
Embedding Similarity Joins into Native XML Databases

Leonardo Ribeiro, Theo Härder

University of Kaiserslautern, 67653 Kaiserslautern, Germany

{ribeiro|haerder}@informatik.uni-kl.de

Abstract. Similarity joins in databases can be used for several important tasks
such as data cleaning and instance-based data integration. In this paper, we ex-
plore ways how to support such tasks in a native XML database environment.
The main goals of our work are: a) to prove the feasibility of performing tree
similarity joins in a general-purpose XML database management system; b) to
support string- and tree-based similarity techniques in a unified framework; c)
to avoid relying on special data preparation or data structures to support simi-
larity evaluation, such as partitioning or tailor-made index structures; d) to
achieve a seamless integration of similarity operators and the existing database
architecture.

1 Introduction

Originally adopted as common syntax for data exchange, XML is increasingly used to di-
rectly represent pieces of information which are managed and maintained in a collabora-
tive way. As a consequence, XML documents often have to be persistently stored in da-
tabases. As a result, large XML datasets are emerging for which transactional guarantees
in multi-user environments such as integrity (data/relationship consistency) and concur-
rency control are required. Therefore, they depend upon similar maintenance tasks as their
relational counterparts.

1.1 Important Application Areas

A basic maintenance procedure is data cleaning which deals with identifying and correct-
ing data inconsistencies. A frequent form of inconsistency in data collections is the pres-
ence of multiple representations of a real-world entity. Among other inconveniences, the
presence of such redundant information can erroneously inflate estimates of categories
and, later, cause incorrect results in decision support queries. Even worse, values diverg-
ing from one another in redundant representations of the same entity may confuse consis-
tency maintenance itself. Duplicate data arise due to instance level problems, such as mis-
spellings or different naming conventions, and cannot be prevented by concepts like in-
tegrity constraints. The problem has been explored since the late 1950s by several
research communities, including statistics, databases, natural language processing, and
bioinformatics. In the database area, this problem is commonly referred to as the fuzzy du-
plicate problem to differentiate it from the standard duplicate problem, which considers
two data instances to be duplicates if they are exact copies of one another. Along this pa-
per, we use duplicate to mean fuzzy duplicate except when explicitly stated otherwise.

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

285

XML poses additional challenges to the duplicate elimination. Features such op-
tional elements and attributes can result in document fragments with equal content but
highly different structure. Moreover, the flexible nature of XML (and of the applications
that use it) usually requires multiple or evolving schemas, too. Structural information may
therefore be necessary to identify duplicates. We believe that such characteristics make
XML datasets even more prone to the appearance of duplicates in comparison with rela-
tional ones.

1.2 Preliminaries and Related Work

An approach to tackle the duplicate problem is the use of similarity joins. In the relational
model, a similarity join pairs tuples from two relations whose specified attributes are sim-
ilar. The similarity of these attributes is expressed using a similarity function and a pair of
tuples is qualified if the similarity function returns a value greater than a given threshold.
In the XML model, the similarity join is applied to document fragments and the arguments
of the similarity function are subtrees rooted at given elements that need to be matched
[10]. Commonly used in data integration scenarios [6], a similarity join operator is also
relevant for duplicate elimination, e.g., by using self-joins [2] or validating incoming data
against reference relations [3]. An attractive aspect of similarity joins is the opportunity
of exploiting query processing capabilities of the underlying database management sys-
tem. Similarity joins are also referred to as approximate joins.

Guha et al. [10] propose a general but, to some extent, static framework for XML
similarity joins using the notion of tree edit distance. Their optimization techniques pri-
marily address the saving of distance computations, where upper and lower bounds for the
tree edit distance are used as filters. Because each XML document is represented by a dis-
tance vector using a pivot-based approach, this method is less flexible, in particular, for
dynamic documents. Our query-based framework, in contrast, easily copes with docu-
ment updates, because it does not rely on pre-calculated distances. Furthermore, we refine
our framework by embedding efficient XDBMS access operators and by evaluating the
similarity join in a tailor-made XTC system environment.

The support of different similarity functions is an important requirement for a sim-
ilarity join framework. Recent works have explored set overlap to generalize a variety of
similarity functions in the context of similarity joins [6, 17]. Informally, specified fields
or elements to be used for comparison are first converted to sets, e.g., mapping strings to
sets by means of a token generation method, and then predicates are applied to measure
the partial set overlapping according to a specified similarity function. This approach can
be used to exploit several similarity functions, e.g., Jaccard coefficient and Hamming dis-
tance, as well as to apply effective filters for metrics such as string edit distance [9].
Chaudhuri et al. [5] implemented this concept, called therein set similarity joins, by com-
posing standard relational operators in a pipelined fashion.

1.3 Our Contributions

To the best of our knowledge, approximation algorithms, in general, are hardly explored
in the context of XML DBMSs, so far. As explained in the following, a similarity join op-
erator is usually applied in a domain- or application-dependent way. Therefore, the indi-
vidual algorithms used in such operators are highly application-specific and tailored to-
wards the specific kinds of data such that their deep integration into the DBMS is not ad-

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

286

equate. Hence, we have to identify ways how to suitably integrate a collection of such
approximation-supporting algorithms, how to select them for a specific application from
a kind of framework, and how to combine or parameterize them for effective solutions.
Our specific contributions in this work are:

• to support string- and tree-based approximation techniques for similarity joins in a
unified framework

• to achieve a seamless integration of similarity operators and the existing database ar-
chitecture while taking advantage of the given database internals to access the XML
documents stored on disk and optimize the processing steps towards the final similar-
ity result

• to prove the feasibility to efficiently process tree similarity joins in a general-purpose
XML database; this aspect has to regard the behavior of all DBMS components in
multi-user mode (e.g., locking as well as logging & recovery)

• to give some (initial) quantitative results by conducting empirical experiments and
performance measurements using our prototype XML database system called XTC
(XML Transactional Coordinator) [13].

