
Change Management in Large Information
Infrastructures – Representing and Analyzing Arbitrary

Metadata

Boris Stumm
stumm@informatik.uni-kl.de

Stefan Dessloch
dessloch@informatik.uni-kl.de

Abstract: With information infrastructures getting more and more complex, it be-
comes necessary to give automated support for managing the evolution of the infras-
tructure. If changes are detected in a single system, the potential impact on other
systems has to be calculated and appropriate countermeasures have to be initiated to
prevent failures and data corruption that span several systems. This is the goal of Caro,
our approach to change impact analysis in large information infrastructures. In this pa-
per we present how we model the metadata of information systems to make a global
analysis possible, regardless of the data models used, and how the analysis process
works.

1 Introduction

In today’s businesses, information infrastructures are getting more and more complex.
There are many heterogeneous systems with a manifold of mutual dependencies leading
to unmanageability of the overall infrastructure. New dependencies between existing sys-
tems evolve and new systems are added. Generally, there is no central management of all
systems.

Small, local changes to system metadata can have a major impact on a company-wide scale
due to the dependencies between systems. This can lead to failures of large parts of the
information infrastructure. Probably all companies have some sort of change management
to prevent this from happening. However, the more complex the information infrastructure
gets, the more difficult it gets to ensure the correct operation of all systems. It is neces-
sary to automate as much of the change management as possible. This will avoid human
failures, and in general will be faster than manually keeping track of all dependencies
between systems. For our generic approach, we use a broad interpretation of the terms
system, change, and metadata. A system is an abstract concept which provides services
that can be used by other systems, and in turn may depend on other systems, too. Concrete
systems could be DBMS, libraries, websites, or end user applications. The metadata of
a system consists of every information that could, if it is changed, influence the correct
operation of other systems. A classic example for metadata are database schemas, but also
APIs, file locations, or system configurations. Even non-functional aspects like quality
and performance assertions are included in our definition of metadata. Our goal is to be
able to process all forms of metadata, to make automated CIA as precise as possible.

Problem Statement The core of change management is the analysis of the potential
impact of a local change on other systems. This is called change impact analysis (CIA).
Ideally, the analysis is performed before applying a change (preventive CIA) to prevent
failures. However, this is not always possible, if the changing system does not know about
or does not care about a dependent system because it belongs to a different organizational
domain. A good example here is a web data integration system relying on screen scraping
of external websites. It is then necessary to perform reactive CIA. The faster this happens,
the more likely it is to avoid or reduce the impact of system failures from happening.

There exist several problem areas that have to be coped with to perform automated, generic
CIA at a company-wide scope:

• The heterogeneity of the metadata makes a direct analysis practically impossible,
since an analyzer would have to understand all existing metadata models or formats.

• For analysis, metadata has to be provided in an explicit way. In some cases, this
is not a problem; for example, SQL databases provide a standardized way to read
schema information and file system structures can be easily scanned. In many cases
this is more difficult, because the systems provide no appropriate way to read the
metadata, or metadata is only implicitly defined in compiled code. Some metadata,
like non-functional aspects, may not be extractable automatically at all. Thus, in
CIA it has to be assumed that the provided metadata is not complete.

• System autonomy and organizational constraints lead, on one hand, to failure or
non-applicability of preventive CIA, and on the other hand, make reactive CIA more
difficult because changes may go undetected for a long time.

Contribution In this paper, we present a meta-model used to store arbitrary, heteroge-
neous metadata, and an analysis component for a fine-grained and customizable impact
analysis. In practice, it is impossible to resolve the mentioned problems of metadata in-
completeness and system autonomy. Therefore, our principle is to work with what we
have, and not to require the input metadata to be of a certain quality. Of course, if the
provided metadata is incomplete, the analysis results will not be as exact and reliable as
otherwise. We want to avoid overlooking a potential problem in all cases. Therefore, with
incomplete metadata, the probability of more false alarms increases. In the worst case,
when it is only known that system A accesses system B “in some way”, every change of
B, regardless of its real impact, will result system A to be marked as impacted by a change,
and may trigger counteractions. With more complete metadata, analysis results will im-
prove, reducing the probability of false positives. This “best effort” approach makes Caro
applicable to arbitrary environments. The trade-off between the effort of providing com-
plete metadata and the quality of the analysis results can be determined separately for each
case.

Related Work In the context of information integration, much research has been done.
Some approaches are complementary to ours, and others are similar to Caro in some as-
pects. The most important distinguishing features of Caro are its genericity, robustness
and scope. It makes no assumptions about the environment it operates in, and can be used
for any scenario where change impact analysis is necessary.

Dorda et al. [DSS04] present an approach which is similar to Caro with respect to the
problems addressed. However, the solution they propose is different in two fundamental
points: They require a central documentation (or metadata) repository and a strict process
policy. This constrains their approach to scenarios where it is feasible to have a cen-
tral repository and to enforce adherence to defined processes. While they want to avoid
integration clusters, we think that such a clustering (and thus decentralization) in large
enterprise information systems cannot be avoided.

Deruelle et al. [DBGN99] present another approach to change impact analysis. They use
a multigraph and change propagation rules for analysis, which is very similar to Caro.
Their approach has several limitations: The focus lies on preventive CIA, thus they lack
a framework to support reactive CIA. Apparently, they do not consider the problem of in-
complete metadata. Also, their meta-model and rules are rather specialized, which makes
the extension to support other data models and change types more difficult than with Caro.

Various other approaches to CIA in information systems exist that are limited with respect
to the supported data models [Ke02] or scope and support of exact analysis [MAL+05].
The concepts of change impact analysis in software systems [BA96, Aji95, RT01] are
similar to the ones we use. However, the models and analysis procedures focus on the
elements that are found in software: methods, signatures, classes, attributes and so on. In
addition, CIA for software systems is usually done preventively. Aspects of heterogeneity,
metadata incompleteness and distribution are not as relevant as they are in information
systems.

