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Abstract. We use a set of tailor-made techniques adjusted to XML particularities to
summarize XML data, which then can be recursively evaluated for query optimiza-
tion tasks. More specifically, we identify and deal with special cases for effectively
using histograms for the summarization of structural aspects of XML documents and
also cases for which histogram use is inappropriate. We perform comparative exper-
iments using our native XML database management system called XTC.
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1. Motivation

The structure of XML documents brings new challenges on how to shrink tree represen-
tations in a way to be representative enough for the original document to support a cost-
based XML query optimizer. XML documents may be, in practice, irregular with popu-
lated and broad subtrees and, at the same time, sparse and slim subtrees. Beside the struc-
ture part made up by elements and attributes, the content part (i.e., the tree leaves)
normally contain text values which may embody varying distributions. XQuery and
XPath [17, 18], including their predicates, may contain up to 8 axis relationships, where
parent-child (/) and ancestor-descendant (//) are absolutely dominant in query workloads
and prime candidates for optimization support. Predicates may be so rich that a single
auxiliary structure (as complex as conceivable) would not solve all query optimization
problems. Moreover, maintenance overhead would confine each practical approach.
Thus, any summarized structure should be flexible enough for both: capturing such prop-
erties of XML data and supporting, as accurate as possible, cost-based XQuery/XPath
query optimization.

We propose two synopses which provide good built-in support to be used in a query
optimizer where the evaluation process take several physical operators (e.g., structural
join (STJ) and holistic twig join (HTJ)) into account. In Section 2, we detail the synop-
ses to summarize structural aspects of XML documents; our approaches are called Con-
stant Element Frequencies under an Aggregated Parent and Level-Wide Element
Summarization, CEF and LWES for short. Both of them leverage the use of histograms
[6] to capture element distributions in an XML tree. They apply histograms to specific
sets of elements in a tailored fashion by distinguishing situations where the use of histo-
grams is profitable and those where histograms are useless. Furthermore, we propose a
simple extension of histograms (called ABD, average bucket descriptor) to lower the
estimation error when histograms are used in the XML domain. Section 3 presents a set
of formulas to derive cardinality estimation for XML queries. These formulas used in
our experiments could be exploited by an optimizer. We have implemented the proposed
concepts in XTC [5] and proven their validity by comparative experiments (Section 4).
Section 5 presents the related works. Finally, Section 6 concludes the paper.



2. The Proposed Approaches

We can naively summa-
rize an XML document
by a general kind of path
synopsis called Hierarchi-
cal Node Summarization
(HNS-see Figure 1). It
embodies a structural
summary of all (sub-)
paths of the document. Figure 1 a) XML document and b) HNS structure

Each node in an HNS de-

fines a path class and stores the number of its path instances occurring in the document.
The HNS construction is recursive and captures the frequencies of all elements under the
same (aggregated) parent in a document. Building an HNS proceeds top-down, where the
same element names under the aggregated parent are counted, and this information is rep-
resented by a node labeled with “element.frequency”, where element is the element name
and frequency is the number of occurrences counted. For example in Figure 1a, we have
two elements ¢ under parent a and, in turn, 3 elements » under a parent c: these elements
are represented in the HNS of Figure 1b by an aggregated node ¢ with frequency 2 (c:2)
and, in turn, by an aggregated node r with frequency 3 (r:3). It turns out that such an HNS
precisely preserves the frequency information of all (sub-)paths of the original document.
If we need the frequency of a path, we just traverse this path in the HNS from the root
and the frequency kept in the final element addressed by the path delivers this informa-
tion, e.g., a/c/r/p and a/c/s yield 3 and 4, respectively.

HNS has strong positive points. First, it delivers high estimation accuracy for struc-
tural queries. Because the query //c/t matches two nodes in the given HNS, we can
immediately return 4 as the number of qualified path instances (together with the fully
specified paths). Furthermore, all path classes in a document are present in an HNS,
which avoids false positive errors. Second, HNS estimates most XPath axes with very
high accuracy. An estimation for //c/s/following-sibling::t returns 3, because, in HNS, a
node ¢ with frequency 3 has the same parent as s. Third, HNS is memory efficient for
documents exhibiting a certain degree of uniformity.

