
An Adapt ive Storage Manager for XML Documents

Karsten Schmidt and Theo Härder1

AG DBIS, Department of Computer Science
University of Kaiserslautern, Germany

Abstract. Effective and efficient management and manipulation of XML docu-
ments requires stable decisions at the time a document enters the XML DBMS to
provide for storage structures which are adjusted to the document characteristics and
which reflect the future processing needs. While some of the critical parameters re-
quire a kind of pre-specification, others can be determined by pre-analysis or sam-
pling of the incoming document or by just making experience-driven “educated
guesses”. Important parameters are related to node labeling, path synopsis, docu-
ment container layout, and indexing. In this paper, we discuss approaches to achieve
an adaptive behavior of the storage manager to provide tailor-made native XML stor-
age structures to the extent possible.

1 Introduction

An XML storage manager has to consider two cases: a document sent by a client arrives
at a time—the so-called block mode, i.e., the document can be pre-parsed and analyzed be-
fore a suitable storage structure is chosen—or it arrives at the DBMS interface in stream
mode where fragments present, because of their size, have to be allocated in a suitable stor-
age structure on disk before the entire “streamed” document is available for the DBMS. In
the latter case, the storage manager must decide—based on imprecise structural informa-
tion—on the storage structure to be chosen and, at best, can make some educated guesses
based on context or sampling information.

So far, observed from a bird’s eye view, XML research primarily focuses on the manage-
ment of a few isolated documents which are typically very large (up to several GByte).
Frequently cited examples are available from [13]. In many cases [8, 9], storage structures
are optimized for such situations and indexing schemes only support searching (say, based
on XPath predicates) within a single document. Industry research and development, how-
ever, tells us [1] that, as the real need, DBMS have to manage large numbers of small to
medium sized XML documents (typically less than a few MByte). This opposite view con-
cerning size and usage of XML documents is currently captured by some efforts towards
the design of an XML Database Benchmark [16]. In such cases, XML indexes most of all
serve to filter documents (context) which are searched or scanned in a second step. Of
course, all these cases can be handled by default assumptions concerning the characteris-
tics of the final document stored. However, the great variety of possible document param-

1 This work has been supported by the Rheinland-Pfalz cluster of excellence “Dependable adaptive systems and
mathematical modeling” (see www.dasmod.de).
1

eters will often lead to suboptimal or even bad solutions. For this reason, it is highly ad-
visable to equip the storage manager with the ability to select reasonable or even optimal
storage structures for the physical representation of documents.

To identify suitable storage structures for XML documents, we describe the most impor-
tant concepts and their critical issues in Section 2, before we sketch the tasks needed to
make XML document storage adaptive in Section 3. Some indicative measurements on
well-known sample documents support our approach, before we wrap up with conclusions

2 Essential Concepts for the Storage Manager

Currently, we are upgrading XTC [7], our native XML prototype DBMS, step by step to-
wards enhanced adaptivity. As far as physical document handling is concerned, the abili-
ties of our adaptive storage manager (ASM, for short) primarily rest on the following con-
cepts.

2.1 Node Labeling

As we have learned from many experiments and benchmark runs [6], the node labeling
mechanism plays an essential role for storage consumption and efficient support of navi-
gational and declarative query processing. Moreover, it is key for the flexibility and per-
formance of the entire internal system behavior. We recommend the use of prefix-based
labeling schemes as sketched in the sample document in Figure 1a. As its most prominent
property, this labeling class equips each node label with its parent node label as a prefix.
So far, a number of roughly equivalent prefix-based schemes are proposed in the literature.
They not only support all XPath axis operations and hierarchical locking schemes (because
all nodes in the ancestor path can be easily derived from a node label), but also dynamic
insertions without re-labeling. DeweyIDs [6], as our specific labeling mechanism, enable
in addition specialized attribute node mapping and—with a dist parameter used to incre-
ment division values and to leave gaps in the numbering space between consecutive la-
bels—a kind of adjustment to expected update frequencies. Because any prefix-based
scheme such as OrdPaths [14], DeweyIDs, or DLNs[3] is appropriate for our storage man-
ager design, we use the acronym SPLIDs (Stable Path Labeling IDentifiers), as a synonym
for all of them.