This paper is organized as follows. In Section 2, we briefly sketch important def-
initions for our operators and similarity measures. Section 3 describes how similarity joins
are performed at an abstract level independently from a concrete DBMS implementation
whereas Section 4 sketches the sequence of steps to derive a join result. At this point, Sec-
tion 5 introduces some internals of our XTC system, before we are able to outline the spe-
cific implementation of the similarity join operator in Section 6. We present our experi-
mental work and the results gained in Section 7, before we wrap up the paper in Section 8.

2 Definitions

According to common practice, we model an XML document as an ordered labeled tree.
Similarly to the DOM data model [8], we distinguish between element nodes and text
nodes. We make no distinction however between element nodes and attribute nodes and
consider each attribute as child of its owning element. We also disregard other node types
such as Comment, CDATA, Entity, etc., and consider only data of string type. Finally, we
assume a node labeling scheme that uniquely identifies all nodes in an XML collection
and captures the containment relationship among the nodes in an XML document. Note
that such a labeling scheme is an indispensable capability in a native XML database. See
[12] for a comprehensive study.

2.1 Similarity Joins on XML collections

A general tree similarity join takes as input two collections of XML documents (or docu-
ment fragments) and outputs a sequence of all pairs of trees from the two collections that
have similarity greater than a given threshold. The notion of similarity between trees is
numerically assessed by a similarity function used as join predicate and applied on the
specified node subsets of the respective trees.

Definition 1 (General Tree Similarity Join) Let and be two forests of XML trees.
Given two trees and , we denote by a similarity function on node sets

F1 F2
T1 T2 sim T1 T2,()

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

287

of and , respectively. Finally let , be a constant threshold. A tree similarity join
between and returns the following result:

Note that we have defined the similarity function to be applied to node sets instead
to trees. When comparing trees, we need the flexibility to evaluate their similarity using
node subsets that do not have containment relationships among them, for example, in case
of a node set only consisting of text nodes. Recall that, if structure matters, the labeling
scheme allows to identify containment relationships among a set of nodes.

2.2 Set-overlap-based Similarity Measures

Several similarity measures can be reduced to the problem of set overlap or multi-set1
overlap [4, 17]. Given two sets representing two objects, different ways to measure their
overlap raise various notions of similarity (or dissimilarity). There are several examples
of such measures, among others Jaccard similarity, generalized edit distance [3], and
Hamming distance. We observed that the method used to map an object to a set also has
influence on the notions of similarity, since it can determine the properties of the object
under consideration by the similarity measure. For example, given an XML tree, we can
produce sets representing its textual or structural information (in the approximation
sense). Therefore, the overall set-overlap-based similarity calculation unfolds two opera-
tions that can be independently dealt with: conversion of objects to sets and, hereafter, set-
overlap measurement. In the following, we present the methods used to convert XML tree
information to sets and to represent the set-overlap measurement in join predicates.

2.2.1 Mapping Text to Sets

When the objects of interest are represented by strings, e.g., a set of text nodes, the well-
known approach is to convert them to a set of tokens. Tokens are normally considered as
words or as q-grams, i.e., continuous substrings of size q.

Example 1: Consider the strings “IBM Corporation” and “IBM Corproation”.
They can be converted to the following 3-grams sets:

The method used for token generation influences another similarity measure prop-
erties such as the ability to capture misspellings (e.g. word-based vs. q-gram), result qual-
ity, and space overhead (e.g. different values for q in q-gram methods [9]).

2.2.2 Mapping Structure to Sets

We use the notion of p-q grams presented by Augstein et al. [1] to map the tree structural
information to a set. Next, we briefly review the basic definitions of this method.

Given a tree and integral values for and , an extended tree is
constructed from by inserting null nodes as follows: ancestors to the root node;

 children before the first and after the last child of each non-leaf node; q children to
each leaf node. Figures 1(a) and (b) show tree and its extended form , respectively.

1 In the following, we make no distinction between sets and multi-sets, referring to both concepts as sets.

T1 T2 γ
F1 F2

T1 T2,() F1 F2×∈ sim T1 T2,() γ≥() TRUE≡{ }

s1: ’IBM’ ’BM ’, ’M C’ ’ Co’ ’Cor’ ’orp’ ’rpo’ ’por’ ’ora’ ’rat’ ’ati’ ’tio’ ’ion’, , , , , , , , , ,{ , }
s2: ’IBM’ ’BM ’, ’M C’ ’ Co’ ’Cor’ ’orp’ ’rpr’ ’pro’ ’roa’ ’oat’,’ati’ ’tio’ ’ion’, , , , , , , , ,{ , }

T p 0> q 0> T p q,

T p 1–
q 1–

T T2 3,

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

288

Next, fixing an anchor node a, a pq-gram g of is a subtree of composed of
labels from the following nodes: p nodes , that represents the p-part of g,
where ai is the ancestor of a at distance i; q contiguous children of a, that re-
present the q-part of g. Figure 1(c) shows a pq-gram of in Figure1(b). Finally, a pq-
Gram Profile is obtained by the labels of all pq-grams of an extended tree. Figure 1(d)
shows the resulting pq-Gram Profile.

