpcs

χcp:cntrc1 (p1)++

χcp:cntrc1 (p1)++

Υc2:c1/b

⋊⋉c2↓c1

⋊⋉c2↓c1

Υc2:ϕb

Υc2:ϕb

Tmpcs
c1

⋊⋉c1↓c0

Υc1:ϕa

Tmpcs
c1,c0

χcp:cntrc1,c0 (p1)++

Fig. 3 Translation Example

in the previous step, in the last step, they have to be
altered to recognize the new variable c0. Note, of course,
there are situations in which we can detect group bound-
aries without regarding all indicated variable bindings.
However, the recognition of such situations is out of the
scope of this paper.

5 Query Unnesting

With the introduction of the structural join into a NAL
expression, we abandoned the explicit node-at-a-time
path processing inherent to the D-Join operator. But
still, the implicit node-at-a-time processing resulting from
the evaluation of path steps in selections is present. In
this section we will provide a set of unnesting rules to
“expose” these hidden path step evaluations. We do not
claim to have found all interesting rewritings possible,
but we think, we cover the most common cases.

In this section, we will introduce unnesting rules for
existential, conjunctive, disjunctive, and negated predi-
cates. Furthermore, we will consider predicates based on
aggregate functions. In all nested expressions, we assume
relative path expressions to be present12. Our query un-
nesting strategies are not covered by the rules in [5, 21].

12 Selections without nested path expressions are considered
to be constant or positional.
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Both contributions do not base their rewritings on the
structural join operator.

5.1 Single-Path Predicates.

In the canonical XPath-to-NAL translation, path predi-
cates are mapped onto selection operators. For an exam-
ple see Figure 1. Relative path predicates require a pair
of map operators (χcn:ci , χc0:cn) to “glue” the context of
the outer expression to the subscript of a selection. The
inner map is the starting point for a cascade of operators,
the first one of which is a structural join (in NALSTJ).
Our goal is to “extract” the inner path expression and
join it with the outer expression, thus abandoning the
inherent node-at-a-time processing introduced by the se-
lection operator. In some cases, we can replace the select
operator completely. In other cases, we have to adjust
the subscript to the new situation, using variable refer-
ences to access necessary information, now produced in
the outer expression. In the simple case, when the XPath
predicate (and accordingly the selection subscript) con-
tains only one relative path expression, we use the fol-
lowing generic unnesting rule:

σΦ(π(χc0:cn(�)))(χcn:c0(e0)) =

ΠA(e0) ◦ σΦ($g) ◦ νg:A(e0)(e01c1θc0 π′)
(3)

At the left-hand side of this rule, you can find the above
mentioned pair of map operators: The outer expression
e0 binds attribute c0, which is then mapped onto cn; in
the inner expression, e0 is re-established from the con-
text attribute cn. Variable π is a NALSTJ path expres-
sion depending on the context node given by the outer
expression, i. e.,

π(χc0:cn(�)) = ((χc0:cn(�) ⋊⋉c1θ1c0 e1)... ⋊⋉cnθnc0 en)

In the following, we will simply abbreviate π(χc0:cn(�))
occurring in a selection subscript by πχ. Φ is—as in the
previous rewriting rules—a sequence of NALSTJ opera-
tors, but this time, it may not be the identity function.
At the right-hand side we find a modified π′. The in-
ner path expression π is extracted and joined with the
outer e0, using attribute c1 of π in the join condition.
Note, there is no need for map operators anymore, i. e.,
π′ does not depend on χc0:cn(�). This means that π′ now
has the form

π′ = ((e1 ⋊⋉c2θ1c1 e2)... ⋊⋉cnθnc0 en)

We denote this circumstance by the omission of the argu-
ment of π′. In the general case, the join operator has to be
a left-outer join (1), because, as in the previous section,
for some predicates Φ, the non-existence of a path π is
of importance. To handle different evaluation contexts, a
nest operator is inserted, which groups by all attributes,
except those of π′. The selection is now executed on the

grouped π′, referencing the group by the variable $g. Af-
ter the selection, no information about the path π′ is
required anymore. Therefore, it is projected out. We will
now show the correctness of the rewriting.