However, HNS has also negative points. The number of HNS nodes may be high
for deeply-structured documents and, because the HNS tree has to be traversed for some
query axes, the number of nodes may negatively impact the estimation process. For
deeply-structured documents, HNS may consume an enormous amount of storage space
which could impede cardinality estimation and, in turn, the entire query optimization.

Attempting to avoid weaknesses and limitations and, at same time, keeping the pos-
itive properties of HNS, we develop a framework to enable tailor-made HNS structures
based on two approaches. Both CEF and LWES, approximate all paths in XML docu-
ments without any pruning and use histograms to estimate structural information.

2.1. CEF

The observation that child sets having the same element name as parent (e.g., s and p un-
der r in Figure 1a) frequently exhibit a similar element distribution led to the develop-



ment of the CEF method. It assumes a certain stable repetition (reasonably uniform
distribution) of such patterns of parent-child sets. Hence, this property serves to save stor-
age space. The resulting CEF can be considered as a tree consisting of the inner HNS
nodes and specific compacting structures. The HNS leaf nodes and their distribution
could be expressed by bitlists (in case of uniform frequencies) or histograms attached to
these inner HNS nodes. In case storage saving is not possible, uncompressed element.fre-
quency lists may be used.
Let us take an intuitive
look on how a CEF can be
built (see Figure 2). Starting
from an HNS, we can com-
press the XML document as
follows. As a general rule,
each set of leaf nodes in the
HNS is represented in CEF “ I
by its parent node and a his-
togram which captures the
frequency distribution of this set. For instance, we take the set C whose parent node is
s:4 and represent it in the CEF structure by a histogram together the parent node itself.
This rule could recursively be applied in such a way that the final CEF structure consists
of only inner nodes and histograms. Of course, special cases may occur in which histo-
grams are inappropriate (see, e.g., set A in Figure 2); we deal with them in Section 2.3.
The main argument to favor CEF construction is to reduce the number of nodes in the
resulting CEF synopsis which can yield a faster search time when CEF is used in the
optimization process.

BL-ny: bitlist descibing set I
1
set D

HG;: histogram descibing set |

Figure 2 Deriving a CEF tree from an HNS tree

2.2. LWES

A different way to compress a) HNS
a HNS tree is to capture the
distribution of the elements
level by level. For example,
Figure 3a shows three nodes
with element name s in level
4, one 5.3 under r, another
s:1 under s, and again an s./
under ¢, let us call them node
occurrences of s. LWES rep-
resents all such occurrences of s at the same level by using a single histogram. In a similar
way, this rule is applied to all other HNS nodes, that is, p and ¢ (italicized in Figure 3b at
level 4). Moreover, LWES maintains a list of parent pointers which has a twofold goal:
it properly captures the hierarchy (parent-child relationships) of the document and it
helps to distinguish each HNS node occurrence of an element. Both are exploited during
the cardinality estimation process.

The LWES approach is an alternative solution which tries to deal with recursivity in
XML documents such as treebank, but it may also be beneficial for others, e.g., dbip.
LWES has at least one advantage over CEF. An element name (node) at a level is repre-

b) LWES structure

|
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Figure 3 Example of an LWES synopsis (cut-out)




sented by only a single histogram in LWES. CEF must possibly use more than one histo-
gram to represent an element at a level. There are, also in LWES, special cases in which
histograms are inappropriate and we deal with them in next section.

2.3. Tailored XML Compression

The element names occurring in an HNS tree are not continuous and have no natural or-
dering. Instead, we have to deal with non-ordered discrete data spaces. Therefore, para-
metric distributions [10] can not be applied. However non-parametric estimation
techniques, e.g., histograms, may be suitable for the compression of element.frequency
lists. Various forms of histograms [6]—all observing the standard assumptions of uni-
form element/value distribution and element independence—were proposed so far; we
sketch the most important ones. According to [6], a histogram on a set X is constructed
by partitioning the data distribution of X's elements into B(f > 1) mutually disjoint sub-
sets called buckets and by approximating frequencies and values in each bucket in some
common fashion, normally by averaging frequencies. This definition allows a degree of
freedom in which we can do both: (i) adapt the histogram definition to our needs, and (if)
use several types of histograms proposed in the literature.