Research done in the field of schema evolution [Rod92, AFK+04, ZR98], schema match-
ing [RB01, MRB04, MP99] or model management [Ber03] are complementary to our
approach. Especially the latter approaches are used to plan and realize integration, gener-
ally between only two or a small group of systems, as well as adapt systems to changing
requirements. Caro is not designed for use in the initial stages of an integration project.
It will take the results of such a project, namely the dependencies between the systems
that were created based on schema matches or mapping definitions, and monitor them for
changes. When a change occurs, Caro will analyze the impact of it. Depending on the re-
sults, different actions may be taken. The most simple thing to do is to notify a responsible
person, or to shut down the system to prevent further damage. Also, Caro may interface
other information integration tools and provide analysis results to them, e.g. for automatic
repair. Caro focuses on the monitoring of systems participating in the overall information
infrastructure and the detection of the global impact of changes. As such, it “fills the gap”
to an overall management of a heterogeneous integrated environment .

The Object Management Group (OMG) defined with the Common Warehouse Metamodel
(CWM) [CWM03] a way to relate elements of different data models to each other with
respect to structure. While our type system is similar to CWM in some places, the focus
in Caro is to express change impact semantics, not schema structure. It is easy to to use
CWM or other existing models in Caro, as we show in section 3.

The algorithms we use for CIA are heavily based on graph matching [Bun00]. We use a
modified version of the CSI-Algorithm [KH04], which is in turn an improved version of
Ullman’s algorithm [Ull76].

Paper Structure This paper is structured as follows. First, in section 2, we give a short
overview of Caro, and position this contribution in the larger context of the Caro archi-
tecture as well as a high-level overview about our meta model and the analysis process.
The formal foundations for model and analysis follow in section 3. Our current research
prototype is presented in section 4. Besides the implementation itself, we discuss some
performance issues there, too. Finally, we conclude in section 5 and give an outlook on
further work to be done in this field of research.

2 Caro Overview

Caro is an approach to change management in large information system infrastructures.
Basically, Caro monitors all participating information systems. If changes occur, they are
analyzed for their impact on the rest of the information infrastructure. In figure 1, the
three-layered architecture of Caro is depicted. The lowest layer consists of the informa-
tion systems themselves. The middle layer consists of the metadata agents (MDAs). For
each system, there is a metadata agent responsible for it1. An MDA monitors an infor-
mation system and notifies the server in the upper layer of changes. It is also responsible
for transforming the systems metadata into the common format which is introduced in the
next section. Finally, if during change impact analysis potential problems are detected, the
MDAs are responsible for initiating countermeasures ranging from notifying the admin-
istrator to shutting down the system. The upper layer of our architecture consists of the
Caro servers. There, the inter-system dependencies are stored and the analysis process is
coordinated.

MDA

Complaints

Customers
Warehouse

MDA

Stock

MDAMDAMDA MDA MDA MDA

Change
Management
Layer

Agent
Layer

System
Layer

Information

Customers CareDistribution

Caro Server Caro Server Caro Server

Marketing

Figure 1: Distributed Caro architecture

We assume that it is not feasible to have a single Caro server responsible for a whole
information infrastructure. Due to organizational circumstances, it may be necessary to
run more than one Caro server, as shown in figure 1. Between different departments each
running a Caro server, there exists a single connection point to other departments, which
simplifies setup and communication greatly in comparison to a centralized approach.

Caro servers can be used for preventive as well as reactive CIA:

1A single MDA implementation may be responsible for more than one IS, but logically, there is one MDA
per information system.

– DBMS (system DB)

create table employees (create table projects (
id integer primary key, pid integer primary key,
name varchar(50), p_name varchar(50),
salary integer deadline date,

); manager integer references employees(id)
);

– reporting application (system RA)

select e.name, count(e.name) select *
from employees e, projects p from projects
where e.id = p.manager where deadline < current_date + 30;
group by e.name;

Figure 2: Example SQL schema

• For preventive CIA, users can propose a hypothetical change request to Caro, and
get the CIA results without actually modifying the systems. This way, the user can
make sure that either his proposal does not affect other systems, or that the other
systems administrators know in advance of the change. A common use of this is
when modifying database schemas by adding, deleting or altering views and tables.

• In the case of reactive CIA, an MDA notifies its server of a change in the information
system it monitors, and impact analysis is initiated. If a potential impact on other
systems was found, the corresponding MDAs will be notified and can then take
adequate actions. Caro reacts to a change, and while it is not always possible to undo
or mask the change, every system that is potentially affected will at least be notified.
This way, change impact is detected quickly after the change, making it possible
to prevent possible damage like data corruption or system failures. For example,
in a screen scraping scenario, if the website from which information is extracted
is changed, several actions are possible, depending on the abilities of the impacted
systems and the availability of corresponding tools. The most simple action is to
notify an administrator and/or to shut down dependent systems. There may also be
means to notify users that current results may not be accurate due to a change, or
even modify the extraction procedure to match the new website structure. Caro acts
as agent that mediates between systems, users, administrators and tools.

In this paper, we focus on the model we use to represent the heterogeneous metadata of
the information systems, and how the metadata is analyzed for changes. The metadata
extraction and transformation as well as the monitoring tasks that the MDA has to handle
are not in the scope of this paper. However, in section 4 we discuss some of our experiences
with extracting and transforming SQL metadata in our prototype.

To illustrate our meta-model and the analysis process, we will use the example depicted
in figure 2. There is a DBMS named DB with a schema consisting of two tables, and a
reporting application RA that uses two different select statements to access the data in the
DBMS.

create table employees (create table projects (
id integer primary key, pid integer primary key,
name varchar(50), p_name varchar(50),
salary integer deadline date,

); manager integer references employees(id)
);

Figure 3: Usage of the reporting application

Systems and Dependencies Our approach targets large information infrastructures with
many systems that are related to each other by their dependencies. Each system is de-
scribed by its metadata, which also contains the description of the dependencies a system
may have. We define the terms usage and provision to specify the parts of a system’s
metadata which express dependency information.