Theorem 3 For a relative path expression π depending
on the local context provided by the two map operators
χcn:c0 and χc0:cn for outer expression e0 and the NALSTJ

predicate Φ, the rewriting presented in Rule (3) is correct.

Proof : We first rewrite the selection operator in the
following way: σp(e) = ΠA(e) ◦ σx=⊤ ◦ χx:p(e). On the
right-hand side, the result of the predicate’s evaluation
has been made explicit: the map operator calculates the
predicate on each tuple of input e and binds the result
(⊤ for “true”, and ⊥ for “false”) onto a new attribute x.
The intermediate sequence is then filtered by a “simpler”
selection operator and, finally, the additional attribute x
is projected out. With the definition of the map operator,
we can now write:

χx:p(e) =

n
⊕

i=1

αi(e) ◦ [x : p(αi(e)] =

n
⊕

i=1

αi(e)×px(αi(e))

For the term on the right-hand side, we simply used the
definition of the product operator (×) and “integrated”
the construction of the new tuple (binding x) into the
predicate, denoted by px

13. This expression is obviously
a D-Join. Therefore, we can write:

σp(e) = ΠA(e) ◦ σx=⊤(e 〈px〉)

We now apply this rewriting to the left-hand side of (3):

σΦ(πχ)(χcn:c0(e0)) =

ΠA(e0) ◦ σx=⊤

(

χcn:c0(e0) 〈Φx(πχ)〉
)

The same question as in the previous section arises: How
can Φx be extracted and how can the D-Join be replaced
by a structural join? From [4] we learn, that predicates
containing relative paths are translated using an aggre-
gation operator. For example the predicate in a[.//b] is
translated using a Ax:exists operator. Because the above
expression has the same structure as the expressions shown
in the proof for Rule (1) and (2) (except for the explicit
context node mapping), we can use those rewritings here.
With Φx being identified as group based, we can write:

ΠA(e0) ◦ σx=⊤

(

χcn:c0(e0) 〈Φx(πχ)〉
)

=

ΠA(e0) ◦ σx=⊤ ◦ Φx:$g ◦ νg:A(e0)(e01c1θc0 π′) =

ΠA(e0) ◦ σΦ($g) ◦ νg:A(e0)(e01c1θc0 π′)

In the first step, Φx is extracted and a left-outer struc-
tural join is formed on e0 and π. For this structural join,

13 In many cases, this happens anyway, e. g., when a Ax:exists

aggregation is evaluated in the selection subscript.
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the map operators are not required anymore. If predi-
cate Φ does not produce any input for non-existent paths
(i. e., for an empty input, as before), we can safely use an
ordinary structural join (⋊⋉) here. Because the extracted
Φx is group based, the proper groups have to be estab-
lished by a nest operator. Φ evaluates now on the group
variable $g. In the second step, we merge Φ and the se-
lection operator. ⊓⊔

While this rule is directly applicable, there are further
refinements for special cases that result in a much simpler
rewriting.

Unnesting Existential Predicates. Sometimes plain path
predicates like in a[b/c] occur. In NALSTJ, those ex-
pressions are compiled to an aggregation in combination
with an exists in the selection subscript. They can be
unnested with the following rule, introducing a semi-join
operator:

σAx:exists(πχ)(χcn:c0(e0)) = e0 ⋉c1θc0 π′ (4)

Note, on the right-hand side, π′ is evaluated, before the
structural join is computed. Essentially this means that
π′ is not evaluated in the context of e0 anymore. This
could be problematic, if π′ returns a large number of
intermediate tuples. Another solution is viable as well,
where path expression π is exposed:

σAx:exists(πχ)(χcn:c0(e0)) =

ΠD
A(e0)

((e0 ⋊⋉c1θc0 e1) · · · ⋊⋉cnθcn−1 en)
(5)

In the case of a negated path predicate, e. g., a[not(b/c)],
we use an anti-join operator:

σAx:¬exists(πχ)(χcn:c0(e0)) = e0 ⊲c1θc0 π′ (6)

Unnesting Predicates with Aggregate Functions. If the
nested sub-expression contains an aggregate function,
e. g., as in a[count(b) > 3], we can unnest this query using
a group-by in combination with the aggregate function:

