
Content-oriented retrieval on
document-centric XML

Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Diplom-Informatiker Philipp Dopichaj

Dekan des Fachbereichs Informatik:

Prof. Dr. Reinhard Gotzhein

Promotionskommission:
Vorsitzender: Prof. Dr. Markus Nebel
Berichterstatter: Prof. Dr. Dr. Theo Härder

Prof. Dr. Michael M. Richter

Datum der wissenschaftlichen Aussprache:

21. Dezember 2007

D386

2

Acknowledgements

“I have to thank you for a good deal,” said
he. “Perhaps I’ll pay my debt some day.”

(The Adventure of the Norwood Builder)

This thesis is the result of my work in the Databases and Information Systems
group (DBIS) at the University of Kaiserslautern over the course of four years. In
this time, many people supported me in my work, and I would like to take the
opportunity to thank them.
First and foremost, my thanks go to my advisor, Prof. Dr. Dr. Theo Härder,

and to Prof. Dr. Michael M. Richter for accepting the role of the second examiner.
Prof. Härder provided me with the opportunities to explore the topic freely and
was amazingly fast in providing feedback on draft versions of this thesis. Prof.
Richter showed a great interest in my research, and many discussions helped to
clear up several important questions; without his comments, this thesis would be
quite different. I would also like to thank Dr. Ulrich Marder, who initially drew
my attention to XML retrieval and later proofread draft versions of this thesis; his
valuable comments helped to improve it significantly. Dr. Wolfgang Lenski provided
useful input in the early stages of my work.
Furthermore, two students worked on Masters’ theses in the context of this work:

Benedikt Eger, who created the initial implementation of the search engine based
on Apache Lucene, and Christoph R. Hartel, whose excellent work on content-and-
structure search unfortunately could not be included in this thesis due to time
constraints.
I would also like to thank my (former) colleagues for the nice atmosphere in

the group and the daily break in the Teeecke. Special thanks go to Jürgen Göres,
Nikolas Nehmer, and Karsten Schmidt for moral support; Andreas Bühmann for his
expert advice on LATEX problems; Christian Mathis and Dr. Michael P. Haustein for
relaxing and entertaining music sessions; and Lothar Gauß and Manuela Burkart
for a real-world perspective.
The quotations at the start of the chapters were taken from Sherlock Holmes sto-

ries (Doyle, 2007). Chapter 8 is in part based on an article of mine (Dopichaj, 2005)
whose copyright is held by the Gesellschaft for Informatik (re-used in accordance
with the copyright assignment).

Kaiserslautern, January 2008 Philipp Dopichaj

3

4

Abstract

XML is the perfect format for storing (mostly) textual documents in a digital li-
brary; its flexibility enables users to store both highly structured data (like database
records) and free text in the same document. The data-centric parts can be searched
using query languages like XPath and XQuery, where exact conditions on the struc-
ture can be imposed. For digital libraries, however, it is important to be able to
search the free-text parts effectively. Standard information retrieval systems would
return complete documents as retrieval results, which is useful for short documents
such as web pages. If the document collection consists of books, however, this result
granularity is too coarse. Users should be able to find the information that helps
them solve their problem without having to wade through much information that
is not relevant for their problem.
To this end, content-oriented XML retrieval can help: In content-oriented XML

retrieval, documents are not considered atomic entities as they are in traditional
text-based information retrieval. A retrieval result can not only contain complete
documents, but also parts of documents such as chapters or paragraphs.
This thesis investigates several major aspects of content-oriented retrieval on

XML documents:

• The adaptation of standard information retrieval techniques to XML. Al-
though the adaptation is mostly straightforward, but several peculiarities of
XML have to be taken into account.

• A space-efficient implementation of this base retrieval engine using customized
index structures. Although the base retrieval engine uses the same concept
of similarity as standard information retrieval systems, it is possible to take
the XML structure into account when indexing to save space and time.

• A novel method for improving retrieval quality by making use of the document
structure. In particular, section titles are exploited for finding highly relevant
sections in the documents.

• A detailed evaluation of the retrieval quality for the base retrieval system and
the proposed method. This evaluation is based on my own implementation
of the retrieval system and a standard benchmark.

• Preliminary ideas for searching data-centric parts of the documents.

The only major part missing for a usable retrieval system is the user interface.

5

6

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Real-world use cases . 12
1.3 Aims of this thesis . 13
1.4 Overview . 14

2 Preliminaries 15
2.1 Overview of XML . 15

2.1.1 XML documents . 16
2.1.2 Processing models . 18
2.1.3 Well-formedness and validity 19
2.1.4 Types of XML documents . 21
2.1.5 Rendering XML . 21
2.1.6 XML information set . 22
2.1.7 Terminology . 24

2.2 Information retrieval and data retrieval 24
2.2.1 The vector-space model . 25
2.2.2 Probabilistic retrieval and language models 29
2.2.3 Evaluating information retrieval effectiveness 32
2.2.4 Retrieval of partial documents 33

2.3 Summary . 34

3 XML retrieval 35
3.1 Information retrieval on XML . 35

3.1.1 Data retrieval languages . 36
3.1.2 Data and information retrieval languages 36

3.2 The Initiative for the Evaluation of XML Retrieval 39
3.2.1 INEX tracks . 40
3.2.2 Ad-hoc tasks . 41
3.2.3 Test collections . 42
3.2.4 Document collections . 43
3.2.5 NEXI . 44

3.3 Probabilistic and language-modeling approaches 46
3.3.1 Okapi-based . 46
3.3.2 Language-modeling approaches 48

3.4 Vector-space-based approaches . 51
3.4.1 Extended vector-space model 51
3.4.2 JuruXML . 51
3.4.3 GPX . 52

7

Contents

3.4.4 Document frequency . 54
3.5 Summary . 54

4 Base retrieval engine 57
4.1 Assumptions and design goals . 57

4.1.1 Assumptions . 57
4.1.2 Design goals . 59

4.2 Interpreting XML . 59
4.2.1 Tokenization . 59
4.2.2 What to index . 60

4.3 Retrieval model . 61
4.3.1 Base similarity function . 62
4.3.2 Term weighting . 64
4.3.3 Full similarity calculation versus reconstruction 65

4.4 Summary . 67

5 Implementation of the base retrieval engine 69
5.1 Existing XML index structures . 70
5.2 Index structures . 71

5.2.1 Tokenization . 72
5.2.2 Lexicon . 74
5.2.3 Inverted lists . 75
5.2.4 Building the inverted lists . 76
5.2.5 Metadata . 76
5.2.6 Index compression . 78

5.3 Evaluation . 81
5.3.1 Implementation and test environment 81
5.3.2 Test collections . 83
5.3.3 Index size . 83
5.3.4 Retrieval time . 85
5.3.5 Comparison to traditional information retrieval 85

5.4 Indexing process . 87
5.5 Performance versus accuracy . 89
5.6 Summary . 89

6 Exploiting small elements 91
6.1 Small elements in standard information retrieval 91
6.2 Small elements in XML retrieval . 92

6.2.1 Preliminaries . 93
6.2.2 Example . 93

6.3 Adaptation methods . 95
6.3.1 Similarity adaptation . 96
6.3.2 Term weight adaptation . 97

6.4 Title detection . 99
6.4.1 Name-based title detection 99
6.4.2 Length-based title detection 100

8

Contents

6.5 Efficiency . 101
6.6 Summary . 102

7 Evaluation of retrieval quality 103
7.1 Evaluation metrics . 103

7.1.1 Relevance in XML retrieval 104
7.1.2 Extended cumulated gain . 105
7.1.3 Test collections . 107

7.2 Official INEX results . 108
7.3 Parameter tuning for the base retrieval engine 109

7.3.1 Lucene similarity measure . 109
7.3.2 BM25 similarity measure . 111
7.3.3 Comparison with the official submissions 113

7.4 Evaluation of title-element exploitation 114
7.4.1 Analysis of potential . 114
7.4.2 Adaptation methods . 117
7.4.3 Section-based evaluation . 119
7.4.4 Stability . 120
7.4.5 Title detection strategies . 122
7.4.6 Per-topic evaluation . 124

7.5 Discussion . 125
7.5.1 Suitability of the test collection 126
7.5.2 Design of a more suitable experiment 128

7.6 Summary . 128

8 Using background knowledge for content-and-structure search 131
8.1 Specialized similarity measures . 131

8.1.1 Current state of XML retrieval 131
8.1.2 Applying CBR similarity measures to XML retrieval 132

8.2 Generalizing content-and-structure queries 133
8.3 Element relationship . 134

8.3.1 Facets of element similarity 135
8.3.2 Element similarity in the element relationship graph 137
8.3.3 Constructing an example element relationship graph 138
8.3.4 Search process . 139

8.4 Evaluation . 140
8.5 Summary . 140

9 Conclusions and future work 141
9.1 Conclusions . 141
9.2 Future work . 142

9.2.1 Implementation issues . 142
9.2.2 Evaluation and user interfaces 143
9.2.3 Further forms of XML retrieval 144

Bibliography 145

9

Nomenclature

cf(t) The collection frequency of term t, page 53

coord(q, d) The number of terms from q that also occur in d, page 28

df(t) The document frequency of term t, page 26

efA(t) The number of occurrences of term t in elements of type A (element
frequency), page 48

sim(q, d) The similarity of query q to document d, page 27

istitle(e) A predicate that determines whether e is a title element, page 93

len(d) The length (in terms) of document d, page 31

type(e) The type of element e (that is, the element name), page 50

parent(e) The parent element of element e, page 72

pos(e) The position of element e inside its parent element, in terms.,
page 101

tf(d, t) The frequency of term t in document d, page 26

θT A language model for the text T , page 49

tsim(q, e, t) A function to determine the new similarity of parent e of title t,
page 96

N The number of documents in the collection, page 26

P (A) The probability of the occurrence of A, page 32

P (A|B) The conditional probability of the occurrence of A given B, page 32

10

1 Introduction

“It is evidently a case of extraordinary
interest, and one which presented
immense opportunities to the scientific
expert.”

(The Hound of the Baskervilles)

1.1 Motivation

Although a wide range of retrieval methods and search engines for text exist, these
methods are not necessarily suitable for all modern uses. More and more documents
are stored in semistructured format – in particular XML –, and users want to be able
to search this data as effectively as possible. Naturally, it is possible to use standard
search engines (designed for flat documents) on the XML documents, but without
special tailoring, these search engines will not be able to exploit the structure to
pinpoint the most suitable results.
For example, a user who wants to find a brief description of the differences be-

tween the two XML processing models DOM and SAX might search an electronic
collection of computer books. A standard search engine will have a fixed notion of
suitable retrieval results, it might, for example, index on a document or on a chap-
ter basis, and then all retrieval results would be complete documents or chapters.
Specialized search engines for semistructured retrieval can be more flexible: They
recognize the structure inherent in the documents and can return anything from a
single paragraph to a complete book. For the user in this scenario, it would not
be very useful to get a complete book, even if its title is “DOM and SAX” – in this
case, the task of searching the book itself would be delegated to the searcher, but
this should really be done by the search engine. A search engine that is prepared
to make use of semistructured documents can handle this task and find a single
section that discusses this topic in condensed form, saving the user a lot of time.
I will call the retrieval of elements chosen by the search engine element retrieval
from now on. Larsen et al. (2006) discovered in interactive experiments that users
are indeed interested in looking at smaller parts of documents (in the tests, mostly
sections from journal articles), so there appears to be a real need.
Semistructured data provides further opportunities to the search engine in ad-

dition to the choice of the result granularity. A search engine for semistructured
data can also exploit the structure of the documents in other ways: It can make
use of semantic markup in order to “understand” the contents better. For example,
if all persons’ names are marked up as such, it becomes much simpler to answer

11

1 Introduction

a request for information about a person named John Parrot than if the surname
occurs in the text exactly like the animal’s name.

Traditional information retrieval for flat documents is a mature research area,
but it has not been very long since research has gone into semistructured retrieval.
Although it is possible to make straightforward modifications to standard IR meth-
ods, the resulting search engines will neither be efficient nor will they make good
use of the document structure. Thus it is necessary to enhance the standard IR
techniques with novel methods specifically designed for semistructured retrieval.

1.2 Real-world use cases

In fact, limited forms of XML element retrieval are indeed used in the real world:
Online book services like O’Reilly Safari1 and Books24x72, provide extensive vir-
tual libraries of technical books (Dopichaj, 2006a). Users have several options for
locating the books they want to read:

• They can use the hierarchical categorization system that the library services
provide; for example, Safari places a book on DOM and SAX in “Tech books
→ Internet/Online → XML”. A book can cover several topics, so it may well
occur in several categories, and, by necessity, there is still a large number of
books in each category, so it can be tedious to find a suitable one.

• As an alternative, they can perform a keyword search on all books, which
results in a display of the most suitable books and sections. Instead of having
to wade through all books in a category and then manually inspect the book
to find the most suitable part, the user is presented with direct references to
the best entry points of the most relevant books.

In these cases, element retrieval is arguably a significant improvement of the user
interface.

Indeed, XML retrieval is important enough that there are several commercial
vendors that produce and sell retrieval engines (Lehtonen, 2006); see table 1.1.
This indicates that there is commercial interest in XML retrieval functionality. Pre-
sumably, most of the deployed XML retrieval systems are only used internally for
document and information management, with the systems hand-tuned to the situ-
ation and the documents.

Trotman et al. (2007b) discuss various existing and potential use cases for XML
information retrieval, each one demonstrating the need for sub-document retrieval.
The examples range from maintenance personnel searching for specific information
to writers of academic papers who need to find relevant sections from related work.
Lehtonen et al. (2007) create a hierarchy of the use cases:

• Layout-oriented document types

– Book search
1http://safari.oreilly.com
2http://books24x7.com

12

http://safari.oreilly.com
http://books24x7.com

1.3 Aims of this thesis

Vendor Product

Astoria Software Astoria XML Content Management Platform
IBM WebSphere Information Integrator OmniFind Edition
IXIASOFT TEXTML Server
Mark Logic Corp. MarkLogic Server

Table 1.1: Vendors of commercial XML retrieval systems (Lehtonen, 2006).

– Article search
– Fragment search

• Content-oriented document types

– Semantic search
– Entity search
– Data retrieval

• Process-oriented document types

– Multimedia search
– Feed search
– Web Services search
– Message search

Thus, element retrieval in general and XML retrieval in particular is a research
area of practical value that warrants the development of more advanced retrieval
techniques.

1.3 Aims of this thesis

In this thesis, I will present the concepts and techniques for a versatile XML re-
trieval system that can be used for both text-based and structure-based retrieval on
(mostly) document-centric XML files without much manual tweaking. In the con-
text of the classification from Lehtonen et al. (2007), I will focus on layout-oriented
document types, in particular, book and article search.
The aim is to be as independent of the concrete document schemas as possible,

even to the point of supporting collections from different sources and with different
tagging conventions without special-case coding. The search engine still tries to
deduce the roles of some elements from their structural relations to the other nodes
so that it can recognize, for example, section titles and use this information to
improve retrieval quality. On the other hand, of course, the system can still make
use of further information about the schemas, if the users are willing to provide it.
Not only the administrators of the search system can help improve retrieval re-

sults, the searchers, too, can support the search engine: Instead of using simple
keyword queries (as made famous by Web search engines), the users can also add

13

1 Introduction

structural parts to the query which provide hints to the search engine about which
elements might be most likely to contain relevant information.

Obviously, the more the users help the search engine, the easier it gets to obtain
good results (although it might well happen that ill-informed users provide mis-
leading “help”), but even without further support from the user, the results should
be of good quality.

1.4 Overview

Chapter 2 introduces preliminary concepts that are relevant to this thesis: XML-
related technologies and information retrieval.

Chapter 3 combines XML and information retrieval to introduce XML information
retrieval. The core aims of XML information retrieval are discussed in detail, and
an overview of the related work in this area is given. Furthermore, a benchmarking
workshop for evaluating retrieval quality of XML information retrieval systems is
described; this benchmark is the basis for the quantitative evaluation in chapter 7.

The remaining chapters discuss my contribution to this research area. First,
the overall design of my base retrieval system is described in chapter 4. This base
retrieval engine is a minimal adaptation of standard information retrieval techniques
to XML retrieval; the main difference is that the basic retrieval unit is now an
element instead of a document. The concepts are generic enough to provide for
variation of the similarity calculation.

The implementation of the base retrieval engine is discussed in chapter 5. The
main focus of this chapter is the description of space-efficient index structures for
full-text XML retrieval, based on the combination of standard information retrieval
structures and XML-specific extensions that take the tree structure of the documents
into account. These index structures can lead to great space savings, which – due
to reduced input/output operations – also lead to shorter retrieval times.
Chapter 6 discusses an extension of the basic retrieval model from chapter 4.

Whereas the base model mostly ignores the document structure, this extension
makes use of semantic information that is present in XML format, but not readily
available in standard information retrieval. In particular, a parameterized similarity
measure that makes use of section titles is introduced.

Chapter 7 evaluates the retrieval quality of both the base retrieval engine and the
extended XML-specific version on a standard benchmark. Although the benchmark
does not quite match the intended usage scenario, the evaluation can still give
important results about the utility of the contribution of this thesis.

So far, the similarity measures make little use of existing background knowledge
about the document collections. Chapter 8 briefly describes the core idea of using
existing similarity measures from other research areas in the context of XML re-
trieval. Unfortunately, the standard benchmark is not suitable for this method of
retrieval, so no quantitative evaluation could be performed.

The thesis concludes with chapter 9, which summarizes the work and outlines
future research directions.

14

2 Preliminaries

“Elementary,” he said.

(The Adventure of the Crooked Man)

To understand XML retrieval, one must first understand what XML is and what
retrieval is, before one can understand how these two can be combined. Thus, this
chapter gives an overview of XML and traditional information retrieval.

2.1 Overview of XML

The Extensible Markup Language XML (Bray et al., 2006b) is a metamarkup lan-
guage with a long history. The aim of markup languages in general is to enrich
textual data with metadata. The metadata is contained in the markup, and the
markup is linked to the text in some way – often by embedding. One example of a
widely-known markup language is the Hypertext Markup Language (HTML), which
is used for describing web pages. HTML markup contains instructions for rendering
the web pages in a device-independent manner, like “the following text should be
presented in italics” (<i>) or “the following text is a first-level heading” (<h1>).
The markup vocabulary of HTML was specifically designed for web pages, so it

cannot easily be used for other types of text or data, which may require different
markup languages. However, the basic syntax of embedding markup in the text –
angle brackets with the markup tags – can be reused for many markup languages,
so it is useful to define a metalanguage for describing markup languages. Indeed,
HTML is just a specific instance of an SGML-based markup language. SGML (the
Standard Generalized Markup Language (ISO, 1986)) was standardized by ISO in
1986 and provides means for describing markup languages and creating processors
for working with documents written in these languages. SGML is a powerful meta-
language, and thus complex to understand and implement. It provides syntactic
constructs that make hand-typing an SGML document easier, but these constructs
complicate parsing considerably. It also requires the use of document schemas,
which prevents ad-hoc invention of new markup elements.

XML was designed as a successor to SGML that reduces complexity to the mini-
mum needed for the task at hand. Connolly et al. (1997) give a detailed overview
of the history of XML. The remainder of this section gives a short overview of XML
and related technologies, as far as relevant to this thesis.

15

2 Preliminaries

1 <?xml version=’1.0’ encoding=’utf-8’ standalone=’no’?>
2 <!DOCTYPE booklist SYSTEM ’booklist.dtd’>
3 <?xml-stylesheet href="stylesheet . css" type="text/css" ?>
4 <booklist>
5 <!-- My book list -->
6 <book key="ModernIR">
7 <title>Modern Information Retrieval</title>
8 <author>
9 <first -name>Ricardo</first-name>

10 <last-name>Baeza-Yates</last-name>
11 </author>
12 <author>
13 <first -name>Berthier</first-name>
14 <last-name>Ribeiro-Neto</last-name>
15 </author>
16 <summary>
17 This book contains <emph>comprehensive</emph> coverage of information
18 retrieval techniques .
19 </summary>
20 <is- in -stock/>
21 </book>
22 </booklist>

Figure 2.1: An example XML document

2.1.1 XML documents
XML documents are plain-text documents that adhere to a simple structure, as
figure 2.1 shows. The first line is the prolog which contains the optional XML
declaration; the XML declaration can be used to declare the XML version – either
1.0 or 1.1 at the time of writing –, the character encoding of the input document
(optional), and a declaration whether the document is standalone, that is, whether
the parser needs any other files in order to process this document. If a document
contains no XML declaration, the parser can assume it is written in XML version
1.0 and in UTF-8 character encoding, and not standalone. The second line in the
example contains a reference to the document type definition (DTD) of the doc-
ument, which describes the permissible structure of the document; section 2.1.3
details what this means. In line 3, even before the main contents of the document
starts, a processing instruction occurs that points the application to a stylesheet
that is used for displaying the XML document. Line 4 contains the start tag <book-
list>, and the last line contains the corresponding end tag </booklist>. Each pair
of matching start and end tags demarcates an element, which consists of the tags
and their contents. Each XML document contains at least the root element.

Apart from elements, other types of nodes can occur in the document tree:

Comments, which are enclosed in <!-- and -->; they are intended for human
readers of the XML markup, so they are ignored by the processor. Line 5 in
the example document contains a comment.

16

2.1 Overview of XML

Document x

Documenttype x
ProcessingInstruction

target=’xml-stylesheet’
data=’href="stylesheet.css" type="text/css"’

Element name=booklist
Comment “My book list”
Element tagName=’book’

Attr={name=’key’ value=’ModernIR’}
Element tagName=’title’

Text wholeText=’Modern Information Retrieval’
Element tagName=’author’

Figure 2.2: The DOM tree of the example document (incomplete). The items in
boldface are the nodes.

Text nodes, which contain most of the data in XML documents.

Attributes, another container of data.

Preprocessing instructions, which the processor of the XML file can interpret
(they may contain data like formatting details that should not be expressed
in the main contents).

Since the focus of this thesis is document-centric XML, the text in an XML docu-
ment is of utmost importance to us. Text includes the obvious strings like “Modern
Information Retrieval”, but also the whitespace between the tags; for example, the
first child of the booklist element is a text node consisting of a new-line and four
space characters.
Elements may also contain mixed content, that is, a combination of text and sub-

elements, like the summary element in lines 16 to 19. The sub-elements in mixed
content – also called inline elements – are frequently used to provide semantic
information or rendering information about the embedded text.
The start tags of elements can also have attributes, like key for the <book>

element in line 6. Each attribute name may only occur once in each element,
and the order of the attributes is not important. Attributes have values, which
are usually strings, but can be restricted further in schemas (see section 2.1.3).
Attributes can in principle be replaced by sub-elements of the element whose start
tag has the attribute, so it is up to the schema author to decide what is appropriate
in a given context. On the other hand, attributes can not replace sub-elements in
all cases, because attribute values have some restrictions on their contents. Some
people argue that attributes should be used for metadata about the corresponding
element that should typically not be displayed when rendering, but there is no
widespread consensus about this.

17

2 Preliminaries

It can happen that two schemas from different domains use the same element
names to mean completely different things, for example, an apple element could
be used both for computers and fruit. This is no problem as long as the schemas
are not used in the same document; in reality however, this need arises frequently.
The original version of the XML specification provided no means for mixing content
from different schemas. The XML specification (Bray et al., 2006a) addresses this
problem by introducing namespaces as qualifiers for element and attribute names,
so the element could be disambiguated as either fruit:apple or computer:apple. Using
a simple alphanumeric string as the qualifier could still lead to collisions, however,
so it is only used as an abbreviation for the real namespace, which is a uniform
resource identifier (URI).

In practice, namespaces are usually URLs, for example, the namespace of XSLT
is http://www.w3.org/1999/XSL/Transform, so an XSLT stylesheet typically begins
with the following line:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

The namespace is declared with the attribute-like syntax xmlns:prefix="uri",
which binds the given prefix to the URI, so that all later occurrences of this prefix
below the element on which the declaration occurs refer to that namespace. Note
that the prefix is arbitrary, so instead of xsl, one could just as well use xquery.
Because namespaces are attached to elements, their scope is limited to their de-
scendants, and a prefix can also be overwritten. It is also possible to specify a
default namespace with xmlns="uri"; this namespace applies if no prefix is given.

2.1.2 Processing models
Although XML is a relatively simple markup language, writing a parser for it is still
not an easy task, so software applications using XML should not include their own
implementations but should use a reusable parser in a library.

SAX, the Simple API for XML1 (Brownell, 2002), was developed in late 1997 and
1998 – soon after the adoption of the XML standard – in order to unify the interface
to XML parsers. It is an industry standard that was originally developed for Java,
but is now available for all major programming languages. SAX is event-based:
The application program registers an event handler with the SAX parser, and the
parser reads the XML document sequentially and sends events like start element or
text to the event handler, which can then interpret them and take corresponding
actions; see figure 2.3 for the events generated for the example document from
figure 2.1. The parser drives the application, so it is not possible to navigate the
XML document at will. If the application needs to access to preceding parts of the
document, it must store them itself.

DOM, the Document Object Model (Hors et al., 2004), works at a higher level
of abstraction than SAX: SAX is a low-level API – the application programmer
is responsible for storing the necessary information from the XML document. In
many circumstances, a higher level of abstraction is useful, an abstraction that
1http://www.saxproject.org/

18

http://www.w3.org/1999/XSL/Transform
http://www.saxproject.org/

2.1 Overview of XML

start document
start element booklist
characters <whitespace>
start element book
characters <whitespace>
start element title
characters Modern Information Ret
characters rieval
end element title
. . .
end element booklist
end document

Application SAX parser Content handler

setHandler

parse

startDocument

startElement

characters

Figure 2.3: A possible sequence of SAX events generated for the XML file in fig-
ure 2.1. <whitespace> indicates that the SAX parser passes the whitespace from
the document to the document handler. Note that the parser may split the char-
acter data into several events, like “Modern Information Ret” and “rieval” in the
example.

deals with the XML concepts of elements, text nodes, and so on. DOM is the most
popular implementation of this concept. It is a specification by the World Wide
Web Consortium (W3C). DOM is based on the observation that an XML document
can be interpreted as an ordered tree of nodes, and all nodes are descendants of
the root element. DOM provides easy access to the XML document tree using
operations like getFirstChild, getParent, getNextSibling, and so on. Every part
of the XML document is accessible at all times, either through DOM navigation
operations or through direct stored references to the nodes. DOM is language-
independent, so a programmer working with several programming languages will
find the same interface in all of them, at the cost of the interface not making good
use of each language’s features.
In typical implementations, DOM trees use a lot of main memory (about ten

times as much as the size of the XML file according to Brownell (2002, pp. 6–7)).
Programs using SAX parsers, however, can determine themselves how much data
they want to store, so memory consumption can be reduced significantly. If random
access to all nodes is required, however, DOM is preferable to SAX – if SAX is used,
the programmer must manually keep track of the document structure.

2.1.3 Well-formedness and validity
An XML document must be well-formed so that it is not rejected by the XML
parser – standard-conforming XML parsers must reject documents that are not
well-formed. As such, it is not a means of classifying XML documents: a document
that is not well-formed is simply not XML, according to the standard. To be
well-formed, a document must obey the simple syntactic rules of XML, like not
using invalid characters for tag names and nesting elements properly; for example,

19

2 Preliminaries

1 <!ELEMENT booklist (book∗)>
2 <!ELEMENT book (title, author+, summary, is-in-stock?)>
3 <!ATTLIST book key ID #REQUIRED>
4 <!ELEMENT first-name (#PCDATA)>
5 <!ELEMENT title (#PCDATA)>
6 <!ELEMENT last-name (#PCDATA)>
7 <!ELEMENT emph (#PCDATA)>
8 <!ELEMENT author (first-name, last-name)>
9 <!ELEMENT is-in-stock EMPTY>

10 <!ELEMENT summary (#PCDATA|emph)∗>

Figure 2.4: A DTD for the XML document from figure 2.1. A booklist element
may contain a sequence of book elements (whitespace is ignored), a book element
must have a title, one or more authors, a summary, and an optional is-in-stock ele-
ment. #PCDATA stands for textual content; the summary element may have mixed
content, that is, text as well as element children.

<a> is not a well-formed XML fragment, because the start
tag is closed after the <a> tag which precedes it. Thus, well-formedness merely
checks that the document conforms to the XML metasyntax, but not that of any
specific markup language.

A stricter requirement is validity, that is, conformance to a specific markup lan-
guage as specified in a schema. A schema describes the syntactic structure of an
XML document at a higher level, for example, which element types may contain text
or what other element types they must contain in what order. For the document
in figure 2.1, a schema might specify that a <book> element contains a <title>
element followed by one or more <author> elements and an optional <summary>.

Less complex schema description languages, like Document Type Descriptors
(DTDs), do not give much control over the textual contents of elements to the
schema authors, whereas more recent languages like XML Schema and Relax NG
provide support for data types like integers or dates; this allows for better parse-
time checking of the data-centric parts of XML documents. If the data types are
checked at parse time, the application writer is relieved of that burden and can
simply assume that the data is of the expected type. Although DTDs are the most
primitive of the schema languages, they still play an important role: They are part
of the base XML specification (Bray et al., 2006b), so every validating XML parser
must support them – support of the advanced schema languages is not universal.
See figure 2.4 for a DTD for the example document.

In order to check the validity of an XML document, the program needs to use a
validating parser, that is, a parser that is capable of handling the schema language
and set to operate in validating mode. In this mode, a document not conforming
to the schema is simply rejected so that it cannot be accessed by the application.
A non-validating parser, on the other hand, ignores the schema so that even a
document that does not match the schema can be parsed.

20

2.1 Overview of XML

2.1.4 Types of XML documents
XML documents come in several flavors, the most important distinction being doc-
ument centric versus data centric. Data-centric XML documents use XML to store
strongly structured data – akin to typical database records – in a hierarchical form.
Schemas for data-centric XML will often specify data types for the fields and a
rigid structure that forbids mixed content (elements interspersed with text). One
well-known example is the XML version of the DBLP collection of computer science
references2; the document from figure 2.1 is also data-centric.
Document-centric XML documents are more free-form (and closer to the orig-

inal ideas that spurred the invention of markup languages): They mostly con-
sist of text, and XML markup is used to impose structure on the text and pro-
vide semantic or formatting instructions for the document processor. Well-known
document-centric XML formats are DocBook and the Open Document Format, as
produced by OpenOffice.org. The occurrence of mixed content – text with em-
bedded markup elements – is a common characteristic of document-centric XML.
Schemas for document-centric XML typically provide element types for the structure
of the documents – chapters, sections, paragraphs, and so on –, and for semantic
or visual inline markup, like italics or acronyms.
The distinction between these two extremes is not as clear as it might appear at

first sight. Document-centric XML often contains strongly structured metadata like
author information, and data-centric XML frequently has mixed content embedded
in some fields.
In any event, it is necessary to search documents of either type effectively, and

different approaches can be used for maximum effectiveness.