A provision is the part of the metadata that captures services provided to some other sys-
tem. For a DBMS, this is the part of the schema that is accessible from other systems.
For web services, the accompanying WSDL file can be seen as provision. Since access
rights may not be the same for everyone, a system can have more than one provision. The
counterpart of a provision is the usage. In a usage, a system specifies the services provided
by another system that it depends on. Usages are always subsets of the corresponding
provision. We avoided the well known term “export schema” and “import schema” for
provisions and usages, since they may contain more than only schema information.

In our example, the provision of DB consists of the complete schema in figure 2. The us-
age of RA (in respect to DB) is depicted in figure 3. Only the elements highlighted in bold
belong to the usage. The problem of incomplete metadata becomes visible here. The two
select statements do not specify RA’s metadata completely. Probably RA makes assump-
tions about the data types of the columns and about primary keys. The only information
we can deduct from the select statements is that the deadline column is expected to be
of type date because it is compared with a date in the where clause. Also, we have to
assume that RA needs all columns of the projects table. That means that if any column
is added to or deleted from the projects table in DB, Caro must assume that it has an
impact on RA. If, however, the salary column of the employee table is deleted, or an
Clim is added, Caro should recognize that this has no impact on RA.

Of course, it is not realistic to have such a fine-grained documentation of all schema de-
pendencies in an large and complex environment. But in general, it is at last possible to
find out about dependencies at the system level, which is “better than nothing”. The likeli-
hood of false alarms will rise, but changes will not go undetected. In some areas, however,
it is feasible to get fine-grained dependency information, e.g., by extracting it from BPEL
[BPE06] documents.

The Caro Meta-Model The model we use to represent metadata is a simple digraph
with typed nodes. Each node represents a metadata element or a relationship between
two metadata elements, similar to the E/R model [Che76]. Nodes are atomic information
units. So, each change that occurs can be described by a set of added and deleted nodes and
edges. Figure 4 shows how metadata of DB and RA as well as their provision and usage

Column dateTable
hasCol: exact

"projects""manager"

Column

Report

"urgent_projects"

Column

"id"
label

Column

"name"
label

hasCol: atLeast
Table

"employees"

Report

"project_managers"

Field

Field

"name"

"count"

typehasCol
label

"deadline"
label

label
hasCol

label

usecopy

hasCol hasCol

label

Usage of RA

Metadata Graph for RA

useuse

label

use usecopy

label

label

derived

Table "employees"

PrimaryKey Column

varchar "name""50"

Column

"id"integer

Table

label

...

...

"projects"

Column

integer

Provision of DB

Metadata graph for DB

hasCol
hasCol hasCol hasCol

hasPK
label

param

label label labeltypetypetype

"salary"

Figure 4: Metadata graphs for the example in figure 2

(which are just subgraphs) look like in our graph model. Te reporting application is a pro-
prietary application with a custom meta model, indicated by the Report and Field node
types. Note that the notation used is informal and serves only for illustration purposes.
Nodes of type Literal are shown in boxes with rounded corners and in double quotes,
all other nodes are labeled with their type. For the sake of simplicity, we omitted the rela-
tionship nodes and assigned their type to the edges of the graph. Element nodes belonging
to a usage may have a completeness specification for incoming and outgoing relationships.
Values can be atLeast or exact, both shown in the figure. The employee table node
specifies that it needs at least the hasCol relationships that are specified in the usage,
and thus, analysis wont care if other columns are added or deleted. The projects table,
however, specifies that it needs exactly the hasCol relationships that are specified. Thus,
if any column is added or deleted here, the analysis will recognize a potential problem.
The usage is connected to the rest of the graph via various derivation relationships like
derived, use or copy that express the different semantics of the dependencies. These
types are defined in the change impact description model defined below.

It is straightforward to represent arbitrary metadata in our model, since any type system
may be used. For a generic change impact analysis, these metadata representations will
be useless, since they are not meta model independent. For meta model independence,
Caro defines the change impact system description model (CISDM) which expresses the
semantics of metadata nodes that are relevant for CIA. Figure 5 shows some of the types
the CISDM defines in a UML-like [UML03] notation. Relationship nodes always con-
nect two element nodes (which can be of type Element or Literal. For each property
that is relevant to CIA, subclasses of Element and Relationship are defined. The
associations between the subclasses restrict which element types a relationship type may
connect. Concrete meta models are connected to the CISDM via inheritance as it is shown
in figure 6 for a small subset of the SQL and XML meta models. In contrast to other

Relationship

Element

AbstractElement

Part

derived hasPart label

CompoundLiteral
value

0..*
target

1

1
source

0..*

...

...

Figure 5: Some elements from the change impact system description model

Compound

Table

XMLElement

Column

Attribute

Part

hasAttribute

hasPart

SQL meta model

CISDM

XML meta model

Figure 6: Concrete data models inheriting from the CISDM

existing meta models, like the CWM [CWM03], the CISDM does not focus on an abstrac-
tion layer for metadata exchange, modeling similar concepts in different meta models as
subclasses of a common superclass. The CISDM only captures the semantics needed for
CIA, which simplifies the addition of new meta models. The analysis process only works
on the CISDM types, and does not mind the underlying data model.

Performing Impact Analysis Each node in a metadata graph has a set valued status
attribute, the change status, which will be set during CIA. Initially, the status attribute of
all nodes is empty. If a change occurs, either proposed by a user or determined by an MDA,
each node that was added to the graph gets the status added, and each deleted node is not
actually deleted but gets the status deleted. After that, CIA is conducted as a two-step
process that may cascade over several metadata graphs, if there is a chain of dependent
systems. First, intra-model analysis performed, followed by inter-model analysis:

• In the intra-model analysis phase, the status attribute of all nodes affected by the
change is set accordingly. For example, if a part is deleted from a compound, the
compound will get the status partDeleted. In our example, that happens with
the table where a column was deleted.

• The inter-model analysis just copies all change status values of a provision to the
corresponding nodes in the related usage.

• The process repeats for the metadata graph of the dependent systems, and stops
when at some point all potentially impacted nodes are marked accordingly.