The set of pq-grams can be easily produced by a preorder traversal of the corre-
sponding tree. In our case, the input is a stream of structural nodes received in document
order by the underlying access mechanism (covered in Section 5). The resulting pq-Gram
Profile can then be further manipulated as a set of tokens.

2.2.3 Set-overlap in Join Predicates

In [4], Chaudhuri et al. specify a general class of predicates to represent set-overlap-based
similarity measures as join predicates:

In the predicate above, ei is an expression involving constants and the cardinality
of r and s. Note that the above predicate can be seen as a zooming in on the similarity join
predicate of Definition 1.

In the following, we define a set-overlap-based similarity measure and give its
representation as a similarity join predicate. For ease of exposition, we choose the Jaccard
similarity that has a straightforward general predicate representation. We also will use it
in other examples along this paper. We refer the reader to [4] for other examples of simi-
larity functions used as set-overlap predicates.
Definition 2 (Jaccard Similarity): Let and be two sets. The Jaccard similarity, denoted by

, is defined as:.

Example 2: Consider the sets s1 and s2 in Example 1. We have
.

Finally, a predicate of the form rewritten into the general class of
predicates as follows:

T T p q,

ap 1– …a1 a,,
ci … ci q+, ,

T2 3,

a b c

a

a b c

a

* * * *

* * * * * * * * *

* *

T
T2 3

c * *

a

} p-1

anchor

{q

(*,a,*,*,a)
(a,a,*,*,*)
(*,a,*,a,b)
(a,b,*,*,*)
(*,a,a,b,c)
(a,c,*,*,*)
(*,a,b,c,*)
(*,a,c,*,*)

P2,3(T)

(a) (b) (c) (d)

Figure 1: Steps of the generation of pq-gram tokens

pred r s,() /\i r s∩ ei≥()=

r s
jacc r s,()

jacc r s,() r s∩
r s∪
---------------=

jacc s1 s2,() 9 13 13 9–+()⁄ . 0.53≅=

jacc r s,() γ≥

r s∩ γ
1 γ+----------- r s+()≥

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

289

2.3 Signature Scheme

To avoid the bulky similarity evaluation for each pair of sets, a signature scheme is com-
monly used [2]. Given a collection of sets as input, a signature scheme produces a “sum-
mary” for each set, that roughly maintains their pairwise similarity according to a given
measure. More specifically, for any two sets and , and their respective signatures

 and , we have whenever . Likewise, two
sets with similarity lower than a threshold do not share any signature. These properties
can be approximately satisfied, i.e., with probabilistically defined bounds of false posi-
tives and false negatives [5]. A variety of parameters can be combined to construct the sig-
nature, such as thresholds, characteristics of input data sets, set cardinality, etc. Essential-
ly, a signature scheme behaves like a filtering method. Next, we briefly review two meth-
ods that are currently being used in our framework.

2.3.1 Prefix-Filter

The prefix-filter signature scheme [4] is based on the following intuition: for two sets
and of size under a same total order, if , then subsets consisting of the first

 of and should intersect. Variations of this basic idea are used to handle
weighted sets and normalized similarity functions. The ordering of the sets is picked to
keep the elements with smallest frequencies in the prefix-filter signature, i.e., the elements
are ordered by increasing order of their frequency in the data collection. This relation is
commonly obtained by using the well-known inverse document frequency (or IDF)
weighting scheme.

2.3.2 Size-based Filter

A size-based filter uses the intuitive notion that, if two sets have a similarity higher than
some threshold, then their sizes should be within a same range. These ranges are defined
in specific ways for different similarity measures. For example, for Jaccard similarity,
given two sets and , the size-based filter is defined on the basis of the following ratio:

By rewriting this relationship, we have the following interval [17, 2]:

3 Tree Similarity Joins

We now delve from the abstract concept of Definition 1 into a concrete framework that
allows us to find similarities among XML document fragments over a native XML data-
base. A natural concern when dealing with duplicate identification on XML datasets is
structural heterogeneity. While it is always possible to attempt to use solely the textual
information to find duplicates, the structure of XML documents may carry valuable infor-
mation to support the final classification of a pair as duplicate or non-duplicate. Another
obvious reason to consider structural similarity is to avoid erroneous matching of docu-
ments with syntactically similar textual information, but represented by unrelated con-
cepts, i.e., elements with different tags but same content. Therefore, it is highly desirable
in a framework for tree similarity joins to evaluate both textual and structural similarity.

r s
Sig r() Sig s() Sig r() Sig s() ∅≠∩ sim r s,() γ≥

r
s c r s∩ γ≥

c γ– 1+ r s

r s

min r
s--

s
r--,

 γ≥

γ r
s-----

1
γ
---≤ ≤

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

290

Consider the simple examples in Figure 2. An application trying to match the doc-
ument fragments a) and b) could use the textual similarity to classify them as duplicate
candidates. In addition, the fact that a) and b) have the same structure can provide further
evidence for the final classification. Consider now a situation where a) being compared to
c). Again the textual similarity provides an indicator of similarity. However, c) apparently
refers to another article. Hence in this example, the evaluation of the structural similarity
could help to classify the two document fragments as non-duplicates.