There are, of course, several types of () Set of clements (b) Equi-width histogram
histograms. Four of these well-known I bucket [ est. freq.
types are: Equi-width (EW), Equi-height |[aumor 0> au‘g‘;z:‘iﬁig’r 163
(EH) [12], End-biased (EB) [§] and Biased [ _dior |3 e 9
histograms [14]. To illustrate these histo- ptftllcee T (¢) Equi-height histogram
grams, consider a set of NE clements as year 19 bucket  |est. freq.
depicted with NE = 5 in Figure 4a where (d) End-biased histogram algr};;);:eyggro d g
each element is annotated with its fre- bucketf [est. freq. year —year | 12

. . min.var.elemts 3
quency (freq.), i.e., its number of occur- author TO (e) Biased histogram
rences. This set could represent a year 19 bucket  [est. freq.
complete subtree or a set of elements at a Figure 4 A sample set a‘;g;ﬁf)r_f‘;tt}l‘é’r g
specific level of a document and has to be ¢ jements and related year T9

mapped onto [ buckets (B < NE). In our histograms

illustrations, we use three buckets to rep-

resent such a set. While keeping the alphabetic order, an EW histogram (Figure 4b)
groups NE/B elements together with their sum of frequencies in a bucket (with the left-
over in the last bucket). Each bucket is then labeled with a start element and an end ele-
ment, where the start element is the first entry in the bucket, and the end element is the
last entry in the bucket. If a bucket holds only one entry, it will have equal start and end
elements. In contrast, EH computes the sum S of the individual element frequencies and
sets S/NE as the “equal height”. With this criterion, the entries of the original set are par-
titioned in an order-preserving way into buckets (Figure 4c). If the frequency contribu-
tion of the end element is not fully contained in the bucket frequency (est. freq.), this
element will appear as start element in the subsequent bucket thereby spanning two (or
more) buckets (see price — year and year — year buckets in Figure 4c). The biased histo-
gram types try to emphasize particular elements while they approximate the remaining
elements. Some degrees of freedom are conceivable, e.g., emphasizing elements with
highest or highest/lowest frequencies or averaging elements with minimum variance. In
our example in Figure 4d, EB selects NE-(-1) elements which exhibit the minimum



variance and represents them by a single bucket with their frequency average. The
remaining (-1 elements are represented by individual (singleton) buckets. Here, the EB
histogram isolates the elements author and year, and averages the remaining elements
(min. var. elemts) in a bucket. A Biased histogram (Figure 4e) isolates the element with
the highest frequency (vear) and approximates the remaining elements in an EH way.

The direct and straightforward application of histograms may not be appropriate in
all cases for XML data. In fact, some special situations exist in which histograms cannot
contribute to further compression. These cases are described and dealt with as follows.
Case I: all elements in a set have the same frequency. In this case, we do not need a his-
togram at all. We only store a bitlist representing the position of these elements in the
set. Hence, for set A (set B and set D) in Figure 2, adding frequency (e.g. 1 for set A) is
sufficient to compute all selectivities in the set. Case 2: as a special case of 1, a set has
only one element; hence, insertion of a node representing this element together with its
frequency in LWES/CEF is sufficient. Case 3: a set has two elements with varying fre-
quencies. We could approximate such a situation by averaging frequencies. However, if
frequencies contain a large variance, the use of averages does not well reflect the actual
distribution. Therefore, we store such sets as uncompressed element.frequency lists.