We illustrate this using our example scenario. Consider the changes at top of figure 7.
We included only the actually changed parts of the provision. Nodes marked with 	
have been deleted, and nodes marked with ⊕ have been added (1). In the intra-model
analysis for DB, the Table elements will get the status partDeleted/partAdded
(2). The subsequent inter-model analysis copies all change status values to the usage of
RA (3). Without preceding intra-model analysis, no status values would have been copied,

Table
hasCol: exact

partAddedlabel"projects"
(3)

"employees"
hasCol: atLeast
TablepartDeleted

Report"project_managers" Report"urgent_projects"
sourceChanged

Table Column
integer

"employees"

Table
"description"

varchar "2048"
Column

"projects"

partAddedpartDeleted

alter table employees drop column salary; alter table projects add column description varchar(2048);

Analyzed metadata Graph of RA

Usage of RA
label

(3)

copyuse

label label

use

(4)

hasCol

label

typelabel

label

type param
hasCol

label

Changed and analyzed metadata graph of DB

(1)
(1)

(2)

(2)
"salary"

Figure 7: Metadata graphs after analysis

since the usage does not mention the salary column, and cannot know yet about the
description column. As a last step, intra-model analysis is performed in the metadata
graph of RA, adding the status sourceChanged to the report urgent_projects.

Technically, intra-model analysis is done by applying a set of change propagation rules
to the metadata graph until no more rules can fire. As example, a rule might look for all
added parts, and mark the corresponding compound as with the partAdded status, as
it happened in our example. In the example, only one report was marked as problematic,
which is correct, but it is not obvious why the other report was not marked. The rule
responsible for this can be stated in an informal way as “if a relationship was added or
removed from an element, and the completion specification for this relationship is exact,
add the status sourceChanged to all elements connected via a derived or copy
relationship”. In chapter 3 we will show a formal way to specify such rules. Inter-model
analysis works by first matching corresponding usages and provisions, and then copying
the change status values to the usages.

3 Formal Model

After having given an overview of our model and analysis process, how metadata is repre-
sented and how the generic CIA process works in the previous section we are now ready
to present the formal model of the Caro metadata graph and the analysis process. In all
formulas, lower case letters stand for single elements of a set, upper case letters represent
sets, and letters in gothic stand for sets of sets. If an element is a tuple x = (a, b, c, . . .),
subelements are referred to as ax, bx, cx etc. Figure 8 summarizes the naming convention
for variables used throughout the paper and may serve as a reference.

v, V nodes k, K node matches g,G metadata graphs
e, (a, b), E edges c conclusions s, S change status

t, T types m, (l, u),M,M,S graph matches a attribute function
r, R rules p, P premises Pr ,Us provisions, usages

Figure 8: Variable naming scheme

3.1 Meta-Model

Let us first describe how the meta-model concepts informally introduced in section 2 can
be captured in a formal metadata model. A digraph d is an ordered pair d = (Vd, Ed).
Vd is the set of nodes, and Ed ⊆ Vd × Vd with Ed = {(va, vb)|va, vb ∈ Vd, va 6= vb}
a set of ordered pairs defining the edges. A subgraph s ⊆ d is defined as s = (Vs, Es)
with Vs ⊆ Vd, Es ⊆ Vs × Vs, Es ⊆ Ed. A metadata graph g is a graph with additional
properties g = (Vg, Eg, ag,Prg,Usg) such that d = (Vg, Eg) is a digraph; G is the set of
all metadata graphs. Pr and Us are the sets of provision and usage subgraphs: Pr ⊆ ℘(d),
Us ⊆ ℘(d), with ℘(d) being the set of all subgraphs of d. The attribute function a will be
defined later.

In the formal model, a node type as introduced in figure 5 is just a named set of nodes. We
call the set of all nodes Node , and thus, all node types T are a subset of Node . The basic
node types are defined as follows:

AbstractElement = Element ∪ Literal ;AbstractElement ⊂ Node
Relationship ⊂ Node
Relationship ∩AbstractElement = ∅;Literal ∩ Element = ∅

Attributes of a node are defined by the attribute function a : AN × V → AV AN . AN is
the set of attribute names AN = {type, status, value, completenessin/out}, and AV AN

is the set of possible values for the corresponding attribute. The function a is defined as

a(type, v) 7→ T ;T ⊂ Node

a(status, v) 7→

{
if v /∈ Literal : Sv;Sv ⊆ S

else: undefined

a(value, v) 7→

{
if v ∈ Literal : z; z ∈ String
else: undefined

a(completenessin/out, v) 7→

{
if v ∈ Element : Csv;Csv ⊆ Cs
else: undefined.

For a(x, v) we also write x(v). Each node is assigned a most specific type.
Only literal nodes have a value (the literal they represent), which is always a

string. The status is a subset of all possible status values S, with S =
{added,deleted,partAdded,partDeleted,partChanged, sourceChanged, . . .}. Liter-
als have no status attribute, because they represent only values.

The completeness attribute is only specified for element nodes; relationship nodes are al-
ways complete according to equation (2). The completeness specification Cs is defined as
Cs = {(T, cs|T ⊆ Relationship, cs ∈ {atLeast, exact}}. To avoid conflicts, subtypes
must have the same or a stronger completeness value, and each type may only have one
completeness value: Let Csv be a completeness specification, then ∀x, y ∈ Cs :

Tx ⊂ Ty =⇒ csx = csy ∨ csx = exact
x 6= y =⇒ Tx 6= Ty

Generally, all nodes have an identity, and nodes are not shared between metadata graphs.
Literals are an exception to this, because literal values are unique: ∀n1, n2 ∈ Literal :
value(n1) = value(n2) ⇔ n1 = n2. Therefore, nodes in the intersection of the sets of
nodes of two graphs are always literal nodes:

∀x, y ∈ G : x 6= y =⇒ Vx ∩ Vy ⊆ Literal (1)

Graph edges can only connect elements with relationships and vice versa, enforcing a
bipartite element/relationship graph. ∀(a, b) ∈ E :

a ∈ Element =⇒ b ∈ Relationship,

a ∈ Relationship =⇒ b ∈ AbstractElement
a /∈ Literal .