Our tree similarity join (or TSJ) can be used to pair trees based on their kind of
similarity—structural, textual, or both. Therefore, it is convenient to further distinguish
TSJS, which evaluates structural similarity, and TSJT, which evaluates textual similarity.
TSJS uses only element nodes for similarity calculation, whereas TSJT uses only text
nodes. We consider a second variant of TSJS, denoted by TSJSF, in which text nodes are
used jointly with element nodes in the structural similarity evaluation. This flavor of
structural evaluation can be useful if textual data quality is not a concern. In Section 7, we
will see that TSJSF has considerable performance benefits. In the following, we use TSJS
to address both methods of structural similarity evaluation.

The evaluation of both kinds of similarity, structural and textual, is conceivable
and can be realized in differing ways. Here, we derive its results by a sequential combi-
nation of TSJT and TSJS, which we denote by TSJTS.

All similarity joins classified above use set-overlap predicates as defined in Sec-
tion 2.2.3. We indicate the related predicate by superscripts. For example, de-
notes the structural evaluation using Jaccard as a similarity predicate. TSJTS uses two such
predicates connected by a Boolean operator. Note that the evaluation of TSJTS resembles
methods based on multi-attribute similarity. In the relational scenarios, multi-attribute
methods use more than one attribute of a relation participating in the match operation. The
results of these multiple evaluations are then combined by a merging function [10] which
gives the overall similarity score. Here, we do not consider the use of merging functions
in TSJTS, but such a feature is orthogonal to our framework and could be easily added.

The starting point for a tree similarity join is the location of the root nodes of the
qualified subtrees to be matched. Here, we use an XPath or XQuery expression which de-
claratively specify two sets of nodes to define both sides of the join operands. To enable
flexibility as much as possible, we allow for separate subtree specifications, that is, the
join partners can be specified via different path expressions.

Example 3: Consider a reference XML data source, say dblp.xml, containing only known-
to-be-clean elements. Given a second file, pub.xml, we want to use dblp.xml to find dupli-
cate paper elements related to a specific author, say ’Jim Gray’. A similarity join between

Figure 2: Example XML document fragments

author

title

article

reviewer

C
XML Model

C
 Gray

C
Abiteboul

authors

author

title

author

article

C
 XMLDBs

C
 J. Gray

C
Abiteoul

C
A.Halevy

authors

author

title

author

article

reviewer

C
 XML DBs

C
 Gray

C
Abiteboul

C
Halevy

authors reviewer reviewer

C
 Halevy

a) b) c)

TSJs
jacc

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

291

article elements in dblp.xml and paper elements in pub.xml, which evaluates both the
structural and textual similarity using the Jaccard metrics, is represented by the following
expression:

4 Course of Abstract TSJ evaluation

In this section, we describe the course of abstract TSJ evaluation in our framework. Im-
plementation details are presented later in Section 6. The main steps of the overall proce-
dure are shown in Figure 3. Basically, given a set of nodes as input, the following actions
are executed: 1) the database is accessed and specified portions of the subtrees rooted at
each input node are fetched; 2) a set of tokens is generated from 1; 3) a signature for each
token set is produced; 4) candidate pairs are generated from the collection of tree signa-
tures; 5) the final overlap calculation is performed and pairs of root nodes whose subtrees
satisfy the similarity condition are output.

Subtree access is executed on top of the
storage engine by the node manager. Here, we only
discuss the main services required by our frame-
work. In a subsequent section, when some details
of our database architecture are introduced, we
show how these requirements are met. Essentially,
subtree access operations need to collect all the
nodes structurally contained in the node specified
as input. Support of predicates based on node type
is also required, i.e., to retrieve only the structural
or textual nodes from a subtree.

The following step, the token set genera-
tion, maps sets of nodes to a token set representa-
tion. The specific method is determined by the instance of TSJ being processed. For ex-
ample, TSJT produces sets of n-grams and TSJS produces sets of pq-grams (see Section 2).
Together with the subtree access, the method of token set generation fully determines the
instance of TSJ.

The next steps are the same for all instances of TSJ and follow the lines of the gen-
eral class of set-similarity joins [4]. Signatures of each set of tokens are produced using
the techniques described in Section 2.3. Next, candidate pairs are generated by joining all
sets that share at least a signature. Finally, an exact set-overlap calculation is performed
on each candidate pair and those satisfying the similarity join condition are output.

5 Providing Processing Support by XTC

Specific similarity join functionality is domain-related and optimal results depend on ap-
plication characteristics. Therefore, deep integration of such functionality into the DBMS
kernel is not recommended. In contrast, only standard core functionality (indexes, scans,
etc.) is used to extract data potentially contributing to similarity join results; join process-
ing itself is performed using a kind of plug-in at a higher layer of abstraction.

doc ″dblp.xml″()/dblp/article/[author=’Jim Gray’]TSJST
jacc doc ″pub.xml″()/pub/paper

Subtree Access

Signature Generation

Candidate Generation

Overlap Calculation

1.

3.

4.

5.

Figure 3: Course of TSJ evaluation

Token Generation2.

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

292

Similar to the relational model, joins are I/O intensive operations in the XML
world. Typically, large numbers of XML subtrees have to be located on disk, fetched to
memory, pre-processed and filtered by the tokenizer resp. pq-gram use, before extensive
similarity-join comparisons can be executed on memory-resident data structures. DBMS
integration further means to adequately support transactional multi-user operations which
directly requires selective access to XML trees (as opposed to sequential scans) and fine-
grained locking of minimal subtrees or node sets (instead of entire trees).