2.1.5 Rendering XML

Although XML files are human-readable, they are not nice to read. Especially for
document-centric XML, the desired output is usually a nicely typeset document
suitable for on-screen display or printing. The important part is that the styling
information is stored separate from the XML document; thus, it is possible to change
the way a document is displayed without changing the document itself. This is
especially useful for rendering documents differently for different output devices. A
web page, for example, usually has navigation bars that are useful for in-browser
display, but are merely clutter in printed output. Different style sheets can be used
for this (or a single style sheet with different parameters), so that the navigation is
omitted for printed output.
Effectively, web browsers can be seen as rendering engines for HTML and, in

recent versions, also XML.
Cascading style sheets (CSS) (Bos et al., 2006) is one of the simpler options for

rendering XML, see figure 2.5 for an example style sheet. Cascading style sheets
specify how (and if) the elements in the input documents should be rendered, but
it provides not means for changing the order of the elements. In the example, it is
impossible to make the summary appear before the author names.
2http://dblp.uni-trier.de/xml/

21

http://dblp.uni-trier.de/xml/

2 Preliminaries

1 title { font -weight: bold; font - size : 22pt; }
2 summary { display: block; text - indent : 4em; }
3 author { display : block; text - indent : 2em; }
4 emph { font- style : italic ; }

Modern Information Retrieval
Ricardo Baeza-Yates
Berthier Ribeiro-Neto

This book contains comprehensive coverage of information retrieval techniques.

Figure 2.5: A cascading style sheet for the XML document in figure 2.1 and the
rendered document.

The Extensible Stylesheet Language XSL (Berglund, 2006) is significantly more
powerful than CSS, but it is also harder to write. Rendering an XML document is
done in two steps: First, an XSLT style sheet is used to convert the input document
to the intermediate format XSL-FO, and then an XSL-FO processor renders this
intermediate form.

XSLT is a general-purpose XML style sheet language that can be used to transform
XML into other XML dialects or other text formats. It is much more powerful than
CSS, as it is a turing-complete programming language, so that it can re-arrange the
input elements. In fact, it can also be used as a query language for XML, as will be
shown later.

XSLT alone can only be used for transforming one dialect of XML into another;
for rendering, one needs a dialect that provides formatting operations. The spec-
ification for XSL formatting objects (Pawson, 2002) does just that: It provides an
XML vocabulary for describing rendered documents.

Figure 2.6 shows an example style sheet and the final rendered output. Note how
the order of the authors’ first and last names is reversed compared to the input
document.

2.1.6 XML information set
The XML Information Set – also called Infoset – provides a model for describing
the content of well-formed XML documents that conform to the XML namespaces
extension. It operates at a higher level of abstraction than the syntactic structures
that the XML standard talks about. For example, <elem></elem> and <elem/>
are produced by two different syntax rules, yet they both represent the concept
of an empty element. The infoset is used as a basis for the specification of later
versions of the XML query languages XPath, XQuery, and XSLT (see section 3.1.1).

It provides definitions for eleven types of information items, each of which has
several characteristic properties. For this thesis, the following information items
are relevant:

Document: There is exactly one document information item in an XML document,
representing the document itself.

22

2.1 Overview of XML

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsl: stylesheet
3 xmlns: xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
4 xmlns:fo="http://www.w3.org/1999/XSL/Format">
5
6 <xsl:template match="/">
7 <fo:root>
8 <fo:layout -master-set>
9 <fo:simple-page-master master-name="master">

10 <fo:region-body region-name="body"/>
11 </fo:simple-page-master>
12 </fo:layout-master-set>
13 <fo:page-sequence master- reference="master">
14 <fo:flow flow-name="body">
15 <xsl:apply-templates/>
16 </fo:flow>
17 </fo:page-sequence>
18 </fo:root>
19 </xsl:template>
20
21 <xsl:template match="title">
22 <fo:block font - size="22pt" font-weight="bold"><xsl:apply-templates/></fo:block>
23 </xsl:template>
24
25 <xsl:template match="author">
26 <fo:block font - size="10pt">
27 <xsl:value-of select ="last-name"/>, <xsl:value-of select ="first -name"/>
28 </fo:block>
29 </xsl:template>
30
31 <xsl:template match="summary">
32 <fo:block><xsl:apply-templates/></fo:block>
33 </xsl:template>
34
35 <xsl:template match="emph">
36 <fo: inline font - style =" italic "><xsl:apply-templates/></fo:inline>
37 </xsl:template>
38 </xsl: stylesheet >

(a) XSLT style sheet for converting the book list from figure 2.1 to XSL-FO. The root template
in lines 6 to 19 sets up the page layout and a region for text, and the other templates format
the text.

Modern Information Retrieval
Baeza-Yates, Ricardo
Ribeiro-Neto, Berthier
This book contains comprehensive coverage of information retrieval techniques.

(b) Output generated from the XSL-FO.

Figure 2.6: Example of XSLT and XSL-FO.

23

2 Preliminaries

Element: Each element in the XML document is represented by an element infor-
mation item.

Attribute: Attributes can only occur as children of elements. Attribute values are
normalized.

Character: Each character in texts is stored in a separate entity as far as the
infoset is concerned.

2.1.7 Terminology
The terminology is based on the definition in the infoset and DOM W3C recommen-
dations.

The element name consists of two parts: the optional namespace name and the
local name. It occurs in two places in the XML document file, in the start tag and
in the end tag.

The parent of an element is the parent element as defined by DOM; likewise, the
child elements (children) are a list of the children of type “element” in the DOM
tree in document order.

The recursive text content of an element is the concatenation of all descendant
text nodes in the DOM tree, whereas the direct text content of an element is the con-
catenation of all text nodes that are children of this element. For practical reasons
related to tokenization (see section 5.2.1), all tags are replaced by a single space
to ensure that element boundaries are also word boundaries. For example, given
<a>1␣2␣3<c/>4, the recursive text content of a is “1␣␣2␣␣3␣4”,
and the direct text content is “1␣␣␣␣3␣4” (“␣” denotes the space character).

2.2 Information retrieval and data retrieval

Before delving into XML retrieval, it is helpful to first obtain a working knowledge
of retrieval on both unstructured text documents and highly structured data. In
this section, I will give a short overview of information and data retrieval, with
an emphasis on the former. Due to the nature of the topic, this section cannot
cover it in detail; instead I will focus on the parts that are relevant to this thesis.
Baeza-Yates and Ribeiro-Neto (1999) provide an in-depth treatment of many facets
of information retrieval.
Information retrieval aims at satisfying a user’s information need by retrieving

the most relevant documents from a larger collection. In current systems, the
user typically has to specify his information need in a formal language that the
information retrieval system understands; this formulation is called the query. In
information retrieval, the query is not a clear constraint, but rather a vague hint;
this implies that the retrieval system must try to deduce from the documents’
contents to which degree a given document satisfies the information need specified
in the query. The retrieved results are then ordered by this estimation of relevance,
which, in the ideal case, matches the user’s perception of it. In the context of XML
retrieval, information retrieval is most useful for document-centric XML.

24

2.2 Information retrieval and data retrieval

Data retrieval differs from information retrieval in this respect: The query exactly
specifies the constraints that a document has to satisfy in order to be retrieved;
there is no vagueness. Thus, the retrieval result is a set of relevant documents, all
of which are equally good. The query language SQL from the relational database
world and the basic forms of XQuery and XPath (see section 3.1.1) without the
full-text extensions are examples of query languages for data retrieval. They are
characterized by operators with clear-cut semantics, for example “year > 1945”. In
XML retrieval, this form of retrieval can be used for data-centric XML documents.

2.2.1 The vector-space model
In databases, the records are normally in attribute–value form, that is, the schema
defines which attributes are present in a record and their data types, and each
record assigns values to the attributes. The data types are mostly simple, like
numbers, dates, or short texts (less than a line long). Information retrieval, on the
other hand, deals with documents, that is, longer text with little or no inherent
structure. In order to provide more than substring search or pattern matching, the
search engine must first prepare the input documents. The word is the smallest
unit of information in a text, so it is reasonable to split the text into a sequence of
words and assume that the queries are also composed of words. Determining the
relevance of a document then leads to a comparison of the words in the document
and the words in the query.
For various reasons, it can be desirable to process the words before the compari-

son, for example, the search engine should be able to match different forms of words
like “compute” and “computing”. The processed form of a word is called an index
term, and the process of going from the word in the input document to the index
term is called conflation. There are many forms of term preprocessing:

• Case folding, so that “For” and “for” are considered the same term.

• Stemming, that is, reduction to the stem of a word; for “compute” and “com-
puting”, the stem could be “comput” for example (it is usually not the base
form). Well-known stemmers for the English language are the Porter and the
Lovins stemmer.

Term preprocessing serves two main purposes: It makes it easier to formulate
queries, since the different word forms do not have to be taken into account, and
the size of the index is reduced significantly – Witten et al. (1999, p. 147) cite
reduction of 30 to 40 percent for the TREC collection. An unintended side effect
is the reduction of precision, since many terms that are distinct in the documents
can no longer be distinguished from the index terms alone. This may be a problem
if the terms before and after conflation mean different things. Overall, the benefits
outweigh the problems, so real-world search engines usually perform some form of
conflation.
The simplest form of retrieval on documents is Boolean retrieval, for which the

search engine only determines whether the query terms occur in the documents, so

25

2 Preliminaries

the result is an unordered list of documents the searcher has to inspect manually
to find the ones satisfying his information need.

Obviously, this is not satisfactory. For ranked retrieval, more complex methods
must be used so that the search engine can determine to what degree a document
matches the query. A first step in that direction would be to count the number
of query terms that are matched by a document and then rank accordingly; this
hardly improves the situation because most queries are only a few words long, so
that there are still many documents for each given number of matches.

One implicit assumption of the Boolean model is that either a given term is
relevant for a document or it is not. In reality, however, relevance is not that
coarse-grained, that is, a term might be relevant to a certain degree.

There are many approaches to this problem, but I will focus on one of the most
popular models, the one that forms the basis of the retrieval engine presented in
this thesis: the vector-space model.
In the vector-space model, each index term is presented by an axis in an n-

dimensional vector space, where n is the total number of distinct index terms.
Every document is mapped to a vector in this space by assigning a term weight to
each term, denoting the importance of this term for the given document. If term t
does not occur in document di, the weight di,t = 0. Queries are transformed into
their representation in the same way documents are. If a query mentions a term
that does not occur anywhere in the documents, it is dropped.

The term weights can be determined in different ways. A common assumption
is that the more frequently a term occurs in a document, the more important it
is for the document’s content; on the other hand, terms that occur in (almost)
all documents are less useful, for example, the fact that the term “to” occurs in a
document tells us less about its contents than the occurrence of “retrieval”. Thus,
the weight of a term t should be the product of its term frequency in a given
document tf(d, t) (that is, the number of times it occurs in that document) and
its inverse document frequency idf(t) (inversely related to the proportion of all
documents the term occurs in N

df(t)
):

dt = tf(d, t) · idf(t) (2.1)

Inverse document frequency (IDF) is based on the observation in early retrieval
experiments that query terms that occurred in almost all documents dominated
the score if this was based only on the sum of the term frequencies (Spärck Jones,
2004). Originally, IDF was an ad-hoc invention to address this problem, which it
certainly does well. Robertson (2004) examined why IDF works as well as it does
by deriving it from probabilistic theory; he shows that TF-IDF can be seen as a
BM25 weight (BM25 is a probabilistic retrieval model; see section 2.2.2 for details).
A simple and well-proven form of IDF, given N the total number of documents and
ni the number of documents containing term ti is as follows:

idf(ti) = log
N

ni
(2.2)

26

2.2 Information retrieval and data retrieval

t1

t2

t3

d1

d2

q

t1

t2

t3

d1

d2

q

Figure 2.7: Document similarity in the vector-space model with the cosine similar-
ity measure. The axis represent the terms t1, t2, t3, and the components of the doc-
ument vectors d1 = (1, 3, 3) and d2 = (4, 0, 1) and the query vector q = (4, 3, 3) rep-
resent the term frequencies. The smaller the angle between the vectors is, the more
similar they are; since all components are non-negative, the cosine can be used. In
this case, d2 is more similar to q than d1: sim(q, d2) = 0.79 > sim(q, d1) = 0.51.

Many words in texts bear little or no semantic meaning, for example conjunctions
like “and”. Although IDF prevents them from dominating – these terms will occur in
almost all documents, so that their IDF is close to 0 –, it is still useful to completely
omit them from the index to save space.
For ranking the documents d given a query vector q, each pair of query and

document (q, d) must be mapped to a numeric value denoting the search engine’s
estimate of the similarity of the document to the query, which in turn is intended to
reflect the relevance of d with respect to q. A concrete similarity value is also called
retrieval status value (RSV). Under the assumption that a document matches the
query well if the query terms are as close to the index terms of the document as
possible, one can use the angle between the document d and the query vector q as
a measure for the similarity: the smaller the angle, the higher the similarity. For
practical reasons, the cosine of the angle between q and d is used; if the vectors
point in the same direction, the cosine is 1, if they are at right angles, the cosine is
0. This similarity measure is called the cosine similarity measure (the cosine can
be obtained by dividing the scalar product of the vectors by the products of their
lengths):

sim(q, d) =
q · d
|q| · |d|

=

P
t (qt · dt)qP
t q

2
t ·
qP

t d
2
t

(2.3)

Figure 2.7 illustrates the cosine similarity measure in a three-dimensional term
space.
After having calculated the similarity for each document, the search engine can

then create the result list by returning the documents in decreasing order of simi-
larity.

27

2 Preliminaries

Obviously, it would be wasteful to match every term vector with the query:
Typically, only a small fraction of the documents has any term in common with
the query. This leads to the introduction of inverted lists, which provide an index
structure that leads from a term to a list of all documents in which this term occurs,
similar to the index in a book. This alone would enable us to only compute the
similarity for documents with a non-zero similarity, but the search engine would still
need to access the term vector for each of these documents. Most of the weights in
this vector are irrelevant to the similarity; all that is really needed is the weights
of the query terms and the length of the document. Thus, the inverted lists are
augmented with the term weights, and the length of the documents’ term vectors
is stored in another index structure so that it does not need to be calculated from
the term vector.

The open source search engine Lucene3 uses a different formula:

sim(q, d) = coord(q, d)
X
t∈q

»p
tf(d, t)

„
1 + log

„
N

df(t) + 1

««
lnorm(d)

–
(2.4)

lnorm(d) =
1p

len(d)
(2.5)

coord(q, d) = |{t ∈ q : tf(d, t) > 0}| (2.6)

Compared to the cosine similarity measure, several things have changed:

• The coordination factor coord(q, d), which is the number of query terms in
q that also occur in d, is new. The intention is to reward documents that
contain more of the query terms. The result is that documents that contain
all the query terms will usually end up in the first ranks in the result list,
which is usually the right thing to do.

• Normalization is not done by dividing by the vector lengths, but by the square
root of the number of terms in the document; this has the advantage that the
normalization factor does not depend on the document frequency so that it
need not be recomputed every time the document collection changes (Lee
et al., 1997).

• The influence of very high term frequencies is reduced by taking the square
root.

The vector-space model is rather ad-hoc, lacking a sound theoretic foundation.
Although it works well in practice, it is not clear why it does; thus, other models
were developed based on probabilistic theory.

3see http://lucene.apache.org

28

http://lucene.apache.org

2.2 Information retrieval and data retrieval

2.2.2 Probabilistic retrieval and language models
Probabilistic retrieval models aim at ranking based on the probability of relevance,
rather than use some abstract value like the angle between two high-dimensional
vectors. Given a query q and a document d, the probabilistic model tries to estimate
the probability that d satisfies the searcher’s information need. The documents in
the collection can then be ranked by decreasing probability of relevance. The main
difference between implementations of this basic model lies in how the probability of
relevance is estimated, but the most successful methods can be seen as applications
of language models.
Language models go back to Shannon (1951): Shannon created statistics for

English texts based on n-grams (character sequences of length n): He counted the
relative frequency of each n-gram and used this data to predict unknown letters
from another text and found out that the information content is much lower than
the amount of storage needed to encode the text in its original form. These statistics
are a language model of the text corpus he analyzed; they can be seen as a means
of generating new text that has the same statistical properties as this corpus.
For information retrieval, character-based language models are not useful, given

that the term is the basic unit of information, so term-based models are more
appropriate. For practical reasons, unigram models (n = 1) are the most frequently
used models in this context: For each term in the corpus, the relative frequency is
obtained.
Spärck Jones et al. (1998) give an exhaustive overview of the basics ofOkapi BM25

retrieval model. The two basic events that are useful for ranking are R, the event
that document d is relevant, and the inverse R̄, the event that d is not relevant.
The idea is to rank based on the probability that document d is relevant, given its
presentation, P (R|d).
This probability cannot be calculated directly; the application of Bayes’ theorem

results in the following formula:

P (R|d) =
P (d|R)P (R)

P (d)
(2.7)

Unfortunately, the input values cannot be computed easily, so order-preserving
transformations are needed (see Spärck Jones et al. (1998) for details). Like for
the vector-space model, the naïve assumption that the terms in the documents
occur independently is made. Then weight function W (Ai = ai) can be defined,
denoting that attribute Ai has the value ai; for convenience, it is defined so that
W (Ai = 0) = 0. Given this weight, the basic similarity function is:

W (Ai = ai) = log
P (Ai = ai|R)P (Ai = 0|R̄)

P (Ai = ai|R̄)P (Ai = 0|R)
(2.8)

sim(q, d) =
X
i

W (Ai = ai) (2.9)

The simplest approach to determining the attribute values is based on presence
or absence of terms: If term ti occurs in the document, then ai = 1, otherwise

29

2 Preliminaries

ni documents containing tiR relevant documents

ri relevant documents containing term ti

N documents

Figure 2.8: Relevant document sets and counts for the RSJ term weight formula.

ai = 0. Thus, given pi = P (ti ∈ d|R) and p̄i − P (ti ∈ d|R̄), the weight function
yields:

wi = log
pi(1− p̄i)
p̄i(1− pi)

(2.10)

Assuming the search engine has information about the document’s relevance,
given ni = df(ti) documents containing ti, with ri of those documents being rele-
vant, N the total number of documents, and R the total number of relevant docu-
ments (see figure 2.8), the Robertson and Spärck Jones (RSJ) formula follows:

wi = log
(ri + 0.5)(N −R− ni + ri + 0.5)

(R− ri + 0.5)(ni − ri + 0.5)
(2.11)

Unfortunately, usually no relevance information is available (thus R = ri = 0),
so this turns into a weighting function similar to IDF:

wi = log
N − ni + 0.5

ni + 0.5
(2.12)

As section 2.2.1 has shown, not all terms are equally important for determining
the topic of a document. In the vector-space model, the inverse document frequency
is used to take that into account (the more documents contain a given term, the
less useful it is for discriminating).

Okapi BM25 (Robertson and Walker, 1994) is a probabilistic retrieval model de-
rived from the 2-Poisson probabilistic model. The term frequency is modified in
order to obtain a probability of term eliteness, which says if a document is “about”
the concept represented by the term. Term frequency information is easily avail-
able, and – as the vector-space model shows – can be helpful for improving retrieval
quality, it is reasonable to use a more detailed weight function. This function can
only be based on the raw term counts for the documents, since relevance informa-
tion is usually not available. A certain term can occur both in documents that are
about the concept that the term represents and in documents that are not.

Direct application of Poisson distributions to approximating the probabilities
lead to a complex formula that is difficult to interpret, because little information is

30

2.2 Information retrieval and data retrieval

available. Robertson and Walker (1994) derived a simpler weighting formula that
has similar behavior:

W (Ai = tf(ti)) =
tf(ti) · (k1 + 1)

k1 + tf(ti)
wi (2.13)

The conversion from the plain term frequency to the term eliteness probability
can be adapted with the global parameter k1; the formula ensures that the term
eliteness is 0 if the term frequency is 0, and it asymptotically approaches 1 as the
term frequency increases. This implies that the first few occurrences of a term
make the greatest contribution to term eliteness – the function is steep close to 0.
The eliteness of term ti for document d, using a document-length normalization
constant K (see below) is defined as:

eliteness(ti, d) =
(k1 + 1) tf(ti, d)

K + tf(ti, d)
· log

N − df(ti) + 0.5

df(ti) + 0.5| {z }
wi

(2.14)

Another important enhancement of BM25 over the 2-Poisson model is the docu-
ment-length normalization. Based on the assumption that document length is
caused either by needless verbosity – this implies normalization – or a more thor-
ough treatment of the subject – this implies no normalization –, BM25 uses partial
length normalization. The degree of normalization is controlled by a global param-
eter b.

K = k1

„
(1− b) + b ·

len(d)

avg(len(d))

«
(2.15)

The final similarity of document d to the query q is then accumulated as follows:

sim(q, d) =

mX
i=1

eliteness(ti, d) ·
tf(ti, q)

k2 + tf(ti, q)
(2.16)

For realistic queries, the term frequency in the query is usually 1, so the second
multiplicand is frequently omitted (k2 = 0).

The lack of relevance information for training implies that the probability of
relevance can be estimated based on the query terms only. In other words, Okapi
BM25 is based on estimating the probability that the language model of the query
generates the document.
Language modeling approaches to information retrieval look at the problem the

other way around: They estimate for each document the probability that the lan-
guage model of the document predicts the query (Ponte and Croft, 1998; Croft,
2003). A very pragmatic reason for this approach is that the language model of a
document can be estimated better, because documents are typically much longer
than queries.
A statistical language model tries to capture the properties of sample text so that

it becomes possible to estimate the probability of linguistic units such as sentences.

31

2 Preliminaries

Information retrieval approaches based on language models start from the as-
sumption that the query is in fact a distorted version of the ideal document that
satisfies the searcher’s information need. Thus, it is the search engine’s task to find
the document from the collection that has the highest probability that it generates
the query. For document d, this probability can be calculated from the products of
the probabilities of each query term occurring in d.

P (d|q) = P (q|d) · P (d) (2.17)

In this equation, P (d) is the prior probability that the document is relevant; this
probability is usually assumed to be uniform.

The query-likelihood retrieval model (Ponte and Croft, 1998) is a rather simple
language-based model. It estimates the probability that the query is a sample from
the distribution of terms found in a document.

2.2.3 Evaluating information retrieval effectiveness
The scientific method demands comparison of new strategies with old ones to show
that progress has been made. For data retrieval, the quality of the retrieval results
is not an issue: Either a result satisfies the constraints given in the query or it does
not. Thus, comparing different retrieval approaches can only been done based on
other data, most importantly space usage and retrieval time; a system that obtains
the same results in a shorter time is clearly superior to its predecessor.

With information retrieval, time and space are still a concern, but now the quality
of the retrieval results plays an important role, too. The relevance of a document
for an information need expressed in a query cannot be determined automatically,
as long as there is no true artificial intelligence. The retrieval system can only
attempt to approximate relevance as well as possible. It is unreasonable to expect
a system to match the ideal result – even discounting its lack of intelligence, not
even people who assess the relevance of retrieval results agree anywhere close to
100 percent.

It is thus necessary to be able to compare the quality of retrieval results, and it is
clear that the expected or ideal retrieval result can only be determined by people.
In Cranfield experiments – so called because they were first done at Cranfield in the
1960s –, the retrieval results from search systems are assessed, and then a numerical
measure of retrieval quality is obtained.

In 1992, the Text Retrieval Conference (TREC)4 was started as a venue to com-
pare different retrieval systems in Cranfield experiments. The conference provides
several large collections of documents and, each year, new information needs and
queries are formulated and used for evaluating the participating systems. Voorhees
(2005) gives an overview of TREC and the evaluation methods used there.

Considering the size of the test collections – about 800,000 documents are typical
–, it is infeasible to judge every document in the collection for relevance for each
query. Because of this, pooling of results is performed: The participants submit
4http://trec.nist.gov/

32

http://trec.nist.gov/

2.2 Information retrieval and data retrieval

their retrieval results for the TREC queries, and the top 100 results from each
submission are collected in a pool. This pool is then assessed by the assessors, and
all documents outside the pool are considered irrelevant for evaluation.
Obviously, it is necessary for scientific work to be able to perform quality evalua-

tion outside the yearly schedule of TREC. To address this need, TREC provides an
evaluation tool that can be used to perform evaluation of systems based on previous
relevance assessments.

2.2.4 Retrieval of partial documents
All the retrieval methods described so far assume that the complete document is
the unit of retrieval. Even before the advent of XML, there were experiments on
the retrieval of parts of documents.
Salton et al. (1993) report work on passage retrieval, in which they apply a two-

stage process: First, the complete documents are searched, and only the documents
with a sufficient similarity are retained. Next, the retained documents are examined
for highly similar passages; if there are passages with a higher similarity than the
document in which they occur, they replace the document in the results. The de-
composition of documents into passages is done hierarchically, that is, a document
is decomposed into suitable sections, then each of these sections is further decom-
posed. The result of this is a tree structure similar to the one of XML documents.
Salton et al. show that it is possible to retain or even improve the quality of

document retrieval, while at the same time reducing the size of results, measured
in paragraphs. This is a strong argument in favor of discarding the notion of a
document as an atomic unit.
Moffat et al. (1993) (see also Zobel et al., 1995; Wilkinson, 1994) executed experi-

ments on the TREC corpus, based neither on full-document nor on passage retrieval,
but on retrieval based on pages and sections (for documents marked up in SGML).
The rationale they give – apart from technical reasons – is the same as for element
retrieval: some of the documents are too long to be manually inspected for matches
(the longest is 400,000 words long), so it is more sensible to return parts of these
documents.
They propose several options for displaying the results:

• The retrieval system could retrieve complete documents and only use the parts
for scoring the documents.

• The retrieval system could present the parts in the same way as the complete
documents.

• The retrieval system could present the parts in the context of the whole doc-
ument.

This foreshadows some of the retrieval tasks that were later introduced for the
INEX workshops, which will be covered later.
For experimental evaluation, they had to augment the relevance assessments from

old TREC data (Moffat et al., 1993). The TREC data only has relevance assessments

33

2 Preliminaries

for complete documents, so section- or page-based assessments had to be added.
While doing this, they came across several documents that were marked relevant,
but did not appear to contain any relevant sections; this is a further example that
relevance assessment is not objective. In contrast to element retrieval, however, the
retrieval units are not overlapping – the result list cannot contain both a section
and a paragraph from that section.

Thus, although retrieval at the sub-document level has proved to be reasonably
successful for the examined researchers, it is not without difficulties. One central
problem is the unavailability of structural information; if the documents contain no
easily parsable structure, the search system has to resort to kludges like page-based
retrieval. With good XML- or SGML-structured documents, the retrieval system
is relieved of that burden and can focus on choosing the best structural units as
marked up by the document author.

2.3 Summary

This chapter covered the base technologies and methods that are relevant to this
thesis: Starting with XML and related technologies as a suitable document format
for digital libraries, going on to cover standard information retrieval basics for flat
documents, this chapter has covered the major aspects of searching XML. With
the focus on content-oriented retrieval, we have then taken a look at INEX, which
provides an evaluation testbed to determine the quality of retrieval results.

The next chapter will give an overview of general aspects of XML retrieval and
existing approaches to element retrieval.

34

3 XML retrieval
“I don’t think I ever drove faster, but the
others were there before us.”

(A Scandal in Bohemia)

The previous chapter provided the foundations, but so far, the core topic of this
thesis – XML retrieval – has not been discussed. This chapter discusses the com-
bination of XML and information retrieval and describes selected approaches to
searching XML.

3.1 Information retrieval on XML

Although the traditional information and data retrieval techniques could be used
without modification for XML retrieval by ignoring the markup and indexing only
the text of the root element, there are several reasons for developing extended
retrieval methods:

• As mentioned before, it is more user-friendly to return only the elements
of interest to the searcher, instead of making him wade through complete
documents.

• In XML, data-centric and document-centric parts are frequently combined in
one document, so the search engine should provide mechanisms for combining
both kinds of constraints, as well as support constraints on the structure itself
(for example, “return bibentry elements about information retrieval”).

Traditional information retrieval provides no good approach to this. This section
gives an overview of existing approaches for searching XML.

XML documents consist of two distinct types of data, content (text nodes) and
structure (the structure of the document as reflected in the nesting of elements
and attributes). These types of data are different in nature, so it is reasonable to
use different types of constraints for each of them: Structural constraints specify
conditions on the XML structure of the results, for example, searching for all author
elements. Content constraints specify conditions on the textual contents of the
elements, similar to what web search engines provide: Find all elements about
relational databases. These types of constraints are (like the document types) not
well-separated. For complex information needs, users may want to express both
structural constraints and content constraints in the same query, for example, “in
all articles written by Date, find the elements about relational databases”.

35

3 XML retrieval

Natural-language queries are not accessible to the computer, so the searcher has
to specify his query in a special language with a clear and easily parsable syntax.
Based on different requirements, many languages for searching XML have been
specified and implemented. In the remainder of this section, I will give an overview
of these languages and their semantics.

3.1.1 Data retrieval languages
XML data retrieval languages are all languages that do not provide convenient
support for term-based retrieval (although they may provide substring search).
First of all, the query languages specified by the World Wide Web Consortium
(W3C) must be mentioned: XPath and XQuery.
XPath (Berglund et al., 2007) is a language for selecting nodes or values from

the abstract tree of an XML document. As the name implies, path expressions play
an important role in XPath; the searcher may use them to freely navigate the tree
structure by using axes to obtain a node’s parent, siblings, attributes, and so on.
The first part of the XPath query in figure 3.1a, //author/last-name, specifies

which nodes to retrieve, in this case, the last names of authors. It is followed by
a condition that the last-name node must satisfy in order to be retrieved; it must
have a preceding sibling first-name with the given textual contents (preceding-sibling
is the axis along which should be searched).
XQuery 1.0 (Boag et al., 2007) embraces XPath and supplements it with func-

tionality for constructing XML documents containing the query results. Queries
follow the basic pattern For – Let – Where – Return (FLWR), and the syntax is
inspired by SQL in order to lower the barrier to entry. XQuery was designed to
have more than one syntax binding, and so an XML syntax called XQueryX (Melton
and Muralidhar, 2007) was derived from the grammar. It is intended mainly for
programmatically created queries (it is too verbose to be written by hand).

XSLT (Kay, 1999), was developed in parallel to XQuery by a different W3C work-
ing group. Although it is primarily a transformation language used for rendering
XML documents, it can also be used as a query language. XSLT was inspired by
functional programming languages, so it is completely different in style compared
to XQuery. It can output both XML and text files, which makes it convenient to
convert XML documents to non-XML formats, for example, a data-centric docu-
ment could be converted to SQL insert statements for importing the data into a
relational database.

Figure 3.1 shows an example query for each of the aforementioned query lan-
guages.