In Figure 1a, we have applied the minimum “gap” with dist=2 which is only preferable
when insertions of subtrees are rare events. Hence, the insertion of a subtitle node between
1.3.3 and 1.3.5 would immediately cause an overflow and would have been handled by a
node label 1.3.4.3. An even number indicates an overflow in the labeling mechanism; it
always preserves the document order and enables direct comparability of SPLIDs.

An appropriate dist parameter cannot be determined while a document is initially stored.
Its selection requires “future knowledge” concerning the frequency of expected updates on
the document and, therefore, needs some hints from the user. Adaptivity of the storage
2

manger is confined to observing “label overflows” which could trigger a re-labeling with
a more appropriate dist size. Pre-analysis or sampling of the document, however, could re-
veal characteristics of the structure, average depth, distribution of nodes per level, etc.
Such information is useful to find optimal encodings for the mapping of the divisions.

Due to the large variance of XML documents in number of levels and, even more, number
of elements per level, we cannot design a (big enough) fixed-length storage scheme of
SPLIDs. For the sake of space economy and flexibility, the storage scheme must be dy-
namic, variable, and effective to capture tall/flat trees with many/only a few nodes at a lev-
el and a huge fan-out per node or only some children. At the same time, it must be efficient
in storage usage, encoding/decoding, and value comparison at the bit/byte level.

Huffman codes2 can be used as a gen-
eral mechanism to serve such require-
ments. For example, the i-th division
value can be represented as a pair Ci |
Oi where Ci is a prefix-free code used
to assign a length value to Oi via a map-
ping table (or an equivalent Huffman
tree). Table 1 illustrates a particular
mapping H1 of variable length division values where, in addition, a byte alignment is
achieved for each individual division. Because the codes can be freely chosen—regarding
the definition of a Huffman tree and a rule preserving comparability—and the assignment
of length values in column Li is independent from them, tailored mappings can be derived
for a document. Even in the encoded form, comparison of two SPLIDs or prefixes of them
works at a level basis (and decides according to the document order). Therefore, we could
refine our encoding mechanism and even choose Huffman encodings per level which
could be adjusted to the node distribution of these levels. While such an optimization may
save some space at the low percentage range, but may contribute to the implementation
complexity, some heuristic encoding rules may be more effective. Frequently, large sets
of nodes only occur at levels close to the document root, whereas the fan-out deeper in the
tree is typically limited to a few and often to a single node. Here, pre-analysis or sampling

2 Despite the claims in [10], so-called quaternary codes or, more generally, use of separators [6] cannot provide
fast bit-level comparisons and fail to support direct byte-level comparisons of encoded SPLIDs.

bib 1

Figure 1 XML document (cut-out) and related path synopsis

text

“Ende”

book

title

“Momo”

“Ende”

1.3

1.3.3 1.3.5
cover
1.3.7

author
1.3.5.3

author
1.3.7.3

1.3.7.3.31.3.5.3.3

1.3.3.3

novel

title

“Momo” “Ende”

1.9001

1.9001.3
author

1.9001.5

1.9001.5.31.9001.3.3

...book book

... ...

bib

text

book

title cover

author author

novel

title author

a) b)

1

2 3

4 5PCR:

Table 1 H1: Assigning codes to Li fields

code Li value range of Oi

0 7 1–127
10 14 128–16,511
110 21 16,512–2,113,663
1110 28 2,113,664–270,549,119
1111 36 270,549,120 – ~237
3

could deliver the level down to which, for example, H1 is applied (and a dist parameter is
used to provide for gaps), while at deeper levels the most compact form of encoding is cho-
sen, e.g., H2 with code 0 and Li=3 allows the representation of values 1 – 7 with 4 bits.

Having selected an encoding scheme, continuous self-optimization with feedback learning
may result in better adjusted parameters. That is, all documents added to an existing col-
lection in a specific domain and, therefore, implying similar storage and processing prop-
erties, may improve encoding gains on future documents allocated in this collection.

2.2 Path Synopsis

All paths from the root to the leaves having the same sequence of element/attribute names
form a path class. All path classes of an XML document can be captured in a typically
small main-memory data structure called path synopsis. Besides keeping statistical data, it
is used to detect path patterns, structure characteristics, or to recommend the creation of
indexes. Moreover, a given synopsis can be compared to existing document synopses to
find documents with similar structure. Such a path synopsis is illustrated for our sample
document in Figure 1b.