σΦ(Ax:f (πχ))(χcn:c0(e0)) =

ΠA(e0) ◦ σΦ($x) ◦ Γx;=A(e0);f (e01c1θc0 π′)
(7)

Note, the above depicted situation does not naturally oc-
cur in a NALSTJ expression, because an aggregation op-
erator is translated to a grouping operator when a struc-
tural join is introduced (see previous section). However,
this rule can be relaxed, when the aggregate function is
applied to the complete path in the XPath predicate, as
in the example above, retaining the aggregation opera-
tor. An example for this rule is contained in the final
example at the end of this section. A more complicated
situation occurs, when the aggregate function is applied
to some sub-path, as in a[b/count(c) > 3]. Then, due to
the introduction of the structural join, a group opera-
tor has to occur in the selection, instead of the simple

a) NALSTJ Expression

b) Unnested Expression

e0

πχ

Φ

π′

. . .

σ

χcn:c1

⋊⋉c1↓c0

χc0:root(cn) Υc1:ϕa

Ax:exists

σx>3

Γx;={c0,c2};count1c3↓c2

⋊⋉c2↓c0

χc0:cn Υc2:ϕb

Υc3:ϕc

. . .

ΠD
{e0,e1}

σx>3

Γx;={c0,c1,c2};count

⋊⋉c2↓c1

⋊⋉c1↓c0

χc0:cn Υc1:ϕa

1c3↓c2

Υc2:ϕb
Υc3:ϕc

Fig. 4 Example for Rule (8) on query a[b/count(c) > 3]

aggregation operator. This make the following rewriting
necessary:

σAx:exists◦σΦ◦Γx;=A;f (πχ)(χcn:c0(e0)) =

ΠD
A(e0) ◦ σΦ ◦ Γx;=A∪A(e0);f (e0 ⋊⋉c1θc0 π′)

(8)

An example for this rather complicated rule is depicted
in Fig. 4.
The correctness of Rules (4) to (8) can be shown in a
similar fashion as the proof of Rule (3). Note, the left-
outer join operators (1) in rewritings (3) and (7) are
only required, if the participating operators (Φ and A)
produce an output for an empty input sequence. As in
the previous chapter, these left-outer joins can be sub-
stituted by ordinary joins, if this is not the case.

5.2 Multi-Path Predicates

In contrast to the previous rewriting rules, Φ may not be
unary anymore, because in one predicate, several path
expressions can be evaluated “simultaneously”. This leads
to a generic unnesting rule for the complex case, when
multiple path expressions are located in a single attribute:

σΦ(πχ
1 ,...,πχ

n)(χcn:c0(e0)) =

ΠA(e0) ◦ σΦ($g1,...,$gn) ◦ νg1:A(π′
1)
◦ · · · ◦ νgn:A(π′

n)

((e01c1θc0 π′1) · · ·1cnθc0 (π′n))

(9)
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Here, Φ is n-ary, depending on a set of path expressions.
Because all path expressions are evaluated in the same
local context, the depicted nesting is actually possible:
no nesting of already nested sequences may occur. The
only critical issue arising is the calculation of a nesting,
where attributes compared for equality may be sequence
valued. This is, however, not a problem of the logical
algebra, but has to be solved at the physical level. One
strategy, for example, would be to abandon the nest op-
erators and modify the subsequent operators to make
them group aware14. Another possible solution is to inte-
grate the generation of nested groups into physical struc-
tural join operators, as sketched in [17]. The correctness
of the above rule can be shown by an induction of the
paths to be extracted. This proof works in a similar fash-
ion as the one for Rule (3). As before, depending on Φ
the left-outer join can be replaced by an ordinary one for
certain πi.

Again, we provide some rewriting rules for special
cases in the following.

Rewriting Conjunctive Predicates. Whenever possible, we
normalize the subscripts of selections into a disjunctive
form, i. e., e1 ∧ (e2 ∨ e3) = (e1 ∧ e2) ∨ (e1 ∧ e3). We are
aware that, by multiplying e1, common subexpressions
are introduced. Again, this is not a problem for the log-
ical algebra, but the physical plan generator has to deal
with it. Every time we have to introduce common subex-
pressions, we give the plan generator a hint to signal their
correspondence.