An important issue is how the different histogram types influence cardinality esti-
mation and, in turn, the optimization precision of query types. A query encompassing
XPath (XQuery) axes as parent, child, ancestor and descendant can be viewed as an
exact-match query. For example, retrieving all names of book authors, /book/author/
name, could be translated to the exact match of the child name (among others) whose
parent is author. In this case, most histograms support such a query type, but EB has one
of the best accuracy results for exact match in general [7]. On the other hand, queries
containing preceding (following) axes could be evaluated in a similar way as range que-
ries. For example, getting all book titles where the related books have a publisher, /pub-
lisher/following-sibling: :title, retrieves the “next siblings™ of title after publisher. For
this case, Biased and EH histograms can be useful, although [7] shows that EB histo-
grams provide also good estimations. The application of histograms in our approaches
can be even tailored to specific parts of a document driven by the query workload. In
this case, if we know that a typical query workload addressing a specific fragment of a
document (obtained, e.g., from a query feedback mechanism) mostly contains exact-
match queries, we can apply an EB histogram for this fragment, making the cardinality
estimation more accurate and, possibly, generating better query plans (QEP).

Another issue, regarding histograms application, is whether or not we should make
extensions for some histogram types. For example, the use of EB histograms in the CEF
approach may lead to undesired situations when evaluating a query axis, e.g., the
descendant axis. When the estimator process probes an element against a path instance
in a descendant axis, two possibilities can happen: if the element is in a singleton
bucket, no error occurs. Otherwise, the average bucket value is returned as the estima-
tion which can yield a false-positive error. This may happen because there is no explicit
representation of elements in the average bucket. Depending on the path expression, this
error may be propagated and may finally result in a lower estimation accuracy. To over-
come this situation, we propose a new extended EB histogram, called EB-ADB (Aver-
age Bucket Descriptor). We thus add to EB histograms a descriptor that represents all
elements in the average bucket (ABD). The implementation of ABD is quite simple: a
compressed bit array where ’1° in a given array position represents an element within



the range of elements belonging to an average bucket. With ABD, we reduce the false-
positive error in CEF and, of course, its propagation, because we can now identify
exactly whether or not an element is in an EB histogram. For LWES, this problem does
not occur, because the parent pointers work as descriptors for the average bucket. The
building algorithms of CEF and LWES have a complexity of only O(n), where n is the
number of HNS nodes. For space restrictions, we have omitted them.

3. Reference Queries

So far, we have discussed  Query A Query B

how path synopses can be /bib/book/author  //book[//author/affiliat]/title[/subtitle]/sibling: :publ

enriched with various forms

of summary information and (doo @

how this information, in [ bib | book

turn, can be effectively com-

pressed by histograms of dif- [ book ] [author] [ title | [publ |

ferent types. Now we will _ _

outline for which query ex- |auth0r| |afﬁ11at| |subt1tle| 4 -
mixed representation

pressions and in which way BWi% relg.resemations c‘??tai:?ing containing declarative and
these summanes can be ex- €clarative query speciications procedural Speciﬁcations

ploited, that is, how selectiv- Figure 5 Various forms of query representation patterns
9 bl

ities for path expressions can be estimated to enable the query optimizer to derive the
’best’ or, more realistic, sufficiently good QEPs.

To facilitate our discussion, look at Query A in Figure 5, /bib/book/author. The
terms bib, book, and author are node tests in XPath terminology; and / is called path
step. In this sense, an XPath/XQuery expression consists of a number of node tests con-
nected by path steps evaluated during query processing. Furthermore, various forms of
path predicates, represented by brackets, may occur as depicted in Query B of Figure 5.
Predicates check for the existence of one or more elements in expressions inside brack-
ets. Both, queries A and B can be internally represented by a set of structural join opera-
tors (STJ), by a twig which can be executed using a holistic twig join operator (HTJ) [2],
or by a set of twigs representing parts of the query, linked by structural joins. In any
case, the optimizer should estimate the cost of each possible QEP for a query. Here, car-
dinality estimation plays a key role. For example, for Query A using structural joins, we
can have at least two possible ways of evaluation: (bib STJ (book STJ author)) and ((bib
STJ book) STI author). Furthermore, each structural join could be executed using hash,
nested-loop or merge join operators [11]. More specifically, if we estimate that the
author selectivity is less than the book selectivity, the STJ operator in the inner paren-
thesis should look up first author. Otherwise, STJ should look up book. The same rea-
soning is valid for query predicates if they exist.