To provide efficient and effective solutions, space-economic storage structures
and selective index-based access to XML documents are needed in the first place. For this
reason, we have implemented a tailor-made native XML storage [13] which achieves
drastically reduced space occupancy. Therefore, it guarantees minimized I/O cost. Let us
sketch the key concepts of XML storage in XTC. In Figure 4, we have illustrated a frag-
ment of the well-known and highly dynamic DBLP document using prefix-based node la-
bels which implement the concept of Dewey order [12]. The abstract properties of Dewey
order encoding—each label consists of so-called divisions (separated by dots in the exter-
nal format) and allows to identify the path from the document’s root to the resp. node and
its local order w.r.t. the parent node; in addition, optional sparse numbering facilitates
node insertions and deletions—are described in [12]. Refining this idea, a number of sim-
ilar labeling schemes were proposed which differ in some aspects such as overflow tech-
nique for dynamically inserted nodes, attribute node labeling, or encoding mechanism.

Our scheme refines Dewey order mapping: with a dist parameter used to incre-
ment division values, it may leave gaps in the numbering space between consecutive la-
bels and introduces an overflow mechanism when gaps for new insertions are in short sup-
ply—a kind of adjustment to expected update frequencies. Since any prefix-based scheme
such as OrdPath [16] or DeweyIDs [12] can avoid relabeling under subtree insertions and
is functionally equivalent and appropriate for our document storage, we use the term
SPLID (Stable Path Labeling IDentifier) as synonym for all of them. Each node essential-
ly carries the labels of all ancestors up to the root of the tree. SPLIDs effectively support
the evaluation of all XPath axes, can be used for indexing element/attribute nodes and are
very helpful for the lock manager when setting intention locks along ancestor paths. Note
that the SPLIDs stored in document order (left-most depth-first) lend themselves to prefix
compression and are typically reduced to about 25% of the uncompressed format [12].

1.3.13.3

1.3.11

1.3.11.3

17-26
C 1.3.15.3

Figure 4: A sample DOM tree labeled with SPLIDs using dist=2

article

C

1.3

key

1.3.1

article 1.7article1.5

author title pages year

1.3.5 1.3.9 1.3.13

Future Directions

1.3.9.3
1989

C

element
attribute
content

1234

1.3.1.3

An even divison value indicates an overflow

division value 1 (except for the root)

1dblp

an attribute node. 1.1001book
. . .

due to later node or subtree insertions and

Structure

Content withC1C

author

1.3.3

1.3.3.3
Bernstein

C 1.3.5.3
DeWitt

C

author

1.3.7

Gray
C1.3.7.3

of DB Research

publ

1.3.15

ACM
C

textual nodes

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

293

Consider the lenghty element names in Figure 4. Because we typically have a lim-
ited amount of names (<100), we can use a directory-based encoding (one byte) for them
by so-called VocIDs in the storage and index representations. Document storage is based
on variable-length files as document containers whose page sizes varying from 4K to 64K
bytes could be configured to the document properties. We allow the assignment of several
page types to enable the allocation of pages for documents, indexes, etc. in the same con-
tainer. Efficient declarative or navigational processing of XML documents requires a fine-
granular DOM-tree storage representation which easily preserves the so-called round-trip
property when storing and reconstructing the document (i.e., the identical document must
be delivered back to the client). Furthermore, it should be flexible enough to adjust arbi-
trary insertions and deletions of subtrees thereby dynamically balancing the document
structure. Fast indexed access to each document node, location of nodes by SPLIDs, as
well as navigation to parent/child/sibling nodes from the context node are important de-
mands. As illustrated by Figure 5, we provide an implementation based on B*-trees which
maintains the nodes stored in document order and which cares about structural balancing.
While indexed access and order maintenance are intrinsic properties of such trees, some
additional optimizations are needed. Variations of the entry layout for the nodes allow for
single-document and multi-document stores, key compression, use of vocabularies, and
specialized handling of short documents. As shown in Figure 5 by sketching the sample
XML document of Figure 4—, a B-tree, the so-called document index, with key/pointer
pairs (SPLID+PagePtr) indexes the first node in each page of the document container con-
sisting of a set of chained pages. Using sufficiently large pages, the document index is
usually of height 1 or 2. Because of reference locality in the B-tree while processing XML
documents, most of the referenced tree pages are expected to reside in DB buffers—thus
reducing external accesses to a minimum.

For an XML document,
all structure and content nodes
are stored in document order us-
ing a container as a set of doubly
chained pages. The stored node
format is of variable length and is
composed of entries of the form
(SPLID, name) or (SPLID, val-
ue). The content is further com-
pressed using some Hufman en-
coding. Being an orthogonal is-
sue and not important for similarity join processing, we do not discuss content
compression in detail. In summary, our format stores the nodes carrying prefix-com-
pressed SPLIDs and some administration data (2 bytes).

In addition to the docu-
ment store, various indexes may
be created, which enable access
via structure (element or at-
tribute nodes) or content (values
of leaf nodes). An element index
consists of a name directory with
(potentially) all element names

1.3.11.3

Figure 5: Stored XML document

1 dblp 1.3

article
1.3.5.3

author . . .

title
1.3.11pages

year
1.3.15

. . .

1.3.7.3 1.5.5

1 1.3.9 1.7.1 . . .

elements&attrib. content(compression not shown) SPLIDs

document
index

document
container

article
1.3.3

1.3.5

1.3.9

publ
. . .