The first rewriting handles conjunctive expressions.
For them, we rewrite the query using the well-known
equivalence:

σe2∧e3(e1) = σe2 ◦ σe3(e1) = σe3 ◦ σe2 (e1) (10)

Thus, the problem of multiple-path expressions is re-
duced to the problem of single-path expressions.

Rewriting Disjunctive Predicates. Disjunctive predicates
may be handled similarly to conjunctive ones (i. e., re-
duction to single-path expressions) using the sequence
merge operator:

σe2∨e3(e1) = σe2 (e1) ·∪σe3(e1) = σe3 (e1) ·∪σe2(e1) (11)

Again, this rewriting requires special care from the plan
generator to handle the multiplied occurrences of expres-
sion e1. When subexpressions of the disjunction are ag-
gregated using the exists() function, they can be ex-
tracted by using left-outer joins:

σAx:exists(πχ)∨e2
(χcn:c0(e0)) =

ΠD
A(e0) ◦ σ(A(π′) 6=ǫ)∨e2

(e01c1θc0 π′)
(12)

14 This technique has already been applied in the stacked
translation, where the Tmpcs operator is converted to a
group-aware Tmpcs

ci
operator

The notation A(π′) 6= ǫ essentially has the meaning ∀a ∈
A(π′) : a 6= ǫ, i. e., π′ has provided a join partner in the
left-outer join. Of course, the map operator χcn:c0 can
only be abandoned, if expression e2 does not contain
any relative path anymore. In the case, when multiple
path expressions in a general disjunction may occur, the
query can be rewritten as:

σΦ1(πχ
1 )∨Φ2(π

χ
2 )(χcn:c0(e0)) =

ΠA(e0) ◦ σ(Φ1($g1)∨Φ2($g2))◦

ν
g1:A(π′

1)
◦ ν

g2:A(π′
2)

((e01c1θc0 π′1)1c2θc0 π′2)

(13)

In Rule (12) and (13), the left-outer join cannot be re-
placed by an ordinary join, because then we would ac-
cidentally “throw away” intermediate results. For exam-
ple, by using an ordinary join between a and b for expres-
sion a[b ∨ c], we would miss all a elements which should
be part of the final result due to c.

Unnesting Path Comparison Expressions. In the NAL
compilation process, predicates of the form [e1θe2] are
translated into an Ax:exists predicate. Therefore, with
Rule (4), we can also unnest predicates that contain
a comparison of a path with a constant (simple path
comparison expression). For example, the query a[b > 3]
can be translated and unnested into the NALSTJ expres-
sion15

ΠD
(

χcn:c1

(

(χc0:cn ⋊⋉c1↓c0 Υc1:ϕa) ⋉c2↓c1 (σ>3(Υc2:ϕb
)
)

)

However, because Φ is unary, this rewriting rule does not
provide any help in case of complex path comparison
expressions like a[b/text() = c/text()]. In such a case,
the following unnesting rule can be applied.

σAx:exists◦Φθ(πχ
1 ,πχ

2 ))(χcn:c0(e0)) =

ΠD
A(e0) ◦ σ($c1θ$c2)((e0 ⋊⋉c1θc0 π′1) ⋊⋉c2θc0 π′2)

(14)

In this rule Φθ is the compilation of the existential com-
parison as introduced in [4]. For example π1 = π2 would
be compiled into Aexistsπ1 ⋉ π2. Rule (13) is promising,
because it may be implemented very efficiently. At the
right-hand side, the selection operator simply compares
two attributes. This comparison has non-existential se-
mantics, in contrast the existential semantics on the left-
hand side. The generated tuple stream is in document
order. Therefore, the duplicate elimination operator is
simply a buffered filter with a buffer size of one tuple.

15 Because 3 is a constant, we do not compile it using an
aggregation, e. g., Amaxcn(3), as suggested in [4].
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a) NALSTJ Expression

b) After Rule (12)

c) After Rule (7)

e0

e0

πχ

πχ

e2

Φ

. . .