An important use, the path synopsis enables the derivation of the entire leaf-to-root path
of a content node. For example, when a value in a content index —whose unique position
in the document is identified by its DeweyID—is associated with a reference to its path
class, it is easy to reconstruct the specific instance of the path class it belongs to. By num-
bering the path classes in the path synopsis, we achieve an effective path class reference
(PCR) serving as a path class encoding. Even an index reference via a DeweyID to a struc-
ture node (attribute/element) allows the reconstruction of the referenced node’s ancestor
path, when a PCR added to the index reference. This usage of the path synopsis indicates
its central role in all structural references and operations. To increase its flexibility, it
should provide indexed access via PCRs and hash access using leaf node names.

Our path synopsis is restricted to tree structures and does not capture loop-enabled graphs
like XSeed [17]. In general, graphs allowing for an economical representation of path re-
cursions, consume more space than an equivalent tree structure, both carrying various
kinds of cardinality information.

2.3 Document storage

Efficient processing of dynamic XML documents requires arbitrary node insertions with-
out re-labeling, maintenance of document order, variable-length node representation, rep-
resentation of long fields, and indexed access. As sketched in Figure 2, the document index
enables direct access of a node when its DeweyID is given. Together with the document
container, the document store represents a B*-tree which takes care of external storage
mapping and dynamic reorganization of the document structure. Combined with DeweyID
use, it embodies our basic implementation framework to satisfy the above demands effi-
4

ciently. In XTC, this base structure comes with a variety of options [7] concerning use of
vocabularies, materialized or referenced storage of content (in leaf nodes), and, most im-
portant, prefix-compressed DeweyIDs. As illustrated in Figure 2, the sequence of Dewey-
IDs in document order lends itself to prefix compression and, indeed, we received impres-
sive results in numerous empirical experiments [6].

2.4 Indexing Structure and Content

So far, XML indexing literature can be classified into content [4], path [5] or hybrid index-
es [9]. Typically, these indexes deliver (range-based) node labels for index matches, which
then had to be resolved or verified on the document structure. For example, separate
matches on a content index for the value part and a path index for the structure part of a
content-and-structure (CAS) query had to be algorithmically checked whether pairs of
matches can be verified on the XML document (for example, by using structural joins). An
improved hybrid index, FLUX [9] carries a path signature with each index reference,
which is constructed as a Bloom filter [2]. When a value qualifies, the related signature is
assumed to deliver almost precise path information. However, because false positives may
occur, it has to be checked against existing paths in the document which can make the eval-
uation of XML path predicates expensive.

The combined use of DeweyIDs and PCRs dramatically improves index expressiveness
and evaluation. Using a B*-tree, we can develop various content indexes and get—by add-
ing PCRs to the DeweyID references—the corresponding path indexes for free. First of all,
we could design unique indexes, e.g,, for values of ID attributes or values for the path class
/bib/novel/title (see Figure 1b). In the latter case, the index entry (Momo, 1.900.3.3, 4) is
sufficient to reconstruct the entire path class instance. Depending on index selectivity and
query workload, we could benefit from collective indexes, e.g., //author[char], within a
single B*-tree structure. Here, an index entry (Ende, (1.3.5.3.3, 2), (1.3.7.3.3, 3), ...,
(1.9001.5.3, 5)) refers to all appearances of “Ende” as author, but, together with the path
synopsis, the correct path class instances can be derived. Even more, attribute or element
indexes can be designed according to the same principle. So, all occurrences of element
name “author” could be found via index entry (author, (1.3.5.3, 2), (1.3.7.3, 3), ...,
(1.9001.5, 5)). Here, the PCRs help to reconstruct the paths from inner structure nodes up
to the root without document access. Such typically external storage accesses are confined

Figure 2 Document store with a B-tree and container pages

1.3.3.3

1. 1.3.1.3.1 1.3.5.3.3 1.3.5.5.3.1

1.3.5.3.3
1.3.5.3.3.1
1.3.5.5
1.3.5.5.3

1.3.1.3.1
1.3.1.5
1.3.1.5.1
1.3.3

1.3.3.3
1.3.3.3.1
1.3.5
1.3.5.3

1.3.5.5.3.1
1.3.7
1.3.7.3
1.3.7.3.1

1.
1.3.
1.3.1
1.3.1.3

DeweyID (byte representation) node data (byte representation)

document index

document container

implemented as a B-tree

as a set of
doubly chained pages
5

to cases where additional information is needed from the document representation (see
Figure 1a). Details of this novel approach to XML document indexes are discussed in [11].