In the following sections, we sketch formulas for cardinality estimation of path
expressions. The gist of our estimation method is to work with two concepts: context
(Cyy) node test and target (T,)) node test. C,, can represent an XQuery/XPath bind vari-
able, while T, can represent a child, descendant, parent, or ancestor node in a query.
Any part of a query expression can be characterized by these two concepts. For exam-
ple, in /bib/book/author, three C,, (document root for /bib; bib for /book; and book for /




author) and three T}, (bib for /bib; book for /book; and author for /author) occur. For our
estimation methods, the document root node cardinality is 1.

CEF and LWES support the evaluation of several kinds of path expressions. How-
ever, in this paper, we only focus on two frequent and, therefore, important types of que-
ries: Simple Path Expressions (SP) and Predicate Path Expressions (PP). Both of them
encompass queries presented in Figure 5, e.g., Query A relates to SP and Query B
relates to PP. To define the expressions at a more abstract level, we derive the following
definitions. Simple Path Expressions (SP) are XPath expressions in one of the following
formats: (@) /v1/.../vy_1/vy, and (b) V1/.../v_1//vy. Predicate Path Expressions (PP) are
XPath expressions whose formats include: (@) vy/.../vy_1 [Vl (B) V1 [/v9].../vns (€) /
v1[./vy AND ./v3 ...]/..Vy, and (d) /v /[./vy OR ./v3...]/.../vy,. In SP and PP expressions,
Vv]...vy are node tests, and / (/) are path steps representing parent-child (ancestor-
descendant) relationships. Each predicate can be formed by one or more components.
Each predicate component can, in turn, be a complete SP expression and possibly linked
by logical connectors (AND/OR). For example, the predicate [.//author AND ./affiliat] has
two components: .//author and ./affiliat, both linked by an AND connector. We allow
existential predicates in every part of a PP.

Given a path step S, C,,/T,,, we estimate the cardinality of T,), denoted ECard (/T,)),
by ECard(/T,) = GetTarget(T,). GetTarget (T,,) is a function that searches CEF/LWES
for T}, under C, to get the estimate. If histograms exist for C,, the function returns the
histogram estimations. Consider Query B in Figure 5. We could recursively apply the
ECard formula (and formulas in the next sections) to estimate, for example, the cardi-
nality of the twig. Furthermore, we could use such formulas to estimate the selectivity of
each predicate and decide, e.g., on the join order of the STJ operators.

3.1. Estimating Cardinality of SP

The selectivity for a path step, denoted by Sel.;/(S), can be estimated as
Sel ;i14(C,/T,) = (ECard(T,))/(ECard(C))) . Sel_;; could be used by a query optimizer
to derive the selectivity estimation of each path step and then to decide the join order used
to evaluate a QEP with, for example, structural join operators. We can estimate the car-
dinality of an SP expression with format a as SPc,,.4(v{/.../v,) = ECard(v,) | which
means that the cardinality of an SP expression is just the cardinality of its last step. Using
the concepts of SP,,;and Sel ;,;;,, the estimated selectivity of an SP expression with for-
mat a can be obtained through the following:
SP(vi/ /v, _/v,) = (ECard(v,))/(SPc,.4(vy/.../v,_1)). Dividing the cardinality
of the last path step by the SP cardinality, SP,,; captures the contribution of (elements
in) the last step with regard to the whole path. The concepts SP,; and SP,; are useful
when a set of HTJ is applied to evaluate a query. For example, refer to Figure 5 (query
B, right hand). SP,; could be used to drive the join order of the twigs: book/author/af-
filiat, /title/subtitle, and /year. In fact, SP,,; could be applied to all twigs to estimate
which of them is the most selective. The concepts Sel ;;; and SPg,; are useful, because
we can exploit SPs as predicate components. Therefore, we need such concepts to calcu-
late predicate selectivities. We consider the above formulas as core formulas, because
they can be recursively used to derive estimations in a query evaluation process.