σ

χcn:c1

⋊⋉c1⇓c0

χc0:root(cn) Υc1:ϕa

or

Ax:exists

⋊⋉c2⇓c0

χc0:cn σc2=“foo”

Υc2:ϕc

Ax:count > 3

⋊⋉c3↓c0

χc0:cn Υc3:ϕb

. . .

ΠD
c0,c1

σ

χcn:c1

⋊⋉c1⇓c0

1c2⇓c1

χc0:root(cn) Υc1:ϕa

σc2=“foo”

Υc2:ϕc

or

c2 6= ǫ Ax:count > 3

⋊⋉c3↓c0

χc0:cn Υc3:ϕb

. . .

ΠD
c0,c1

σ

Γx;={c0,c1,c2};count1c3↓c11c2⇓c1

⋊⋉c1⇓c0

χc0:root(cn) Υc1:ϕa

σc2=“foo”

Υc2:ϕc

Υc3:ϕb

or

c2 6= ǫ x > 3

Fig. 5 Unnesting of query //a[.//c = foo ∨ count(b) > 3]

An Unnesting Example. We will conclude the discussion
of query unnesting with an example. Consider the XPath
expression /desc :: a[child :: c = “foo” ∨ count(desc ::
b) > 3]. Its NALSTJ compilation is presented in Fig-
ure 5a. To keep this example simple, we slightly devi-
ated from the originally generated NALSTJ expression:
instead of employing a semi-join operator for the compi-
lation of the first XPath predicate (as suggested in [4]),
we used a selection operator for the check of “foo”. Fur-
thermore, we use Ax:count > 3 as a predicate instead of
a more complex expression relying on the group opera-
tor16. In the first step, Rule (12) can be applied. This re-
sults in a mandatory left-outer join between e0 and πχ. In
the second step, we can apply Rule (7), because now the
selection contains only one relative path expression. Rule

16 This is actually possible, because the aggregation is cal-
culated for the complete path, as described in the discussion
of Rule (7).

(7) also introduces a left-outer join and, additionally, a
group operator. Because the structural join operators are
now “neighbors”, it is easy to reorder the join operators,
as described in [27]. Furthermore, the mapping onto a
single holistic twig join operator is also straightforward.

Finally, a slight optimization can be pointed out: the
check for “foo” can simply be integrated into the node se-
quence access (Υϕc∧“foo”

). In a physical algebra, this type
of access could be supported by an appropriate content
and structure index.

6 Pushing Down Structural Joins

The mapping of a logical algebra expression to its cor-
responding physical one is out of the scope of this pa-
per. However, when thinking about this mapping, two
interesting questions arise: How can a logical expression
be “prepared” to facilitate the logical-to-physical alge-
bra mapping and how can the problem of structural join
order selection be tackled? We think the answer to these
questions lies in a special operator tree format, where the
tuple-generating structural joins are located at the bot-
tom of the tree (as in Figure 5c), and filtering/selection
operators occur as inner nodes. In this representation,
logically related path processing operators are situated
close to each other. Because no selections or other oper-
ators interfere, it is easy to determine the different parts
to be mapped onto a holistic twig join operator, a path
index access, or onto the structural join operator. This
operator tree format can be generated by lifting non-
structural join operators out of either side of a struc-
tural join operator. For example, in Figure 3d, from the
left side of the final structural join, the selection, Tmp,
and χ operators could be lifted, pushing down the struc-
tural join to the bottom of the tree. In Table 3 we pro-
vide rewriting rules to accomplish such restructurings.
We are aware that these rules have an immediate im-
pact on the costs of the query, because the evaluation of
selections—minimizing the intermediate result size—is
deferred. However, using the same set of rules, these se-
lections may be pushed back into their original places, af-
ter the logical-to-physical mapping has been performed.

Because these equivalences may be read from either
side, they also provide a way to push down non-structural
operators. Again, we do not claim to have found all inter-
esting rewritings possible here. In addition to the rules
depicted in Table 3, we have found rules to push down a
join over the special operators Tmpcs

cj
and χcp:cntr(p)++.

However, their discussion is beyond the scope of this pa-
per.