While ASM can perform index creation in parallel to the document storage, the selection
of appropriate indexes for an arriving document needs specification by the user. Although
a desired property of self-tuning, ASM would be able to automatically create indexes only
after a period of workload monitoring and self-observation. Furthermore, approaches con-
cerning query-driven or even predictive index creation would need a sort of probabilistic
usage model to estimate future costs and benefits of additional indexes

3 Building Tailor-Made Storage Structures

As already mentioned, ASM has to distinguish two cases: block-mode and stream-mode
arrival of (large) XML documents. In any case, an as thorough as possible analysis of the
incoming document seems mandatory to accomplish highly optimized storage representa-
tions for XML documents. To give an impression of the analysis task needed, we have as-
sembled in Table 2 essential characteristics for a representative subset of the test docu-
ments considered [13]. After document analysis, ASM selects a configuration from a num-
ber of predefined models, before it starts allocating and filling the corresponding storage
objects.

3.1 Analysis Phase

At first, ASM scans the available fragment of the document, in case of block-mode arrival
often the entire document, and collects significant document parameters to adjust the ini-
tial default parameter setting. Statistical data include number of nodes (i.e., element, at-
tribute, and text nodes), maximum depth and average depth, various fan-out ratios, number
of distinct element names, as well as number of distinct paths per path class. Furthermore,
the size of text nodes helps to adjust some storage parameters and the size of the document
store can be estimated from such statistical data. As discussed in Section 2.1, ASM tries to

Table 2 Characteristics of XML documents considered

doc
name description size in

Mbytes
elem. &
attr. nodes

text
nodes

vocab.
names

path
classes

max.
depth

avg.
depth

line-
item

LineItems from
TPC-H benchmark 32.3 1,022,977 962,801 19 17 4 3.45

uni-
prot

Universal protein
resource 1,820.0 81,983,492 53,502,972 89 121 7 4.53

dblp Computer science
index 330.0 9,070,558 8,345,289 41 153 7 3.39

psd-
7003

DB of protein
sequences 716.0 22,596,465 17,245,756 70 76 8 5.68

nasa Astronomical data 25.8 532,967 359,993 70 73 9 6.08
tree-
bank

English records of
Wall Street Journal 86.1 2,437,667 1,391,845 251 220,894 37 8.44
6

find an optimal Huffman encoding for the divisions, possibly restricted to the “critical”
document tree levels with large sets of nodes under a common parent.
A vocabulary is essential for saving document storage space by encoding the element and
attribute names, e.g., using one-byte or two-byte integers as VocIDs. It can be represented
by a little main-memory data structure (for typically a few hundred names). Therefore,
while scanning the document, its vocabulary is incrementally built. Furthermore, the path
synopsis containing all path classes and PCRs is derived. Both data structures can be com-
pleted on block-mode arrival, whereas a stream-mode document may leave at the end of
the analysis phase fragmentary data structures to be completed in later phases.

Another problem is unused space in
container pages which is crucial when
text nodes have to be allocated. They
are materialized in container pages up
to a parameterized max-val-size. When
the size exceeds max-val-size; the text
is stored in referenced mode possibly
divided in parts each stored into a sin-
gle page and reachable via a reference
from its home page, as illustrated in
Figure 3. Hence, maximizing page utilization may be achieved by a document-dependent
page size optimization. Regarding the document store as an index, these findings can be
applied to additional indexes, too.

3.2 Approximating Document Parameters by Sampling

While expensive, a full document analysis always delivers accurate parameters for the
configuration phase. To check a conceivable reduction of the analysis effort, we ran some
sampling experiments for the documents of Table 2. Sampling only allows to approximate
important auxiliary structures and configuration parameters such as vocabulary, path syn-
opsis, text length per element, fan-out (in upper levels), and document depth. In a number
of sampling experiments, we have determined—for the parameters applicable—the ranges
of the estimation errors to be expected. In Figure 4a, the graphical symbols depict the av-
erage estimation error per document, whereas the max/min of the error range correspond
to estimations computed when a sampling buffer was filled with 1 resp. 50 MB. These re-
sults highlight one of the most fundamental problems in sampling small pieces of docu-
ments with heterogeneous or skewed structures. As indicated for dblp and treebank in Fig-
ure 4a, parameters such as vocabulary size and path class may cause the selection of an
unfit representation model. When we start building the document with such “wrong guess-
es”, we may get suboptimal structures or may be enforced to revise our design decision. In
general, however, the parameters for max/avg depth, average text size, and fan-out are ac-
curate and stable, even for tiny fractions of 1 MB samples. Hence, we can use stable pa-
rameters for decisions concerning DeweyID encoding and page size tuning.