3.1.2 Data and information retrieval languages
The data languages provide limited full-text operators, mostly substring search.
For text documents, substring search is not sufficient. On the other hand, the need
for combining data and information retrieval capabilities is so obvious that all the
languages presented here not only provide facilities for searching the content, but
also support structural and data-retrieval constraints to varying degrees.

36

3.1 Information retrieval on XML

1 //author/last -name[preceding- sibling :: first -name = "Berthier"]}

(a) XPath

1 <result>
2 {
3 for $a in doc("booklist .xml")/booklist/book/author
4 let $lastname := $a/last -name
5 where $a/ first -name = "Berthier"
6 order by $lastname ascending
7 return $lastname
8 }
9 </result>

(b) XQuery

17 <xqx:stepExpr>
18 <xqx: filterExpr >
19 <xqx:functionCallExpr>
20 <xqx:functionName>doc</xqx:functionName>
21 <xqx:arguments>
22 <xqx:stringConstantExpr>
23 <xqx:value>booklist.xml</xqx:value>
24 </xqx:stringConstantExpr>
25 </xqx:arguments>
26 </xqx:functionCallExpr>
27 </xqx: filterExpr >
28 </xqx:stepExpr>

(c) XQueryX (excerpt; the original version has 75 lines)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsl: stylesheet xmlns: xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">
3 <xsl:template match="/booklist">
4 <result>
5 <xsl:apply-templates select ="book/author[./first -name = ’Berthier’]"/>
6 </result>
7 </xsl:template>
8 <xsl:template match=’author’>
9 <last-name><xsl:value-of select="./last-name"/></last-name>

10 </xsl:template>
11 </xsl: stylesheet >

(d) XSLT

Figure 3.1: Example queries in data retrieval languages. The aim is to find the
last name of all authors whose first name is “Berthier” in the XML document from
figure 2.1. Note that the queries are somewhat more complex than necessary in
order to highlight the respective features.

37

3 XML retrieval

Trotman and Sigurbjörnsson (2005) created NEXI, a query language supporting
both structural constraints and typical keyword queries, for the Initiative for the
Evaluation of XML Retrieval (INEX; see section 3.2 for details). NEXI is based
on XPath, but reduces it to a core feature set and adds an about function for
specifying keyword-based information needs. The query in figure 3.2a searches the
book list from figure 2.1 for authors named Ricardo who have written books about
information retrieval. The first condition about the summary specifies support
elements, that is, elements that are not directly returned to the user, but are still
relevant for the query, whereas the second condition specifies target elements, the
elements that should occur in the result list.

NEXI is intended as the input query language for all participating search engines,
so its exact semantics are unspecified. In particular, it is up to the implementors
how to tokenize, index, and search the documents, no model or similarity measures
are prescribed. In fact, even the structural conditions are not necessarily strict
constraints.

A more detailed overview of NEXI will be given in section 3.2.5, in the context
of INEX.

The W3C recognized the need for information retrieval capabilities beyond simple
substring search, so XPath and XQuery are in the process of being extended with
full-text retrieval functionality (Amer-Yahia et al., 2006). XQuery Full-Text is
based on the notion of words and positions; the central new operator is ftcontains,
which provides for ranked retrieval based on simple keyword queries. The query
in figure 3.2b illustrates the extensions. It has roughly the same semantics as the
NEXI query from above, but, in this case, the condition that the author’s name
is Ricardo is a strict filter, and ranking is purely based on the degree the book’s
summary matches information retrieval. NEXI does not give this level of control to
the searcher, there is no way to specify that a condition must be satisfied.

XQuery Full-Text does not specify exactly how the input documents are to be
tokenized, other than that attributes are not tokenized at all. Apart from splitting
the input into words, the tokenizer also assigns word, sentence, and paragraph
positions, but these, too, are left unspecified, so there is considerable leeway for the
implementation. Scoring too is completely at the discretion of the implementation;
all the specification dictates is that the scores are between zero and one, and higher
scores indicate a higher level of relevance.

The query languages described so far are not meant for ad-hoc use: they have a
complex syntax that is hard to master; even posing a syntactically correct query
can be challenging for novice users. The question is how one can at the same time
keep the expressive power and reach a user-friendliness rivaling that of web search
engines. A first step in this direction is to use XML itself as the query language,
that is, searchers create an XML document that represents their information need.
This is a form of query by example; Carmel et al. (2003) implemented this under
the name of XML fragments. Figure 3.2c gives an approximation of the example
query in this format.

Although queries using XML fragments are easier to grasp than XPath or XQuery
queries, they still require that the searcher knows about XML and is willing to
produce a well-formed document that matches the collection schema. The next

38

3.2 The Initiative for the Evaluation of XML Retrieval

//book[about(.//summary, "information retrieval")]//author[about(., Ricardo)]
(a) NEXI

for $a in /booklist/book/author[. ftcontains "Ricardo"]
let score $s := $a/summary ftcontains "information retrieval"
order by $s descending
return <result score="{$s}">{$a}</result>

(b) XQuery Full-Text

<book>
<author>Ricardo</author>
<summary>information retrieval</summary>

</book>
(c) XML fragments

We are searching for authors named Ricardo who have written books whose summary is
about information retrieval.

(d) Natural language

Figure 3.2: Example queries in several data and information retrieval query lan-
guages. The aim in each case is to find authors named Ricardo who have written
a book about information retrieval, but due to restrictions in the expressiveness of
the languages, the exact semantics of the queries vary between the formulations.

logical step to overcome this hurdle is the use of natural language queries (Geva
and Sahama, 2005). Figure 3.2d gives a conceivable example query; note that the
supported syntax is completely unspecified, so it is possible that the existing parsers
fail to understand this query.
This query expresses complex structural constraints without using a special query

language, so it should be more suitable for high-precision ad-hoc retrieval. Inter-
nally, the natural-language query is translated into NEXI for retrieval, so it is not
currently possible to express information needs that are too complex for NEXI.
Overall, it seems unavoidable that significant developments will happen on query

language design; XQuery will likely be the dominant language for internal use, and
if natural language queries keep their promises, they are a good alternative for
end-user interaction.

3.2 The Initiative for the Evaluation of XML Retrieval

Evaluating the effectiveness of information retrieval methods has long been an im-
portant part of this research area, as witnessed by the long running TREC workshop.
There was a workshop on XML and information retrieval as part of SIGIR 2000
(Carmel et al., 2000) (and this was not the first work done on element retrieval),
but assessment of the methods only became possible with the start of the INEX
workshops. INEX, the Initiative for the Evaluation of XML Retrieval, was started
in 2002 (Gövert and Kazai, 2002) and funded by the DELOS Network of Excellence

39

3 XML retrieval

in Digital Libraries1. Since then, it has been a yearly event with a stable number
of participants. According to the INEX 2002 homepage2, the aims of the initiative
are as follows:

The aim of this initiative is to provide means, in the form of a large
testbed (test collection) and appropriate scoring methods, for the eval-
uation of retrieval of XML documents. The test collection will consists of
XML documents, tasks/queries, and relevance judgments given by (po-
tential) users with these tasks. Participating organizations contribute to
the construction of this test collection in a collaborative effort to derive
the tasks/queries and relevance judgments for a large collection of XML
documents. The test collection will also provide participants a means
for future comparative and quantitative experiments.

Indeed, this aim was reached in the following years by providing collections of
XML documents – IEEE Computer Society Journals published between 2002 and
2005 and a converted version of Wikipedia (Denoyer and Gallinari, 2006) in 2006 –,
and the participants provided the topics (information needs with associated queries)
and manual relevance assessments of the submitted results. Although it has not yet
reached the number of participants, document collections, and queries that TREC
has, it is on the way there.

In addition to the evaluation part, INEX also provides a forum for introducing
and discussing all kinds of XML retrieval research at the yearly meeting and since
2005 in a mid-year workshop. Here, the participants present and discuss their
retrieval approaches as well as theoretical aspects such as the discussion of the aims
of information retrieval and evaluation measures.

3.2.1 INEX tracks
As of 2006, INEX has the following tracks that focus on different aspects of XML
retrieval (Malik et al., 2006, 2007):

Ad-hoc track: This track focuses on the evaluation of retrieval engines for both
content-only (CO) and content-and-structure (CAS) queries. This track is
the main focus of this thesis.

Interactive track: This track aims at testing XML retrieval systems with real
users and finding out what these users expect. In controlled experiments, the
users are asked to perform certain tasks along the lines of finding information
about a given topic. Their interaction with the retrieval system is recorded,
and they fill in a questionnaire; this provides information about what users
really want – or do not want – concerning XML retrieval systems.

Use case track: A thought experiment on how XML retrieval systems might be
used in the real world.

1http://www.delos.info/
2http://qmir.dcs.qmw.ac.uk/INEX/

40

http://www.delos.info/
http://qmir.dcs.qmw.ac.uk/INEX/

3.2 The Initiative for the Evaluation of XML Retrieval

Multimedia track: This track combines text search on XML with search on other
media, in particular images. The XML fragment including the image might
provide further information about its contents, which helps supplement the
limited image analysis methods.

Relevance feedback track: This track explores the use of relevance feedback in
XML retrieval. It is executed in two phases: First, each participants submits
an initial run, which is then manually assessed, and this feedback is distributed
to the participants. In the second phase, the feedback can be used to improve
retrieval results.

Document mining track: This track provides a forum for researchers attempting
to extract information from XML documents. In the first executions of this
track in 2005 and 2006, the task was to cluster the collection.

XML entity ranking track: The aim of this track is to find certain entities of a
predefined type that match the query. For example, if the entities are actors
and the query is “action”, one suitable result might be “Arnold Schwarzeneg-
ger”.

Natural language processing track: Instead of using the queries formulated in
NEXI, the participants in this track use the free-text description from the
topics (which is meant to express the same information need) and try to
translate it into NEXI. The aim is to support a query language that supports
structural constraints without having to resort to complex syntax.

Heterogeneous collection track: In the base collections of INEX, all documents
come from the same source, so they adhere to the same schema. In the real
world, documents are often from multiple sources with different schemas. This
track aims at evaluating systems that can cope with this situation.

The ad-hoc track is definitely the dominant track with the highest number of
participants, and the only one that has been running since the very start. Many of
the other tracks suffer from a lack of participation and good test collections and,
in fact, many of them were not completed in the INEX time frame.

I will only look at the ad-hoc track, because it fits my aims and has the most
extensive collection of test data. Considering that I also aimed at working on hetero-
geneous documents with different schema, one might wonder why I am completely
ignoring the heterogeneous track. Unfortunately, this track has not been active in
2005 and 2006, and before then, the test collections used were mostly based on
data-centric XML documents in the form of bibliography entries. The main focus of
this thesis is more on document-centric XML documents with smaller data-centric
parts, so the available test data is not suitable for evaluating my methods.

3.2.2 Ad-hoc tasks
The ad-hoc track is not a single task, but it is split into several sub-tasks that
simulate various possible retrieval scenarios and user interfaces.

41

3 XML retrieval

For the thorough task, there are no restrictions on the submissions; in particular,
it is permissible to return nested elements without penalty (a run could, for example,
contain both a section and a paragraph from that section). The thorough task is an
element-based task, that is, each result from the runs is an isolated element. It may
well happen that the result list contains a mix of elements from various documents,
for example, the highest-ranked result might be from document A, followed by
results from other documents, and then another result from document A. The aim
is to retrieve as many good elements as possible, without regard to how they are
presented to the user – interactive studies have shown that users do not like to
see overlapping elements (Kazai et al., 2004). An interesting aspect of this task is
that most INEX participants base all their submissions for the other sub-tasks on
their thorough results; for the focused task, for example, all overlapping elements
must be eliminated. The thorough task is the only task that has been run in every
instance of INEX since its inception in 2002.

In contrast to the thorough task, the focused task is meant to be a user-oriented
task, that it, the runs could be presented to searchers without further postprocess-
ing. For this reason, submissions for this task must not contain overlapping results.
This implies that the search engine has to make a choice whether it should prefer
a single large element or return several of its children as separate results.

In contrast to the previously-described tasks, relevant in context is a task where
the results are grouped by document. This means that, if the first result is from
document A, all other results from this document must immediately follow it, before
any results from other documents occur in the result list. Within each document,
the results are ordered by relevance. The intention is that the user is first and
foremost directed to the most relevant documents and then gets to see which parts
of the documents are the most relevant. The relevant-in-context task was introduced
for INEX 2006; for INEX 2005, there was the vaguely similar fetch-and-browse task.
Best in context is a task that seeks to find the single best entry point for each

document. This entry point should be the point at which the user should start
reading the document.

Then, of course, there is the distinction between the content-only and the content-
and-structure task, which differ in which of the query formulations in the topics
should be used.

3.2.3 Test collections
The test collection consists of three major parts (Malik et al., 2006):

• The document collection, from which the results are retrieved,

• the topics, which specify an information need in natural language and as a
NEXI query, and

• the relevance assessments, which are created by manual inspection of the
submitted search results for determining if they satisfied the information needs
from the topics.

42

3.2 The Initiative for the Evaluation of XML Retrieval

The document collection typically remains stable for several years, whereas the
topics and the corresponding relevance assessments are new for each round of INEX.
A topic consists of several parts: a brief description of the information need, the

title and/or castitle that express the same information need as NEXI queries, and
the narrative, a detailed description of the information need and notes on what is
and is not relevant. The search engines use the titles – or, for natural language
queries, the description – as the queries, whereas the narrative is later used by the
assessor to determine whether a given element is relevant.
All submitted results for a topic are pooled, and a human assessor inspects them

for relevance. For INEX 2002 to 2004, the assessment interface was based on el-
ements, and for each element, the assessor had to determine to what degree the
element satisfied the information need (exhaustiveness) and to what degree it only
contained relevant information (specificity). Starting with INEX 2005, a new as-
sessment interface was introduced where assessments are done on two phases:

1. The assessor highlights the highly specific parts of a document with a tool
resembling a text marker. Now, the highlighting is not restricted to element
boundaries, for example, it is possible to mark a single sentence in a long
element as highly specific. Depending on the fraction of highlighted material,
the specificity is automatically calculated.

2. The assessor assigns an exhaustivity value to all elements that contain any
highlighted portion.

For INEX 2006, the process was even more simplified by omitting the elicitation
of exhaustivity; relevance is purely based on specificity.

3.2.4 Document collections
So far, INEX has used two document collections, IEEE (from 2002 to 2005) and
Wikipedia (starting in 2006). The characteristics of these collections could not be
more different: The IEEE collection is a collection of IEEE journal articles, whereas
the Wikipedia collection is a conversion of Wikipedia to XML format.
The IEEE collection has a clear focus on computer science, and the articles are

rather similar in length (several pages).
As an encyclopedia, Wikipedia covers a broad range of topics, and the length of

the articles varies a lot, from simple redirection pages telling the user little more
than “the topic is ambiguous, you might mean either of these pages” to long articles
on the history of a place.
For both collections, the average length of an element rapidly decreases the deeper

the element is in the document. In the IEEE collection, the articles have a mean
length of more than 2000 words (excluding stop words), but the average length
on level four is already below 50 words (with a median below 20). Although the
maximum depth is 20, the statistics imply that by far most relevant elements should
occur on the first few levels; the low-level elements are simply too short. In the
Wikipedia collection, for each level down from level three, 75 percent of the elements
are less than 20 words long; the IEEE collection goes to level six. It is reasonable

43

3 XML retrieval

to assume that retrieval results should have a minimum length to be useful to the
searcher, which implies that results can only be found on the first few levels. The
levels below are (at best) useful for providing further retrieval hints or for verifying
content-and-structure queries directed at these elements.

In both collections, the documents are rather homogeneous: All have the same
root element name, and on the second level, there are only five (IEEE) and three
(Wikipedia) different element names. It is on this level that the main text of
the documents is enclosed in a single element, bdy (IEEE) and body (Wikipedia).
From the third level on, the full richness of the schemas is explored in full, with
element names denoting anything from inline mathematical formulas to sections.
For the search engine, it is a challenge to automatically determine the best result
granularity; to a human, it may be obvious that the additional metadata that is
available in the article outside the body, for example the article’s title and authors,
may be useful even if it does not contain the query terms – but to the search engine,
it will usually be pointless to include material without any matches. It may help
to hard-code rules like “if a bdy element is to be returned, return the corresponding
article element instead”, but this is not practical for collections with diverse schemas.

The IEEE collection uses 178 distinct element names (the DTD defines a few
more, but they are unused in the given collections), and the Wikipedia collection
uses 1003 distinct element names, 90 percent of which are used at most ten times
in the collection (most of these element names are the result of conversion errors;
the Wikipedia markup has less than 100 directly expressed types of markup).

Overall, the difference between the two collections that most affects retrieval
is size: On the one hand, the Wikipedia collection is larger as far as the total
number of documents and the total amount of text are concerned, but the IEEE
collection contains longer articles on average. Keeping in mind that the foremost
aim of element retrieval is to return useful parts of documents, IEEE is arguably the
more interesting collection for evaluation; many of the extremely short Wikipedia
articles do not lend themselves to being subdivided. Unfortunately, even the IEEE
articles are not a perfect example for performing sub-document retrieval, because
the sections and paragraphs usually do not stand on their own.

3.2.5 NEXI

As mentioned before, NEXI (Trotman and Sigurbjörnsson, 2005) is the query lan-
guage for the INEX topics. Its syntax is derived from XPath, but significantly
simplified and extended with the information-retrieval-specific about function.
The simplest valid NEXI queries are keyword queries, resembling the queries

for typical web search engines. For example, information retrieval is a valid NEXI
query that instructs the search engine to retrieve results about this topic. Each
query term is a sequence of alphanumeric characters (with optional hyphens and
apostrophes, as long as they do not occur at the start of the word) or positive or
negative numbers. Furthermore, the following hints are possible:

Phrases: A phrase is a sequence of words enclosed in double quotes ("information

44

3.2 The Initiative for the Evaluation of XML Retrieval

retrieval"); this indicates that the searcher expects those terms to occur adja-
cent to each other in relevant documents.

Must-have terms: Terms or phrases can be preceded by a + sign to indicate that
they are expected to occur in a relevant element. For example, information
+retrieval conveys the intention that the term information may or may not
occur in relevant elements, whereas the term retrieval is definitely expected to
occur.

Should-not terms: Terms and phrases can also be preceded by a - to signify that
they are expected not to occur. For example, apple -computer shows that the
searcher is not interested in computers, but rather in fruits.

In any case, none of these hints are binding for the search engine, it may choose
to ignore them. For example, it might be useful to break a phrase its component
terms if the phrase does not occur in any document.
Content-and-structure queries provide limited support for the XPath descendant

axis only (in its abbreviated form //).

• //T[t]: Return elements with paths matching T that are about t.

• //S[s]//T: Return T descendants of S, where S is about s (this form has been
deprecated since INEX 2003).

• //S[s]//T[t]: Return T descendants of S, where S is about s and T is about t.

The target path T and the support path S are paths, and t and s are filters.
Paths consist of an alternating sequence of descendant axis qualifiers // and path
components, where a path component is either a tag name, @ followed by an at-
tribute name (may only occur at the end of a path), the wildcard *, which matches
any tag, or a set of tags like (a|b|c).

Filters are content-only queries, arithmetic conditions, or Boolean expressions
of filters that should apply only to the preceding path. They are of the form
about(relative-path, co-query), where relative-path is either a single period . – indi-
cating the current node – or a period followed by a path. The query co-query is of
the same form as the content-only queries from above.
Arithmetic filters are a relative path followed by one of the operators <, >, =,

<=, or >=, followed by a numeric constant. For example, //article[.//fm//year
> 2005] requests articles that contain a value greater than 2005 in a //fm//year
element.
Boolean expressions of filters are sequences of filters linked by the Boolean oper-

ators and and or, possibly using parentheses to force a certain priority. For exam-
ple, the following query requests articles that have a value greater than 2005 in a
//fm//year element and contain p elements that are about ski jumping, snooker, or
both:

//article[.//fm//year > 2005 and (about(.//p, ski jumping) or about(.//p,
snooker)]

45

3 XML retrieval

Like content-only queries, the filters in content-and-structure queries are only
hints, so the search engine can ignore any part of them. The structural constraints,
on the other hand, may be binding, depending on whether the results are for the
strict or the vague content-and-structure task.

3.3 Probabilistic and language-modeling approaches

Section 3.1.2 has shown that most XML query languages do not specify exact re-
trieval methods, they only specify the general intent. One reason for this is that,
XML retrieval being a young area of research, it is not yet clear which retrieval
method is the most suitable one for different scenarios.

3.3.1 Okapi-based

Okapi BM25 (see section 2.2.2) is one of the most successful retrieval models for tra-
ditional text-based information retrieval, so it is not surprising that several research
groups based their search engines on this model.

Lu et al. (2006) use an extension to basic BM25 which applies field weighting,
called BM25F (Robertson et al., 2004). This is further extended in a straightforward
manner for element retrieval, yielding a variant called BM25E.

XIRQL (Fuhr and Großjohann, 2001) uses term frequency to estimate the prob-
ability of relevance for a given node; although in principle other methods could be
used, the current version is based on normalized Okapi BM25 weights.

The most important extension lies in the partitioning of the XML document into
non-overlapping index nodes based on element names. The choice of which element
names to index also determines which element names can be returned to the user;
for example, inline elements are typically not indexed, so they can never be retrieval
results. Indexing is done bottom-up, and the index entries for parent elements do
not include the text that occur in indexed children. For example, if chapter and
section are chosen as element names to index, and a chapter element consists of a
title element followed by several section elements, the index entries for the chapter
only contain the text from the title (which is not itself indexed); see figure 3.3.
This ensures that a single term occurrence does not contribute to two separate
probabilistic events.

XIRQL uses a term’s weight for estimating the probability that this term is rele-
vant for the index node it occurs in. Based on this assumption, it is then possible
to derive the probability for higher-level elements that span several index nodes by
starting from the event of a term occurrence, where matches for the same term in
several index nodes are linked with or, whereas the different term matches are linked
with and. The events can then be turned into disjunctive normal form, and the
probability of this new formulation can be calculated using the inclusion-exclusion
formula:

46

3.3 Probabilistic and language-modeling approaches

1 <section>
2 <title>Investment</title>
3 <p>bank, money</p>
4 <p>money</p>
5 <p>interest</p>
6 </section>

(a) XML document

p[1]: bank, money

p[2]: money

p[3]: interest

section: investment

(b) Indexing units

Figure 3.3: Example of XIRQL indexing. In this case, section and p are the
indexing units. Note that the indexing unit of the section element only contains the
text that is not in other indexing units. For probability estimation, the information
from all four nodes must be combined.

P (C1 ∨ · · · ∨ Cn) =
X
i

(−1)i−1

0@ X
1≤j1<···<ji≤n

P (Cj1 ∧ · · · ∧ Cji)

1A (3.1)

Assuming independence of the events, one can obtain the probability of a con-
junction by multiplying the probabilities of the underlying events:

P (C1 ∨ · · · ∨ Cn) =
X
i

(−1)i−1

0@ X
1≤j1<···<ji≤n

Y
j1≤k≤ji

P (Ck)

1A (3.2)

Consider the example from figure 3.3, given a query “bank money interest” on
section elements. To save space, I will refer to the indexing units of the section and
p elements as S and P1 to P3. The search engine needs to obtain the probability
of relevance for S, but S has several children, so their scores must be combined:
P1 contains the terms “bank” and “money”, P2 contains “money”, and P3 contains
“interest”. Thus, the events are (P1, bank), (P1,money), (P2,money), (P3, interest),
and the following overall conjunction results:

e = (P1, bank) ∧ ((P1,money) ∨ (P2,money)) ∧ (P3, interest) (3.3)

Obtaining the probabilities of these events and rearranging the terms into dis-
junctive normal form, we get:

P (e) = P ((P1, bank) ∧ (P1,money) ∧ (P3, interest)) ∨
P ((P1, bank) ∧ (P2,money) ∧ (P3, interest)) (3.4)

Assuming independence of the events, the final probability of index node A being
relevant is as follows:

47

3 XML retrieval

P (e) = P ((P1, bank)) · P ((P1,money)) · P ((P3, interest)) +

P ((P1, bank)) · P ((P2,money)) · P ((P3, interest))−
P ((P1, bank)) · P ((P1,money)) · P ((P2,money)) · P ((P3, interest))

(3.5)

Now that the probability has been broken down to the probabilities of single-term
events, the probabilities (term weights) can be used to obtain the final score for the
section element.

In addition, XIRQL allows the searcher to specify weights (that is, probabilities)
for the query terms. To support this, further events for the query terms have to
be introduced: (q,money), (q,bank), (q, interest). Assuming that the events are
disjoint, that is, P ((q, x)) ∧ P ((q, y)) = 0 for all query terms x and y, one needs to
and the query event’s probability with the corresponding index node events.
Beyond the capabilities of NEXI, XIRQL supports vague predicates for certain

data types; for example, if the searcher specifies 2000 as the value of a year element,
values from 1995 to 2005 might all be acceptable results.

3.3.2 Language-modeling approaches
XML retrieval approaches based on language models extend the models to deal with
the tree structure.

The retrieval model of TopX (Theobald, 2006; Theobald et al., 2006) is based on
Okapi BM25 (Robertson and Walker, 1994), a probabilistic retrieval model derived
from the 2-Poisson probabilistic model. The score is not normalized, so TopX
performs an additional indexing-time normalization step (Theobald, 2006, pp. 77–
78).

TopX extends Okapi BM25 to content-oriented XML retrieval by using differ-
ent frequency values (Theobald et al., 2005): Term frequency on the document is
replaced by the term frequency for a single element, and document frequency is
replaced by element frequency. The element frequency efA(t) of term t in elements
with name A is the number of elements with name A that contain t. In principle,
this is equivalent to basic Okapi BM25 with each element of type A indexed as a
separate document.

This, given the query Q searching elements of name A for terms t1, . . . , tn –
//A[about(., t1, . . . tn]) in NEXI notation –, the element frequency efA(ti), the total
number of elements with name A, we get:

X
i

(k1 + 1) tf(e, ti)

K + tf(e, ti)
log

„
NA − efA(ti) + 0.5

efA(ti) + 0.5

«
(3.6)

K = k1

(1− b) + b

P
t∈content of e tf(e, t)

avgf
˘P

t tf(t, f)
¯ !

(3.7)

48

3.3 Probabilistic and language-modeling approaches

Like for Okapi BM25, k1 and b are constants; Theobald reports best results for
k1 = 10.5 (the Okapi default is 1.2) and b = 0.75 (this is the Okapi default). It is
also conceivable to use different constants for different target element types A, but
this has not yet been explored.
TopX is optimized for the efficient retrieval of the top k results.
Sigurbjörnsson and Kamps (2006) use a multinomial language model that com-

bines the language models for the element, for the corresponding document, and
for the whole collection to obtain the element’s language model:

P (w|e) = λePMLE(w, θe) + λdPMLE(w|θd) + (1− λe − λd)PMLE(w) (3.8)

The smoothing parameters λe and λd determine the influence of the different
language models. For INEX 2005, they experimented with various indexing units,
and the parameters differ dramatically. Furthermore, for some runs, a prior proba-
bility of an element proportional to its length is used, because element length affects
relevance dramatically (Kamps et al., 2005):

P (e) =
len(e)P
f len(f)

(3.9)

The final probability of element e for the query Q can then be calculated from
the prior probability of the element and the probabilities of relevance for the query
terms w:

P (e|Q) = P (e)
Y
w∈Q

P (w|θe) (3.10)

Ogilvie and Callan (2003, 2005) estimate the language models of leaf elements
based on their text and the language models of inner elements by taking the linear
interpolation of the language models of its children and the language models of
its remaining text (that is, the text that occurs outside of the child elements in
mixed content). They also estimate the prior probability that an element is relevant
given its properties like type and length, without regard to the query terms. This
information is obtained from old relevance assessments on the same collection, so
it may not be a realistic way of improving retrieval quality. This is incorporated in
the retrieval model by inverting the conditional probability and ranking based on
the probability of the document given the query.
The maximum-likelihood estimator for term w given the observed text T and the

language model θT is:

PMLE(w|θT) =
tf(w, T)

len(T)
(3.11)

Using only the maximum-likelihood estimator does not yield good results in all
cases, because the sample of text is often too small to obtain a good probability
distribution. Because of this, smoothing is performed by also considering external

49

3 XML retrieval

language models, for example from the complete document collection. Smoothing
can be done using linear interpolation:

P (w|θ) =
X

λiP (w|θi) (3.12)X
λi = 1, λi ≥ 0

Ogilvie and Callan (2005) take the tree structure of the XML document into
account when calculating the language models. Estimation of relevance for a given
query term w first goes bottom-up, then top-down in the following steps:

1. To obtain the model of an element e, the first step is to obtain a model
based on the text in the element, excluding text from sub-elements (that is,
only text children of the element are considered). Given <p>The weather is
<i>beautiful</i>, my friend.</p>, the language model for the p element is
based on the text fragments “The weather is” and “, my friend.”.

P (w|θe) = (1− λue)PMLE(w|θe) + λue P (w|θtype(e))| {z }
collection-level background model

(3.13)

2. In addition to the maximum likelihood estimate, a collection-level background
model is used. This background model can vary, depending on the type of
element it is applied to (type(e)).

Then the intermediate model θ′e is calculated bottom-up by using the chil-
dren’s models and the original model of e:

P (w|θ′e) = λc
′
e P (w|θe) +

X
f∈children(e)

λcfP (w|θ′f) (3.14)

The smoothing parameters λc are calculated based on the length of the cor-
responding elements. Given len(e) as the length of the text in element e, not
counting the text that occurs in child elements and desclength(e) as the sum
of the lengths of all descendants of e, we get:

λc
′
ei

=
len(ei)

len(ei) + desclength(ei)
(3.15)

λcej =
len(ej) + desclength(ej)

len(ei) + desclength(ei)
(3.16)

Ogilvie and Callan also hint at the possibility of setting the parameters de-
pending on the child element’s types, giving the example of increasing a title
element’s weight.

50

3.4 Vector-space-based approaches

3. In the last step, the parent element’s language model is incorporated in the
final probability estimate (this is called shrinkage):

P (w|θ′′ei) = (1− λp)P (w|θ′ei) + λpP (w|θ′′parent(ei)
) (3.17)

Based on the probability estimates for single terms w, a formula for a complete
query Q can be derived:

P (Q|θ′′ei) =
Y
w∈Q

P (w|θ′′ei)
tf(Q,w) (3.18)

For INEX 2004, Ogilvie and Callan also incorporated length-based prior proba-
bilities of relevance, where the probability of relevance is greater for longer elements
(either linear, square, or cubic).

3.4 Vector-space-based approaches

Section 2.2.1 has already described the vector-space model for traditional informa-
tion retrieval. Although it is more ad-hoc in nature than the probabilistic models,
it is simple to understand and implement and delivers good results, so it stands
to reason that it was adapted to XML retrieval. Several participants of the INEX
evaluation initiative (see section 3.2) use the vector-space model as the basis for
their retrieval engine; this section will focus on JuruXML and Gardens Point XML,
two retrieval systems that have consistently been among the best.