1.3.1
1.3.1.3

1.3.7.3 1.5Gray

17-26
key

1234 author
1.3.3.3 Bernstein aut
hor DeWitt 1.3.7

1.3.13 1.3.13.3 1989
1.3.15.3 ACM

Figure 6: Organization of structure indexes

• last

• author •title

1.3.3.7 1.3.3.7.3 1.3.3.5

each of them sorted in document order

node-reference
indexes (B*-trees)

name directory
(B-tree)

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

294

occurring in the XML document (Figure 6); this name directory often fits into a single
page. Each specific element/attribute name refers to the corresponding nodes in the doc-
ument store using SPLIDs. In case of short reference lists, they are materialized in the in-
dex; larger lists of references may, in turn, be maintained by a node reference index as in-
dicated in Figure 6. Content indexes are created for root-to-leaf paths, e. g., /dblp/article/
author, and again are implemented as B*-trees keeping for each indexed value a list of
SPLIDs as references to the related locations in the document. When processing a query,
a hit list of SPLIDs is built using one or several indexes. Then, the qualified nodes togeth-
er with their related path instances are located via the document index (see Figure 5). In
all cases, support of variable-length keys and reference lists is mandatory; additional func-
tionality for prefix compression of SPLIDs is again very effective.

5.1 TreeScan vs. IndexSubtreeScan

A straightforward question that arises when fetching stored subtrees is about the best scan
technique. There are two types of scans available in XTC. The first one called TreeScan
traverses the whole XML document and only the subtrees of interest need to be identified
and returned. The second type called IndexSubtreeScan uses the document index to find
the qualified nodes for the join operand and then proceeds by scanning the subtree rooted
at each node separately. Here, we discuss pros and cons of both approaches.

TreeScan only needs to traverse the document index and then perform sequential
processing along the chained pages. Since we cannot rely on SPLIDs alone to identify
subtrees boundaries, we have to look at node content to find the beginning of each subtree.
This process touches all the pages of a document resulting in high overhead if the subtrees
are sparse. A more subtle drawback is the handling of nested subtrees, i.e., if one subtree
of interest contains another subtree of interest. It would require extra data structures to un-
nest subtrees adding considerable complexity to the scan processing. Finally, this opera-
tion requests a shared tree lock on the entire document.

IndexSubtreeScan traverses the document index for each element returned by the
element index, which can be very expensive. On the other hand, there are favorable as-
pects which pay-off, at least partially, the expenses. First, since we jump to the beginning
of each subtree using the document index, we only need to check the SPLIDs to identify
the end of a subtree. Second, it is not necessary to take special care of nested subtrees. In
this case, however, overlapping nodes will be retrieved more than once. Third, IndexSub-
treeScan allows a smooth integration into our framework. As we will see in the next sec-
tion, it can be easily plugged into our operators to produce tuples containing the subtree’s
root SPLID and its n-grams or pq-grams. Finally, in a multi-user environment, IndexSub-
treeScan allows a finer lock granule, because only the subtrees of interest need to be
locked. We observe, however, that a transaction could have to acquire so many locks that
lock escalation is beneficial.

Obviously, the subtree selectivity determines the simple scan performance. In our
experiments in XTC, we achieved better performance with IndexSubtreeScan even when
50% of the document were accessed. Anyway, the issues previously discussed for the
TreeScan should not be ignored (handling of nested elements, control of subtree bound-
aries). A more accurate access path selection should also consider the underlying docu-
ment structure, in addition to the selectivity. Currently, we only use IndexSubtreeScan in
our framework. The definition of a cost model is a future task.

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

295

6 Implementation of the Similarity Join Operator

In this section, we discuss the details of the implementation of TSJ operator. The main de-
sign concern is the seamless integration of the TSJ framework into the XTC architecture.
Performance is achieved by enabling pipelining as much as possible and avoiding redun-
dant subtree scans. The execution plan of TSJ is composed of similarity-specific operators
(e.g., SignatureOp), relational-based (e.g. equi-joins) and tuple-based operators (e.g.,
MappingOp). The latter type are physical implementations of an extended version of the
XTC algebra [15]. Due to limited space, we only describe informally the semantics of
such operators in the context of the whole execution plan.

The physical operator tree shown in Figure 7a is used to process one operand of a
similarity join and implements the first three steps of the TSJ evaluation (see Section 4).
Delivered by ElementIndex, NodeAccessOp extracts sequences of SPLIDs that qualify
against some query predicate, and passes them on to MappingOp. This top-most operator
in the query tree is in charge of producing sets of tuples containing individual SPLIDs (la-
beling the roots of qualified subtrees) together with signatures of the subtrees the SPLIDs
point to. To compute these signatures, SignatureOp is called by MappingOp for each
SPLID received, which, in turn, triggers a subtree scan providing the required subtree
nodes via the DocumentIndex, that is, for each SPLID, a subtree scan (using an ONC cy-
cle) has to access the XML document stored on disk. The nodes returned to SignatureOp
are used to generate tokens, either q-grams or pq-grams, depending on the instance of TSJ
being processed, before the signatures are derived. Finally, MappingOp outputs for each
element in the signature set a tuple containing this element and the input SPLID (as illus-
trated in Figure 7a). In addition, depending on the similarity function used, the cardinality
of the original token set is also added in the output tuple.