3.2. Estimating Selectivity of PP

Given path step S, C,[./T,], with context node C, and target node T, in a predicate ex-
pression, the selectivity estimate, Se/,,, for a predicate expression with the format a is cal-
culated as Selp(vl/.../vni /v, 1) = SP (v /v, ) < Sel a7, Se[p simply
states that the more selective a predicate is, the more selective the whole expression is.
Of course, this is a classical assumption and it is further used in predicate expressions
linked by logical operators. Let p,yp=(P1, P2, --- -Pp) b€ a set of predicates using logical
AND (") connectors linking predicates p;, and each p; is an SP expression. The selectivity
Sely, qnp 1s estimated as
SelpAND(Vl/'"/Vi/['/VH LA ALY

i+tn

1) =8P, (vi/.../v;) x H Selepita(-/ Vit p)
1<k<n
The idea behind predicate selectivity computation is to estimate the weight of a
predicate w.r.t. the entire path expression. For AND-connected predicates, the resulting
selectivity is computed the product, whereas OR-connected predicates are calculated by
the sum.

3.3. Estimating Descendant Axes

Given a path step S, C,//T;,, with a context node C,, and a descendant target node T, in
an SP expression, we may have several target nodes T, reachable from C,. Let 7 =
(t1.t) ....t,) be a set of target T}, nodes reachable from C,, the estimated cardinality of a
descendant axis expression is ECard,, .(C,//T,) = > lbetTarget(’i), where ¢; € 7. Us-
ing ECard ., the cardinality and selectivity estimdtfé# formulas for descendant axes are
similar to those in Section 3.1, and we omit them because of space restrictions.

4. Empirical Evaluation

To determine the practical Table 1: Characteristics of documents considered

f r proposals. we | Doc- | Descrip- | Size | #nodes (in-| #voc. |max. | avg. .
use ot our prop ’ name tion |in MB| ner/text) | names |depth|depth Observation
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documents listed in Table 1 | PP |sc index | 3300| 8345080 | 41 | 7 | 3:39 ] less regular,
and whose results are ana- psd | Protein 22.596.465 / big size,

716.0 17.243.756 70 8 | 5.68 |quite regular.,
non-recursive

lyzed regarding timing, siz- | 7003 | data
ing and. accuracy. Regarding o | Astron
estimation accuracy, we data
build, for each document, a [ . T powein 5.166.890 / i

. 109.5 100 6 | 4.07 | quite regular,
query workload relating to | prot | data 2,013,844 non-recursive
query types in Section 3 and middle size,

small size,
53352§996973/ 70 9 |6.08 | less regular,

non-recursive
middle size,

. . . tree- Wall 2,437,667 / completely ir-
compute the cardlnahty esti- | pank | StreetJ. | 561 1,391,845 21 37 | 844 regular, highly
mation according to formu- recursive

las presented contrasting actual and estimate values and ploting the results in Section 4.2.
In Table 1, column #nodes represents the total number of nodes in a document
according to the DOM specification [17]. Column #voc. names indicates that the num-



ber of distinct element/attribute names is very small compared to the total number of
nodes. Hence, documents typically have a very repetitive structure. Columns max. depth
and avg. depth give some hints on the variability of documents. For example, we can
consider uniprot as quite a regular document, because its average depth is close to its
maximum depth. In contrast, treebank is quite an irregular one. Within this spectrum,
some documents are less regular and have in some cases huge sizes (uniprof).

We compare our solutions (CEF/LWES) against Markov Tables (MT) [1] and
XSeed [18]. For Markov Tables, we have implemented two MT’s compression strate-
gies: Suffix-*(MTSuf*) using 30 entries in MT and No-*(MTNo*) using 90 entries.
Moreover, we have also implemented an uncompressed MT(MTUcomp). For all MT
implementations, we have used the pruning parameter m=2, indicating that paths down
to length 2 are not represented in MT. XSeed uses a graph to capture XML document
paths and allows false positives in the estimation results. It uses a pruned search on this
graph to estimate path cardinalities.