3.4.1 Extended vector-space model
The approach of Crouch et al. (2006) is based on Fox’ extended vector space model
(Fox, 1985), which allows the incorporation of metadata in the vector model. The
document collection is indexed at paragraph level, and the term vectors of the
ancestors are derived from the vectors of the paragraphs by adding up the term
weights.

3.4.2 JuruXML

Mass et al. (2002) presented their work on JuruXML at the first INEX workshop in
2002; this description is based on the version used for INEX 2004 and 2005 (Mass
and Mandelbrod, 2005, 2006). The core idea is to create separate indexes for hand-
selected core components; for INEX 2005, the core components were the structural
elements from articles down to paragraphs. The search process goes as follows:

1. The search engine separately searches each index using a slight variant of
standard tf-idf and the cosine similarity measure. The indexes are treated as
separate vector spaces, so that term and document frequency are calculated

51

3 XML retrieval

as usual for each index. The similarity in this step is calculated almost as in
equation 2.3:

sim1(q, d) =

P
ti∈q dtiqti idf(ti)

||q|| · ||d||
(3.19)

The norms ||q|| and ||d|| are the number of unique terms in the query respec-
tively in the document. The term weights defined as follows, where N is the
total number of components (analogously for the query term weight qt):3

dt =
log(1 + tf(d, t))

log(1 + avgti∈d{tf(d, ti)})
· log

„
N

df(t)

«
(3.20)

2. Next, the search engine applies automatic query refinement based on lexical
affinities (Carmel et al., 2002) to improve precision without hurting recall.
The elements retrieved in the first step are re-scored based on terms that
occur in the elements close to the query terms.

3. The scores from the different indexes are not directly comparable, because
they are based on separate vector spaces with different numbers of documents
and average document lengths. Thus, the scores are normalized by dividing
by the score of the query compared to itself (as a document): sim1(q, q).

4. Finally, each element’s score is then adjusted by using a document pivot; if se
is the element’s original score, sa is the score of the corresponding document,
and p is a document pivot value between zero and one, the new score is
calculated as follows:

s = p · sa + (1− p) · se (3.21)

The result of this retrieval process is the thorough result, which is then filtered
to obtain the focused, relevant in context, and best in context results.
For CAS results, the NEXI queries were automatically translated into queries

in the XML fragments query language (Carmel et al., 2003). Depending on the
sub-task – whether support and/or target elements should be treated as hints or
requirements –, the translation was slightly different.

3.4.3 GPX

At the same workshop, Geva (2002) presented Gardens Point XML (GPX). The core
idea is to only index nodes with text content (misleadingly called “leaf elements”,
although elements with mixed content are also meant) and derive the scores of
their ancestors from the retrieval scores of the “leaf elements”. Ancestors of the
3Note that the published version of this formula uses log(tf . . .) instead of log(1 + tf . . .),

which would mean that query terms that only occur once do not contribute to the similarity.
Private conversation with Yosi Mass confirmed that this is an error in the paper.

52

3.4 Vector-space-based approaches

leaf elements are not indexed, but may still be retrieved. A manually assembled
list of element types that are considered too small to be presented to the user
are omitted from the index (in particular, inline markup like <i> for italics). For
the new document collection used for INEX 2006, GPX was updated slightly to
accommodate mixed-content elements (Geva, 2007). Retrieval is executed in the
following steps:

• Standard retrieval on the indexed elements is performed. The score of the
leaf elements is calculated using a variant of tf-idf that drastically boosts the
score if several query terms occur in the same element:

L0(e) = Kcoord(q,e)−1
X
t∈q

tf(e, t)

cf(t)
(3.22)

n is the number of query terms that are matched in this element, and K is
the boosting constant that, according to Geva (2006), can be anywhere from
5 upwards without much effect on retrieval quality. cf(t) is the collection
frequency of term t, that is, the number of times it occurs in the document
collection – note that this is not identical to document frequency, which counts
multiple occurrences of a term in a document as one. For example, if a
term occurs twice in document d1 and once in document d2, the document
frequency is 2, but the collection frequency is 3.

• The score of the leaf elements is propagated up in the result tree to obtain
scores for the elements that are not indexed, but can be returned. If a parent
element has several relevant children, it is assumed to be more exhaustive,
so its score is calculated by adding the scores of its children, multiplied by a
decay function D(n):

L(e) = L0(e) +D(n)
X

c∈children(e)

L(c) (3.23)

L0(e) is the original score of element e, L(c) is the score of child c with a non-
zero score (which has been calculated before), and D(n) is a decay factor that
depends on the number of children with matches. Geva (2006) gives values
from 0.49 for a single relevant child) to 0.99 (for more than one relevant child)
for this function, but the runs actually submitted to INEX use different values,
for example, D(n) = 0.1 for all values of n. This indicates that this parameter
is very important for fine-tuning retrieval quality. The role of the dampening
function is to prevent over-scoring elements higher up in the tree – simple
summation without dampening would lead to a parent’s score always being
at least as high as the children’s scores.

• Finally, the root element’s score is added to all its descendants’ scores to
reward elements from highly relevant documents. This is comparable to
JuruXML’s document pivot with p = 0.5.

53

3 XML retrieval

Retrieval system Model Indexes Overlapping

XIRQL BM25 1 no
TopX BM25 n yes

GPX Vector-space 1 yes
JuruXML Vector-space n yes

Table 3.1: Overview of XML retrieval systems. “Overlapping” indicates whether
the same term in a nested element can be counted for several index elements.

L = Lorig + Lroot (3.24)

For CAS queries, GPX adds the scores of support elements to the scores of the
corresponding target elements. In order to fulfill strict requirements on the target
elements, GPX performs filtering, that is, it discards all elements from the results
that do not match the given target element path.
Both JuruXML and GPX ignore the small inline elements on the basis that they

are not useful retrieval results. While this is undoubtedly true, they can still provide
valuable hints about their ancestors, as the following chapter will show.

3.4.4 Document frequency
The vector-space retrieval systems make use of some form of document frequency of
the terms. In traditional information retrieval, document frequency is defined as the
number of documents a given term occurs in. In the case of XML documents, this
simple definition may not be ideal, because the documents are no longer atomic;
elements are indexed and retrieved as if they were documents. Due to element
nesting, the same string in the XML document may be indexed under several ele-
ments – for example, given <sec>a <p>b</p></sec>, the term b occurs both in
element /sec and in element /sec/p. Mass and Mandelbrod (2003) discuss that, if
these elements are stored in the same index, this leads to a document frequency of
2 for term b, which is illogical, because the term only occurs once in the complete
document. Counting the frequency at the XML document level may not lead to
satisfactory results, either: In <sec><p>a</p> <p>a</p> <p>b</p></sec>,
terms a and b have a term frequency of 1 for their respective sections, and they have
a document frequency of 1. JuruXML addresses this by having different indexes and
counting document frequency separately for each index. GPX has only one index,
but since it does not place higher-level elements in the index, document frequency
is not based on either complete documents or all elements.

3.5 Summary

This chapter provided an overview of the core ideas of XML retrieval and how it
differs from traditional information retrieval. A selection of existing state-of-the-art

54

3.5 Summary

retrieval methods was described; the field is still young, so there are many different
methods without any one being superior to the others.
The following chapters will cover my contributions to XML retrieval, mostly fo-

cusing on content-only retrieval, but also briefly touching content-and-structure
retrieval.

55

3 XML retrieval

56

4 Base retrieval engine

“In that case we should have to commence
our investigation from a fresh basis
altogether.”

(The Adventure of the Cardboard Box)

Currently, there is no accepted baseline for XML retrieval; entirely different ap-
proaches yield results of comparable quality, there is no approach that is clearly
better than the others. The existing retrieval engines of the INEX participants are
generally too complex to be reimplemented in a reasonable time frame without mis-
takes (and in many cases, the published descriptions are clearly incomplete or even
wrong). Furthermore, they typically incorporate various orthogonal techniques to
improve retrieval quality, from phrase matching to the exploitation of structure.
Although the INEX results show that these search engines can provide good results,
the exact reason is hard to isolate.
For this reason, I created a search engine based on well-established information

retrieval methods, with minor changes to apply them to XML element retrieval. At
first sight, this might seem like a questionable decision, but as the evaluation in
chapter 7 will show, this search engine is comparable or even superior to the search
engines of the INEX participants, provided the parameters are chosen well.

First, section 4.1 discusses the design goals and assumptions about the documents
and users of the retrieval system. Next, sections 4.2 and 4.3 describe the retrieval
engine that will be the base for the extensions discussed in chapter 6 and the baseline
to compare against.

4.1 Assumptions and design goals

4.1.1 Assumptions
Although I strive to minimize assumptions about the documents, it is impossible
to completely avoid them. The following assumptions are the same assumptions
that are implicitly made for almost all research on content-oriented XML element
retrieval, in particular, for the INEX workshops:

Collection is document-centric: I assume that the documents in the collection
are mostly document-centric; they may have small parts that are data-centric
(typically metadata about the publisher and related information), but the
main contents is contained in free-text sections.

57

4 Base retrieval engine

XML structure reflects logical structure: I assume that the structure of the
XML document, as represented in the DOM tree, reflects the structure that
the document author intended for the text. For example, if a text is modeled
as book—chapter—section, there should be section elements inside chapter
elements inside a book element. This is the case for DocBook, the IEEE
collection, and the Wikipedia collection, for example, but XHTML does not
abide by this.

Fragments of documents are useful retrieval units: This is the central as-
sumption behind element retrieval in general; if parts of the documents do
not stand on their own, it makes little sense to present them to the user.
This assumption is somewhat weakened for the “in context” tasks, where the
fragments are displayed in the context of a document, but even in this case,
it is highly desirable for the user to pick and choose the relevant parts of the
document.

Only the text content is relevant for retrieval: The search engine ignores all
attributes and their values, because the text they contain is typically not
presented to the user when the document is rendered (this is the case for
both the IEEE and the Wikipedia document collection used at INEX). If
the search engine retrieved a result where the query terms only occur in an
attribute value, and thus in text that is not displayed, the user would certainly
be confused.

Spamming is not an issue: In uncontrolled environments like the World Wide
Web, malicious document authors may tune their documents so that they get
ranked higher, even if they are not as relevant (Schwartz, 1998). I assume
that this is not the case, that is, that the authors strive to inform the readers,
not to game search engines. In a collection of published books, this is assured
by the editorial process.

A basic assumption about the user of an XML element retrieval engine is that he
is a specialist in the subject area of his query, at least to the degree that he can
understand an isolated part of a document.

Although there are many possible retrieval tasks, this thesis will only address the
ad-hoc thorough retrieval task in order to keep the scope manageable. The result
for the other tracks and tasks, like focused and in context are typically derived
from the thorough results, so any improvement of the thorough results is likely to
also benefit the other tasks. Preliminary work (Dopichaj, 2006b) has shown that a
straightforward implementation of focused retrieval can lead to good results.

These points are assumed for all parts of the thesis. If further assumptions are
made for specific parts of the research, I will mention them where they are needed.
Note that the list of assumptions does not include a detailed knowledge of the
document schema.

58

4.2 Interpreting XML

4.1.2 Design goals
For the search engine developed for this thesis, the following design goals were given:

• All elements should be indexed, in order to be able to exploit these elements
to improve retrieval quality as well as being able to answer all types of content-
and-structure queries.

• Nevertheless, the index size should be reasonable – it can be expected to be
significantly larger than for document-based retrieval, but a naïve approach
would yield too big an index.

• The index structures should (mostly) be disk-based, in order to enable index-
ing and searching large collections.

• The search engine shall retrieve the smallest elements that still satisfy the
user’s information need (the FERMI principle; Chiaramella et al. (1996)).

The first goal in particular needs some rectification: As seen in the previous
chapter, most existing XML search engines do not index extremely small elements,
like italicized phrases. This has the advantage of taking less space for the index
and (as a consequence) less time for retrieval processing, but there is a significant
drawback. If the small elements are not indexed, they are not available for query
processing, so not all queries can be answered; for example, a content-and-structure
query might ask for all sections with “information retrieval” in their title. If this
information is not stored in the index, it becomes completely infeasible to process
this query.
Even for content-only queries, it may be useful to index small elements: They

can provide important information about their ancestor elements, as the following
section will show.

4.2 Interpreting XML

In traditional information retrieval, documents are flat, so they can be seen as a
sequence of words. In XML retrieval, matters are not that clear anymore: The
markup helps to structure the document, but it may also provide challenges for
tokenizing; furthermore, some parts of the documents are not useful for retrieval,
so they should not be included in the index.

4.2.1 Tokenization
One important question is how to determine token boundaries. The pattern-based
tokenizers for flat text can be reused in this context, but the introduction of ele-
ments complicates matters: In many cases, whitespace between elements may only
be used for formatting the input document and has no further significance. In
other cases, however, it may be significant, for example in ASCII art or poems.
In general, this cannot be deduced from the document alone, although its schema

59

4 Base retrieval engine

may provide this information (but it need not do this, so that all processors of
the document must handle this themselves). Should the tokenizer consider all tags
token boundaries? Neither “yes” nor “no” is an answer that is applicable in all
cases. On the one hand, data-centric parts of XML documents can omit whitespace
between the fields represented by the elements because it has no semantic signif-
icance. <first-name>Ricardo</first-name><last-name>Baeza-Yates</last-name>,
for example, should be parsed as two tokens, Ricardo and Baeza-Yates, and not
as one, RicardoBaeza-Yates, although that would be the logical text content of the
enclosing element according to the XML standards. On the other hand, sometimes
it may be useful to use markup within words, which of course should be regarded
as a single token in this case. If the tokenizer does this, however, it violates the
assumption that the index terms of an element should also contain all index terms
from the sub-elements. Due to the inherent problems with the second approach and
the rare occurrence of intentional in-word markup, it may be preferable to always
consider tags as token boundaries.

4.2.2 What to index
Not every part of an XML document is worth indexing; comments are not visible
when the document is displayed and should not contain any information, so they
should be omitted from the index. Likewise, processing instructions are only present
for technical reasons, to give hints for specific processors of the document, so they
too should not be indexed. Entities like ©right; should be indexed as their
replacement text, because they are merely a form of macro substitution; in the
rendered form, they are not visible anymore.

It is more debatable whether element and attribute names should be represented
in the index; on the one hand, they are not part of the data, but on the other hand,
they may well be represented in the rendered output of the document in some way.
For example, the author element might be prepended by the string “Author:” in
the rendered document. If this term does not occur in the index, searchers may
well be surprised that some strings cannot be found although they are displayed
– and elements that match the query terms may be displayed with the matching
parts omitted. Unfortunately, what exactly is displayed depends not only on the
XML document, but also on the stylesheet, and different stylesheets might display
slightly different data; at best, one could index the XML documents with regard to
a certain stylesheet. In practice, however, this is not likely to cause major problems,
because most of the relevant data is contained in text nodes, so the mismatch is
small.

Another problem is the handling of attribute values: Should they be indexed like
the regular text of the element, separately, or not at all? As seen before, XQuery
Full-Text specifies that attributes are not indexed at all, but that may not be the
best approach in all circumstances. Under the assumption that attributes contain
metadata, it seems reasonable to index them in such a way that the corresponding
element is not found if the query terms occur only in its attribute values, but only
if the attribute is directly addressed in the query.

The text nodes contain the main content of XML documents, so they should

60

4.3 Retrieval model

definitely be indexed. Since the basic unit of retrieval is the element, the elements
must be represented in the index. On the other hand, not every element is a
useful retrieval result, for few searchers would be content with a list of two-word
inline elements that exactly match their query. Thus, the search engine must filter
out unsuitable elements, either at indexing time or when the retrieval results are
prepared for presentation. The choice of which elements are possible results is
crucial to good retrieval quality.

4.3 Retrieval model

This section will discuss the design decisions for my search engine based on the
material presented in the preceding chapter. For this thesis, I will use the vector-
space model and the closely related BM25 model. INEX results have shown that
vector-space search engines are among the top-performing search engines, so I can
assume that this choice is reasonable. The search engine described in this thesis is a
minor adaptation of the standard information retrieval techniques to XML retrieval
– as the evaluations in the next chapter show, the results are competitive.
In any case, in the context of document-based information retrieval, Zobel and

Moffat (1998) have executed experiments that indicate that there is no single best
method for retrieval: They compared 720 variations of similarity measures, in-
cluding BM25, the cosine similarity measure, and many unnamed variants. For
evaluation of retrieval quality, they used several TREC test collections. They come
to the following conclusions:

• There is no single best method that works in all scenarios.

• It is not even possible to identify parameters of the application scenario in
which a given measure works well.

• The results using different evaluation measures are not consistent – a similar-
ity measure that works well up to rank 20 may have a bad top-rank perfor-
mance.

• The results are sensitive to minor changes in the formulas, such as which
logarithm base is used.

This implies that I have to make a somewhat arbitrary decision about which
similarity measure to use for my search engine (the resources that are necessary
to perform a similar large-scale experiment are too great). I chose to examine the
BM25 measure, which is a benchmark for document-based information retrieval, and
the Lucene measure, which proved to be successful for my INEX 2005 submissions
(Dopichaj, 2006b).
Thus, the index provides a mapping from each term to the elements that con-

tain this term. Furthermore, it contains metadata about the document’s original
structure so that it is possible to give the exact position of the results in the form
of (simplified) XPath, like /book[1]/chapter[2]. (This path is needed for the INEX

61

4 Base retrieval engine

evaluations; in realistic scenarios, the search engine will use a numeric identifier to
directly retrieve the corresponding XML fragment from an XML database.)

Much research has been invested in standard document-based information re-
trieval, so I – like many other search engine authors – will reuse standard informa-
tion retrieval models and index structures with adaptations to provide XML-specific
enhancements.

As a baseline to compare my results with, I use a standard information retrieval
method. The recursive content of every element in the collection, from a complete
book to a single highlighted word, is indexed as a pseudo-document. This index
is then searched using a standard similarity measure such as BM25; the result is a
ranked list of elements.

This baseline makes no use of the tree structure of the XML documents, so one
should hope that improvements of the results are possible. To use the structure, the
search engine must perform a few additional steps. During index construction, the
structure of the documents is stored in the metadata index. Before the similarity
measure is applied, the tree structure of the original documents is reconstructed
from the results and the metadata index; thus, the similarity measure can now not
only work on a single element, but also on other elements that are related to the
element. After the similarities have been calculated, the document trees are again
broken apart and the elements are ranked according to their individual similarities.
See figure 4.1 for the complete retrieval process.

The search engine is currently a content-only system, so it ignores the content-
and-structure parts of NEXI. Furthermore, each query is treated as a set of words;
phrases and should-have terms are treated just like all other terms, and terms that
should not occur are simply ignored (that is, results containing these terms are not
removed from the query).
Thus, the query (from topic 355)

+"Best Actress" +"Academy Award" -Supporting -nominated winner film

is interpreted as

Best Actress Academy Award winner film.

Naturally, the query terms are subject to the same stop words and tokenization
as the indexed documents.

4.3.1 Base similarity function
As a baseline, I will use a search engine that indexes all elements as if they were
documents and then uses a similarity function from flat information retrieval with
as few adaptations as possible. Chapter 7 will show that this simple approach
can yield surprisingly good results, provided the length normalization function is
adapted to be more suitable for XML retrieval.

In document-based information retrieval, length normalization already plays an
important role and many different variants have been developed (Lee et al., 1997).
For element retrieval, this normalization becomes even more important: With ele-
ments as the retrieval units, the range of typical result content lengths is much wider

62

4.3 Retrieval model

element
index

element list + TFs

reconstruct
trees

metadata
index document trees

+ term frequencies

calculate
similarity

document trees
+ similarities

global
statistics

flatten
and rank

results

element list + TFs

calculate
similarity

results

Figure 4.1: Retrieval process. On the left, the base retrieval process is shown,
on the right, the conceptional retrieval process with structure-based similarity is
shown. The shading of the nodes reflects the similarity value.

63

4 Base retrieval engine

than for document-based retrieval – an element can contain little text, for example,
an italicized phrase, or it can be a complete article. Thus, the length normalization
functions typically used in document retrieval should not be used without change
for element retrieval. Kamps et al. (2005) show that it is not sufficient to simply
omit elements shorter than a given threshold from the index; instead, the search
engine should use an extreme length prior. On the other hand, GPX shows that
a search engine can yield good results only using a cutoff and no explicit length
normalization, so it is unclear whether the findings can be generalized from the
language-modeling approach they use to other methods.

Using a cutoff at indexing time – that is, omitting elements shorter than the
cutoff – is not possible if extremely short elements are needed for improving re-
trieval quality, like the enhancements described later in this chapter. Thus, I will
focus on the length normalization functions. Lucene’s length normalization func-
tion, 1/

p
len(d) favors very short documents extremely; this is not a problem for

document retrieval, where such short documents simply do not exist. In element
retrieval, however, the elements can be only a few words long, but these elements
are not useful retrieval results. To avoid this, I will modify the length normalization
function as follows, where k is a parameter that determines where the switchover
from constant to decreasing occurs:

lnorm(e) =

(1√
k

if len(e) ≤ k
1√

len(e)
otherwise (4.1)

Okapi BM25 has two parameters k1 and b that affect the influence of the length
normalization. With these parameters, it is possible to tune the length normaliza-
tion; the default parameters were determined on TREC data, which has different
characteristics than XML documents, so different combinations are probably needed.

4.3.2 Term weighting
The issue of global term weights in XML retrieval is still largely unsolved. In
flat information retrieval, the term weights are typically determined based on the
document frequency of the terms on the grounds that this value is correlated with
the discriminatory power of a term (a term that occurs in almost all documents
does not help to retrieve relevant documents).

It is difficult, however, to adapt this to element retrieval, as Mass and Mandel-
brod (2003) discuss: They argue that instead of document frequency, a component
frequency should be used, that is, the number of elements that contain a given term.
Due to the nesting of elements, this can lead to surprising anomalies. A term that
occurs at a deeper level in a document will get a higher component frequency than a
term that occurs only at a higher level. This in turn implies that the “deeper” term
gets a lower weight, which is far from intuitive. Mass and Mandelbrod argue that
document frequency does not have straightforward characteristics, either, because
it ignores that elements (and not documents) are the unit of retrieval. They go on
to propose the use of element-name-specific counting; they partition the index by
element type and determine the component frequency per sub-index – for example,

64

4.3 Retrieval model

the index structures record that the term dog occurs 19,451 times in elements of
type sec and 87,978 times in elements of type paragraph. This approach leads to
more bookkeeping effort for the search engine, but it is doubtful whether this leads
to improved retrieval quality.
Instead, I will contrast document frequency with element frequency, that is, the

number of elements that contain a given term in their recursive text content. Com-
paring element frequencies with document frequencies, I can see that the relation-
ship is roughly linear for the lower-frequency terms (up to a document frequency of
about 7,000). In this range, the element frequency is about ten times the document
frequency, except for a few outliers. Above this limit, the relationship appears to be
exponential, but there are too few data points to confirm or reject this for sure. In
any event, considering that there are about 17,000 documents, the terms for which
the relationship is not linear are unlikely to be useful for retrieval because of their
low discriminatory power (they occur in more than 40 percent of the documents).
The outliers in the lower range are special-purpose terms like “fig” (for references
to figures) and numbers; these, too, are unlikely to be useful query terms.
It might be, however, that although these terms are useless at the document level,

they are useful at the element level; this will be investigated in chapter 7. In any
event, one advantage of element frequency over document frequency is that element
frequency works even if there is no one-to-one correspondence of XML documents
to logical documents. For example, the distributed version of the IEEE collection
contains all articles from one volume of a journal in a single XML document –
document frequencies will clearly be misleading in this case, because the logical
documents in this case are the articles. (For INEX, each article is assumed to be in
a single document, so this does not play a role.)

4.3.3 Full similarity calculation versus reconstruction
My baseline does not make use of the structure of the XML documents, so more
advanced methods are needed. For vector-space or BM25 retrieval, two approaches
have proved to be successful at INEX: JuruXML creates separate indexes for dif-
ferent types of elements; this is only feasible if there are few element types in the
collection, and even then only the upper levels (for example, article—section—
subsection) are typically included because of the overhead this implies. GPX has a
similar shortcoming: it indexes only the elements at or below a certain level that
partitions the document. For example, one might choose to only index sections, be-
cause all body text is contained in the sections (there is no text between sections);
the missing upper levels of the documents can be reconstructed at retrieval time by
combining the retrieval status values (RSVs) of the missing elements.

Since the aim is to be able to retrieve all elements, even from the lowest levels
(see figure 4.2), neither of these approaches can be used without modification.
Adapting the JuruXML approach to create separate indexes for all element types
is completely infeasible. In principle, the GPX approach can be extended to index
all elements; indeed, with the modifications introduced in Geva (2007), this would
be straightforward.
A disadvantage of GPX’s approach, however, is that the full term frequency

65

4 Base retrieval engine

article

section section

subsec

par par par

it itit

GPXJuruXML Labrador

re
tr
ie
ve
d
th
ro
ug

h
sc
or
e
pr
op

ag
at
io
n

never retrieved

Figure 4.2: Indexing strategies for XML retrieval based on the vector-space model.
Only the par and it nodes in the XML tree have text children; the it inline markup
elements are not indexed and can never be retrieved. JuruXML has an index for
each level and combined the results, whereas GPX only indexes nodes with text
children and propagates the scores upwards. Labrador, the system described in
this thesis, indexes all elements, but it does not retrieve the it elements – it only
uses them to adjust the scores of ancestors.

66

4.4 Summary

information is not available for the inner nodes – in particular, the number of co-
occurring terms, which leads to a high boost, is lost, which can lead to significant
differences because the leaf-level similarity function rewards co-occurring terms dra-
matically. For example, searching for a and b in the document <x>a b</x> will
lead to the following score for element /x:

K1

„
tf(d, a)

cf(a)
+

tf(d, b)

cf(b)

«
If the structure is <x><y>a</y> <y>b</y></x> the score is lower although the
effective contents is the same:

D(2)

„
tf(d, a)

cf(a)
+

tf(d, b)

cf(b)

«
(K ≥ 5, D(2) < 1)
This problem would be even more pronounced if even small elements were in-

dexed; due to fragmentation, the boosting of co-occurring terms would hardly ever
be applied.
It is possible, however, to achieve a comparable index size reduction if a difference-

based indexing approach as presented in chapter 5 is used and the term frequencies
are reconstructed before the similarity function is applied. This might be a bit more
expensive at runtime – after all, now the term frequencies have to be stored in main
memory even for the top-level nodes –, but the ability to retrieve all elements is
worth this minor cost. Thus, my search engine is based on the availability of full
term frequency information for all elements; it is the same as the baseline search
engine with additional modifications to exploit the structure of the XML documents.

4.4 Summary

This chapter has described the design goals that form the basis for the further re-
search that will be presented later in this thesis. To better isolate the influence the
effects of the retrieval enhancements that will be described later, a simple adap-
tation of BM25 to XML retrieval was introduced to provide a base retrieval result.
This base search engine will also deliver the baseline to compare the enhancements
against – as the evaluation in chapter 7 will show, this is a reasonable choice.

67

4 Base retrieval engine

68

5 Implementation of the
base retrieval engine

Sherlock Holmes sat moodily at one side
of the fireplace cross-indexing his records
of crime.

(The Five Orange Pips)

For obvious reasons, it is infeasible to do a full-text scan of all documents whenever
a query is posed to the retrieval system; to get acceptable performance, the search
engine needs index structures that facilitate quick access to all relevant documents.
This chapter describes and analyzes various optimizations of XML full-text in-

dexes based on previous work. In particular, it will describe difference-based storage
of inverted lists for the XML documents and suitable storage of metadata about the
elements; the main idea is to omit data that can easily be derived from other data
that is stored in the index (Dopichaj, 2007c).

• The search engine supports retrieval of all elements in the collection, even very
short ones that are frequently omitted from indexes. The aim is to reduce
the size of the index significantly without negatively affecting retrieval time
or retrieval quality.

• The focus of this chapter is not retrieval quality (this will be addressed in a
later chapter), but index size and retrieval speed, so the evaluation is strongly
biased towards the latter two. The index structures are flexible enough to
support a variety of retrieval models and similarity measures; the current
implementation supports BM25 and Lucene similarity measures as described
in the preceding chapter, but it could be adapted to other approaches like
language modeling easily.

• The chapter provides a detailed analysis of the implications of the space-saving
index structures and the various trade-offs between space and time.

Although it is an interesting problem in its own right, this chapter does not
address the combination of full-text with structural retrieval (so-called content-
and-structure retrieval). In this form of retrieval, the user also specifies structural
constraints like “the following keywords should appear in the bibliography”. The
indexes hold all information that is needed to evaluate such queries, but direct access
to elements with specific structural properties is not possible, so a straightforward
extension would probably lead to bad performance.

69

5 Implementation of the base retrieval engine

5.1 Existing XML index structures

Many of the optimizations that were proposed for atomic-document retrieval are
not applicable for element retrieval without modification, because they assume that
each document is independent of each other document.

Luk et al. (2002) classify and give an overview of many different indexing options
for XML as of 2002; most of these are not applicable to XML element retrieval be-
cause they imply a data-centric view. Segment-based indexing divides the document
into segments that typically do not overlap; extensions support nested document
parts (as used in XML documents), but these extensions only support retrieval of
the root element. For tree-based indexing methods, the index structures reflect the
tree structure of the original XML documents.

Most of the researchers working on XML retrieval pay little attention to space or
time savings; a commonly used approach is to store the indexes in an SQL database
(Geva, 2006; Theobald, 2006).

The GPX retrieval engine (Geva, 2006) only stores nodes with text children in
the index, but does not attempt to obtain the correct term frequencies for their
ancestors. Instead, it calculates their retrieval score based on a completely different
formula than that for the leaves, by simply summing the children’s scores and
applying a dampening factor. Although evaluation results indicate that this model
works well in the tested scenarios, it does not support the retrieval of small elements
at all – they are simply not indexed on the grounds that they are no useful retrieval
results –, so if a query demands that some text occurs in a title element, GPX’s
index structures cannot answer this query. The core idea is close to segment-
based indexing, but through the use of score propagation to reconstruct higher-level
elements, GPX can return elements of various granularities.

Most of the research on index structures optimized for semistructured data goes
back to the early days of XML or even SGML. The idea of calculating the term
frequency values of inner nodes from the term frequency values of their children
is not new. Shin et al. (1998) use this approach (but they do not discuss mixed-
content elements). Their storage structure for the inverted lists is not particularly
space-efficient: For each entry in the inverted list, they store the document ID, a
unique element ID that also encodes the position in the document, the element’s
level in the document’s DOM tree, and an ID of the element type. This storage
format leads to a lot of redundancy, as it is repeated for each term in a given
element.