Subtypes can be further restricted, as we discussed in section 2. Moreover, all relationship
nodes must have exactly one incoming and one outgoing edge:

∀v ∈ Relationship∃a, b ∈ V :(a, v) ∈ E ∧ (v, b) ∈ E (at least one edge)
∀a, b ∈ AbstractElement , v ∈Relationship : (2)

(a, v), (b, v) ∈ E =⇒ a = b (at most one edge)
(v, a), (v, b) ∈ E =⇒ a = b

3.2 Analysis

As already outlined in the previous section, analysis is performed using intra-model and
inter-model analysis steps. These are formalized in the this subsection. In both steps,
matching two graphs is an important operation. In intra-model analysis it is used to find
out where to apply rules, and in inter-model analysis it is used to match a usage against a
provision graph.

We define a node match relation K ⊆ Node ×Node:

K = {(u, l)|u, l ∈ Node ∧ (u, l /∈ Literal ∧ u 6= l) ∨ (u, l ∈ Literal ∧ u = l)}.

We chose u and l are mnemonics for upper and lower, if we imagine an “upper” graph
being matched against a “lower” graph. Literals match only themselves, whereas other
nodes match only different nodes. This is due to definition (1). Depending on the context,
a refined Kx ⊂ K will be defined. Note that Kx is not necessarily symmetric!

Let gu, gl ∈ G be two graphs. We define a graph match relation Mgu,gl
⊆ ℘(K) as

Mgu,gl
= {M |M ∈ ℘(K)∧∀m1,m2 ∈ M :

(um1 , um2) ∈ Egu ∧ (lm1 , lm2) ∈ Egl
(match edges)

um1 = um2 ⇔ lm1 = lm2}. (bijectivity)

For analysis, only the set of matches of greatest common subgraphs Sgu,gl
⊆ Mgu,gl

with
Sgu,gl

= {M |M ∈ Mgu,gl
∧ @M ′ ∈ Mgu,gl

: |M ′| > |M |} is relevant.

If |Sgu,gl
| = 1, the match between gu and gl is called unique, if |Sgu,gl

| > 1 it is
ambiguous. In the following, we refer to Mu,l ∈ Sgu,gl

as match between gu and gl.

A matched subgraph slM = (Vs, Es) of gl (and accordingly, suM
) itself is defined as

Vs = {v|v ∈ Vgl
∧ ∃vu ∈ gu : (v, vu) ∈ M} and Es = {e|ea, eb ∈ Vs ∧ e ∈ Eg}.

Generally, finding the greatest common subgraph of two graphs is a hard problem. The
metadata graphs that are analyzed by Caro, however, have a very regular structure. That
is true for the example graph in figure 4 and we argue that in all practical cases, the struc-
ture will be similarly regular. This speeds up the matching process significantly. Our
benchmarks (see section 4) show that the approach is fast enough to be used in real world
scenarios.

Intra-Model Analysis The intra-model analysis works by applying a set of propagation
rules onto the graph gc. These rules add change status values, which may enable other
rules to fire. This continues until no more rules can fire. Rules have a premise, basically
a digraph that is matched against the metadata graph, and a conclusion specifying a node
and the status to add to this node. First, we define the node match relation for intra-model
analysis:

Kr = {k|k ∈ K ∧ type(ku) ⊇ type(kl)∧
status(ku) ⊆ status(kl)∧
completenessin/out(ku) ⊆ completenessin/out(kl)}.

A rule node ku matches a graph node kl if its type is a supertype of the graph nodes type,
its status is a subset of the graph nodes status, and the completeness specification also is
compatible. This node match relation is not symmetric.

A rule r is a pair r = (p, c). The premise p is a triple p = (Vp, Ep, ap), Vp, Ep, ap defined
like for metadata graphs. The conclusion c is a pair c = (v, s) with v ∈ Vp, s ∈ S. R is the
set of all rules. As an example, figure 9 shows the rule that marks compounds as changed
if parts were added, as it happened in step (2) in figure 7. Rules are applied to the graph

r = (p, c); ap(type, v1) 7→ Compound
p = (Vp, Ep, ap); ap(type, v2) 7→ hasPart
c = (v1,partAdded); ap(type, v3) 7→ Part

Vp = {v1, v2, v3}; ap(status, v) 7→

{
if v = v3 : {added}
else: ∅

Ep = {(v1, v2), (v2, v3)}; ap(completenessin/out, v) 7→ ∅

Figure 9: Example rule

with the apply : G → G function: apply(g) 7→ g′ = (Vg, Eg, a
′
g,Prg,Usg) such that

a′g(attr , v) 7→

if (attr = status ∧ ∃r ∈ R,∃M ∈ Sgr,g : (there is a matching rule)
|M | = |Vpr |∧ (rule matches completely)
∃m ∈ M : mu = vcr

∧ml = v) : (rule changes this node)
ag(status, v) ∪ scr

else ag(attr , v).

We define the analysis result relation A ⊆ G×G, with

A = {(g, g′)|g, g′ ∈ G ∧ apply(g′) = g′ ∧ ∃n ∈ N : apply ◦ apply ◦ . . .◦ apply︸ ︷︷ ︸
n times

(g) = g′}.

Inter-Model Analysis In the inter-model analysis, a provision and a corresponding us-
age are matched, and the change status values are copied from provision to usage. Let
gu, gl be two metadata graphs where system u depends on system l. Then inter-model
analysis transforms gu to g′u = (Vgu , Egu , a′gu

,Prgu ,Usgu).

Let pr l ∈ Pr l be a provision subgraph, usu ∈ Usu the corresponding usage subgraph,
and M ∈ Susu,pr l

a graph match. The used node match relation is Kt = {k|k ∈ K ∧
type(ku) = type(kl) ∧ added /∈ status(kl)}. That is, the usage is matched against the
provision without the added nodes to avoid ambiguous matches.