To conclude the discussion about logical query rewrit-
ing, we point out some limitations that may provide a
starting point for future research:

• Although developed in the context of XPath, the
given equivalences may also be applied in algebra
expressions for general XML queries ([21] shows an
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Table 3 Join Push-Down Equivalences

Operator Rule Condition

σp (Selection) σp(e1) ⋊⋉c2θc1 e2 = σp(e1 ⋊⋉c2θc1 e2) F (p) ∩ A(e2) = ∅

ΠA (Projection) ΠA(e1) ⋊⋉c2θc1 e2 = ΠA∪A(e2)(e1 ⋊⋉c2θc1 e2) c1 ∈ A

ΠD (Dup. Elim.) ΠD(e1) ⋊⋉c2θc1 e2 = ΠD(e1 ⋊⋉c2θc1 e2) e2 duplicate free

ΠA (Projection) ΠA(e1) ⋊⋉c2θc1 e2 = ΠA(e1 ⋊⋉c2θc1 e2) A ∩ A(e2) = ∅ ∧ c1 6∈ A

Γx;=A;f (Group) Γx;=A;f(e1) ⋊⋉c2θc1 e2 = Γx;=A∪A(e2);f (e1 ⋊⋉c2θc1 e2) c1 ∈ A

νg:A (Nest) νg:A(e1) ⋊⋉c2θc1 e2 = νg:A∪A(e2)(e1 ⋊⋉c2θc1 e2) c1 ∈ A

µg (Unnest) µg(e1) ⋊⋉c2θc1 e2 = µg(e1 ⋊⋉c2θc1 e2) c1 6∈ A(g)

XQuery-to-NAL compilation). However, we do not
provide any means to “find” twig patterns in an al-
gorithmic expression, as [23] does.
• We do not claim to have found all possible rewritings.
• A “blind” application of the equivalences is not pos-

sible in general. Therefore, a concise cost model and
document statistics are required.
• We did not provide any rules to reorder structural

joins (see [27] for further research).
• We did not show how to generate XML query plans,

i. e., how to actually employ the Holistic Twig Join
and access to path indexes.

7 Quantitative Results

To substantiate our findings, we compared the different
evaluation strategies by a one-to-one comparison on a
single-user system. We implemented the operators of the
NALSTJ algebra in the XTC system. Because we wanted
to keep the comparison between a pure NAL expres-
sion and the NALSTJ variants of a query simple and,
because we do not elaborate on a sophisticated logical-
to-physical algebra mapping in this paper, we just used
the algorithm presented in [1] for the implementation of
the structural join.

System Testbed. XTC is one of the few native database
systems providing fine-grained transaction isolation over
shared XML documents. In XTC, each XML node has a
unique stable path labeling identifier (SPLID [13]). We
refined the ORDPATH [24] concept for the implemen-
tation of SPLIDs. For document storage, each node is
mapped onto a record, containing the SPLID and the
encoded node data. All records of a document are stored
in a B*-Tree, comprising the document container.

Furthermore, the element index provides for fast ac-
cess to elements with the same element name (see Figure
6). It is a two-way index, consisting of a name direc-
tory (B-Tree) and a set of node-reference indexes. Given
a context node cn, the element index can be used to
calculate the sequence of all elements having a specific

book

author title

1.3.5 1.3 1.3.7

each sorted in docorder

name dir

node-reference
indices
(B*-Trees)

(B-Tree)

Fig. 6 Element Index

name on a specific axis. Such queries are simply trans-
lated to range queries over a particular node-reference
index. This is exactly, how we implemented the evalua-
tion of the Υ operator. XPath predicates subject to the
value content of XML nodes are evaluated on the docu-
ment index.

Query Workload. The query workload depicted in Ta-
ble 4 was run on four XMark [26] documents of size 120
KB, 1.2 MB, 12 MB, and 112 MB (factors 0.001, 0.01,
0.1, 1). Each query was compiled into the pure NAL
stacked translation and into its (optimized) unnested
equivalent in NALSTJ. To address various XPath use
cases, we tested the following types of queries: a purely
structural query, a query relying on position, a content-
based query, and a query with aggregations. For the
structural query, the NAL expression does not examine
all dependent paths in the path predicate. When the first
matching path is found, the evaluation of the predicate
is accomplished.