Furthermore, although the idea of a simple element ID that can be used to calcu-
late the parent’s ID using a simple formula is nice, their implementation is simply
not practical for arbitrary document collections. They assume a k-ary tree struc-
ture – that is, each element can have only up to k children. A fixed limit for the
number of children is problematic, because it has to be rather large in order to ac-
commodate all conceivable documents. If a single value is used for all documents, it
would have to be large: For the INEX test collections used for evaluation, k would
have to be 1023 (IEEE collection) respectively 8503 (Wikipedia collection). Even if
k is determined separately for each document, new problems arise: Because k has
to be known to determine the parent’s ID, it has to be stored somewhere for each

70

5.2 Index structures

document, either redundantly in the inverted list or in a separate index structure.
This implies that the element IDs get large, and they do not lend themselves

to delta encoding, so they take up much space in the index. The element type
is obviously redundant, and, although the authors state that they use a favor a
length-based normalization for scores, they do not mention where this is stored;
either it too is part of the index, in which case it is another redundant number in
the index, or it is stored separately in an unspecified place.
Lee et al. (1996) present a space-saving full-text index structure for structured

documents. The basic idea is to reduce storage requirements by not storing term
occurrences that can be derived from other index nodes. Unfortunately, their index
structures only support boolean queries, so they do not provide for term frequen-
cies. Furthermore, they do not take into account that non-leaf nodes may also
contain text in mixed content, so their index structures are not applicable in all
circumstances.
Myaeng et al. (1998), too, ignore mixed-content elements for their index struc-

tures. Furthermore, they store the complete element type information for each
term occurrence; this is a significant waste of space. Jang et al. (1999) and Shin
et al. (1998) also describe difference-based indexing, but they store element-level
metadata redundantly in the inverted list.

5.2 Index structures

The index structures shall support simple keyword queries, that is, queries that
comprise a set of words. The aim of the retrieval engine is to retrieve all elements
in the collection that contain at least one of the query words and then rank the
elements based on a similarity function.
For determining the candidate elements and determining the similarity to the

query, the following information is needed for effective and efficient retrieval (this
is mostly based on standard work in information retrieval (Witten et al., 1999)):

• Inverted lists, containing references to the elements along with the correspond-
ing term frequencies.

• Metadata, for example information about the positions of the elements in
their documents, typically represented by XPaths.

• The lexicon, containing information about the terms, including document
frequencies and the pointers to the inverted list.

Furthermore, the similarity function may need additional information; the BM25
function also needs the length of an element to calculate its RSV; this, too, will
have to be stored in the metadata.
Using these index structures, the search engine can efficiently answer a query.

The query q is composed of a set of query terms t1, . . . , tn. For each query term ti,
the search engine must perform the following steps:

71

5 Implementation of the base retrieval engine

xml 12345

Lexicon Inverted list

4 317

tf ID

1 318
2 340

Metadata

ID length el. ID parent

doc1.xml317 7 1 -
318 4 55 317
.
340 800 5 - doc2.xml

Figure 5.1: Index structures. For each query term, the lexicon is consulted to
find the corresponding entries in the inverted list file, which is then read to deter-
mine the candidate elements and their term frequencies. Using the metadata, the
elements are grouped by document, and the final similarities are calculated.

1. Retrieve the lexicon entry for ti. This provides us with the term’s weight and
the entry point in the inverted list file.

2. Retrieve the inverted list, starting at the entry point from the lexicon.

3. Determine the tree structure of the document from the inverted list entries
and the metadata.

4. Update the term frequencies based on the tree structure.

After this, the standard process for calculating the similarity of each element can
be used, and XML-specific postprocessing operations can be applied to improve the
ranking (see the next chapter). Figure 5.1 illustrates the index structures that are
needed to support the retrieval process.
The remainder of this section will describe these aspects of XML indexing.

5.2.1 Tokenization
Before looking at the index structures themselves, I will discuss tokenization, be-
cause it has important implications for the index structures. In order to index a
text, the indexer must first break it into tokens, typically based on words. These
words are the entry points to the inverted lists.

For tokenization, the parser considers every sequence of Unicode letters and digits
as a term. Additionally, all tags in the input are considered token boundaries; for
example, the XML fragment <fn>John</fn><ln>Doe</ln> is parsed as the two
tokens John and Doe, not as the single token JohnDoe.

As later sections will show, this is important for difference-based storage, because
it ensures that all ancestors of an element e include at least as many instances of
the terms contained in e as e itself. Formally, for all elements e with the respective
parent parent(e) and all terms t, with tf(e, t) the number of occurrences of t in e,
the following equation holds:

tf(parent(e), t) ≥ tf(e, t) (5.1)

72

5.2 Index structures

<au><fnm>Gary</fnm><snm><ref>Yngve</ref></snm></au>
(a) From the document’s metadata (attributes omitted for clarity).
This should be parsed as Gary Yngve (not GaryYngve).

<!ELEMENT au (cny|cty|ead|pc|san|sbd|str|url|aff|appel|deg|fn|fnm|ref|role|snm)*>
(b) Corresponding DTD entry, with references expanded. No #PCDATA occurs,
so this is element content.

<au>
<fnm>Gary</fnm>
<snm><ref>Yngve</ref></snm>

</au>
(c) The element from 5.2a, reformatted to be more human-readable. This should
be parsed in the same way.

<sec><st>P<scp>revious</scp> W<scp>ork</scp></st>
(d) From the body. This should be parsed as Previous Work
(not P revious W ork).

<!ELEMENT st (#PCDATA|tmath|. . . |fig)*>
(e) Corresponding DTD entry, with references expanded, abridged. Character
data is allowed inside this element, so this is mixed content.

Figure 5.2: Two fragments from tg/2002/v0346.xml. Tags should be seen as token
boundaries in the first case, but not in the second case.

Because of mixed content (that is, sub-elements embedded within text), the term
frequencies of the parent may be greater than the sum of the term frequencies of
all its children:

tf(e, t) ≥
X

f∈children(e)

tf(f, t) (5.2)

Although this assumption does not always model the intention of the docu-
ment author – for example, it fails if inline markup is used inside a word, like
<i>high</i>light –, it works in the majority of cases and is frequently made in
XML retrieval research. Usually, tags as token boundaries work well for data-
centric parts of documents, for example, document metadata; see figure 5.2a for an
example. Data-centric segments are characterized by the absence of mixed content;
the data is split into fields, and the fields are (at most) separated by whitespace.
It turns out, however, that always using tags as token boundaries does not work

well for the IEEE collection; in particular, titles often use small capitals (scp ele-
ments) in the middle of words, see figure 5.2. This is particularly problematic for
the enhancements described in the following chapter, because they assume that the
words in titles are particularly relevant.
A straightforward approach would be to create a list of element names that

should not be seen as token boundaries; this has the disadvantage that it is schema-
dependent and that the same element name may be a token boundary in some cases,
but not in others. In the presence of a DTD, validating XML parsers must inform

73

5 Implementation of the base retrieval engine

the application about which white space occurs in element content, that is, elements
that can only have element children (Bray et al., 2006b, section 2.10); this white
space is assumed to be only for making the XML source code more readable, see
figure 5.2c for an example. If a DTD is available, this information could be used,
but it is troublesome to parse a DTD, and if no DTD is available, this cannot work.

Instead, the same idea can be applied to the document: If an element has element
content (or just white space between its child elements), its child elements are
considered token boundaries, otherwise they are not. This alone would violate
the containment assumption, because the children may contain text that is not
contained in the parent; in figure 5.2d, the scp children contain the tokens revious
and ork, whereas the parent only contains Previous and Work. To avoid this, the
search engine do not index the child elements (and their descendants) whose tags
are not token boundaries. This has the drawback that these elements cannot be
retrieved, but, under the assumption that the markup occurs in the middle of words,
they are not suitable retrieval units anyway. If the schema and document authors
follow conventions, this heuristic will correctly detect all element content, but it
might in unlikely situations detect some content that should really be mixed content
as element content; this will rarely occur in practice and can thus be neglected
without ill effects.

The heuristic works well for the IEEE collection, DocBook documents, and other
documents in schemas that follow widely adopted practices (that is, rendering el-
ements does not introduce extra white space in mixed content). INEX 2006 and
2007 used a new document collection that was artificially converted from the original
markup, the Wikipedia collection (Denoyer and Gallinari, 2006). The conversion
suffers from several technical problems, among them the arbitrary insertion and
removal of white space, which makes it impossible to make the right choice about
using tags as token boundaries (Beigbeder, 2007). For this reason, tags are always
considered as token boundaries for this collection.

After the text has been separated into tokens, I remove stop words and apply
the Porter stemming algorithm (Porter, 1980) as implemented by the Snowball
project1.

5.2.2 Lexicon
The lexicon provides the entry point from the query terms to the inverted list. For
each term that occurs in the document collection, it stores the document frequency
of this term and a pointer to the position in the inverted list file where this term’s
inverted list starts.

While indexing, there is little choice but to store the lexicon in main memory:
Documents typically contain thousands of words, and for each term, the indexer
must determine whether the term is already in the lexicon (in this case, it uses the
old ID for the inverted list). Otherwise, it assigns the next ID to the term and add
it to the lexicon. Even with an efficient index structure such as a B-tree, this will
require two to three seeks, which would increase indexing time.

1see http://snowball.tartarus.org/

74

http://snowball.tartarus.org/

5.2 Index structures

While searching, the time to access the lexicon is not critical, because most
queries only refer to less than ten words. Thus, it is possible to perform the search
on a machine with less main memory than the machine used for indexing.

5.2.3 Inverted lists
A large part of the index is stored in the inverted lists; compared to traditional in-
formation retrieval, the size of a document in the index is much larger: It also needs
to record information about where (that is, in which element) inside a document
a given term occurs. A straightforward approach is to simply index the textual
content of each element separately, but the cost is prohibitive (because of nesting,
the size is several times the size of the document-level index).
Many search engines for XML retrieval do not index small elements up to a given

length in tokens, but this does not alleviate the problem much; the size is still
about six times as large as the document-level index. One should note that the
authors of these search engines typically do not give index size as an argument
in favor of omitting these elements. Instead, they argue that these elements are
never good retrieval results that the users want. Although this may be the case
for typical element retrieval scenarios, this alone is not a sufficient reason, as it is
always possible to filter these elements from the results.
One should consider that some retrieval approaches use the small elements to

improve the quality of the retrieval results, even if they are not returned to the user
(see the next chapter). In addition, if the scope is broadened just a little to include
content-and-structure queries, the small elements may be vital to achieve acceptable
retrieval results: Content-and-structure queries often reference metadata elements
like authors’ names or titles. These metadata elements are by their nature short,
and if they are not included in the index, it becomes impossible to answer such
queries.
Thus, there are good reasons for including all elements in the index, if it can

be ensured that this does not increase its size too much. The difference-based
method I will describe in this section is still significantly larger than a document-
level index, but this is unavoidable; at least it tries to minimize redundant storage
of information.
The basic idea is to omit data that can be derived by using the tree structure

of the XML documents. Thus, for an element e, only the term frequencies that
result from the text nodes directly below e are stored, excluding text contained in
child elements. Thus, for elements with child elements, the stored term frequency
stf(t, e) of term t in element e is:

stf(e, t) = tf(e, t)−
X

f∈children(e)

tf(f, t) (5.3)

For elements without children, the stored term frequency is the real term frequency:
stf(e, t) = tf(e, t). Figure 5.3 illustrates this.
It may happen that a term does not occur in text node children of e, but only

in element children; in this case, the stored term frequency is zero, and no inverted

75

5 Implementation of the base retrieval engine

1 <section>
2 <title>Inverted lists </title>
3 <p>Inverted lists are an <emph>index structure</emph>.</p>
4 </section>

(a) Indexed document.

Term Path ID tf stf

index /section 1 1 0
index /section/p 3 1 0
index /section/p/emph 4 1 1
inverted /section 1 2 0
inverted /section/title 2 1 1
. . .

(b) Inverted lists for this document. Observe that the section element’s entries can all
be omitted.

Figure 5.3: Example of indexing.

list entry for this element is stored in the index. In the extreme case, if the element
does not have text nodes as children, it will not occur in the inverted lists at all.
This happens for higher-level structural elements, like chapters.

During retrieval, a postprocessing step is needed to reconstruct the original term
frequencies from the stored term frequencies, as figure 5.4 shows.

Using this storage technique leads to significant savings in the number of entries in
the inverted lists and, consequently, in the total size of the inverted lists. Although
a postprocessing step is required after retrieving the term frequencies from the
inverted lists, the cost of this step is offset by the reduced time needed to read the
entries from disk.

5.2.4 Building the inverted lists
The document collections to be searched can get large, too large to be indexed in
main memory alone. Thus, it is necessary to keep large parts of the data on disk
while indexing.

5.2.5 Metadata
The lexicon and the inverted list only contain information about term occurrences,
but not about the structure of the XML document. This is a deliberate design deci-
sion; many search engines use index structures that store the structural information
in the inverted lists, but this unnormalized form of storage increases the size of the
index.

Instead, the schema is normalized and only the IDs of the elements are stored in
the inverted list. This alone is obviously not sufficient: At least, the search engine

76

5.2 Index structures

2 0 1 3 0 1 4 1 0
(a) Flat list

2 0 1 3 0 1

4 1 0

1 ? ?

(b) Tree

2 0 1 3 1 1

4 1 0

1 ? ?

(c) Update from 4

2 0 1 3 1 1

4 1 0

1 0 1

(d) Update from 2

2 0 1 3 1 1

4 1 0

1 1 2

(e) Update from 3

Figure 5.4: Reconstruction of term frequencies. Each box contains the element ID
and the frequencies for “index” and “inverted”. First, the stored term frequencies
are retrieved as a flat list (a), next, the document structure is reconstructed from
the metadata, including missing nodes (b). Finally, the tree is traversed bottom-
up; for each node, the term frequencies are added to the parent’s term frequencies
(c,d,e).

77

5 Implementation of the base retrieval engine

needs to get the name of the document and the position of the fragment inside the
document – typically an XPath expression – to display the results.

Even before that point, it may be necessary to obtain more detailed informa-
tion. For example, if the search engine must avoid presenting nested elements, like
a chapter and a section from that chapter, to the user in its result list, it needs
data about results’ parent–child relations, and exploiting small elements, as men-
tioned earlier, also requires this information. Many similarity measures, for example
Okapi BM25, use the length of an element’s text to adjust its similarity. And, of
course, if only the differences of the term frequencies are stored for inner elements,
the search engine must know the structure of the documents.

Thus, the search engine needs to store element-specific information in the index
in a space- and time-efficient format. The simplest approach is to simply store the
information per fragment ID:

• The structural information can be reduced to the ID of an element’s parent
(encoded as the difference to the parent’s ID to save space).

• The element’s length can be stored as-is.

• If the XPath is needed for identification purposes, the index must also contain
the ID of the tag name.

The IDs of the elements themselves need not be stored, the metadata entries are
simply stored in order, so that the ID can be derived from the position in the list.
This is possible because the search engine must read the complete metadata for a
document anyway to obtain the structural information.

A minor optimization is to apply the same technique used for the inverted lists
and only store the difference to the child elements’ lengths for a parent element.
In this case, the search engine still has to keep elements whose text is completely
contained in children in the metadata index, because the link to the parent’s parent
and the tag ID must still be available.

5.2.6 Index compression
At the level of actually storing integral values in files, space can be saved if some
characteristics of the numbers to be stored are known: If most of the numbers
are small, it is advisable to use a coding method that stores small values in fewer
bits at the expense of using more bits than necessary for larger values that occur
infrequently.

The implementation uses unary coding, which stores n − 1 of one-bits followed
by one zero-bit to store a number n ≥ 1, γ coding, which breaks the number into
an exponent part and a remainder: n = 2blognc + (n − 2blognc). The exponent is
the stored as the unary code for blognc+1, where b·c is the floor function, followed
by the value of n− 2blognc in binary, in as many bits as needed. The δ coding uses
the same breakdown of the number, but stores the exponent in γ coding instead of
unary. Table 5.1 gives examples for the encodings; see Bentley and Yao (1976) and
Elias (1975) for details on the δ and γ encodings.

78

5.2 Index structures

n Unary blognc n− 2blognc γ δ

1 0 0 0 0 0
2 10 1 0 10 0 100 0
3 110 1 1 10 1 100 1
4 1110 2 0 110 00 101 00

100 11. . . 110 6 36 1111110 100100 11011 100100

Table 5.1: Examples for the various encodings. For small numbers, unary encod-
ing uses the least space, for large numbers, the situation is reversed. For 100, the
unary encoding uses 100 bits, γ encoding uses 13 bits, and the δ encoding uses
11 bits.

It is customary to store the difference of the document IDs in the inverted lists
instead of the IDs themselves; for example, if a term occurs in documents 2, 6, 7,
and 24, the following values would be stored in the index: 2, 4, 1, 17. Assuming
that terms occur in clusters, it is to be expected that the numbers are small in
magnitude. This assumption has proved to be accurate for traditional information
retrieval, and it is even more relevant for XML retrieval, for the following reasons:

• Term occurrences are more localized in XML retrieval if a consecutive num-
bering of elements is used, because all elements from the same document –
whose IDs are close to each other – are typically about the same topic, so they
contain similar terms.

• Furthermore, the term frequencies of elements that are deeper in the document
tree tend to be extremely small in magnitude because the elements are quite
short.

Depending on the expected distributions of values, different encoding functions
can be used (Witten et al., 1999). With difference-based indexing, one can expect
many term frequencies to be close to 1, so a unary encoding is most suitable. The
differences of the document IDs are somewhat bigger, so the search engine uses a δ
coding.
Much more data is read from the metadata index than from the inverted lists,

so the decoding overhead of the bit-based unary, δ, and γ codings is more notice-
able. These encodings are expensive because they require expensive shift and mask
operations. Thus, I will also evaluate a byte-based encoding as an alternative: A
sequence of bytes with the high bit set followed by a byte with the high bit clear
forms the value; the lower seven bits of each byte are concatenated to obtain the
value.
The encodings described above strongly favor small numbers, but the element

name IDs are assigned in the order they occur in the document collection. De-
pending on the collection, the numbers can get quite large; the INEX Wikipedia
collection, for example, has 1257 different element names. This will be even more
pronounced if different collections with diverse schemas are stored in the same in-
dex.

79

5 Implementation of the base retrieval engine

IEEE Wikipedia

Baseline Diff Baseline Diff

unary 204 47 659 151
γ 198 50 666 159
Huffman 189 47 631 151

Table 5.2: Storage sizes of the term frequencies in the inverted lists using different
encodings, in megabits. Note that the numbers to not include padding between
the runs; the Huffman figure excludes the size for the code table.

The first thing that comes to mind is to assign the element name IDs in decreasing
order of frequency in the collection, instead of in sequence. This requires another
pass over the metadata index at indexing time, but does not affect retrieval time.
Although the global distribution may not be optimal in the general case – different
documents may use different tags, depending on the author or the schema –, it
should work for the test collections, both of which use a single schema with a
limited vocabulary.
Arithmetic coding (Witten et al., 1987) cannot be used: When decompressing, it

assumes that all data is read sequentially; here, however, the search engine must
be able to read isolated runs from the inverted files without also reading all the
preceding runs. Thus, it would only be possible to use arithmetic coding within a
single run, but – because the runs are relatively short – it is unlikely to achieve a
good compression ratio then.
Huffman coding (Huffman, 1952) is more realistic for this scenario, because it is

based on a static model of the frequencies, so the same decoding table is used for all
runs in the inverted file. The frequency information can be collected while writing
the final merged run file, and then another pass is needed to copy this run file to
the final file with the Huffman coding.
Experiments show that for the high-frequency values up to five, the Huffman

encoding takes the same number of bits for storage. On the other hand, there are
large gaps between extant term frequency values in the higher ranges; thus, using
a fixed coding table or function, the encodings will use more bits than is necessary.

Table 5.2 shows that Huffman coding is indeed the most effective encoding for
the term frequencies, as expected. The differences can be significant for the baseline
– 20 percent for IEEE and 5 percent for Wikipedia –, but for the difference-based
encoding, it is virtually indistinguishable from the unary encoding. This behavior
can be explained by the extreme bias towards low term frequency values in the
difference-based index.

Thus, there is little benefit in using Huffman for encoding the term frequencies,
but the additional overhead while indexing suggests the use of the simpler unary
encoding.

For compressing the metadata index, the situation is different: Every entry refer-
ences an element name ID, and the element names appear with drastically different
frequencies in the collection; for example, by far the predominant element name in

80

5.3 Evaluation

the IEEE collection is it (for “italics”), followed by p (for “paragraph”). Together,
the ten most frequent element names (out of 178 distinct element names in total)
account for more than 50 percent of all occurrences. The distribution is even more
skewed for the Wikipedia collection, where the ten most frequent element names
(out of 1257) account for more than 80 percent of all occurrences.
Obviously, a suitable encoding can save a lot of space. A first approach could

be to order the element name IDs by decreasing frequency and then use one of
the above-mentioned fixed encoding functions like unary. This, however, would be
far from optimal at least for the Wikipedia collection, where 788 element names
occur only once. Because of the assumption of a fixed distribution, unary coding
compresses the first few ranks very well, but fails miserably for the lower ranks,
whereas γ encoding works reasonably well for the very top and the very bottom,
but uses too many bits in the middle of the range. Huffman encoding can save
about 8 percent in this case.

5.3 Evaluation

To show that the index structures are indeed useful, I will evaluate its properties
on standard test collections. As mentioned before, the main focus is on index size
and retrieval time; retrieval quality will be addressed in a later chapter. I made
sure that all versions of the search engine yield exactly the same retrieval results.

5.3.1 Implementation and test environment
The retrieval system is implemented in Java. The tests were executed on a 3.2 gi-
gahertz Pentium 4 system with one gigabyte main memory on an ext3 file system
on two SATA hard drives in a RAID 0 under Ubuntu Linux 6.10.
As the baseline, I use an index with all elements stored in the inverted lists, with

the inverted lists compressed using bit-based compression and the digest compressed
using byte-based compression. I compare that baseline to the difference-based in-
dexing scheme with two variants of the compression of the metadata, bit-based and
byte-based.
To make the comparison fair, most of the code is shared in the implementations.

One notable difference is the propagation of term frequencies: In the baseline ver-
sion, it is not needed at all, so I made sure that the corresponding code is not
executed at all, in order to avoid the (slight) penalty it incurs.
To smooth out random effects on retrieval time, all topics were executed in se-

quence five times and the mean time was used for the evaluation. (Note that the
executions of the same topics were not adjacent, but all the other topics were in
between; this avoids possible caching effects.)
The Java interpreter was called with the -server option, and the maximum

and initial heap size were set to the same value to avoid expensive reallocation of
memory.
Because there could be a slight change of the index sizes if the documents are

added in a different order (file systems typically do not guarantee any specific order

81

5 Implementation of the base retrieval engine

10

100

1000

10000

100000

1e+06

1e+07

1 10 100

unary encoding
γ encoding

Huffman

(a) IEEE. Unary encoding is best at the start, but rapidly loses ground to the other
encodings. Huffman encoding takes roughly 15 percent less space than γ encoding.

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1 10 100 1000

unary encoding
γ encoding

Huffman

(b) Wikipedia. The sawtooth (unary) and step (γ, Huffman) behavior of the graph
is caused by the atypical number of element names that occur only once.

Figure 5.5: Plot of the space usage (in bits) of the element name ID using various
encoding functions over the frequency-based rank of that element name. The most
frequent element is at the left, the least frequent element is at the right. The total
space used for the IDs is roughly equal to the area under the graphs.

82

5.3 Evaluation

16
81

9

65
9
38

8

number of
documents

10
71

3
73

6

52
56

2
49

7

number of
elements

2
92

5

24
1

mean length of a
document in tokens

17
8

12
57

distinct
element names

28
0
98

0

2
33

7
81

6

distinct
terms

Figure 5.6: Test collections statistics. The bars in each group are, from left to
right, the IEEE collection (2005) and the Wikipedia collection (2006). The token
count excludes stop words.

when traversing directories), they were indexed from the distributed archive files,
in the order they appear there.

5.3.2 Test collections
The evaluation will be based only on the test collections from INEX 2005 and
INEX 2006. Figure 5.6 gives an overview of the properties of these collections. The
two collections differ in several important qualities:

• The Wikipedia collection has about forty times as many documents as the
IEEE collection, but the average length of a document is only a tenth.

• The Wikipedia collection has about eight times as many distinct index terms.

• Although the Wikipedia collection has many more distinct element names,
the average number that is used in each document is smaller.

If the results are similar for these different collections, it is safe to assume that
comparable behavior will be observed for other document-centric collections.

5.3.3 Index size
It is clear that less storage is required if less data is stored in the index. Figure 5.7
shows that the savings are significant: The index size is reduced to 56 percent
of the baseline index size for the Wikipedia collection (from 871 megabytes to
485 megabytes) and to 50 percent for the IEEE collection (from 202 megabytes
to 99 megabytes). For comparison, Geva (2007) reports the index size for the
Wikipedia collection as 15 gigabytes – about 30 times the size of the index described
here (no numbers are available for other search engines).
The lexicon and the metadata are not different between the baseline and the

difference-based index. The size of the lexicon is negligible compared to the other
parts of the index, but the metadata has a size comparable to that of the inverted
list. Using a bit-based encoding for the metadata file reduces the size of it by about
25 to 30 percent, but increases retrieval time by about 10 to 15 percent.

83

5 Implementation of the base retrieval engine

A B C D

0

50

100

150

200

(a) INEX 2005 test data (IEEE)

A B C D

0

200

400

600

800

1000

(b) INEX 2006 test data (Wikipedia)

A Baseline

B Difference-based inverted list, byte-compressed metadata

C Difference-based inverted list, bit-compressed metadata

D Difference-based inverted list, Huffman-compressed metadata

The boxes are, from bottom to top, the lexicon, the metadata index, and the inverted
list. The mapping file from element name to ID is too small to be visible at this scale.

Figure 5.7: Index sizes, in megabytes.

84

5.3 Evaluation

Re-ordering the element names by decreasing frequency of occurrence in the col-
lection only leads to minor savings of about 0.2 percent of the metadata index
size for IEEE and less than 0.001 percent for Wikipedia with byte-based encoding.
This is no big surprise for the IEEE collection, which only has 178 distinct element
names, but for Wikipedia, a better compression ratio could have been expected.
However, of the Wikipedia collection’s 1257 element names, 1052 (more than 80
percent) occur at most three times each, because of peculiarities of the conversion
program (it regarded all text occurring in angle brackets as element names, leading
to element names like stdio.h). Because the vocabulary of the original markup is
quite limited, the most-used element names have low numbers anyway, so the sav-
ings that can be expected are rather low. For the bit-based encoding, the savings
are more significant: about 12 percent (Wikipedia) and 16 percent (IEEE).

5.3.4 Retrieval time

For timing, I use the official query sets from INEX 2005 and 2006, using the title
field of the topics (that is, the keyword-based query without structural constraints,
see Trotman and Sigurbjörnsson (2005)).
One cannot expect retrieval time to drop, because the reduced storage require-

ments and shorter read times are offset by the reconstruction of the missing ele-
ments. Retrieval time should not, however, increase compared to the baseline. This
is confirmed by the measurements, as figure 5.8 shows: The retrieval time does not
increase for any topic, in fact, retrieval time is reduced by about 5 percent. Fig-
ure 5.9 shows that indeed the time needed to read the inverted list entries from the
index is reduced, but extra time is required to reconstruct the entries.
One important observation is that the search engine spends a significant portion,

from 55 up to 85 percent, of the total time it needs to process a query in obtaining
metadata.
As a side note, the time needed to create the index is reduced by about 40 percent

for difference-based indexes, because the inverted lists are significantly shorter, so
less data has to be sorted on disk. Indexing the complete Wikipedia collection takes
about 80 minutes, indexing the IEEE collection takes about 25 minutes.

5.3.5 Comparison to traditional information retrieval

Witten et al. (1999) give figures for the index size in relation to the size of the orig-
inal documents for traditional information retrieval. The size of the index struc-
tures – inverted files and auxiliary files – is about 10 to 25 percent of the size of
the documents for four collections with different characteristics. Compared to the
uncompressed XML files, XML retrieval indexes are in the same range, at about 10
to 15 percent, although they store considerably more data. The main reason is, of
course, that XML is a very verbose format; the markup takes up a large fraction of
the file, and whitespace is often used to make the XML file more attractive at the
source level.

85

5 Implementation of the base retrieval engine

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

pr
oc

es
si

ng
 ti

m
e

pe
r

qu
er

y
fo

r
th

e
di

ffe
re

nc
e-

ba
se

d
in

de
x

(in
 s

)

processing time per query for the baseline index (in s)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

pr
oc

es
si

ng
 ti

m
e

pe
r

qu
er

y
fo

r
th

e
di

ffe
re

nc
e-

ba
se

d,
 c

om
pr

es
se

d
in

de
x

(in
 s

)

processing time per query for the baseline index (in s)

(a) INEX 2005 test data (IEEE)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

pe
r

qu
er

y
fo

r
th

e
di

ffe
re

nc
e-

ba
se

d
in

de
x

(in
 s

)

processing time per query for the baseline index (in s)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

pr
oc

es
si

ng
 ti

m
e

pe
r

qu
er

y
fo

r
th

e
di

ffe
re

nc
e-

ba
se

d
in

de
x

(in
 s

)

processing time per query for the baseline index (in s)

(b) INEX 2006 test data (Wikipedia)

Figure 5.8: Retrieval time: baseline versus difference-based (IEEE collection).
Each point represents the time needed to process one particular query; for points
that lie below the dashed line, retrieval on the difference-based index is faster.
The diagrams on the left compare the baseline to the difference-based index with
byte-compressed metadata, the diagrams on the right compare the baseline to the
difference-based index with bit-compressed metadata.

86

5.4 Indexing process

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

tim
e

sp
en

t r
ec

on
st

ru
ct

in
g

m
is

si
ng

 e
nt

rie
s

(in
 s

)

time saved by smaller list (in s)

(a) INEX 2005 test data (IEEE)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5

tim
e

sp
en

t r
ec

on
st

ru
ct

in
g

m
is

si
ng

 e
nt

rie
s

(in
 s

)

time saved by smaller list (in s)

(b) INEX 2006 test data (Wikipedia)

Figure 5.9: Explanation why the retrieval time does not change much: The time
needed to read the inverted list entries is reduced (x axis), but this is offset by
the time needed to reconstruct the nodes that are not stored in the index (y axis).
Points below the dashed line indicate a net saving for that query, points above the
line indicate a net loss.

5.4 Indexing process

Because the indexer should only do a single pass over the documents, indexing is
done in the following steps:

1. Each document is parsed, tokenized, and corresponding tuples of term ID, doc-
ument ID, and further information (for example, term frequency) are stored
in a heap of size n in main memory, ordered by term ID and document ID.