The new attribute function a′gu
is defined as

a′gu
(attr , v) 7→

if attr = status ∧ ∃m ∈ M,vl ∈ Vgu : v = mu ∧ vl = ml :

agl
(attr , vl)

else agu
(attr , v)

Computational issues With subgraph matching, there exists the possibility of ambigu-
ous subgraphs, that is, there is no unique greatest common subgraph according to the
chosen K. In intra-model analysis, if |Sgr,g| > 1 the rule r matches more than one time,

which is expected, since there may be more than one place that was changed. In inter-
model analysis, however, |Sgu,gl

| > 1 means that there is an ambiguity in matching
the graphs. In theory, this leads to non-deterministic behaviour of the analysis, which we
want to avoid. In practice, the issue is not so severe, since the usage is a subgraph of the
provision, and will be matched completely. An ambiguous match indicates an error in the
usage or provision subgraph.

Another important issue is the computability and termination of our algorithms. We re-
quire |Node| < ∞, |R| < ∞, |S| < ∞. All other sets of elements used in our definitions
are built using set operations and thus are finite, too. That makes it possible to evaluate all
expressions by enumerating all possibilities.

Only for the analysis result relation A we need to show that it is computable, i.e., the pro-
cess terminates. This is intuitively clear, since the apply function only adds monotonically
change status values. To prove it, we have to show that

∀g ∈ G ∃n ∈ N ∃g′ ∈ G : apply(g′) = g′ ∧ apply ◦ apply ◦ · · · ◦ apply︸ ︷︷ ︸
n times

(g) = g′. (3)

We define scount : G → N as scount(g) 7→
∑

v∈Vg
|ag(status, v)|.

Since ∀v ∈ Vg : aapply(g)(status, v) ⊇ a(status, v), also scount(apply(g)) ≥
scount(g), that is, apply is monotonic. Further, ∀v : a(status, v) ⊆ S. That means
max(|a(status, v)| = |S|). Therefore, ∀g ∈ G : scount(g) ≤ |Vg| · |S|, so there is an
upper bound for scount(g), which proves (3).

3.3 Extensibility

While we try to handle as many cases as possible in the CISDM and the corresponding
analysis rules, there will naturally be cases where our rules and types do not suffice or
even give wrong results with certain metadata. The analyzer makes no difference between
CISDM types or data models subclassing it. And while the provided rules only work on
CISDM types, user defined rules can use any node type in their premises. Users can ex-
tend/customize Caro by providing their own types, nodes, change status values and rules.
This way they can provide missing functionality, and even “override” the system provided
analysis rules by just ignoring the change status values they produce. Of course, this is
not advisable in a distributed environment, since it has to be made sure that change status
values propagated to other systems are understood by their metadata agents. However, in
some cases customizing may be necessary, since we cannot anticipate all possible scenar-
ios.

4 Implementation and Performance

The current prototype implementation of Caro is written in Java. The analysis component
is capable to do intra- and inter-model analysis. The prototype is already in use in a small
setup: The computer science department of the University of Kaiserlautern uses a custom-
made exam registration system, PAS, for students. PAS is a web application using the
PostgreSQL [PGS05] DBMS to store data. To ensure that the schema in the production
system matches the current implementation, we deployed Caro. In terms of our model, the
DBMS is one system, and the web application another, dependent system. Caro extracts
metadata from the information schema for the DBMS, and parses the DDL and DML
statements in the web applications source code. This will support developers by pointing
out changes that were made to the schemas since the last update.

In this section, we present the important components of the implementation and give per-
formance results. As base data for all performance tests, we used an SQL schema consist-
ing of 350 tables with a total of 4923 columns, which amounts to 46609 nodes in the meta-
data graph. The schema is borrowed from HISPOS [HIS], an administration application
for universities. For testing, we used a machine with four dual core 1.5 GHz processors,
and assigned 1.75 GB ram to the (single threaded) benchmark application. Finally we
make some remarks about deployment effort of Caro based on our current experiences.

As we have seen in section 2, metadata agents are responsible for extracting the metadata
from the information systems, converting it to the graph model, and sending it to the
change manager. Currently we are able to extract metadata directly from the information
schema of an SQL DBMS, or from DDL statements. We also are able to read DML
statements. We support tables, views, primary and foreign keys and, to a limited degree,
constraints. For data transfer and export, we use GXL [WKR01], an XML format for
storing graphs.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://caro.bstumm.de/rdf/Caro/CISDM#>.

:Node a owl:Class.
:Element rdfs:subClassOf :Node, [a owl:Restriction; owl:onProperty :outrange;

owl:allValuesFrom :Relationship].
:Literal rdfs:subClassOf :Node, [a owl:Restriction; owl:onProperty :outrange;

owl:allValuesFrom owl:Nothing].
:AbstractElement rdfs:subClassOf :Node; owl:unionOf (:Element :Literal).
:Relationship rdfs:subClassOf :Node, [a owl:Restriction; owl:onProperty :outrange;

owl:allValuesFrom :AbstractElement].
:hasPart rdfs:subClassOf :Relationship, [a owl:Restriction; owl:onProperty ciam:inrange;

owl:allValuesFrom :Compound],
[a owl:Restriction; owl:onProperty ciam:outrange;

owl:allValuesFrom :Part].

Figure 10: Subset of the CISDM definitions

24min

21min

18min

15min

12min

9min

6min

3min

 0 5000 10000 15000 20000 25000 30000

100% subgraph
95% subgraph
90% subgraph
80% subgraph
60% subgraph

Figure 11: Graph matching benchmark results

Model Implementation The model implementation consists mainly of a simple, hash
map based graph class and the type system. Types as well as edge restrictions are defined in
OWL [OWL04] for convenience reasons: One can easily define subtype relationships and
restrictions for relationship types, and then let the OWL reasoner of the Jena Framework
[HP05] infer all implicit knowledge, such as the transitive hull of the subtype relationship.
Figure 10 shows a small subset of the type definitions. We use the N3 syntax [N3] here.