Figure 3 Inserting long records

content pagecontainer page content page

header header

.5 title

...

1.5.3.5 1.5

9.5
1.5.9.
7

When sampling on block mode or stream mode documents, only its initial fragment can be
exploited for reasonable parameter and structure estimations. Sampling inner parts would
require jumps into the ’middle of the document’ thereby losing location awareness and
context information for determining levels, paths, and other structure parameters. Despite
the auxiliary information about document size and structure for block-mode documents
available, sampling proceeds the same way in both cases. Therefore, outliers for specific
parameter values or a skewed document structure may lead for both arrival modes to
wrong decisions; only reloading or dynamic reconfiguration may guarantee optimal con-
figurations. Having complete documents and precise analysis available, the mismatch,
however, is most likely lower.

Stream-mode documents necessarily enforce ASM to configure storage structures with
less than perfect parameter knowledge, as characterized in Figure 4a. Because file size in-
formation is available for block-mode documents, extrapolation of some parameters using
the size of the entire document is applicable. To show the precision of a sampling step in-
stead of a full scan for size information (number of attribute/element/text nodes), Figure
4b exhibits the relative estimation errors for various sample sizes. Surprisingly, our results
reveal that, even with only a 1% sample, an error of not more than ~10% may be expected.
Of course, larger sample sizes improve this error margin. Figure 4b also shows that there
exist “simply structured” documents where sampling delivers perfect knowledge of size
parameters even using very small samples. In summary, sampling often delivers in the
analysis phase accurate-enough parameters for ASM to plan the physical configuration of
an XML document.

3.3 Configuration Phase

To provide a systematic framework for the configuration of XML document representa-
tions, we have introduced a number of storage models. Every document is classified into
one of the following categories.

Figure 4 Relative estimation error of sampling

 2
 4
 6
 8

 10

 0 5 10 15 20 25 30 35 40 45 50

 %

% of total document sampled

b) Extrapolated sampling errors when doc siz is known

lineitem

✧

✧ ✧ ✧ ✧

✧
uniprot

✛
✛

✛ ✛ ✛

✛

dblp

■

■
■

■
■

■
psd7003

✕ ✕ ✕ ✕
✕

✕

nasa

▲

▲

▲

▲

▲

▲
treebank

✫ ✫ ✫ ✫ ✫

✫

 0
10
20
30
40
50
60
70
80
90

lineitem
uniprot

dblp
psd7003

nasa
treebank

 %
a) Ranges of ampling errors on XML documents

max depth

✧ ✧ ✧
✧

✧ ✧

✧
text length

✛
✛

✛
✛ ✛

✛

✛

voc size

■
■

■

■ ■

■

■
path classes

✕

✕

✕

✕ ✕

✕

✕

8

• Model 1: A (large) document is stored as a physical stand-alone tree structure in a set
of container pages together with a document index according to the schema shown in
Figure 2. Its path synopsis is kept in a separate structure and a number of user-specified
content and/or element indexes is allocated to speed up declarative document access.

• Model 2: The storage structures of Model 1 are taken, but the layout of the container
pages is optimized using an “elementless” representation of the XML document while
preserving all document properties. Only the content, i.e., the values of the leaf nodes
together with their DeweyIDs and PCRs, is stored in the container pages. The PCRs are
used to derive the inner document structure on demand [11].

• Model 3: When a large number of small documents of a given domain, e.g. from Wiki-
pedia, has to be stored, isolated Model 1&2 representations are very space consuming.
By adding a new artificial document root, we may store such a collection as a single
physical document according to the schema in Figure 2. Having a common path synop-
sis for this collection, the assignment of new domain-related documents may be done
automatically via path synopsis matching. The use of combined indexes may save stor-
age space and, partly due to locality of reference, accelerate the evaluation of queries.

• Model 4: Collections of (small and large) documents with (largely) homogeneous struc-
tures are physically stored together as subtrees which, in turn, may be indexed by a B*-
tree. The assignment to such a collection is user-specified or can be supported by the
path synopses to determine similarities among documents. Homogeneous documents
by structure and/or by content may take advantage of common structure/content index-
es and gain better storage utilization and query support.