2. When the heap is filled, it is flushed to disk to form a single run of inverted
list entries. Obviously, the tuples on disk are not completely sorted by term
ID, document ID.

3. When all documents have been parsed, an n-way merge sort is executed on
the stored on-disk tuples; n runs are merged to form a new sorted run, which
is written to a new intermediate file. If the new intermediate file contains
more than one run, this step is repeated.

4. Finally, the last intermediate file, which by now only contains a single run, is
copied to the final inverted list file, omitting the (now unnecessary) term IDs
and using delta encodings as far as possible. Also, the dictionary is updated
to contain a pointer to the entry point in the inverted list file for each term.

Thus, the intermediate inverted lists are effectively in a different format from the
final result (and are typically slightly larger). Figure 5.10 illustrates the disk-based
merge sort on real data.

87

5 Implementation of the base retrieval engine

(a) The 61 initial runs of length 16 plus overhead. Observe how the maximum term
ID per run grows as more of the document has been read.

(b) After the first round of merges, 4 runs remain.

(c) The final inverted list.

Figure 5.10: Disk-based merge sort, run length 16, for a single XML document
(the “Linux Print2Win mini-HOWTO”). The horizontal axis denotes the position
in the inverted list file, the vertical axis the term IDs.

88

5.5 Performance versus accuracy

5.5 Performance versus accuracy

In XML retrieval, the number of indexing units is much larger than in flat informa-
tion retrieval, as there are many elements per document. Naturally, this leads to a
larger index and also to an increased retrieval time, because more data has to be
read from disk, more main memory is needed for the results, and more calls to the
similarity method have to be performed. Even worse, for anything but “thorough”
results, the document’s tree structure has to be re-built from the results, and it has
to be traversed to decide which elements to keep.
As later sections will show, a straightforward approach yields response times that

are barely acceptable, measured in tens of seconds. Although not the main focus
of this thesis, I will examine how one can reduce retrieval time without sacrificing
retrieval quality. There are many approaches to this problem for flat information
retrieval, but these approaches assume that the retrieval results are independent of
one another so that any subset of them can be omitted from the results. This no
longer holds for XML retrieval, where several element results are part of the same
document; only if the similarity measure makes no use of the document structure
will it be possible to exclude some of a document’s results from the similarity
calculation without the risk of worsening results.
Geva (2007) describes how the version of GPX used at INEX 2006 keeps only

a subset of the leaf elements before proceeding to the reconstruction of the inner
nodes. For the official results, only the highest-scoring 3000 leaf elements were kept,
and later experiments showed that keeping a higher number of elements leads to
better retrieval quality at the expense of taking significantly more time. Further-
more, GPX excludes all terms that occur more than 100,000 times in the collection
from the similarity calculation – they are basically seen as stop words. Theobald
(2006) discusses top-k element retrieval in detail for a BM25-based search engine.

As the following chapter will show, my search engine uses a two-stage approach to
retrieval which relies on an “all or nothing” approach to intermediate results: Either
all relevant elements from a document are part of the retrieval results or none are.
This prevents the use of the element-based top-k approaches, so I developed a
document-based approach to this problem for INEX 2006 (Dopichaj, 2007d).

5.6 Summary

This chapter has shown that it is possible to significantly reduce the space overhead
of XML full-text indexes without affecting the results or increasing retrieval time
– in fact, retrieval time is slightly reduced compared to the baseline. The index
structures support retrieval of all element types, including very short elements.
This enables the search engine to support queries that target these small elements,
and it is necessary for the enhancements described in the following chapter.

89

5 Implementation of the base retrieval engine

90

6 Exploiting small elements

“It was most suggestive,” said Holmes.
“It has long been an axiom of mine that
the little things are infinitely the most
important.”

(A Case of Identity)

The previous chapters have shown that there is a variety of approaches to XML
element retrieval. Many of these approaches are combinations of separate ideas,
combining, for example, term proximity with relevance feedback mechanisms and
novel similarity measures exploiting the structure of the XML documents. Some of
these approaches have been shown to be effective in the INEX evaluation workshops,
but it is impossible to single out the components that are responsible for the good
retrieval quality.
So far, little work has been done concerning the influence of the components of

XML retrieval systems. One reason is that the different components may interact in
unexpected ways, so that their behavior in isolation is different from the behavior
that can be observed if they are applied in combination. This is no reason to
abstain from performing such an analysis completely; although the insights gained
by a limited evaluation might not hold in different contexts, they can still be seen
as a guideline for further research.
This chapter describes several approaches to exploiting small elements like section

titles or italicized phrases. Finally, various ways of using small elements to improve
retrieval quality and their respective advantages and disadvantages are discussed.

6.1 Small elements in standard information retrieval

One thing most of the existing retrieval systems have in common is that they do not
make use of very small elements, like a single word in italics markup. Obviously,
these elements are not reasonable retrieval results, because they would not help the
user satisfy his information need. On the other hand, they can still be useful for
estimating the relevance of their ancestors.
One particularly striking example is the use of titles. Titles are usually short,

and they are mostly useless as a retrieval result, but they contain the essence of
what the enclosing document is about. Cutler et al. (1997, 1999) make use of the
markup in HTML documents by using separate indexes for different types of small
elements, not only titles:

91

6 Exploiting small elements

Document title, tag title (this document-level title can occur at most once),

high-level titles, tags h1 and h2,

low-level titles, tags h3 to h6,

strong, tags strong, b, em, i, u, dl, ol, and ul,

anchor, tag a (the text of incoming links), and

plain text for text outside the above elements.

Each term in the input documents is stored in exactly one of these indexes; if
a term is contained in nested tags from different categories, the one higher in the
list is used. For example, given <title>term</title>, term is
indexed as a title and not as a “strong” word. The anchor class is a special case:
It captures not terms from the same document, but terms from the anchor text of
other documents that link to the indexed document. For example, if file cue.html
is indexed and another file contains the fragment cue,
then the term cue is indexed in the anchor field of cue.html.

In effect, instead of having a term vector for each document, their system has a
term matrix: For each term, six term-frequency values are stored per document.
When executing a search, importance values must be defined for each of the cat-
egories. To obtain the term weight, the scalar product of the importance vector
and a term’s weight vector for each document is calculated, and this term weight
is then used as input to the cosine similarity measure.

The best importance vector they found was a weight of 8 for the “strong” class,
6 for the “high-level titles” class, 1 for the “low-level titles”, 8 for the “anchor” class,
4 for the “document title” class, and 1 for plain text. This combination yielded a
26-percent improvement of the 11-point recall–precision average over their baseline
system.

Liu et al. (2004) presented similar work at TREC, using an HTML document’s
title element, the first bold and head tags, and the first n words of straight text.
Their evaluation shows minor improvement over their baseline system.

These approaches have in common that the different types of fields are stored in
separate indexes; at retrieval time, a search process is performed on each of these
indexes and the scores are combined. Robertson et al. (2004) contrast linear score
combinations of separately indexed fields with the adaptation of the term frequency
values based on what HTML markup a term is embedded in (for example, if a term
is embedded in a title element, its weight is doubled). Their results indicate that
the latter approach yields better results for the test cases.

6.2 Small elements in XML retrieval

Overall, the research on exploiting small elements in standard information retrieval
shows that they can provide valuable hints about their ancestor elements. The
experiments were based on document-level retrieval, and they worked on a known

92

6.2 Small elements in XML retrieval

document schema (HTML); it remains open how they can be adapted to work for
XML element retrieval.
For INEX 2005, I developed a retrieval method that exploits small elements to

improve retrieval quality (Dopichaj, 2006b, 2007a). In independent work, Ramírez
et al. (2006a) investigated the influence of small elements for the INEX collection;
they used hard-coded rules like “use the maximum score of an element and its sub-
ordinate st element”. On the INEX 2005 test collection and their language modeling
retrieval engine, they showed that they can improve the baseline significantly.

6.2.1 Preliminaries
In this thesis, I will concentrate on a single type of small element, the title of a
section. The reason for this is that the more influence factors there are, the less
it is possible to draw clear conclusions; furthermore, my previous work shows that
titles are the most promising variant of exploiting small elements. Therefore, the
aim is to investigate the following orthogonal hypotheses:

• Titles can be used to identify highly relevant sections.

• It is possible to identify title elements without having to specify a schema-
specific list of title element names.

For making use of titles, two things are necessary: a predicate istitle(e) that
determines whether an element e is a title element and a means to change the
similarity if a title was detected, the similarity adaptation function tsim(q, e, t).
The predicate istitle(e) is true if and only if element e is assumed to be the title

of its parent element. Realistically, there is at most one title per element (this
assumption simplifies the adaptation functions):

istitle(e) := ∀c ∈ children(parent(e)) : ¬ istitle(c) (6.1)

The tsim function determines how the degree of the title’s parent element e should
be changed; it is unlikely that every match in title elements should result in the
same change of similarity. For example, if the query is “computer graphics” and the
documents are computer science journals, the presence of “computer” alone is not
a good indicator of relevance.

6.2.2 Example
To show that titles can indeed be useful indicators of relevant sections, I will now
give an example from the INEX collection, topic 168. The information need for
that topic is “Find documents or elements relating to the New Zealand Digital
Library project”, and the query is “New Zealand Digital Library Project”. Table 6.1
gives the base result list for this topic along with relevant titles and assessments.
Obviously, the baseline results are already good – there is not a single irrelevant
element in the top ten. In this example, the titles are clearly useful hints, although
the most relevant element – the complete article r2074 – is not a section with a

93

6 Exploiting small elements

F
ile

X
P
ath

expression
R
SV

Section
title

(if
applicable)

r

r2045
/article[1]/bm

[1]/app[2]/sec[2]/lc[1]
36.8

1
r2045

/article[1]/bm
[1]/app[2]/sec[2]

35.1
D
igital

library
research

in
A
sia

1
r2074

/article[1]/bm
[1]

34.4
1

r2045
/article[1]/bm

[1]/app[2]
31.0

1
r2074

/article[1]/bm
[1]/vt[1]/p[1]

30.9
2

r2074
/article[1]/bm

[1]/vt[1]
30.9

2
r2045

/article[1]
28.9

1
r2074

/article[1]/bm
[1]/vt[2]

28.7
2

r2074
/article[1]/bm

[1]/vt[2]/p[1]
28.7

2
r2074

/article[1]/bdy[1]/sec[2]
28.7

T
he

N
ew

Z
ealan

d
D
igital

L
ibrary

6
r2045

/article[1]/bdy[1]
28.2

1
r2045

/article[1]/bm
[1]

28.2
1

r2045
/article[1]/bdy[1]/sec[4]

28.1
Sem

antic
interop

erability
1

r5022
/article[1]/bdy[1]/sec[1]

27.2
(em

pty
title)

0
r2074

/article[1]
27.2

9
r2022

/article[1]/bdy[1]/sec[6]
27.0

M
anaging

com
plexity

in
a
distributed

digital
library,

pp.
74-79

3
r2022

/article[1]/bdy[1]
27.0

1
r2022

/article[1]
26.7

1
r6067

/article[1]/bdy[1]/sec[3]/ss1[1]/p[3]
26.5

0
r2066

/article[1]/bdy[1]/sec[1]
26.0

(em
pty

title)
0

T
ab

le
6.1:

T
opic

168
results

baseline
results

(b
=

0
.2,

k
1

=
1).

T
he

query
is

“N
ew

Z
ealand

D
igital

L
ibrary

P
roject”.

A
ll
articles

are
from

co/1999,
except

r5022,
w
hich

is
from

co/1996.
K
eyw

ord
m
atches

in
the

titles
are

in
italics.

T
he

relevance
value

r
indicates

how
useful

the
searcher

found
the

corresp
onding

retrieval
result,

the
higher,

the
b
etter.

94

6.3 Adaptation methods

1 <sec><st>Compiler</st> <p>...</p></sec>

tf(e, “compiler”) = 1

change term weight

tf(e, “compiler”) = 2

calculate similarity

sim(q, e) = 0.73

(a) Term weight adaptation

tf(e, “compiler”) = 1

calculate similarity

sim(q, e) = 0.7

change similarity

sim(q, e) = 0.74

(b) Similarity adaptation

Figure 6.1: Two basic options to exploit title elements. Here, e is the sec element,
and “compiler” is a query term. The first step is the retrieval of the term frequency
from the index, and the similarity measure uses the frequency to calculate the RSV.

title. However, a section from that article has a title that matches the query almost
perfectly (/article[1]/bdy[1]/sec[2]), and it is still assessed highly relevant.
Indeed, if the search engine only searched titles and returned the corresponding

section, it could easily find three quite relevant hits among the top twenty. In
combination with a regular retrieval method, the results should be very good.

6.3 Adaptation methods

From the related work cited above, the following options arise (see figure 6.1):

Similarity adaptation: The similarities are calculated from the term weights as
normal, and the final RSVs are then adapted (Cutler et al., 1997; Ramírez
et al., 2006a; Dopichaj, 2006b, 2007a).

Term weight adaptation: The term weights for terms occurring in titles are
changed before the normal similarity measure is applied. For practical rea-
sons, the term frequencies are changed (Robertson et al., 2004; Dopichaj,
2007b).

In theory, these two could be combined, but this does not appear to be very
sensible. Much variation is possible, so an exhaustive evaluation is impractical. In

95

6 Exploiting small elements

the following sections, I will give an overview of the concrete implementations that
are used for the evaluation.

6.3.1 Similarity adaptation
In XML retrieval, any kind of element can be a valid retrieval result, and it would
be unreasonable to assume that only elements with titles – in this case, sections
– can be useful results. Thus, the search engine must still calculate a similarity
for every element. A new similarity measure could be developed that takes into
account title information, but it would be hard to incorporate this into the base
similarity function, and the search engine would be restricted to only this specific
function. Since the baseline retrieval from section 4.3 proves to yield high-quality
results, I will instead use a sort of postprocessing step:

sim(q, e) =


tsim(q, e, t) if ∃t ∈ children(e) : istitle(t) ∧ sim(q, t) > 0
sim(q, e) otherwise (6.2)

The tsim function determines the final similarity of elements that have a hit in
the title. The aim is to push particularly good elements to the top of the result list,
if possible to the top ten. Thus, the search engine increases the scores of elements
that appear to be particularly relevant to the query and leaves the other scores as
they are; in particular, no score should ever be decreased in this postprocessing
step:

tsim(q, e, t) ≥ sim(q, e) (6.3)
The tsim function may also make use of the number of query terms that occur

in the element, that is, the coordination factor.
To determine the quality of the title match, element information has two items

that can be used to determine the quality of a match: the retrieval status value
(RSV) and the coordination factor. Obviously, the RSV is more exact, because it
takes into account term weights and other important factors, but it also incorporates
some form of length normalization.

There are various options for increasing the RSV of a title’s parent element p:

• Simple: Multiply the RSV of p by a constant factor o > 1 (Dopichaj, 2007a).

tsim(q, e, t) := o sim(q, e) (6.4)

• Restrictive: Only multiply by the boost factor if there are as many hits in
the title as in the complete section:

tsim(q, e, t) :=


o sim(q, e) if coord(q, t) = coord(q, e)
sim(q, e) otherwise (6.5)

• Dynamic: Use a degree of the title’s match quality to vary the boost factor.
The intention is to make sure that titles that more closely match the sections
they are titles of should move its parent further up.

tsim(q, e, t) := sim(q, e)

„
1 + o

coord(q, t)

coord(q, e)

«
(6.6)

96

6.3 Adaptation methods

• Adding: Add the title element’s RSV to its parent’s RSV (this is a simple
form of linear score combination):

tsim(q, e, t) := sim(q, e) + sim(q, t) (6.7)

Many more similarity adaptation functions are conceivable, but the ones given
here are useful to demonstrate important influence factors. Figure 6.2 illustrates
the adaptation methods.

6.3.2 Term weight adaptation
The other adaptation method modifies the input of the similarity function instead of
its output. This is achieved by modifying the local term weights, which are typically
derived from the term frequencies. The core idea is to increase the weights of terms
that (also) occur in title elements.
Robertson et al. (2004) describe the linear combination of term frequencies for

documents that are split into (non-overlapping) fields like title, abstract, and full
text. Their approach is only meant for document-based retrieval, but it can be
adapted to semi-structured retrieval (Dopichaj, 2007b): If a term t appears in
the title element et of section element es, the term frequency tf(es, t) of t can be
increased to obtain a higher weight:

tf′(es, t) = tf(es, t) + o tf(et, t) (6.8)

The parameter o > 0 defines how much the term frequency should be increased.
The similarity of es is then calculated using tf′(es, t), but the changed term frequen-
cies are not propagated to the ancestors of es. This is similar to what is done in the
implementation of the base retrieval engine when the term frequencies are restored
from the stored term frequencies. Given the set of children C = children(es) and
the title element et, the term frequency reconstruction formula can be changed to:

tf′(es, t) = stf(es, t) +
X

c:c∈C∧c 6=et

tf(c, t) + (1 + o) tf(et, t) (6.9)

This shows that term weight adaptation can be done at retrieval time without
much overhead.
If it is not necessary to be able to retrieve the title elements themselves (because

they are not considered useful retrieval results) and a restriction of o to integers is
acceptable, the term frequencies can instead be changed in the index (this is closer
to the approach by Robertson et al.). In this variant, the term frequency calculated
in equation 6.8 is stored in the index, and the term frequencies for the title element
are not stored at all.
The index-based approach to term weight adaptation has the advantage that a

reduction of both index size and retrieval time is possible: Most obviously, the
postprocessing can be avoided entirely (but this is unlikely to be significant). More
important is that fewer elements are indexed, which implies that the index gets

97

6 Exploiting small elements

RSV Document XPath expression Query matches

1.3 doc1 /article/section/title * * *
0.9 doc2 /article/section * *
0.5 doc1 /article/section * * *
0.4 doc2 /article/section/title *

(a) Base result.

RSV Document XPath expression Query matches

1.8 doc2 /article/section * *
1.3 doc1 /article/section/title * * *
1.0 doc1 /article/section * * *
0.4 doc2 /article/section/title *

(b) Adaptation method “simple”, o = 2.

RSV Document XPath expression Query matches

1.3 doc1 /article/section/title * * *
0.5 · 2 = 1.0 doc1 /article/section * * *

0.9 doc2 /article/section * *
0.4 doc2 /article/section/title *

(c) Adaptation method “restrictive”, o = 2. Now, doc2 has more query
term matches in the section than in the title, so it is not boosted.

RSV Document XPath expression Query matches

0.9 · (1 + 1/2) = 1.35 doc2 /article/section * *
1.30 doc1 /article/section/title * * *

0.5 · (1 + 3/3) = 1.00 doc1 /article/section * * *
0.40 doc2 /article/section/title *

(d) Adaptation method “dynamic”, o = 1. Now the boost factor depends on the
number of matches.

RSV Document XPath expression Query matches

0.9 + 1.3 = 2.2 doc2 /article/section * *
1.3 doc1 /article/section/title * * *

0.5 + 0.4 = 0.9 doc1 /article/section * * *
0.4 doc2 /article/section/title *

(e) Adaptation method “adding”.

Figure 6.2: Effects of the adaptation methods.

98

6.4 Title detection

smaller, so that less data has to be read from disk at retrieval time and fewer
results have to be processed.
The disadvantage lies in the loss of flexibility (parameters must be set at index-

ing time) and the inability to retrieve elements that are not stored in the index.
Although title elements are not usually useful retrieval results, they may be the
target of content-and-structure queries, for example, “Retrieve all documents which
have a section titled ‘information retrieval’ ”. If the title elements are not indexed,
the constraint cannot be verified, leading to less precise results.
In this thesis, I will use the same indexes for term weight adaptation as for

similarity adaptation and use a similarity adaptation function to incorporate the
term frequency adaptation (e + o · t denotes the addition of the term frequency
vectors):

tsim(q, e, t) := sim(q, e+ o · t) (6.10)

This is not completely equivalent to the index-based method described above,
but retrieval quality should be similar, and the implementation is simplified con-
siderably.

6.4 Title detection

The following sections will present two basic methods for determining whether an
element is a title element: one based on the element name and a schema-independent
heuristic based on simple statistics.

6.4.1 Name-based title detection
The core idea of semantic markup is that the markup conveys information about the
element’s contents that is not directly related to the final presentation; for example,
instead of embedding a title in a boldface element, semantic markup would use a
title element. For presentation to the user, the semantic element name is then
mapped to a certain rendering, in this case a boldface font. Semantic markup has
the advantage of enabling different renderings for the same markup – for example,
if a style guide requires all titles to be rendered in italics instead, this is not a
problem with semantic markup, whereas the original text has to be changed for
presentational markup.
If semantic markup is used, the most straightforward way of implementing the

istitle predicate is to use the element name of an element name(e) and compare it
to a set T of known element names that denote

istitlename(e) := name(e) ∈ T (6.11)

Unfortunately, the information about which elements are particularly relevant to
searching is not encoded directly in the document schema (the schema languages
simply do not support this), so this information must be obtained by other means.
The most straightforward method is to manually inspect the schema and augment
it with this information. This may be feasible (but tedious) if only a single schema

99

6 Exploiting small elements

1 <!-- Title of Subsection -->
2 <xsl:template match="ss1/st">
3 <h3><xsl:apply-templates mode="high" select="." /></h3>
4 </xsl:template>

Figure 6.3: A characteristic snippet from X-Rai’s stylesheet for the INEX IEEE
collection, obtained from http://svn.berlios.de/viewcvs/x-rai/trunk/xsl/ieee-article.
xsl?rev=3&view=markup. This fragment suggests that ss1/st elements are lower-
level headings.

is used for all documents in the collection; in more complex collections of multiple
schemas, this may be too costly.
This effort can be avoided to a large degree in most cases: Remember that the

documents will have to be displayed to the users, so there is typically at least
one stylesheet available. This stylesheet translates from the semantic level of the
markup to the visual level of the final display device, for example, HTML or XSL-FO.
Although this process loses information, the rendered version of the document now
maps the diverse markup elements of the document schema to a single well-defined
schema; figure 6.3 provides an example of a typical stylesheet. Thus, instead of
defining the sets of title element names for all input schemas, it is sufficient to
define it for a single output schema. The stylesheets can then be parsed to obtain
the element names from the input schema that are converted to title element names
in the output schema. Determining title elements is out of the scope of this thesis,
however, so I will not discuss this in detail.

6.4.2 Length-based title detection
It is not always possible or desirable to manually inspect the document schemas
to determine semantically important element types, and stylesheets are not always
available or easily parsable. In fact, using only the obvious candidates like st for
section title may miss elements that act as titles in the document, but use seemingly
incorrect markup – for example, a bold phrase at the start of a paragraph will stand
out like a title to the users, but does not use the official tags.

It is thus useful to use a heuristic approach to automatically detecting titles at
run time, using a rule like “a short element as the first child and at the beginning
of a longer element is a title”. The heuristic will obviously not be entirely accurate
with respect to the original markup, with two types of errors:

False positives: Some elements that are not marked up as titles will be found if
they satisfy the condition.

False negatives: Not all elements marked up as titles will be found, for example,
for unusually long titles.

Note, however, that this classification compares to the actual markup in the doc-
uments, that is, it assumes that all elements marked up as titles – and only those

100

http://svn.berlios.de/viewcvs/x-rai/trunk/xsl/ieee-article.xsl?rev= 3&view=markup
http://svn.berlios.de/viewcvs/x-rai/trunk/xsl/ieee-article.xsl?rev= 3&view=markup

6.5 Efficiency

elements – really are titles (the markup matches the semantics). In reality, the sit-
uation may be different, because document authors do not always use the schema
as intended (maybe because of ignorance, maybe because the schema does not pro-
vide the intended markup). A schema might, for example, not provide for titles
of paragraphs. If an author wants to use a title for a paragraph, he must use a
workaround like typesetting the title as a bold phrase in the beginning of the para-
graph. An approach purely based on the schema will not recognize it as a title, but
a structural approach will. Thus, it has a higher likelihood of success even if the
markup is presentational instead of semantic.
Using the textual definition that “a short element that is the first child and occurs

at the beginning of a longer element is a title”, it is necessary to examine two levels
in the document tree to determine whether element t is a title element. The title
detection predicate must determine

• whether the potential title element t occurs at the start of its parent,

• whether it is short enough to be a title, and

• whether the parent element is long enough.

Thus, the predicate is defined as follows:

istitlelength(t) := (pos(t) = 0) ∧ (len(t) ≤ k) ∧ (len(parent(t)) > 2 len(t)) (6.12)

The parameter k determines the maximum length in terms up to which an element
is considered short enough to be a title. The function pos(t) gives the starting
position of the element t inside its parent element; it yields 0 if t is not preceded
by text. The length threshold k must be chosen carefully to both match long titles
and exclude short paragraphs at the beginning of sections. The condition in the
formula that the parent element must be at least twice as long as the potential
title element is rather permissive; it will rather result in false positives than in false
negatives.
In previous work (Dopichaj, 2006b, 2007a), I used a fuzzy predicate instead of a

Boolean predicate with a fixed parameter; the predicate yielded a value between 0
and 1 instead of Boolean values. The motivation was that this more closely models
the human interpretation: there is a degree of shortness instead of a fixed threshold.
Additionally, fuzziness is useful if the results of several patterns are applied at the
same time (but applying several patterns in combination proved not to be effective,
anyway). Unfortunately, this approach has more parameters to adapt – the form
and slope of the curve to determine the degree of shortness. This makes a thorough
evaluation more difficult. Furthermore, later work (Dopichaj, 2007b) showed that
a fixed threshold does not yield worse results than a fuzzy threshold. For these
reasons, I will not further discuss a fuzzy approach to patterns.

6.5 Efficiency

The additional postprocessing step that is needed for exploiting title elements may
appear to be expensive in terms of retrieval time, because the document’s DOM

101

6 Exploiting small elements

tree has to be reconstructed from the retrieval results and traversed to adapt the
similarity. However, in combination with the difference-based indexing method
introduced in the preceding chapter, the reconstruction of the tree has to occur
anyway, so the only overhead is the execution of a few additional simple calculations.
Overall, retrieval time is smaller than for conventional index structures without
postprocessing.

If even this overhead appears too costly and the index size should be reduced
further, term weight adaptation can be done at indexing time instead of at retrieval
time. Previous work (Dopichaj, 2007b) has shown that this can reduce the size of
the index by about 5 percent for name-based patterns and reduce retrieval time
by about 50 percent. This work was done before the implementation of difference-
based indexing, so the results are obsolete (the index sizes reported in that paper
are several times as large as the current index sizes). Cursory tests with the new
indexing method indicate that the differences are now not relevant anymore.

Considering that index-based term-weight adaptation is less flexible – it is not
easily possible to adapt the parameters of the adaptation function – and not all
elements are retrievable anymore, I will only focus on term-weight adaptation im-
plemented as a similarity function.

6.6 Summary

This section discussed the retrieval engine that is the basis of the evaluations in
this thesis. First, an overview of approaches exploiting titles in traditional informa-
tion retrieval was given, and these approaches were then adapted to XML element
retrieval systematically. Several approaches to adapting similarity values based on
title matches were introduced, and two approaches to detecting title elements were
presented. The following chapter will present the evaluation setup and evaluate the
utility of the enhancements on INEX test data.

102

7 Evaluation of retrieval quality

“You know my methods. Apply them!”

(The Hound of the Baskervilles)

To determine whether exploiting title elements, as described in the preceding chap-
ter, really improves retrieval quality, experiments have to be performed. In XML
retrieval, there is no way around INEX (see section 3.2): there simply is no compa-
rable alternative.
To understand what exactly the evaluation results mean, one must first under-

stand the metrics used to evaluate retrieval quality (section 7.1). In the following
section, I briefly discuss the evaluation of my official INEX submissions (section 7.2).
Next, the best parameters and the general behavior of the base retrieval system has
to be tested (section 7.3); unfortunately, no generally accepted baseline has been
established in the XML retrieval community. After the optimal parameters of the
baseline have been found, it is finally possible to evaluate whether title elements
can indeed improve retrieval quality (section 7.4). The evaluations based on the
INEX data have various shortcomings, so I closes this chapter with a discussion of
these shortcomings and a proposal for how a more suitable evaluation could be set
up (section 7.5.1).

7.1 Evaluation metrics

In order to determine how good a retrieval engine is, a qualitative measure of the
quality of a search engine’s retrieval result must be determined from the results and
relevance assessments.
In traditional information retrieval, recall and precision are used. Recall mea-

sures the engine’s ability to retrieve as many relevant documents as possible, and
precision measures the ability to retrieve as few irrelevant documents as possible.
Given dr the number of relevant documents that were retrieved, da the total num-
ber of relevant documents, and dR the total number of retrieved documents, recall
r and precision p are defined as follows:

r =
dr

da
(7.1)

p =
dr

dR
(7.2)

103

7 Evaluation of retrieval quality

Frequently, precision is given not for all retrieved results, but only for the first n
retrieved results, because the first few results are the most interesting for the user.
In this case, dR = n and dr is the number of relevant documents among the first
n retrieved. Reporting recall at different rank values does not make sense because
it would turn out to be exactly the same as precision (as long as there are enough
relevant documents). Recall and precision work on a binary model of relevance, so
a document either is relevant or it is not, there is no notion of documents being
relevant to a certain degree.
Binary relevance may not always be sufficiently detailed, so Järvelin and Kekäläi-

nen (2002) introduced the cumulated gain measures. Assessments are done in
degrees, that is, instead of “is (ir)relevant”, a numeric value is assigned to each
document that denotes a degree to which this document is relevant. For example,
a completely relevant document might get a value of 1, whereas a document that
only satisfies a part of the information need might get 0.5. Each retrieval result
gets a score from the assessment values, so a result list is mapped to a list of scores,
the gain vector. The cumulated gain at position i is then calculated as the sum of
all gain values up to position i. For a gain vector G = 〈1, 0.5, 0, 0.75〉, the associ-
ated cumulated gain values are 1, 1.5, 1.5, and 2.25. These values can be used for
comparing systems: the higher a value is, the better the corresponding system is.

7.1.1 Relevance in XML retrieval
For XML retrieval, a one-dimensional notion of relevance was deemed to be too
crude because of the nesting of elements: If a paragraph is relevant, then logically
its ancestors (section, chapter, complete document) must also be relevant. This
is obviously incompatible with the FERMI principle, which states that the search
engine should retrieve the most specific element that satisfies the information need.
Thus, if the paragraph is such an optimal element, its ancestors (although still
relevant) should be regarded as worse retrieval results.

To model this, two relevance dimensions were introduced, specificity and exhaus-
tiveness (Fuhr et al., 2003). The specificity value of an element denotes to what
degree a result is focused on the information need; the higher the specificity, the
lower the amount of text in the element that does not help to satisfy the information
need. The exhaustiveness represents to what degree the whole information need is
addressed. If only one of two aspects of the query is addressed by an element, that
element gets a lower score than one that addresses both.