A known shortcoming of all signature-based algorithms is that the original token
sets are lost when their signatures are created. However, the original token sets are re-
quired in the subsequent set-overlap calculation. Hence, we have two choices: to perform
an additional subtree scan to re-generate the tokens or to attach them to each output tuple
in an inlined representation [4]. In our implementation, we use the second option. We note
that such a decision essentially represents a trade-off between space overhead and (sub-
stantial) performance gains. The inlined representation approach has shown its merits
when the tokens sets are not unbounded (that is, they had to be stored on disk).

NodeAccessOp

NodeMgr

ElementIndex DocumentIndex

SubtreeScanOp

SignatureOp

MappingOp

{SPLID=1.7, token=Boo, norm=30, inlined}
{SPLID=1.7, token=ook, norm=30, inlined}

Figure 7: TSJ suboperators for similarity join processing

MappingOp MappingOp

sig1=sig2

OverlapOp(Set1, Set2)

{SPLID1=1.7, SPLID2=1.11}
{SPLID1=1.7, SPLID2=1.13}

a) b)

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

296

The remainder of the TSJ execution, depicted in Figure 7b, combines the results
of both operand evaluations and represents a straightforward implementation of the need-
ed concepts (Section 4). An equi-join is used to find all sets that share at least one signa-
ture. Because two trees can have more than one signature in common, exact duplicate
pairs of matching candidates can be produced. Therefore, a final duplicate elimination is
required, before Overlap outputs these pairs of SPLIDs.

7 Experiments

After having introduced the algorithms and their system embedding, we are ready to
present our experimental results. All similarity measures supported by TSJ are well-
known and so far some empirical and comparative studies are done in isolation, e.g., [1,
7]. The efficiency of the signature scheme used, prefix filter, has been analyzed as well,
but not in an XML context [2, 4]. Therefore, we concentrate on XDBMS performance
measurement of different instances of our TSJ implementation using varying data sizes.

7.1 Datasets and Setup

We start with the well-known and publicly available DBLP dataset containing computer
science publications. Our DBLP version has about 260000 article nodes. The mean size
of 3-gram sets generated from the articles nodes is about 235; the mean size of 23-gram
sets (pq-grams) is about 25.

We first generate several initial datasets by randomly selecting articles from
DBLP and combining them to separate XML reference documents which have varying
sizes (5k, 10k, 20k, and 50k articles) to explore scalability issues. Using copies of these
reference documents, we then generate modified datasets in a controlled way (called du-
plicate datasets) to enable textual and structural similarity evaluation, used to check per-
formance of the similarity join. Hence, the similarity joins are performed between equal-
sized XML files from the reference and duplicate datasets.

The duplicate datasets for textual evaluation was ’prepared’ with artificially in-
serted textual errors in 50% of the article subtrees. These errors consisted of character in-
sertions, deletions, and substitutions and were randomly distributed among all textual
nodes of each subtree. The number of textual errors in each subtree ranges from 1 to 5
with a uniform probability of existence. In the second duplicate datasets, we accom-
plished structural modifications. The operations applied to the nodes consisted of empty
node insertions, deletions, position swapping and relabeling of nodes. The frequency dis-
tribution of changes and error seeds was the same as used for the generation of textual du-
plicates.

In all evaluations, we used Jaccard similarity with threshold fixed at 0.85. The re-
lated token IDF weights needed for the prefix filter were calculated in a pre-processing
step; the related overhead is not included in our results. The IDF weights are used to de-
fine the ordering of the prefix-filter signature elements, which are specified as follows:

, where is the total number of subtrees and , which contain as token.

All tests were run on an Intel XEON computer (four 1.5 GHz CPUs, 2 GB main
memory, 300 GB external memory, Java Sun JDK 1.6.0) as the XDBMS server machine.
We configured XTC with a DB buffer of 250 8KB-sized pages.

T T′+
ft

 log ft T T′ t

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

297

7.2 Results

We first analyse the lower-level suboperators of TSJ in isolation (see Figure 7a). Proceed-
ing in this manner, we can properly observe the effects of the integration of TSJ into the
XTC architecture. Figure 8 shows the computation time of SubtreeScan and SignatureOp
for varying input dataset size. We use q-grams of size 3 to evaluate TSJT and pq-grams
with p of size 2 and q of size 3 to evaluate TSJT and TSJSF. Our first observation is that
the suboperators for all instances of TSJ scale with the input data set size in a perfect way.
Interestingly, the SigGenOp is faster in TSJS than in TSJT even though the algorithm used
for textual token set generation is simpler. The primary explanation of this effect is that
the generated q-gram sets are bigger than the pq-gram sets. Since the token sets have to
be ordered during the prefix-filter computation, it results in higher overhead. Moreover,
the calculation of pq-gram sets is completely performed on the basis of SPLID node la-
beling which is highly optimized.

The results for the complete evalu-
ation of TSJ are shown in Figure 9 where
we took the same sizes of q-grams and pq-
grams used in the previous experiment. We
notice that TSJS scales poorly with the size
of the input dataset (note, log scale is used
on both axes). However, the size of the in-
put dataset determines only partially the
computation time. In addition, the number
of similar tree pairs significantly influenc-
es the computation time required. Indeed,
DBLP has a homogeneous structure and,
even with modifications performed on the
duplicate datasets, we still compare rather similar pairs of trees. On the other hand, the
performance of TSJSF is not affected by the characteristics of the data in our experiments.
TSJSF scales perfectly with the size of the input dataset and is roughly one order of mag-
nitude faster than TSJT and two order of magnitude faster than TSJS. By using textual and
structural nodes, TSJSF produces very selective pq-grams. Further, using IDF ordering,
these pq-grams will be present in the prefix-filter signature. As a result, fewer pairs of
trees pass through the filter and the size of the matching candidate set is reduced.