Results. Our tests were carried out on an Intel XEON
computer (four 1.5 GHz CPUs, 2 GB main memory,
300 GB external memory, Java Sun JDK 1.5.0) as the
XDBMS server machine and a PC (1.4 GHz Pentium IV
CPU, 512 MB main memory, JDK 1.5.0) as the client,
connected via 100 MBit ethernet to the server. All tests
were issued on a hot DB buffer of 250 16KB-sized pages.

Our first observation is that the figures of all queries
look very similar. On the small document, both NAL and
NALSTJ show the same performance. However, as the
documents and the result sizes grow larger, the NALSTJ

optimized expressions are roughly one magnitude faster
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Table 4 Query Workload

No Query Characteristics

Q1 //closed auction/annotation/description[parlist/listitem/text/keyword] purely structural

Q2 //open auctions/open auction/bidder[position() = last() ∨ position() = 1] positional

Q3 //item[.//date = “20/07/2000” ∧ ./payment = “Creditcard”] content based

Q4 //item[count(.//text//bold) > 5 ∨ count(.//mail) > 3] aggregational

Fig. 7 Queries Q1, Q2, Q3, and Q4

(note, we used the log scale on the x-axis and the y-
axis). The only exception is the content-based query Q3.
Furthermore, we notice that both strategies scale with
respect to the size of the input document.

The major explanation for the above effects is the rela-
tion between node-at-a-time path processing (D-Joins in
NAL) and set-at-a-time path processing (structural joins
in NALSTJ). For example in NAL, query Q4 is evaluated
by accessing all item elements and, for each such ele-
ment, evaluating the predicate. This implies a repeated
access to the element index to scan the depending predi-
cate paths. In contrast to this, set-at-a-time requires only
few element index scans which are carried out in a se-
quential fashion. On small documents where only a few
intermediate tuples occur, the distinction between the
two processing styles does not carry much weight. How-
ever, when the element index has to be accessed over
and over again, e. g., due to a large input in a selection
predicate, access costs explode.

The problem with query Q3 is that, for NALSTJ, Q3
also requires node-at-a-time processing to evaluate the
content predicate. This is due to the lack of a content
index in the XTC system. If we could access text nodes
carrying the same content as easily as element nodes with
the same element name, then it would also be possible to
evaluate the equality predicate using a structural join.

We are aware that all presented queries could be eval-
uated faster, if suitable measures on the mapping from
the logical to the physical algebra were taken. For exam-
ple, Q1 could be answered more easily with the help of
a structural index, even if only a sub-path of the query
could be evaluated by that index. For queries with po-
sitional predicates, special evaluation algorithms resem-
bling structural joins have been proposed [29]. In query
Q3, a text index, as sketched above, would be very bene-
ficial. A structural join reordering could take the selectiv-
ity of the text predicate into account and start the eval-
uation by the computation of a structural join between
the date elements and the value “07/05/2005”. However,
to keep the two strategies comparable, we contented our-
selves with the simple mapping sketched above.

8 Conclusions

To the best of our knowledge, this is the first article deal-
ing with the introduction of the structural join operator
into a tuple-based XPath algebra. With our contribu-
tion, we hope we can bridge the gap between the many
promising algebra proposals on one side and the equally
many proposals on evaluation algorithms (physical oper-
ators) for XML queries on the other side. We are aware
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that this is only an initial step towards the integration of
these valuable concepts, because many problems regard-
ing the logical-to-physical algebra mapping are still left
out, e. g., join reordering, cost-based optimization, etc.

With the structural join, it is now possible to sub-
stitute implicit (selections) and explicit (D-Join) node-
at-a-time processing steps in operator plans. Note, this
is accomplished at the logical level only; a physical im-
plementation may freely choose to implement a query,
predicate, or even only a structural join in a node-at-a-
time manner (for the last point, see [18]), nevertheless.
Even hash-based strategies may be applied [19]. The de-
cision to do so depends on physical issues and cannot
be determined at the logical level. However, we provided
essential rewriting rules to ensure this flexibility.

Even with the given simple mapping from a logical
algebra expression to a physical one (taking only the
algorithm from [1] into account), we gained an order of
magnitude in the performance of query evaluation.
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