From 2005 on, the assessor used a virtual yellow highlighter to select highly
specific passages in the online assessment interface. This was used for calculating
the specificity value of the elements, which was obtained by dividing the number of
characters that were highlighted in the element by the total character count in the
element. After that, the assessor had to set the exhaustiveness for all elements with
a specificity greater than zero. The choices ranked from “highly exhaustive” (2) to
“too small” for elements which should not be retrieved (0). The latter was applied
recursively to all sub-elements – an element that is too small to be retrieved cannot
contain any elements that are not too small.

In 2006, specificity was determined the same way as in 2005, but exhaustiveness

104

7.1 Evaluation metrics

was abandoned completely. This was mainly done to make the assessment procedure
less burdensome, and the hope is that specificity alone is a good measure of retrieval
quality.

7.1.2 Extended cumulated gain
Based on the two-dimensional assessment scale and the cumulated gain measure,
XML-specific evaluation metrics were designed. Kazai and Lalmas (2006) adapted
cumulated gain to the two-dimensional relevance scale of INEX by introducing quan-
tization functions that amalgamate exhaustiveness e and specificity s into a single
value.

quantstrict =


1 if e = 2 and s = 1
0 otherwise (7.3)

quantgen = e · s (7.4)
quantgenLifted = (e+ 1) · s (7.5)

The quantization function quantstrict rewards only the very best elements, that
is, elements that are fully exhaustive and highly specific. The difference between
quantgen and quantgenLifted is that the former treats all elements assessed as “too
small” (e = 0) as completely irrelevant, whereas the latter rewards their retrieval
a little; it was introduced because several assessors used the “mark all subelements
as too small” liberally to ease the assessment burden (this is far less work than
manually inspecting every small element).
The basis of the evaluation for thorough results is the full recall base, which

consists of all the elements that were assessed as relevant. The relevance value for
an element is obtained by applying the quantization function to the assessment,
and the cumulated gain measure can then be applied without modification, now
called extended cumulated gain (nxCG). For better comparability across topics,
a normalized version (nxCG) was introduced. In this version, the cumulated gain
reached by a retrieval engine is divided by the corresponding cumulated gain in the
ideal recall vector (that is, the vector obtained by ordering the assessed elements
by decreasing relevance). Given xCG[i] as the cumulated gain at rank i and xIG[i]
as the cumulated gain of the ideal run, nxCG[i] is defined as follows:

nxCG[i] =
xCG[i]

xIG[i]
(7.6)

For each point, the nxCG value can be interpreted as the degree to which the
obtained result is ideal. This definition of nxCG does not take the ordering of the
results up to the measured rank into account; a result list and its reversed version
would achieve exactly the same value. In reality, searchers are mostly interested
in the first few results – according to Jansen et al. (1998), 58 percent of all web
searchers only look at the first result page with ten results, more than 75 percent
look at only one or two pages –, so the gain values for higher ranks should have

105

7 Evaluation of retrieval quality

ID Path r

1 /art[1]/sec[1] 0.1
2 /art[1]/sec[1]/p[4] 2
3 /art[1]/sec[2] 1.4
4 /art[1]/sec[2]/p[1] 1
5 /art[1]/sec[1]/p[2] 0.5

The table contains all relevant
elements along with their rele-
vance value; a higher value in-
dicates a better result.

(a) Full and ideal recall bases.

Ideal run Real run

Path r xCG nxCG Path r xCG nxCG

2 2 2 1 3 1.4 1.4 0.7
3 1.4 3.4 1 – 0 1.4 0.41
4 1 4.4 1 1 0.1 1.5 0.34
5 0.5 4.9 1 2 2 3.5 0.71
1 0.1 5 1 5 0.5 4 0.8

(b) Calculation of nxCG.

Figure 7.1: Example for nxCG calculation for the thorough retrieval task.

a higher weight. Mean average nxCG at rank r addresses this by calculating the
average nxCG values for ranks 1 to r:

MAnxCG[r] =
1

r

rX
i=1

nxCG[i] (7.7)

Figure 7.1 gives an example of nxCG calculation. The official INEX results page
reports nxCG at the ranks 5, 10, 25, and 50 and for all quantization functions for
the user-oriented tasks, in particular the focused task.
In 2006, although the metrics remained formally the same, the assessment pro-

cedure was reduced to only the highlighting part for specifying specificity. This
reduced the time needed to do the assessments, but no exhaustiveness value was
available any more, so it was set to 2 for all elements. Using this set of assess-
ments turned out to have the disadvantage that small elements only a few words
long were evaluated as highly exhaustive, which is clearly undesirable at least for
user-oriented tasks. Thus, a second recall base was prepared that set the exhaus-
tiveness of link elements to “too small” (this applied to all elements of the following
type: collectionlink, wikipedialink, redirectlink, unknownlink, outsidelink). This choice
is rather arbitrary, as there are many other elements that are useless as retrieval
results. In reality, whether a given element is a useful retrieval result can only be
determined by the assessor, using the exhaustiveness dimension. The removal of
arbitrary results from the recall base is just a workaround for the loss of this as-
sessment dimension and cannot completely compensate for it. For this reason, the
results reported in this thesis will be based on the original full recall base.

Many more evaluation measures have been developed in the context of INEX:
The more user-oriented measures effort-precision and gain-recall (Kazai and Lal-

106

7.1 Evaluation metrics

mas, 2006), which measures the effort a user has to make in order to reach a given
level of cumulated gain. As the name implies, it is modeled after standard recall
and precision, with changes for the multigraded relevance. Mean average effort-
precision (MAep) is the mean of the effort-precision values at natural gain-recall
points (whenever a relevant element is found in the result list). Q and R was intro-
duced because the number of relevant elements varies between topics, so averaging
the xCG scores does not yield smooth results. Piwowarski (2006) introduced the
Expected Precision Recall with User Model (EPRUM) as a measure that is based
on a clear user model. EPRUM approximates user behavior using a probabilis-
tic model with various parameters that can be tuned to imitate different types of
users. Pehcevski and Thom (2006) introduced Highlighting XML Retrieval Eval-
uation (HiXEval), an evaluation measure that is based solely on specificity (that
is, it ignores the exhaustiveness dimension of the assessments). Thus, the retrieval
task shifts from the principle of retrieving the smallest element that satisfies the
information need to retrieving elements that contain as little irrelevant information
as possible. They justify this decision by stating that several people assessing the
same topic agree more on specificity than on exhaustiveness. (In fact, INEX 2006
dropped the specification of exhaustiveness from the assessment interface.)
Apart from the current official INEX metrics, there are also the metrics used

in previous years – inex_eval, inex_eval_ng, precision recall with user modeling,
tolerance to irrelevance –, as well as various other metrics that have never been
considered official. Kazai and Lalmas (2005) give a brief overview of various metrics
as of 2005.
Apart from the thorough retrieval task, there are measures for the other tasks

like focused, relevant in context, and best in context.
This incomplete list of evaluation measures illustrates that there is no clear con-

sensus on how to measure retrieval quality; new measures are presented at the INEX
workshops every year. The evaluations in the following sections are based on the
nxCG measure, because it is the official measure of INEX and the other measures
are not clearly superior for the purposes of this thesis.
In order to ensure consistent evaluation of results, INEX provides a Java imple-

mentation of the nxCG, ep/gr, PRUM, and EPRUM metrics as open source software,
EvalJ.1 EvalJ takes as input the relevance assessments that are available for down-
load and a submission file in the INEX format. This makes it possible to perform
evaluation outside the INEX schedule.

EvalJ is hard to integrate in other software, so I reimplemented the nxCG measure
for my retrieval system. I made sure that my version of the evaluation gives the
same results (although at a slightly higher numerical accuracy).

7.1.3 Test collections
The INEX workshops used a collection of IEEE computer society2 journal and trans-
actions articles through 2005, where later versions of the collection are supersets of

1http://evalj.sourceforge.net
2http://www.computer.org

107

http://evalj.sourceforge.net
http://www.computer.org

7 Evaluation of retrieval quality

12
10

7

16
81

9

65
9
38

8

number of
documents

7
56

9
63

8

10
71

3
73

6

52
56

2
49

7

number of
elements

2
92

1

2
92

5

24
1

mean length of a
document in tokens

17
6

17
8

12
57

distinct
element names

23
2
62

4

28
0
98

0

2
33

7
81

6

distinct
terms

Figure 7.2: Test collections statistics. The bars in each group are, from left
to right, the IEEE 1.4 collection (2004), the IEEE 1.9 collection (2005), and the
Wikipedia collection (2006). The token count excludes stop words.

earlier versions (new volumes were added). From 2006 on, a conversion of the En-
glish version of Wikipedia was used (Denoyer and Gallinari, 2006). The evaluations
in this thesis will be based on the collections from 2004, 2005, and 2006. Figure 7.2
gives an overview of various characteristics of the document collections.
For each year of the workshop, a new set of topics was created by the participants,

consisting of a longer description of the information need and a query in NEXI
format. The number of topics varied: in 2004, there were 40 CO topics (34 have
been assessed), in 2005, there were 40 topics (29 assessed), and in 2006, there were
130 topics (114 assessed). For my evaluations, I will only use content-only topics.

The assessment procedure has changed against the years: In 2004, the assessors
had to manually select both specificity and exhaustiveness on a scale from 0 to 2 for
each element in the recall base. In 2005, a highlighting approach was introduced;
the assessor used a virtual highlighter to mark relevant passages in the documents to
denote specificity. In the next step, the exhaustiveness had to be set for each element
as in 2004. From 2006 on, exhaustiveness was dropped from the assessments, only
the highlighting approach to selectivity was retained.

Note that I will use nxCG for the evaluations on the INEX 2004 test collection,
even though nxCG was not the official evaluation measure at the time. This is
possible because the data that was collected for the assessments is compatible, and
it makes the results presented in this thesis more consistent and comparable. The
results may not be as meaningful as the results for the other collections, but it is
still interesting to see differences of behavior compared to the 2005 results, which
are based on almost the same document collection.

7.2 Official INEX results

First, I will examine the official result of the two INEX workshops where submis-
sions based on the research presented in this thesis were submitted (2005 and 2006;
INEX 2007 results were not available in time). Keep in mind that the implementa-
tions differ somewhat from the descriptions in this thesis – they are earlier versions
described by Dopichaj (2006b) and Eger (2005). Although the evaluation only par-
tially applies to the current version, it is still important not to ignore the results; in

108

7.3 Parameter tuning for the base retrieval engine

contrast to the evaluations in the following sections, the implementation and chosen
parameters cannot possibly have been the result of tuning to the test collection.
From the INEX 2005 results, I can observe the following points:

• My submissions are consistently at the top for the first few result pages, al-
though the overall quality over the 1500 highest-ranked results is only mediocre
compared to the other contestants.

• Relative scores with “strict” interpretation of the relevance assessments are
lower, but still rather good.

• Pattern-based runs outperform the baseline runs (but not dramatically).

Overall, this matches my design goals and assumptions; the first few result pages
are the most important ones to the searcher, and this is precisely the area in which
my runs perform best.
My INEX 2006 results suffered from mediocre performance compared to the other

participants’ results. This was caused mainly by a bad choice of parameters for the
similarity function, the following sections will show that much better results can be
achieved using the same base retrieval engine.

7.3 Parameter tuning for the base retrieval engine

There are many similarity measures, both for traditional information retrieval and
for XML retrieval. In this section, I will examine how well a naïve approach to
XML retrieval, as introduced in chapter 4, works. For this, all elements are indexed
as if they were separate documents and the following similarity functions are used:
BM25 and Lucene similarity. For both of these similarity measures, I will tune the
parameters to suit XML retrieval; the default parameters are good for standard in-
formation retrieval, but will probably have to be adapted for this new scenario. The
best parameter combination will then be used as the basis for further evaluation.

7.3.1 Lucene similarity measure
The Lucene similarity measure gave good results at least in 2005. In this section,
I will evaluate two global weighting methods – element and document frequency –
and a parameterizable version of Lucene’s length normalization function:

• Standard length normalization:

lnormluc(d) =
1p

len(d)
(7.8)

• Standard length normalization with a constant value up to length l:

lnormconst(d) =
1p

max(len(d), l)
(7.9)

109

7 Evaluation of retrieval quality

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200

nx
C

G

cutoff length

2004
2005
2006

1/sqrt(x)

Figure 7.3: Lucene retrieval quality (nxCG@10), using document frequency. For
reference, a plot of the Lucene length normalization function is included in the
plot.

The following parameter combinations have to be tested, using lnormconst (for
0, lnormconst is effectively lnormluc):

{df, ef}| {z }
gf

×{0, 5, 10, . . . , 195, 200}| {z }
lnorm

In my INEX submissions, I used a non-linear adaptation of Lucene’s function
(Dopichaj, 2006b) – elements shorter than about 50 tokens basically get an RSV of
0. This length normalization function leads to inferior results in all my experiments
(in particular at higher ranks), so I do not include this version in my evaluation.

Tuning the length normalization is crucial to good performance, and what version
is the best depends on the document collection. As figure 7.3 shows, for the IEEE
collection, a soft threshold of 65 tokens yields the best results, whereas for the
Wikipedia collection, a lower value of about 50 is better. This can be explained by
the different typical lengths of the documents in the collections: IEEE articles are
much longer than Wikipedia articles, so the relevant parts are also longer (but this
might also be a side effect of the assessment procedure).

For INEX 2004, the results are significantly worse than the best official results;
it is unclear what the reason is. For INEX 2005, the Lucene similarity measure
can exceed the best official submission at rank 10 (my own submission also using
Lucene with a different length normalization function). For INEX 2006, the best
Lucene results are about 10 percent worse than the best submitted results.

110

7.3 Parameter tuning for the base retrieval engine

0 b 1
1

k1

5

(a) INEX 2004, element
frequency

0 b 1
1

k1

5

(b) INEX 2005, element
frequency

0 b 1
1

k1

5

(c) INEX 2006, docu-
ment frequency

Figure 7.4: Parameter tuning for BM25; the darkness of each field corresponds
to nxCG at cutoff rank 10. In each map, black corresponds to the maximum and
white corresponds to 10 percent more than the minimum. The horizontal axis
corresponds to b, from 0 to 1, and the vertical axis corresponds to k1, from 1 to 5.

The results for the different global weighting functions are close to one another.
This indicates that it does not matter whether document or element frequency is
used with the Lucene similarity measure.

7.3.2 BM25 similarity measure
For BM25, length normalization is controlled by the parameters b and k1. Permis-
sible values for b are in the range 0 . . . 1, where 0 means “no length normalization”
and 1 means “maximum influence of length normalization”. The larger k1 gets, the
closer the local term weight gets to the raw term frequency.
According to Spärck Jones et al. (1998), b = 0.75 and k between 1.2 and 2 work

well on the TREC data, but it is unlikely that these parameter combinations can
be transferred unchanged to XML retrieval. Theobald (2006) uses k1 = 10.5 and
b = 0.75, but the TopX approach is sufficiently different from mine to warrant
further exploration.
The following parameter combinations should be tested (the full range for b and

a reasonable range for k1):

{0.0, 0.1, . . . , 1.0}| {z }
b

×{1, 1.5, 2, . . . , 4.5, 5}| {z }
k1

Figure 7.4 shows the results for the three test collections. It is obvious that a
good choice of parameter b is much more critical than a good choice of k1. In
general, lower values of b work better than higher values, with the exception of
b = 0 (that is, no length normalization). Compared to the best parameter values
for traditional information retrieval (b = 0.75 and k1 = 1.2), the best value of b for
element retrieval is much lower (somewhere between 0.1 and 0.2), so the influence
of length normalization is reduced.

111

7 Evaluation of retrieval quality

Each parameter space has a global maximum; the parameters for this maximum
are close for the different test collections, but not identical. In particular, it is
surprising to see that the best parameters for 2004 and 2005 differ noticeably.

The reason is that in my usage scenario, length normalization also fulfills the
purpose of selecting the right result granularity (should a chapter or a paragraph
be ranked higher?). What happens is that for maximum length normalization
(b = 1), very short elements are pushed to the front of the result lists, typically
leading to a list of section titles or titles of cited works. This is obviously a bad
result. With length normalization completely disabled (b = 0), there is a strong
bias towards the longest elements, that is, complete articles or their bodies. For
values of b between the extremes, the results are much more balanced; they are a
mixture of sections, complete articles, and other elements. Although an occasional
title does occur in the top ranks, this is the exception rather than the rule and does
not do much harm. In fact, if all elements of fewer than ten terms are removed
from the results, retrieval quality drops dramatically.

The best choice for the global frequency function depends on the document collec-
tion: Element frequency is best for the IEEE collection, whereas document frequency
is better for the Wikipedia collection.

Using element frequency as the global frequency consistently leads to higher
results than using document frequency for the IEEE collection (2004 and 2005).
Although this is consistent with the original formula, this result is somewhat sur-
prising: Element frequency is not simple to interpret – terms that occur in deeply
nested elements have a higher element frequency than terms that do not.

The explanation lies in a peculiarity of the BM25 formula: For terms that occur
in more than half of all documents, the term weight wi is negative so that the
presence of these terms actually decreases the RSV:

wi = log
N − df(ti) + 0.5

df(ti) + 0.5
(7.10)

To circumvent this problem, the term weight is generally set to 0 if it is negative,
which means that these terms are treated as stop words.

In the IEEE collection, there are many terms that occur in more than half of the
documents, so they cannot contribute to the RSV. There are, however, no terms
for which the element frequency is high enough to obtain a negative weight, so this
particular problem does not occur.

One might argue that terms that occur so frequently are useless for retrieval, but
this is not necessarily the case for element retrieval: The terms “IEEE”, “volume”,
and “computer” basically occur in all documents, so they have no discriminatory
power at the document level. On the other hand, they may well be useful for
element retrieval. For example, if a user searches for “IEEE conferences”, elements
that mention both terms are likely to be relevant, but elements that only mention
“conferences” will have a high rate of false positives.

For the 2006 data, the behavior of element and document frequency is roughly
identical, with document frequency being slightly better. This discrepancy is some-
what puzzling: what characteristic affects this? In the Wikipedia collection, the

112

7.3 Parameter tuning for the base retrieval engine

0 b 1
1

k1

5

(a) INEX 2004
0 b 1

1

k1

5

(b) INEX 2005
0 b 1

1

k1

5

(c) INEX 2006 (docu-
ment frequency – ele-
ment frequency

Figure 7.5: Choice of global frequency for BM25. The heat maps show the dif-
ference between the results for element frequency and the results for document
frequency; each square corresponds to one combination of b and k1. White squares
denote no change or better results for document frequency, all other shades of gray
denote the degree of improvement when using element frequency.

topics of the documents are more diverse, so there are no terms (apart from stop
words) that occur in more than half of the documents, so the problem of negative
term weights does not occur. The only outlier in this respect is the term “0”, which
occurs in almost all documents’ header.
Figure 7.5 illustrates the effect of the global frequency for all tested combinations

of b and k1.

7.3.3 Comparison with the official submissions
I will compare the quality of the base retrieval engine with the maximum of all
official submissions to that year’s workshop. That is, for each rank, the nxCG value
averaged over all topics for each submission is calculated, and we use the maximum
as the comparison run; the resulting curve does not correspond to a real run, but
it gives us an indication of where the baseline stands with respect to the others.
Lucene results are excluded because they are exceeded in all cases by BM25 results.

From the INEX 2005 results, one can see that unmodified BM25 already yields
high-quality results, even compared to the official submissions. This is somewhat
alarming, as it shows that the methods tailored to XML retrieval fail to be better
than the general-purpose algorithms.
Further tuning resulted in the values presented in table 7.1. For INEX 2005, there

is a noticeable increase in retrieval quality, whereas for INEX 2006, the increase is
less pronounced. For INEX 2004, the optimum result of the base retrieval engine
is significantly worse than the best submitted run. This is surprising, considering
that the 2004 and 2005 collections basically use the same document collection.
It should be noted, however, that the assessment procedure has changed between
these rounds of INEX. Figure 7.6 shows the results for the 2005 and 2006 collections
compared to the maximum of the submissions for all ranks and shows that the good

113

7 Evaluation of retrieval quality

Parameters nxCG@10

Test collection b k1 gf base max

INEX 2004 0.08 1.5 ef 0.4669 0.5099
INEX 2005 0.20 1.0 ef 0.3368 0.3037
INEX 2006 0.18 0.8 df 0.4332 0.4294

Table 7.1: Best parameters and evaluation results for the different test collections.
In all cases, the Lucene similarity measure yielded worse results. The “base” column
displays the value for the base engine, the “max” column displays the maximum of
all official submissions in that year. The maximum from 2005 is my own submission.

quality at rank 10 is not completely isolated.
In a real-world scenario, there are usually no relevance assessments available, so

it is impossible to find the optimal parameter values. However, the values for the
2005 and 2006 test collections are close in magnitude although the collections are
very different; thus, one can assume that these values are good starting points for
other collections.

7.4 Evaluation of title-element exploitation

Now that the best baseline using plain BM25 has been established, I can examine
whether exploiting title elements (see chapter 6) can indeed improve retrieval qual-
ity. Because of the time needed to run the evaluation, it is infeasible to check the
complete parameter space for every variation of title detection and similarity adap-
tation. Thus, I will use the optimum parameter combinations from the previous
section for the evaluation (preliminary test indicated that the maximum retrieval
quality is achieved with the same parameters).

7.4.1 Analysis of potential

In order to find out whether small elements can indeed be helpful to improve re-
trieval quality, I will examine old INEX assessments. In contrast to the evaluation I
will present in the following sections, this analysis does not depend on any specific
retrieval algorithm; thus it gives a first indication of the potential of exploiting titles
without (much) interference of the baseline search engine.

Although I try to be independent of the search algorithm, I still need to make an
important assumption: The set of candidate results is only determined by keyword
matching; any element that does not include any of the query terms is not considered
as a result (but stemming is performed). Most search engines are based on this
assumptions, notable exceptions are search engines that use some form of query
expansion. In principle, it would be possible to perform the same experiments with
a preceding query expansion step, but it seems unlikely that the results would differ
significantly.

114

7.4 Evaluation of title-element exploitation

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100 1000

nx
C

G

rank

maximum
tuned

default

(a) INEX 2005, tuned is b = 0.2, k1 = 1. The base re-
trieval engine is better than the best submissions up to about
rank 100 (with the exception of the top ranks). Below that
rank, performance gets significantly worse, possibly due to
the pooling problems.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 10 100 1000

nx
C

G

rank

maximum
tuned

default

(b) INEX 2006, tuned is b = 0.18, k1 = 0.8. Although the
baseline does not quite reach the top status, it is close.

Figure 7.6: Two of the base BM25 runs compared with the maximum run (“max-
imum”). The BM25 run with b = 0.75 and k1 = 1.2 (“default”) shows what can
be achieved without parameter tuning and the “tuned” BM25 run shows the best
parameter combination for the test collection.

115

7 Evaluation of retrieval quality

R HHsHt

Figure 7.7: The sets of elements used in the analysis of potential: The relevant
elements R, the retrieved elements H, the retrieved section elements Hs, and the
retrieved section elements with matches in their titles Ht.

Thus, the following sets should give an indication of what can be expected of
exploiting title elements (see also figure 7.7):

• The assessments provide information about relevant elements for the queries
in the test collection, yielding the set of relevant elements R.

• Results H from a completely indexed collection.

• Results constrained to section elements Hs.

• Section elements with hits in title elements Ht; titles are determined by name-
based title detection.

Naturally, the candidate set for title elements is a subset of the complete candi-
date set, so it is not possible to get improved recall (indeed, recall can be expected
to get worse). This does not mean that recall will worsen in the actual retrieval
scenarios; the elements in Ht is merely intended to be placed higher in the result
list. On the other hand, if precision is improved – that is, if the fraction of relevant
elements is higher in Ht than in H –, this yields a good indication that the overall
principle is sound and can be exploited in search engines. To make sure that the
increase in precision is not simply because section elements have a higher chance
of being relevant than random elements, I will also compare to the set of hits in
section elements Hs.
The candidate sets were constructed as follows: For the complete candidate set,

all elements in the collection were indexed, a keyword-based search was performed,
and all elements with a non-zero score were included in the set. The candidate sets
exploiting small elements were created in two steps: First, a search on an index
including only the small elements was performed. Second, the title elements were
replaced by their parent section elements.

The precision was determined by dividing the number of relevant elements (that
is, elements with a non-zero exhaustiveness in the assessments) by the total number
of elements retrieved:

|Hx ∩R|
|Hx|

(7.11)

116

7.4 Evaluation of title-element exploitation

INEX 2004 INEX 2005 INEX 2006

Set Hx Relevant Precision Relevant Precision Relevant Precision

H 17,755 0.00264 12,631 0.01408 54,323 0.00673
Hs 4,362 0.00320 3,480 0.02228 8,050 0.00571
Ht 1,153 0.01752 721 0.04917 2,899 0.01896

Table 7.2: Precision average over all assessed topics. The count of relevant ele-
ments is |Hx ∩ R|, precision is |Hx∩R|

|Hx|
.

Table 7.2 shows that the average precision increases significantly. Sections with
hits in titles are more than five times as likely to be relevant for the 2004 data set,
more than two times for the 2005 and 2006 data sets. A per-topic comparison of
precision confirmed that the difference is indeed significant; with the exception of a
single topic for the 2005 data, all topics get a higher precision when sections with
hits in titles are retrieved.
Of course, these numbers do not actually say much about the retrieval quality,

but they show that matches in titles can indeed be useful hints to find relevant
sections. With the simple binary relevance scale, nothing is said about the degree
of relevance, and of course the sets are unordered. The exact effects on retrieval
quality can only be determined if the title detection is combined with adaptation
functions to obtain rankings to be evaluated.

7.4.2 Adaptation methods
First, I will examine the various adaptation methods, as introduced in section 6.3,
using name-based title detection. The adaptation methods introduced in chap-
ter 6 (simple, restrictive, dynamic, adding, and term-frequency-based) will be eval-
uated with various settings for the corresponding parameters, where applicable.
For simple and restrictive, the parameter o ∈ {1.1, 1.2, 1.3} is used, for dynamic,
o ∈ {0.1, 0.2, 0.3} is used (due to the different interpretation of o, these values result
in similar changes). For term frequency adaptation, I used k = 1.
There are two parts of the results that are important regarding the result quality:

• The mean nxCG value at rank 10, averaged over all topics.

• The number of topics where the nxCG value at rank 10 is better or worse
compared to the baseline.

Both parts are important to evaluate the changes introduced. If a single topic is
worse by a large margin and all other topics are slightly better, the overall average
may be the same although there is a drastic difference.
Table 7.3 shows the results for the retrieval quality as measured by the nxCG

measure at rank 10. For the 2004 test collection, every change appears to de-
crease retrieval quality; at best, it stays the same as for the baseline. Likewise,
no noticeable improvement of retrieval quality can be seen for the 2006 collection;

117

7 Evaluation of retrieval quality

Adaptation method o nxCG@10

best submission 0.5099
base 0.4669
tf 0.4655
restrictive 1.1 0.4603
dynamic 0.1 0.4600
dynamic 0.2 0.4582
restrictive 1.2 0.4565
restrictive 1.3 0.4470
simple 1.1 0.4445
dynamic 0.3 0.4351
simple 1.2 0.4273
simple 1.3 0.3938
adding 0.3935

(a) INEX 2004

Adaptation method o nxCG@10

restrictive 1.2 0.3460
tf 0.3436
dynamic 0.1 0.3433
restrictive 1.1 0.3429
restrictive 1.3 0.3416
dynamic 0.2 0.3397
base 0.3368
simple 1.1 0.3355
dynamic 0.3 0.3332
simple 1.2 0.3153
simple 1.3 0.3079
best submission 0.3037
adding 0.2701

(b) INEX 2005

Adaptation method o nxCG@10

tf 0.4350
base 0.4332
best submission 0.4294
dynamic 0.1 0.4278
restrictive 1.1 0.4273
restrictive 1.2 0.4194
simple 1.1 0.4159
dynamic 0.2 0.4138
restrictive 1.3 0.3985
dynamic 0.3 0.3968
simple 1.2 0.3911
simple 1.3 0.3618
adding 0.3242

(c) INEX 2006

Table 7.3: Retrieval quality for the different adaptation methods, using name-
based title detection. Also listed are the base result and the best official submission
result. Results are sorted according to the nxCG measure, with best results at
the top of the lists. Obviously, there are few combinations of adaptation method
and parameter that are better than the base result. Apparently, exploiting title
elements does not work for the given retrieval methods.

118

7.4 Evaluation of title-element exploitation

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0 25 50 75 100

ch
an

ge
 c

om
pa

re
d

to
 b

as
el

in
e

(in
 p

er
ce

nt
)

number of changed topics (in percent)

(a) INEX 2004

-60

-50

-40

-30

-20

-10

 0

 10

 0 25 50 75 100
ch

an
ge

 c
om

pa
re

d
to

 b
as

el
in

e
(in

 p
er

ce
nt

)
number of changed topics (in percent)

(b) INEX 2005

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 25 50 75 100

ch
an

ge
 c

om
pa

re
d

to
 b

as
el

in
e

(in
 p

er
ce

nt
)

number of changed topics (in percent)

(c) INEX 2006

Figure 7.8: Change of retrieval quality against percentage of changed topics. Each
point stands for a combination of title detection strategy and adaptation method.
Points above the dashed line indicate an improvement over the baseline, points
below it indicate a reduction of retrieval quality.

term-frequency-based adaptation yields a minuscule improvement that can proba-
bly be attributed to random effects. Only for the 2005 test collection, there is an
improvement that might be significant – restrictive adaptation with o = 1.2 yields
a 2.7-percent improvement over the base result. This change, however, is probably
too small to actually increase user satisfaction (if it is even noticed).
Among the adaptation methods, adding and simple adaptation generally lead to

reduced retrieval quality, and term-frequency-based adaptation is the adaptation
method with the best results if all three collections are considered.
Figure 7.8 shows that parameter combinations with a large number of changed

topics (close to 100 percent) lead to a significant degradation of retrieval quality in
the given scenario. This appears to imply that for some of the topics, nothing can
be gained if titles are exploited. Of course, this does not mean that the base results
are already perfect for these topics, but it is a strong indication that other means
than title exploitation are needed to improve them.
Average nxCG values over all topics are certainly an important measure, but it

is also important to see how many topics were improved or degraded. Figure 7.9
shows that a clear correlation only exists for the INEX 2006 data; for the INEX 2005
data, there is clearly no correlation.