0

20

40

60

80

100

120

140

TSJ-T TSJ-S TSJ-SF

Ti
m

e
(s

ec
)

SubtreeScan SignatureOp

0

20

40

60

80

100

120

140

TSJ-T TSJ-S TSJ-SF

Ti
m

e
(s

ec
)

SubtreeScan SignatureOp

0

20

40

60

80

100

120

140

TSJ-T TSJ-S TSJ-SF

Ti
m

e
(s

ec
)

SubtreeScan SignatureOp

c

Figure 8: SubtreeScan and SignatureOp computation time

a) 20k b) 40k c) 100k

Figure 9: Complete STJ evaluation

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+04 2,0E+04 4,0E+04 1,0E+05

Input size

Ti
m

e
(s

ec
)

TSJ-S TSJ-T TSJ-SF

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

298

8 Conclusion

In this paper, we presented a framework for similarity assessment of tree-structured doc-
uments in an XDBMS where we took advantage of the given database internals to opti-
mize the various processing steps. Our framework provides multiple instances of similar-
ity joins which allow varying ways of tree similarity evaluation in a unified way. Our re-
sults have shown that we achieved seamless integration of similarity operators into XTC
where the internal DBMS processing, i.e., the specific support of our lower-level subop-
erators, could be used to efficiently evaluate XML documents stored on disk thereby pro-
viding scalability. The use of SPLIDs was particularly beneficial for the generation of to-
ken sets and the subtree scans to selectively access the qualified XML data to be com-
pared. We revealed that various TSJ operators can have very different performance
behavior on the same data sets. In particular, we have shown that TSJSF is two orders of
magnitude faster than TSJS.

Our future work will include exploring the trade-offs provided by various TSJ op-
erators between performance and quality of similarity results achieved.
Acknowledgment: This work was supported by CAPES/Brazil under grant BEX1129/04-0.

References
1. Augsten, N., Böhlen, M., and Gamper, J. (2005). Approximate Matching of Hierarchical Data using

pq-Grams. In Proc. VLDB Conf., pp. 301-312.
2. Arasu, A., Ganti, V., and Kaushik, R. (2006). Efficient Set-Similarity Joins. In Proc. VLDB Conf., pp.

918-929.
3. Chaudhuri, S., Ganjam, K., Ganti, V., and Motwani, R. (2003). Robust and Efficient Fuzzy Match for

Online Data Cleaning. In Proc. SIGMOD Conf., pp. 313-324.
4. Chaudhuri, S., Ganjam, K., and Kaushik, R. (2006). A Primitive Operator for Similarity Joins in Data

Cleaning. In Proc. ICDE Conf., pp. 5.
5. Cohen, E., Datar, M., Fujiwara, S., et al. (2000). Finding Interesting Associations without Supporting

Prunning. In Proc. ICDE Conf., pp. 489-499.
6. Cohen, W. W. (1998). Integration of Heteroneous Databases without Common Domains using Que-

ries Based on Textual Similarity. In Proc. SIGMOD Conf., pp. 201-212.
7. Cohen, W. W., Ravikumar, P. and Fienberg, S. (2003). A Comparison of String Distance Metrics for

Name-Matching Tasks. In Proc. IJCAI-2003 Workshop on Information Integration on the Web.
8. W3C Document Object Model. http://www.w3.org/DOM/ (2007).
9. Gravano, L., Ipeirotis, P., Jagadish, H. V., Koudas, N., Muthukrishnan, S., and Srivastava, D. (2001).

Approximate String Joins in a Database (Almost) for Free. In Proc. VLDB Conf., pp. 491-500.
10. Guha, S., Jagadish, H. V., Koudas, N., Srivastava, D. and Yu, T. (2006). Integrating XML Data Sourc-

es using Approximate Joins. In Transactions on Database Systems. 31:1, pp. 161-207.
11. Guha, S., Koudas, N., Marathe, A., and Srivastava, D. (2004). Merging the Results of Approximate

Match Operations. In Proc. VLDB Conf., pp. 636-647.
12. Härder, T., Haustein, M., Mathis, C., and Wagner, M. (2007). Node labeling schemes for dynamic

XML documents reconsidered. In Data & Knowledge Engineering 60:1, pp. 126-149, Elsevier.
13. Haustein, M. P. and Härder, T. (2007). An Efficient Infrastructure for Native Transactional XML Pro-

cessing. In Data & Knowledge Engineering 61:3, pp. 500-523, Elsevier.
14. Koudas, N., Marathe, A., and Srivastava, D. (2004). Flexible String Matching against Large Databas-

es in Practice. In Proc. VLDB Conf., pp. 1078-1086.
15. Mathis, C. (2007). Integrating Structural Joins into a Tuple-Based XPath Algebra. In Proc. BTW

Conf., pp. 242-261.
16. O'Neil, P. E., O'Neil, E. J., Pal, S., Cseri, I., Schaller, G., and Westbury, N. (2004). ORDPATHs: In-

sert-Friendly XML Node Labels. In Proc. SIGMOD Conf., pp. 903-908.
17. Sarawagi, S. and Kirpal, A. (2004). Efficient Set Joins on Similarity Predicates. In Proc. SIGMOD

Conf., pp. 743-754.

XXII Simpósio Brasileiro de Banco de Dados
SBBD 2007

299