• Model 5: Collections of documents of varying sizes and heterogeneous structures are
used in a similar way as in Model 4. Typically, often indexes do not provide search sup-
port, but only a kind of filtering. Due to the documents’ heterogeneity, query support
and reduced storage space may be only achieved by combined indexes and vocabularies
rather than by disjoint path synopses to be expected.

So far, we have implemented Models 1 to 3, whereas the remaining models are currently
under construction. Their design is more complex, because of the content and structure
heterogeneity of the documents and the challenge to achieve reasonable storage utilization
with large numbers of small objects.

Note, the different models rather describe a rough, and may be incomplete, classification
than a fixed assignment for every incoming document. Indeed inappropriate storage map-
pings for incoming documents may enforce a classification refinement, that is, further der-
ivation of one or more models or a combination of them is conceivable. However, this is
not true for Model 1 and Model 2; they are inherently different that their combination does
not seem to be achievable.

3.4 Building Phase

When an appropriate model is identified for an incoming document (either automatically
or with user assistance), our ASM, when allocating and filling the storage structures for
the document, tries to do as much as possible in parallel. When filling the document con-
9

tainer left-to-right in document order, the document index creation can be optimized by a
concurrent bottom-up construction. Normally, additional (pre-specified) indexes are built
top-down, as the corresponding values and DeweyID references occur in the document be-
ing stored. Another option is to collect all indexed values and their node labels, sort them
explicitly according to the various index orders, and build the indexes bottom-up.

Concerning the optimization and adaptation issues discussed in Sect 2, ASM has for each
of the models quite a number of options to choose from. The models themselves rather re-
flect application scenarios which are partially overlapping. Especially, Model 1 and 2 are
competing as candidates for large isolated documents for which we already performed ex-
tensive empirical evaluations. Due to space limitations, we can only focus on storage con-
sumption and show what kind of improvement can be expected from them when compared
to a standard approach. In all cases, the document nodes are stored as variable-length
records including DeweyIDs, VocIDs, type descriptors, byte alignment, etc. Furthermore,
we left the content (text nodes) uncompressed; text or character compression techniques
can be orthogonally adopted for further optimization. The results in Figure 5 are normal-
ized w.r.t. Standard using plain DeweyIDs and “long” VocIDs (2 bytes). Model 1 applies
prefix compression to DeweyIDs and adjusts VocIDs (1 byte). Model 2 uses only stores
the text nodes carrying prefix-compressed DeweyIDs and adjusted PCRs (only 1 byte, if
applicable). Compared to Standard, Model 1 saves ~20% – ~40% and Model 2 reaches
~30% – ~50% when considering the entire document. If we regard the structural part only,
the saving increases substantially to ~40% – ~61% and ~69% – ~86% for Model 1 and
Model 2, respectively.

Model 2 assumes a reasonably small path synopsis available for all processing steps which
is true for probably more than 90% of the XML documents [12]. Looking at the parameters

Figure 5 Storage consumption of XML documents

content
compressed DeweyIDs

VocIDs + admin
PCRs + admin

 0

 10

 20

 30

 40

 50

 60

 70

 80
%

lineitem dblp psd7003 nasa treebankuniprot

M
od

el
 1

M
od

el
 2

for depth and path classes in Table 2, treebank, however, can be characterized as such an
exotic outlier, where only Model 1 should be applied.

Model 3 forms a single artificial tree for a
collection of XML files by adding an extra
level with a common root. It was applied to
527 small Wikipedia documents which we
randomly selected from wikipedia.org and
where the HTML tags were used as the
XML vocabulary. Our tests proved its supe-
riority compared to alternative storage mod-
els. Stored as isolated documents, this col-
lection would have created 527 similar path
synopses and vocabularies, not to mention
the large number of tiny index structures,
each of them only filled with a few values
and references. Table 3 depicts the differ-
ences between Model 1 and Model 3 regarding page utilization and index pages as well as
the DeweyID overhead of the added document root. Note, the overhead of the increased
DeweyID length (an additional division for every node label) is completely absorbed due
to prefix compression.

Finally, there exist no limitations for the coexistence of different models within the same
container file. Because every container is divided into pages having a specific page header
to describe how the page is accessed, even indexes and BLOB pages may coexist within a
single container file. The specific configuration of document to be stored is administrated
using a master (XML) document which serves as the system catalog.