Inter-Model Analysis Implementation We use a modified version of Krissinel’s and
Henrick’s CSI algorithm described in [KH04], which is in turn an improved version of
Ullman’s algorithm [Ull76]. To measure performance, we randomly selected a subset
of the HISPOS tables as provision. From this provision, we randomly deleted a certain
percentage of tables and columns to construct a usage subgraph. Figure 11 shows the
results of our measurements. On the x-axis, the number of nodes in the provision is plotted,
the y-axis shows how many seconds it took to match the subgraphs. The different lines
denote averages of test runs with different sized usage subgraphs. The benchmark results
indicate a roughly quadratic runtime, which is the best case for the algorithm we chose.
To improve performance, we can make some assumptions about the metadata graphs that
are to be matched. First, there exists a set of already matched nodes to start with, namely
the literals. As we required in our definitions, literal nodes are unique, and if two literal
nodes in different graphs have the same value, it is always a match. Second, even if
metadata graphs are not completely connected, in each part there will exist at least one
literal. This is reasonable for metadata, since in general, most metadata elements, such as
tables, columns, elements, etc., are named. Finally, the metadata graph is “almost a tree”,
meaning that the number of relationship nodes is similar to the number of element nodes,
and that there is a spanning tree representing a main hierarchy.

These assumptions are reasonable for all practically relevant metadata graphs. By exploit-
ing them (which our current implementation does not do very well), much larger metadata
graphs could be handled as it is currently the case. This is a part of our ongoing work.

Set<Node> changedNodes = getAllChangedNodes();
while (!changedNodes.isEmpty()) {

Node v = changedNodes.removeANode();
for (Rule r: getRules()) {

Set<Match> M = getMatches(r, v);
for (Match m: M) {

Set<Node> changed = apply(r, m);
changedNodes.add(changed);

} } }

Figure 12: Rule matching algorithm

Intra-Model Analysis Implementation We argue that most practical rules will be sim-
ilar to the example in figure 9 in complexity, having one node where a change status test
is made and another node where a change status is added. Our current implementation is
based on this fact. The basic matching algorithm is sketched in figure 12.

First, we get the set of changed nodes as obtained through change determination or inter-
model analysis. We then iterate over this node set. We take out a node v and check if there
is a rule with matches containing v. If so, we apply the conclusion to each match, and put
all nodes that were changed by the conclusion back into the set of changed nodes. Each
node can be modified at most once by each rule, which means that each node can be put
back into the set at most |R| times. The while loop will thus be executed at most |V |× |R|
times. The outer for loop will be executed |R| times. Assuming rule premises consisting
of three nodes like in figure 9, there will be at most in the order of |V | matches. The
matching process itself has the same complexity. It makes at most two hops through the
graph, and since relationship nodes always are connected to two other nodes, the search
space is bound by |V |. This leads to an overall complexity of our implementation of
at most O(n2r2) in the average case, with only simple rules. More complex rules with
more than a few nodes will be more expensive to process in terms of computing time.
To measure rule matching performance, we used the HISPOS schema again. We marked
one node as added, and used a set of “flooding” rules: each rule matched two nodes of
any type, connected by an edge, where one node had a certain change status X , and then
added the status Y to the other node. The next rule would then look for nodes with status
Y and add status Z, and so on, so that finally, all nodes in the graph will be marked with all
possible change status values. Figure 13 shows the results of the benchmarking. It shows
that the time needed increases proportional to the graph size and the number of rules that
are matched.

The complete HISPOS schema with 350 tables and a ruleset of 159 rules took around
four minutes to be analyzed. Since this is a worst case scenario, and most times, changes
will cover only a small part of a metadata graph, intra-model analysis can be done in an
interactive fashion, which is important for preventive CIA.

Deployment Effort While the Caro model and analysis component works independent
of any data model and is able to analyze arbitrary metadata graphs, the effort to extract and
transform metadata into the graph model must be considered, too. Although discussing this
issue is not the focus of this paper, we want to share some experiences that we got during
the implementation of the prototype. Our SQL metadata importer prototype took us about

200s

160s

120s

80s

40s

 10000 15000 20000 25000 30000 35000 40000 45000

159 rules
79 rules
39 rules
19 rules

9 rules

Figure 13: Rule benchmark results

four man days to write, and is currently capable of extracting tables, views, columns, types,
primary and foreign keys, check constraints as well as view and constraint dependencies
out of an SQL information schema as defined in the SQL:2003 standard [ANS03]. This
can serve as a very approximate measure of the effort it takes to extract and transform
other metadata, like XML schemas, WSDL files, etc. Import components only have to be
written once per data model/system type. Ideally, vendors would directly supply MDAs
for their products, which is of course not possible for legacy or home-brew systems. Here,
a decision has to be made between extracting and transforming the metadata at a fine-
grained level, and therefore getting good analysis results, or to be satisfied with a coarse
grained metadata description and a loss of analysis precision. The trade-off is between
putting much initial effort into the MDAs, or to later put more effort in detecting the exact
problem causes.

5 Conclusion and Outlook

The research area of autonomic computing [KC03] has become increasingly important
over the last years. Most times, the scope is local to a single system, or a group of tightly
coupled systems, for load balancing or disaster prevention. While the approach we pre-
sented in this paper does not directly enable self-* in a system, it contributes to autonomic
computing at a larger scale. It provides a mechanism for communication between systems,
so each system is aware of changes in its surroundings, which in turn enables the systems
to act more autonomically.

Caro performs change impact analysis by storing metadata and analyzing the impact of
metadata changes. This happens in a generic way, such that arbitrary data models are sup-
ported, ranging from SQL or XML schemas over configuration files, directory structures,
APIs to non-functional information like quality or performance assertions. No assump-
tions are made about any processes for preventive change impact analysis, and at least
reactive CIA can always be performed. Our approach also works in a reasonable way if

the provided metadata is incomplete, accepting a higher rate of false positives as trade-off.
This is an important fact, because in most real-world scenarios it is not feasible to provide
complete metadata descriptions. Thus, our approach is not only generic, but also adapts
to the environment where it is deployed. The better the provided input data, the better
the analysis results will be, but even with bad input, Caro is able to conduct CIA on a
best-effort basis.