We have performed our experiments using a 2-GHz Pentium Centrino Duo proces-
sor with 1 GB main memory, running under Windows XP SP2. We have implemented
and integrated all approaches into XTC which is written in Java 6. Throughout the per-
formance measurements, we use 512 MB of main memory for the Java Virtual Machine
and 16 MB for the XTC buffer. For CEF/LWES, we analyze the behavior of two histo-
grams types: End-biased (EB) and Equi-height (EH). The reasons for choosing such
types are simple. EB histograms typically exhibit the least approximation error, whereas
EH histograms are commonly used in real DBMS configurations. Because of limitations
of EW histograms [10], we do not experiment with them.

XSeed and MT have low building times (typically some seconds). But the times
needed for CEF and LWES construction are in the sub-second range and, therefore,
absolutely negligible. If we take into account the whole synopsis building process
including document scan time, it typically takes just a few minutes. Even for a deeply-
structured document such as treebank, we have computed LWES in just about 0.8 sec-
onds and XSeed in approximately 0.18 minutes. When subtrees are inserted into the
document, the corresponding summarization structures CEF and LWES can be directly
updated and need no reconstruction. These findings demonstrate that building and main-
tenance algorithms are good and scalable. We do not comment on them any further.

4.1. Sizing Analysis

Memory space consumption demonstrates that in all tested documents, except treebank,
we can reach 4-6 orders of magnitude less than document size. For treebank, we take 2
orders of magnitude. For example, in almost all documents, the sizes vary between
0,001% and 0,055% of the document sizes (Figure 6). Even for treebank, the sizes for the
summarization structures consume 0.4% (XSeed) to 2.3% (CEF) of the document size.
MTSuf* structures exhibit the least space consumption for highly recursive documents,
outperforming thus LWES/CEF for such documents. Variations of CEF sizes are due to
histogram type and irregularity degree of XML documents. An interesting result illustrat-
ing the influence of irregularity is shown by the CEF sizes of nasa and uniprot. Nasa is
a 25MB document whereas uniprot has 1.8GB. However, the former has at most a CEF
size of 0.78KB whereas the latter has only slightly more (0.95 KB). Being much larger
than nasa, it illustrates that uniprot has a much more regular tree structure.
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Figure 6 Synopses size analysis

4.2. Estimation Accuracy

To estimate the accuracy of all approaches and to facilitate cross-comparison, we apply
the two metrics used for XSeed and MT [1, 18]: Relative Error (RE) and Normalized
Root Mean Square Error (NRMSE). RE is given by the following formula:
E = |e —a|/a, where e is the estimated value and a is the actual value. NRMSE mea-
sures the average error per unit of the accurate result and is defined in [18]. For this pur-
pose, we have divided the query workload into three classes: SP-Child and SP-Desc
relate to formats a and b of SPs, respectively, whereas PP-pred encompasses PP formats
(see Section 3). For each class, we have calculated cardinality and selectivity, thereby
contrasting estimates and actual values, and applied the metrics to all document consid-
ered. For the estimation of cardinality/selectivity, we executed the combined query work-
load on all documents. For plotting the results, we discarded the best estimations, i.e.,
estimations very close to the actual values. We thus plot the rest of them, including, of
course, the worst cases.

In Figure 7, we show a comparison between NRMSE
CEF using EB and EH histograms, and LWES.  (logscale)
CEF-EB produces, in general, higher errors than
EH ones. This confirms the problem with EB histo-
grams in XML summarization mentioned in
Section 2.3. Thus, when we apply our proposed
histogram extension (ABD), we reach much better
accuracy. Clearly, this is a trade-off situation . - L

Figure 7 Cardinality estimation error
between storage space and accuracy. Therefore, we CEF x LWES
have to check whether or not the increase on size
justifies the benefit of lowering the false-positive error. In our experiments, we obtain,
by using CEF ABD, an average increase of only 7.4% on CEF sizes. Hence, with such a
small increase, we reach very good estimation results. Because CEF trees built with EH
and EB histograms do not allow to derive good estimation results, we use only CEF
trees with EB-ABD histograms (CEF ABD) in further comparative benchmarks.