4 Conclusions

In this paper, we primarily discussed important concepts needed to obtain optimal and tai-
lor-made storage structures for XML documents. For block-mode and stream-mode docu-
ment arrival, we sketched the kind of analysis, the selection of a storage model, and finally
the creation of the stored document including auxiliary data structures. Preliminary perfor-
mance measures indicate the potential storage saving and operational gain using our con-
cepts of adaptivity.

Because flexibility is often the main reason to adopt an XML DBMS, we have only con-
sidered XML documents with integrated schema information. However, increased integ-
rity requirements may dictate in the near future the support of XML schema and explicit
integrity checking against its schema when a document is stored or modified. In general,
this implies for the DBMS substantial effort to accomplish integrity control of multiple or
evolving schemas or of schemas that include extensibility points [1]. As observed in [15],
handling such additional flexibility may become a killer application for XML databases.

Table 3 Model 1 vs. Model 3

property 527 single
documents collection

avg. depth 6.29 7.29
max. depth 42 43
document

index pages 4,751 2,957

element index
pages 42,928 1,504

prefix com-
pression 920 KB 930KB

unused space 180 MB 9.9MB
11

References

[1] Balmin, A., Beyer, K. S., Özcan, F., and Nicola, M. On the Path to Efficient XML Queries.
Proc. VLDB: 1117-1128 (2006)

[2] Bloom, B. H. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM
13:7, 422-426 (1970)

[3] Böhme, T., and Rahm, E. Supporting Efficient Streaming and Insertion of XML Data in
RDBMS. Proc. 3rd DIWeb Workshop: 70-81 (2004)

[4] Bruno, N., Koudas, N., and Srivastava, D. Holistic Twig Joins: Optimal XML Pattern Match-
ing. Proc. SIGMOD: 310-321 (2002)

[5] Goldman, R., and Widom, J. DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. Proc. VLDB: 436-445 (1997)

[6] Härder, T., Haustein, M., Mathis, C., and Wagner, M. Node Labeling Schemes for Dynamic
XML Documents Reconsidered. Data & Knowl. Engineering 60:1, 126-149 (2007)

[7] Haustein, M. P., Härder, T.: An Efficient Infrastructure for Native Transactional XML Pro-
cessing, appears in Data & Knowledge Engineering, Elsevier, 2007.

[8] Jagadish, H. V., Al-Khalifa, S., Chapman, A., Lakshmanan, L. V S., Nierman, A., Paparizos,
S., Patel, J. M., Srivastava, D., Wiwatwattana, N., Wu, Y., and Yu, C.: TIMBER: A native
XML database. VLDB Journal 11(4): 274-291 (2002)

[9] Li, H.-G., Alireza Aghili , S., Agrawal, D., and El Abbadi, A. FLUX: Content and Structure
Matching of XPath Queries with Range Predicates. Proc. XSym, LNCS 4156, 61-76 (2006)

[10] Li, Ch., Ling, T. W., and Hu, M. Efficient Updates in Dynamic XML Data: From Binary
String to Quaternary String. VLDB Journal: 16 (2007)

[11] Mathis, C., Härder, T., and Schmidt, K.: Storing and Indexing XML Documents Upside
Down, submitted.

[12] Mignet, L., Barbosa, D., and Veltri, P. The XML Web: a First Study. Proc. 12th Int. WWW
Conf., Budapest (2003), www.cs.toronto.edu/~mignet/Publications/www2003.pdf

[13] Miklau, G. XML Data Repository, www.cs.washington.edu/research/xmldatasets
[14] O'Neil, P. E., O'Neil, E. J., Pal, S., Cseri, I., Schaller, G., and Westbury, N. ORDPATHs: In-

sert-Friendly XML Node Labels. Proc. SIGMOD: 903-908 (2004)
[15] Sedlar, E. Managing Structure in Bits & Pieces: The Killer Use Case for XML. Proc. SIG-

MOD: 818-821 (2005)
[16] XML Database Benchmark: Transaction Processing over XML (TPoX), http://tpox.source-

forge.net/ (January 2007)
[17] Zhang, N., Özsu, M. T., Aboulnaga, A., and Ilyas, I. F.: XSEED: Accurate and Fast Cardinal-

ity Estimation for XPath Queries. Proc. ICDE 2006: 61