We gave a formal description of the our model and analysis process, showing that model
and analysis process are well defined. Analysis has shown to be deterministic and com-
putable, which is very important for change impact analysis. The performance bench-
marks we conducted show that our approach performs well for reasonable sizes of meta-
data graphs, and that intra-model analysis is fast enough to be used in an interactive sce-
nario for preventive CIA. Finally, Caro is extensible at all points: Node types, rules and
specific change statuses can be added to the model as needed, if the built-in constructs are
not sufficient in a certain case.

There are, however, some areas which need to be researched further. We need to look for
a way to gather and add change provenance information to the graph to further improve
the automated support given by Caro. Also, performance of inter-model analysis could
be increased by taking into account more the regular graph structure of metadata graphs.
Another important task is to provide interfaces to other approaches which can be used
in a complementary way: The results Caro provides can be used in schema evolution
tools to adapt systems to the new situation. On the other hand, information gathering
tools could be used to help Caro getting the metadata from the systems and watching
for changes (e.g., [SSKS95, MAL+05]). This way, we think that our approach can act
as a framework binding together many research efforts that often only work in a very
constrained environment.

We stated in section 4 that the analysis works fast enough to be used in an interactive
fashion. Of course, nobody is able to work interactively with a 45000 node graph. We
currently work on an abstracting graph editor which is able to provide a natural (e.g.,
SQL DDL statements) way of editing a metadata graph. For this, we use style sheets for
specifying how the graph should be presented to the user.

References

[AFK+04] P. Andritsos, A. Fuxman, A. Kementsietsidis, R. J. Miller, and Y. Velegrakis. Kanata:
Adaptation and Evolution in Data Sharing Systems. SIGMOD Record, 33(4), Dec 2004.

[Aji95] S. Ajila. Software Maintenance: An Approach to Impact Analysis of Objects Change.
Software – Practice and Experience, 25(10):1155–1181, October 1995.

[ANS03] ANSI/ISO. Information technology – Database languages – SQL – Part 2: Foundation
(SQL/Foundation), 2003.

[BA96] Shawn A. Bohner and Robert S. Arnold, editors. Software Change Impact Analysis.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1996.

[Ber03] Philip A. Bernstein. Applying Model Management to Classical Meta Data Problems.
In Proc. of the 1st Conference on Innovative Data Systems Research (CIDR), 2003.

[BPE06] OASIS Open. Web Services Business Process Execution Language Version 2.0 (public
review draft), 2006.

[Bun00] Horst Bunke. Graph matching: Theoretical Foundations, Algorithms, and Applications.
In Proc. Vision Interface, pages 82–88, Motreal, 2000.

[Che76] Peter Pin-Shan Chen. The entity-relationship model – toward a unified view of data.
ACM Trans. Database Syst., 1(1):9–36, 1976.

[CWM03] Object Management Group (OMG). Common Warehouse Metamodel (CWM) Specifi-
cation Version 1.1, 2003.

[DBGN99] L. Deruelle, M. Bouneffa, G. Goncalves, and J.-C. Nicolas. Local and Federated
Database Schemas Evolution: An Impact Propagation Model. In Proc. of the 10th In-
ternational Conference on Database and Expert Systems Applications (DEXA), 1999.

[DSS04] Clemens Dorda, Hans-Peter Steiert, and Jürgen Sellentin. Modellbasierter Ansatz zur
Anwendungsintegration. it – Information Technology, 46(4):200–210, 2004.

[HIS] HISPOS-GX. http://www.his.de/Abt1/HISPOS.
[HP05] Hewlett-Packard. Jena – A Semantic Web Framework for Java, 2005.
[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. Com-

puter, 36(1), 2003.
[Ke02] A. Keller and Ch. eNSEL. An Approach for Managing Service Dependencies with

XML and the Resource Description Framework. Technical report, IBM, 2002.
[KH04] Evgeny B. Krissinel and Kim Hendrick. Common Subgraph Isomorphism Detection

by Backtracking Search. Software – Practice and Experience, 34, 2004.
[MAL+05] R. McCann, B. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doan. Mapping Maintenance

for Data Integration Systems. In Proceedings of the 31st VLDB Conference, 2005.
[MP99] Peter McBrien and Alexandra Poulovassilis. Automatic Migration and Wrapping of

Database Applications - A Schema Transformation Approach. In ER, 1999.
[MRB04] Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Developing Metadata-Intensive

Applications with Rondo. Journal of Web Semantics, 1(1), 2004.
[N3] Notation 3. http://www.w3.org/DesignIssues/Notation3.html.
[OWL04] World Wide Web Consortium. OWL Web Ontology Language Guide, 2004. Available

online: http://www.w3.org/TR/2004/REC-owl-guide-20040210/.
[PGS05] PostgreSQL, 2005. http://www.postgresql.org.
[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema

matching. VLDB Journal, 10:334–350, 2001.
[Rod92] John F. Roddick. Schema Evolution in Database Systems – An Annotated Bibliography.

SIGMOD Record, 21(4):35–40, 1992.
[RT01] Barbara G. Ryder and Frank Tip. Change Impact Analysis for Object-Oriented Pro-

grams. In Proceedings of PASTE, 2001.
[SSKS95] L. A. Shklar, A. P. Sheth, V. Kashyap, and K. Shah. InfoHarness: Use of Automati-

cally Generated Metadata for Search and Retrieval of Heterogeneous Information. In
Proceedings CAiSe, pages 217–230, London, UK, 1995. Springer-Verlag.

[Ull76] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. Journal of the Association
for Computing Machinery, 23:31–42, 1976.

[UML03] Object Management Group (OMG). Unified Modeling Language (UML) Specification,
Version 1.5, March 2003.

[WKR01] A. Winter, B. Kullbach, and V. Riediger. An Overview of the GXL Graph Exchange
Language. Software Visualization – International Seminar Dagstuhl Castle, 2001.

[ZR98] Xin Zhang and Elke A. Rundensteiner. Data Warehouse Maintenance Under Concurrent
Schema and Data Updates. Technical report, Worcester Polytechnic Institute, 1998.