In Figure 8, we compare CEF and LWES against MT and XSeed. Our proposals
outperform the others in almost all cases. XSeed does not behave well for non-recursive
XML documents. For example, in uniprot, XSeed has an estimation error similar to
MTSuf* (about 14% NRMSE error), which is twice as worse than that of LWES (7%).
MT approaches tend to underestimate queries with long paths, even if these queries are
posed on non-recursive documents, as swissprot and psd7003.

BALWES




Although the XSeed kernel is designed for highly recursive documents, it does not
provide good estimates, compared to LWES. The specific reason is the attempt to mini-
mize false positives by using a pruned search method in the XSeed estimation algorithm
which is controlled by a tuning parameter. Clearly, if this parameter is large, XSeed [18]
tends to give better results, obviously, at the cost of increased evaluation overhead. In
[18], the authors reported an NRMSE error of 169% (kernel) for only a 4MB treebank
document. We have summarized the XSeed estimation errors on an entire (§6MB) tree-
bank document and found that, applying the same pruned search, the error is even
higher (see Figure 8). In contrast, LWES has an average error of <0,02% for the entire
treebank document.

Although still small NRMSE
for memory-resident use (logscale)
(see Section 4.1.), one may
argue that it is difficult to ... ... ... [ iviiiend I ...
keep a large LWES synop- ]
sis in memory. In this case,

a possible strategy is to 10"
load parts of the structure

on demand. For example,

we may load LWES level 2| , ,
by level according to query ‘ nasa psd7003 dblp swissprot  uniprot = treebank
optimizer use. Such a strat- Figure 8 Cardinality estimation error

egy would keep only the

top-most levels in memory, say the first 6 levels, and would fetch nodes from deeper
levels on demand. In fact, LWES lends itself to evaluation based on such fragments.
Because most of the queries only encompass the top-most levels, optimization heuristics
could additionally be successfully applied.
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5. Related Work

Markov Tables [1] and XPathLearner [9] use a tree-based summarized structure. They
also prune paths at a certain level; usually, they keep paths only down to level 2 and use
a statistical model to estimate longer paths. Bloom Histograms [16] capture structural in-
formation on entire root-to-leaf paths. Thus, they cannot deal with path predicates ad-
dressing specific nodes. StatiX [3] also uses histograms to describe node distributions.
However, it depends on XML schema information and is targeted to map XML-to-rela-
tional. XSKETCH [14] and XSeed [19] are graph-based structures for modelling struc-
tural information. Both use the concept of graph bi-similarity to summarize XML
elements which means that some information is lost in the summarization process. Fur-
thermore, [19] is specifically designed for highly recursive XML documents and uses an
optional tabular structure (called HET) to estimate XPath queries. This tabular structure
is built by searching the graph structure using a query feedback mechanism. However,
this tabular structure is limited by a threshold confining the number of predicates to be
evaluated for a query.



6. Conclusion

In this paper, we proposed the use of techniques adaptable to the particularities of XML
data. We leverage histograms as one of the ways to further compress summarization stru-
tures of XML documents. First, we used them on node sets (CEF) at each sub-tree and
then extended this idea to entire levels (LWES). Additionally, we coped with cases in
which histograms are useless together with ways to shrink the XML tree. Our proposals
are at least comparable to competitive approaches. Only CEF is less suitable for the map-
ping of deeply-structured XML documents, such as treebank, although it is the technique
of choice for (even huge) documents exhibiting a certain degree of uniformity. On the
other hand, LWES scales well for all types of documents. Although [18] needs less stor-
age, LWES is more adequate for cardinality estimation, because it has a far lower error
rate and enables load on demand for synopses too large to be kept in memory. The main-
tenance effort of CEF/LWES structures is another positive point. We have detected a
problem with EB histograms and proposed an effective solution for it, called ABD,
whose overhead is of only 7% on synopsis sizes.

Motivated by our results, we plan to extend our research work in two directions.
First, we want to explore the summarization of text values in XML documents (together
with structural summarization). Second, we plan experiments with these approaches in
real cost-based XML query optimization scenarios.
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