7.4.3 Section-based evaluation
One possible cause of the lack of improvement is that section results are only a small
subset of the result set. Only sections are affected by exploiting title elements, so
if there is no section element close to the top ten, nothing will change. To see if
this is the case, I will now examine results where all elements but section elements
have been removed; this evaluation will show whether at least sections alone are
reordered usefully by exploiting titles.
Figure 7.10 shows that this is indeed mostly the case. Points above the dashed line

119

7 Evaluation of retrieval quality

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

-12 -10 -8 -6 -4 -2 0

nx
C

G
@

10

better-worse

(a) INEX 2004

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

-10 -8 -6 -4 -2 0 2

nx
C

G
@

10

better-worse

(b) INEX 2005

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

-50-45-40-35-30-25-20-15-10 -5 0 5

nx
C

G
@

10

better-worse

(c) INEX 2006

Figure 7.9: Correlation between average retrieval quality at rank 10 and the
difference between improved and degraded topics. A horizontal coordinate of 2
means, for example, that two more topics were improved than were degraded. The
dashed line indicates the baseline retrieval quality. There appears to be a strong
correlation for 2006. For 2004, the correlation is less clear, and for 2005, there does
not appear to be a correlation.

indicate that a given combination of adaptation method and parameter improved
the results for section-based retrieval. Most interesting are the top-left and bottom-
right sections of the diagrams. Points in the top-left section are points that lead to
worse retrieval quality if all results are considered, but to better retrieval quality
when only sections are considered, and the converse is true for bottom-right points.
For all collections and adaptation methods, there is only one combination that
falls in the bottom-right section: restrictive adaptation with o = 1.1. Many more
combinations are now improvements.

Overall, an improvement of retrieval quality is now possible for all test collections:
For 2006, a 3-percent improvement is achieved using term frequency adaptation,
for 2005, a 7.7-percent improvement is achieved using dynamic adaptation with
o = 0.3, and for 2004, a 4-percent improvement is achieved with simple adaptation
and o = 1.1. Overall, better results are possible for all collections using simple
adaptation and o = 1.1 (even if not the maximum).

This shows that the sections are reordered to yield a better result, but there
are non-section elements high in the result lists that are more relevant than the
sections.

7.4.4 Stability
Another interesting aspect is the stability of the results. So far, all evaluations were
based on nxCG at rank 10; if the methods and the evaluation were stable, then the
relative order of the adaptation methods at rank 20 should be the same (even if
the absolute nxCG values change). However, as figure 7.11 shows, this is not the
case. Only for the 2006 test collection, there is a reasonable correlation between the
scores at these ranks, for the other test collections, the behavior is far from clear.
Again, the overall improvement is best for 2005 data: with one exception, the

120

7.4 Evaluation of title-element exploitation

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0.38 0.4 0.42 0.44 0.46 0.48

on
ly

 s
ec

tio
ns

all results

(a) INEX 2004

 0.24

 0.25

 0.26

 0.27

 0.28

 0.27 0.29 0.31 0.33 0.35

on
ly

 s
ec

tio
ns

all results

(b) INEX 2005

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.32 0.34 0.36 0.38 0.4 0.42 0.44

on
ly

 s
ec

tio
ns

all results

(c) INEX 2006

Figure 7.10: Comparison of all results versus only section results, based on
nxCG@10. Each point represents a combination of adaptation method and pa-
rameter; the base result is at the intersection of the lines.

 0.35

 0.37

 0.39

 0.41

 0.43

 0.38 0.4 0.42 0.44 0.46 0.48

nx
C

G
@

20

nxCG@10

(a) INEX 2004

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.26 0.28 0.3 0.32 0.34 0.36

nx
C

G
@

20

nxCG@10

(b) INEX 2005

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.32 0.34 0.36 0.38 0.4 0.42 0.44

nx
C

G
@

20

nxCG@10

(c) INEX 2006

Figure 7.11: Comparison of retrieval quality at ranks 10 and 20. The base result
is at the intersection of the lines; points to the top right of this point are better
both at rank 10 and at rank 20. If the results were stable, the points should form
a straight line; clearly, this is not the case.

121

7 Evaluation of retrieval quality

Percentiles

Collection Median 75th 95th Maximum

INEX 2004 (st) 3 4 6 44
INEX 2005 (st) 3 4 7 44
INEX 2006 (title, name) 2 2 4 6,862

Table 7.4: Statistics of the lengths of title elements in terms (excluding stop
words). In general, titles are shorter than 8 terms, with few exception. The improb-
able maximum value for the Wikipedia collection (2006) is caused by a conversion
error.

adaptation methods that are better at rank 10 are also better at rank 20, but the or-
der of them changes. Furthermore, the largest improvement at rank 20 (4.7 percent)
is achieved by the simple adaptation method with o = 1.2, which was previously
6.4 percent worse than the base retrieval engine.
All in all, the results are too inconsistent to draw any definite conclusions, but

no major improvement with any of the adaptation methods can be observed for the
INEX test collections.

7.4.5 Title detection strategies
From the results, one can see that exploiting titles yields a small increase in retrieval
quality using the best parameters for the base retrieval engine. This improvement
is probably too small to be noticeable to the end user.

Even so, I will now examine the behavior of the length-based title detection
strategy. In other settings, the exploitation of title elements has shown its potential,
so it is useful to find out whether a schema-independent approach to title detection
works.

First, the length threshold has to be determined. Titles are typically short; ta-
ble 7.4 shows what lengths occur in the collections. For all test collections, 95 per-
cent of all title elements are at most seven terms long (excluding stop words), with
a median of two or three. Thus, I will test the length thresholds 2, 4, 6, 8, and 10.

Surprisingly, length-based title detection outperforms name-based title detection
in many cases. The difference is marginal and certainly not statistically significant;
however, it shows that length-based title detection can indeed be a viable alternative
to name-based title detection.

The differences in retrieval quality compared to name-based title detection can
be explained by the inevitable errors made by the heuristic. Table 7.5 shows that
length-based title detection does not indeed detect only titles; in fact, for the IEEE
collection, less than a quarter of the elements detected as titles are in fact st el-
ements. However, with the exception of extremely short paragraphs (about 12 to
13 percent), all top-rank elements are some form of highlighting (bold, italics, the
title of the journal ti). For the Wikipedia collection, title detection works consid-
erably worse: The actual title element is only on rank 2, with about 13 percent

122

7.4 Evaluation of title-element exploitation

INEX 2004 INEX 2005 INEX 2006

Rank Element Rel. freq. Element Rel. freq. Element Rel. freq.

1 st 0.22 st 0.23 collectionlink 0.33
2 p 0.13 p 0.12 title 0.13
3 b 0.11 b 0.10 unknownlink 0.12
4 it 0.09 it 0.09 item 0.08
5 ti 0.07 ti 0.07 outsidelink 0.06

count 82 82 92

Table 7.5: Element names detected as titles with length-based title detection,
threshold 4. Row “count” is the total number of distinct element types detected as
titles.

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

ch
an

ge
 in

 p
er

ce
nt

length-based detection compared to name-based detection
name-based compared to baseline

Figure 7.12: Relative change of retrieval quality of length-based title detection
compared to name-based title-detection (only INEX 2004). Each point stands for a
combination of adaptation method and length threshold. The situation is similar
for 2005 and 2006.

relative frequency; three out of the top five are some form of link elements, which
together account for more than half of all detected titles.
These numbers are, of course, not a direct indication of retrieval quality: if the

elements wrongly detected as titles belong to an element with a low RSV, their
detection as a title will not do much harm.
Figure 7.12 shows that using length-based title detection does not affect retrieval

quality much for most adaptation methods, no matter what length threshold is
used. The exception is the additive adaptation method; this method, however,
already leads to bad results. One might think that the closeness of name-based and
length-based title detection results from the fact that name-based title detection
does not change the results very much. However, as the figure shows, the difference
between length-based and name-based title detection is small even if there is a large
difference between name-based title detection and the base result.

123

7 Evaluation of retrieval quality

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 2 4 6 8 10

nx
C

G
@

10

threshold

tf

add

simple 1.2

(a) INEX 2004

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 2 4 6 8 10

nx
C

G
@

10

threshold

dynamic 0.1

add

simple 1.3

(b) INEX 2005

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 2 4 6 8 10

nx
C

G
@

10

threshold

tf

add

(c) INEX 2006

Figure 7.13: The influence of the length threshold on retrieval quality. Every line
represents an adaptation method and parameter.

The exception is addition-based similarity adaptation; if this method is used, re-
trieval quality drops significantly (more than 10 percent). However, this adaptation
method does not work at all anyway, so it does not matter much that bad results
are made worse.

The influence of the length threshold on the result quality is interesting, as fig-
ure 7.13 shows. In general, lower thresholds work better for adaptation methods
that degrade results (in particular the addition-based adaptation method). This is
unsurprising, because the lower thresholds match fewer elements, so the result is
changed less.

The INEX 2005 test collection differs from the other collections in that it has a
pronounced peak at length threshold 4. Considering that this is the only collection
on which title exploitation with name-based title collection really worked, this value
appears to indicate that there is indeed a best value for detecting titles. Naturally,
this value is likely to be collection-specific.

7.4.6 Per-topic evaluation

The results show that title exploitation does not always work on the given test
collections. To see why that is, I will now look at two selected topics where this
method degraded retrieval quality.

124

7.5 Discussion

One topic where exploiting title elements does not work at all is topic 205 from
2005. The information need is stated as follows:

I am writing an essay on the influence of new media icon Marshall
McLuhan on digital technologies. I’m seeking information describing
how McLuhan’s views have influenced current digital technologies. To
be relevant, a retrieved item should discuss some aspect of Marshall
McLuhan’s visionary ideas or famous one-liners in the context of cur-
rent digital technologies. Retrieved elements that merely cite some of
McLuhan’s work are non-relevant, as are elements that discuss ideas not
originating from McLuhan.

The corresponding query is “marshall mcluhan”, and it is clear that these query
terms are unlikely to occur in titles. If someone discusses McLuhan’s works, it will
most likely occur in a section like “Related work”. Thus, it is no surprise that title
exploitation does not help in this case. In fact, it even hurts because of bogus
matches in sections about “marshaling” (they match because of stemming).
Another topic that does not work at all is topic 291 (INEX 2006). This topic’s

content-only query is “Olympian god or goddess”, but the information need is really
“I want some figures showing a representation of an Olympian god or goddess”.
It is no surprise that the results for this query are bad, because only figures are
considered relevant. Exploiting title elements is likely to degrade retrieval quality
because it pushes sections to the front, and sections are definitely irrelevant. This
information need is really not suitable for a content-only query.
Thus, there are many reasons why title exploitation may fail. The query may

demand elements that are not sections (topic 291), or it may be that the query terms
are unlikely to occur in titles (topic 205). In many cases, it is simply the preference
of the searcher that determines whether title exploitation may work. Some searchers
regard sections as a good retrieval units, whereas others favor complete articles or
paragraphs. Unfortunately, it appears to be impossible to predict from the query
alone whether title exploitation may work, so the only feasible solution is to let the
searcher decide.

7.5 Discussion

It is surprising to see how well a simple adaptation of standard information retrieval
techniques can work for XML retrieval. Simply indexing all elements as if they were
documents and applying BM25 with the right parameters can lead to better results
than the best official submissions. One should keep in mind that the optimal pa-
rameters were determined after the fact by evaluating a large range of combinations
on the assessed test data; the real submissions do not have the advantage of this
fine-tuning.
On the other hand, the best parameters are very similar for the INEX 2005 IEEE

collection and the Wikipedia collection, and minor deviations from the optimal
results do not decrease retrieval quality much. Considering that these collections
are very different from one another, it seems plausible to assume that using b = 0.2

125

7 Evaluation of retrieval quality

and k1 = 1 will work reasonably well in other situations. It is surprising that the
best parameters are different for the INEX 2004 collection, which is almost identical
to the 2005 collection. It is not clear what the reason is, but it should be kept in
mind that I used an evaluation measure that was not official back then.

Name-based patterns have shown their potential as an addition to a language
modeling retrieval system, as demonstrated by Ramírez et al. (2006a,b) on the
INEX 2005 data. In previous publications, I have demonstrated that heuristic ap-
proaches, too, can improve retrieval quality (Dopichaj, 2006b, 2007a,b) on the same
test data.

The results in the context of this thesis, however, indicate that these findings do
not apply in all circumstances: Although small elements can improve the retrieval
quality a lot if they are applied to medium-quality baseline methods (Ramírez et al.
(2006a) report a maximum nxCG value of 0.3 at rank 10, whereas the base method
in this thesis exceeds 0.33), they offer little benefit if the baseline is well-tuned.

On the INEX 2005 collection, a maximum improvement of the nxCG value of
about 3.7 percent can be observed, using length-based title detection with a thresh-
old of 8 and a boost factor o = 1.1. This improvement is presumably not noticeable
to a user. In any event, the results are not statistically significant at any acceptable
p level. For 2004 and 2005, the number of topics is too small to make any definite
statements. For 2006, there are barely enough topics for a useful evaluation, but
here, the results are far from convincing; one should keep in mind that not all of
the assessed topics are actually useful for exploiting title elements.

The situation is slightly better if section-based retrieval is performed, but this
only shows that sections are not the best retrieval results for the test collections at
hand.

The results clearly do not show that the retrieval enhancements presented in
this thesis can improve retrieval quality significantly. However, the evaluations
cannot be considered a final indication of the potential of these approaches. In the
remainder of this section, I will discuss in how far the choice of the test collections
could affect the results and briefly describe the characteristics of an evaluation setup
that better matches the intended use cases.

7.5.1 Suitability of the test collection

The evaluation shows that the proposed enhancements do not lead to a significant
increase of retrieval quality. Keep in mind, however, that the test collections and
evaluation metrics that are used at the INEX workshops do not entirely reflect the
intended application area, and other potential problems may affect the results:

• Both the IEEE articles and the Wikipedia articles are rather short and self-
contained so that it is unlikely that a fragment of such an article is more
relevant than the article itself.

• The two collections differ in so many aspects that it is impossible to attribute
the difference in retrieval quality to a single difference.

126

7.5 Discussion

• The assessment process is not the same in different years, which makes it hard
to do a comparison.

• Relevance assessments are generally subjective; in the cases where several
people assessed the same topic, the assessments were quite different (Trotman,
2005; Pehcevski and Thom, 2006).

• Runs that are evaluated, but were not included in the pooling process may
suffer if they retrieve elements that are not in the pool. Whereas this effect has
been shown to be minimal in the context of TREC (Zobel, 1998), no study has
been made in the context of INEX, but problems have been reported (Trotman
et al., 2007a).

• The assessment interface differs from what a user of the retrieval system
would see; it does not use ranking and is document-based, so the relation to
real-world scenarios is unclear.

The last point needs further explanation: The unranked presentation of the re-
sults is inherent to the pooling approach that has successfully been used for tradi-
tional information retrieval evaluation for years. In the context of element retrieval,
however, there is the problem that the pool does not reflect the retrieval results.
Even if the pooled results only contain a single paragraph from a document, the
assessor must assess the complete document. This in itself is a minor technical prob-
lem, but it seems likely that the assessment can be different from the assessment
that would be obtained if the isolated paragraph were presented; if the paragraph
is shown in the context of the document, the assessor may – consciously or not –
use this context to rate the element’s relevance.
It is clear that even the INEX organizers and participants have not yet reached

consensus on how to evaluate the effectiveness of XML retrieval systems: Through
the years, various metrics were adopted and abandoned, and even the basic retrieval
tasks for the ad-hoc track are far from being fixed (INEX 2007 dropped the thorough
task, which previously was the only task that had been done in every year). This
is not avoidable, considering that XML retrieval is still a relatively young research
area, but the lack of clear definitions makes it hard to do meaningful comparisons
between systems.
In general, it is questionable whether the results from batch evaluations – as

done in the INEX ad-hoc track – contribute to user satisfaction. Hersh et al. (2000)
compare several systems’ performance on TREC data in batch and interactive ex-
periments and come to the conclusion that there are significant differences in the
results. In XML retrieval, the differences are likely to be even more pronounced,
because the assessment user interface displays the results in a different fashion than
an XML retrieval system would – the element results are shown in the context of
the complete document. This is likely to affect the assessment: the users can take
the surrounding material into account when judging the relevance of an element.
Buckley and Voorhees (2000) discuss what it takes to draw conclusions with

a sufficiently low error rate. The retrieval scenarios in this thesis are closest to

127

7 Evaluation of retrieval quality

their notion of web retrieval – it is very difficult to know how many relevant doc-
uments exist in total, so precision at a cutoff level of 10 to 20 should be used.
In this scenario, precision is replaced by nxCG, but the reasoning is the same.
To achieve a reasonable error rate, they suggest using 100 queries, which implies
that only INEX 2006 data can be used to obtain reasonable conclusions (2004 and
2005 together have only 63 queries); unfortunately, the IEEE collection more closely
matches the assumptions made in this thesis.

Overall, even document-based retrieval evaluation has problems, despite having
a rather long tradition. For INEX, the problems are amplified by a number of new
problems, partly specific to XML, partly due to the resources being much more
limited than for TREC. Evaluations in INEX data are certainly far from worthless,
but they should be interpreted with care.

7.5.2 Design of a more suitable experiment
The current INEX test collections are not ideal for evaluating the effects of title
elements, and no suitable test collection exists at the moment. Thus, a new test
collection will have to be designed for more meaningful evaluation, and the following
aspects have to be considered:

• The test collection should consist of larger works whose sub-parts are un-
derstandable in isolation, like collections of technical books. Such collections
actually exist (Dopichaj, 2006a), but they are of commercial value, so it will
be hard to get access to them for research.

• The authors of the documents in the test collection should take care to choose
meaningful titles and generally use the markup sensibly. For commercial
books, this will usually be ensured by the editors.

• The users should have enough background knowledge to understand isolated
chapters or sections from the document, and their queries should be focused
enough that a single section can satisfy the information need.

• The evaluation process should reflect the satisfaction of the user based on the
results. Thus, it should take into account the way results will be presented
to the user.

The experimental setting described here is probably infeasible at the moment,
but it might eventually be possible to incorporate this in INEX.

7.6 Summary

This chapter described the basics of XML retrieval evaluation and applied the eval-
uation methods to my base retrieval engine and the extended version. The results
are somewhat surprising: contrary to previous published results, exploiting title
elements does not lead to a significant improvement of retrieval quality (although

128

7.6 Summary

minor improvements can be seen). This is mostly caused by the good base re-
trieval engine – it is astonishing how good the results are if standard information
retrieval techniques are applied. Furthermore, I have discussed various reasons why
evaluations based on the INEX test collection may not be entirely meaningful in
the context of this thesis and described how a more suitable experiment could be
designed.

129

7 Evaluation of retrieval quality

130

8 Using background knowledge for
content-and-structure search

“You see I have a lot of special knowledge
which I apply to the problem.”

(A Study in Scarlet)

Although the main topic of this thesis is content-oriented XML retrieval, this chapter
briefly discusses preliminary approaches to content-and-structure XML retrieval. In
particular, I focus on the application of background knowledge about the document
collections: If further knowledge about the schemas is available and it is feasible to
perform manual modeling of similarity measures, improved retrieval quality can be
expected. First, this chapter discusses potential uses for specialized similarity mea-
sures in section 8.1 – in particular, similarity measures from case-based reasoning
– and then describes a concrete example on how a specific similarity measure can
be applied to XML retrieval in sections 8.2 and 8.3. Section 8.4 then describes why
the available test collections are not suitable for a quantitative evaluation.

8.1 Specialized similarity measures

So far, this thesis has focused on the document-centric parts of XML documents –
after all, they are the most important part of the digital libraries that are the main
use case for this thesis. However, even texts typically have data-centric parts, for
example the information about the author and the publisher, or even information
items in ordinary text, contained in special markup.
Most XML retrieval engines only use the XML documents themselves and possibly

their schemas for indexing and retrieval, because this information is readily avail-
able. If, however, the users of the system can provide further background knowledge,
this could be used to better match the users’ concept of similarity (Dopichaj, 2004):

• The retrieval engine can use explicit knowledge about the application domain.

• It can collect data on the system usage to adapt itself to the user base as a
whole or to specific users.

8.1.1 Current state of XML retrieval
The various standards for describing the structure of XML documents – for example,
DTD, XML Schema, and Relax NG – provide means to restrict the structure of valid

131

8 Using background knowledge for content-and-structure search

XML documents. For example, they allow the specification of permitted parent-
child relationships of element types or what type of character data a given element
may contain (for example, free text, integer, or date).

These descriptions are merely syntactic, however: They only specify the structure
and permitted data types, but no meaning. This is enough information for parsing
an XML document, but for assessing the similarity of documents and queries, it can
be important to know whether an integer is a person’s age or his weight.

Most of the current XML retrieval engines, including the one presented in this
thesis, have virtually no provisions for using background information: They either
regard all “textual” XML contents – even if they are specified to be a number by
the schema – as a sequence of tokens and compare them using information retrieval
techniques, or they have different methods of similarity calculation for the schema-
specified data types.

8.1.2 Applying CBR similarity measures to XML retrieval
The XIRQL query language (Fuhr and Großjohann, 2001), an extension of the XML
Query Language (XQL), goes further than that: It introduces data types and cor-
responding vague predicates for calculating similarity at the element level. These
low-level similarities are then propagated upwards in the document tree by aug-
mentation.

These concepts resemble the concept of similarity measures from (structural)
CBR (Lenz et al., 1998; Richter, 2003). Structural CBR is based on structured
data in attribute–value form and applies the local-global principle to calculate ob-
ject similarity: First, the similarities of the objects’ details are calculated using
local similarity measures – corresponding to vague predicates –, and the results are
combined into a global similarity for the objects using amalgamation functions –
comparable to augmentation.

The CBR community has considerable experience in creating and refining simi-
larity measures, hence it is worthwhile to transfer these techniques to the field of
semi-structured retrieval. The following list highlights a few research results that
are worth considering:

• Similarity measures for many data types and application domains have already
been developed.

• Basic building blocks and methods for developing new similarity measures are
available.

• Methods for learning local similarity measures from user feedback have been
developed (Stahl and Gabel, 2003).

Despite the striking parallels, there are differences that have to be considered
before these techniques can be applied to XML retrieval. For example, the structure
of typical XML documents is less rigid than in structural CBR, which poses the
problem of selecting the proper local similarity measure for an element based on
context. This might be achieved by specifying XPath expressions for selecting

132

8.2 Generalizing content-and-structure queries

similarity measures (for example, //person/age versus //planet/age), but how broad
or narrow these paths should be needs further examination.
In summary, CBR has a lot to offer for improving XML retrieval, but further

research is needed in order to integrate the techniques seamlessly into the existing
XML retrieval engines. In the remainder of this chapter, I will discuss a specific ex-
ample of a CBR similarity measure that can be applied to XML retrieval (Dopichaj,
2005).
Many existing approaches use the XML markup to some extent. Markup can

be used at several levels in an XML document schema: Block-level markup can be
used to embed metadata (like authors’ names) and to represent the structure of
the document; examples include body in (X)HTML and section in DocBook (Walsh
and Muellner, 1999). Inline markup is used on single words or (short) phrases to
convey the meaning or intended representation of the marked-up contents.
Inline markup can be useful for indexing and similarity calculation, because it

may hint at the correct way to interpret an element’s contents; making good use of
inline markup is the main focus of this chapter.

8.2 Generalizing content-and-structure queries

This section will motivate why there is a need to make better use of inline markup
in content-and-structure XML retrieval. I do this by providing several example
scenarios that are inadequately supported by the existing query languages and
retrieval engines. The context of all scenarios is the collection of Linux Howto
documents collected by the Linux Documentation Project (TLDP)1. The documents
are marked up in DocBook, an XML- (and SGML-) based markup language for the
creation of computer-related texts.

Example 1 Adam does not know the details of DocBook markup, but he can dis-
tinguish various basic types of search terms. When he searches for information
about the command shell bash, he should be able to specify that the word bash is
only relevant if it is used as a technical term; in particular, it is of no interest if
“to bash” occurs in normal text.

Example 2 Betty knows DocBook well, but she is interested in a higher level of
abstraction, because she knows that any of several element types might contain the
relevant text. For example, when she searches for information about save, she
is interested in commands and menuitems (among others), but not on hints about
saving paper.

The users in these examples would benefit from a level of detail between simple
keyword-based search and complex XML path queries. Typical query languages
do not support this intermediate level: Either they are purely keyword-based or
they require detailed knowledge of the relevant tag names, like XIRQL, XQuery, and
NEXI.
1http://www.tldp.org

133

http://www.tldp.org

8 Using background knowledge for content-and-structure search

Example 3 Charlie has performed a search and found a document fragment that
almost, but not quite, satisfies his information need. He proceeds to search for
similar documents.

No major XML retrieval engine directly supports documents as queries. It is
possible to transform the document to a query, but this will lead to one of two
problems:

• The converted query is too specific and matches only the original document
(if the markup is converted to XPath constraints); this can easily happen if
the input document is short and contains detailed markup.

• The converted query is too general so that the semantic information contained
in the markup is lost.

What is needed for good results in this example is a retrieval engine that supports
some form of fuzzy element matching.

Example 4 Book author Dorothy wants to mention the shell bash in her text, but
she is not sure whether productname or application is the appropriate markup.

Given the wealth of elements provided by DocBook, it is not surprising that the
semantics of some elements are very similar, so it is frequently hard to choose.
Another problem lies in the authors’ laziness or less than perfect knowledge of Doc-
Book: An examination of the Linux “Howto” documents revealed that technically
incorrect markup is fairly common. Even the DocBook reference concedes that this
problem exists: “Emphasis is often used wherever its typographic presentation is de-
sired, even when other markup might theoretically be more appropriate.” Because
of this, retrieval engines should support approximate matching of elements.

Example 5 Eric considers the amount of markup necessary for something as sim-
ple as command-line input to be excessive and omits all but the top-level tags.

This is a real problem at least in the Linux Howtos; the reason for this ‘lazy’
markup is probably the high number of semantic markup options available to the
author that cause work without much apparent benefit (the rendered presentation
might not change anyway). It is unrealistic to expect the retrieval engine to recon-
struct the missing elements, but it can make sure that equivalent fragments with
complete and incomplete markup compare almost equal.

8.3 Element relationship

In order to address the problems mentioned in the previous sections, I introduce
the concept of element relationship which allows us to partially substitute elements
with other, similar elements in the retrieval process.

The first two examples from the previous section illustrate that searchers need a
level of abstraction above that of element names: In both cases, the searchers were

134

8.3 Element relationship

symbol structname classname

source code

computer item

. . .

Figure 8.1: Gradual generalization when searching specific element types.

willing to supply details on the markup structure, but not at that level of detail.
It seems reasonable to form groups of related tags and offer an input field for each
of them. The number of groups should be small, because otherwise it is still too
complicated. For DocBook, the following list might be a reasonable starting point:

• Computer-related text (for example, user input, program output and listings)

• Emphasized text (for example, text marked as emphasized, keywords and
index terms)

• Metadata (for example, author and revision information)

• “Normal” text (everything else)

These categories are not necessarily free of overlaps, but as later sections will
show, this poses no problem and can indeed be used to our advantage. The result
is an interface that is still usable without having to learn a complex query language,
but offers more power than simple keyword-based languages.
If an existing document is used as a query (“more like this”), the query obviously

contains elements instead of categories. Due to the problems with ambiguous or
misused markup, searching for element contents only in elements of the same type
may lead to omitting many good matches. On the other hand, simply searching for
the contents in all text contents in the documents, no matter what markup is used,
sacrifices precision.
In this case, it is useful to gradually generalize the element, that is, matches

contained in the same type of element receive the highest score and going up in
a hierarchy of categories reduces the score. Figure 8.1 illustrates this principle:
A search for text marked up with classname would first search all classname ele-
ments, then (at reduced score) all source code (symbol, structname, . . .), then all
computer items, and so on.

8.3.1 Facets of element similarity
The question that arises at this point is: What can the element grouping be based
on? There is no single aspect that can be used in isolation to calculate the similarity
of two element types. Instead, there are several, somewhat related options:

135

8 Using background knowledge for content-and-structure search

Tag names. Ideally, element names should convey their meaning without any fur-
ther information; XXL (Theobald and Weikum, 2002) makes this assumption
and uses a separate ontology to relate these names. In my experience, mean-
ingful names (that is, names that correspond to unabbreviated words) for
XML tags are the exception rather than the rule. Very often, cryptic abbrevi-
ations like qandadiv from DocBook or st from the IEEE collection are used, and
considering that even humans have problems interpreting these names with-
out further information, it seems unrealistic to expect computers to manage
that task.

Syntactic restrictions. XML schema languages like DTD, XML Schema, or Re-
lax NG provide provisions for defining the syntactic structure of the documents
in that schema, in particular the permitted nesting of elements. In DocBook,
for example, the element copyright may only contain the elements holder and
year. This information is easily parsable, but its use for the ERG is limited:
In most cases, either all inline elements are allowed as sub-elements or none.

Semantics. Considering the previous remarks, it appears to be necessary to use
further information to establish semantic relations between element types,
for example, grouping related element types (see figure 8.1). This informa-
tion is typically available in the form of documentation aimed at authors of
documents, but actually making use of that information can be very time-
consuming.

Contents. If a significant number of documents is available, one can use statistical
methods based on the contents of the XML elements. One simple approach
would be to use statistics of character classes like upper/lower case letters,
digits, etc. to differentiate the element categories; for example, UNIX paths
typically contain a disproportionate number of slashes (“/”). More sophisti-
cated approaches could use the words both in the element and in its context
in order to obtain classifiers.

Visual appearance. Normally, document-centric XML is meant to be rendered for
presentation to the user. The number of semantic inline tags typically exceeds
the number of available formatting options of the output format, so many
tags are represented in the same way. While much of the semantics contained
in the markup is lost, the mapping is not arbitrary: Even though several
unrelated tags might be represented in the same way, related tags usually
have the same formatting. In DocBook, for example, the computer-related
entities like filenames, computer input/output, and environment variables are
all likely to be rendered in a fixed-width font. The transformation from XML
to the rendered representation can be specified in XSLT style sheets.

Each of these aspects can be used as the basis for a similarity measure comparing
two elements. Instead of creating a similarity matrix containing the similarities of
all pairs of elements, a more compact representation that it is comprehensible to a
human reader would be useful. Reconsidering the examples, one can see that some
form of categorization (with overlapping categories) would be most useful. The

136

8.3 Element relationship

number of elements in DocBook (and most other XML-based languages) is too high
for a single level of categories to be sufficient – the result would be either too many
or too broad categories.
The solution is to use an almost hierarchical representation, where categories can

contain sub-categories (“almost” because of overlaps). This keeps the number of
members in each category low but enables us to take the query categories from
higher-level categories.
The element relationship graph (ERG) is a directed, acyclic graph. The nodes are

labeled with either an element name (element nodes) or a category label (category
nodes). Element nodes may have several incoming edges (because categories may
overlap). The category nodes are partitioned into aspect sets corresponding to
the aspects mentioned above; no two nodes from different aspect sets have a direct
connection. In essence, this means that there are sub-graphs that are disjoint except
for the element nodes.
As mentioned in the context of aspects, the construction of an ERG can only

be automated in some cases. In the case of a graph based on element semantics,
there is no option but to create the graph manually, based on the documentation.
Considering that there are typically hundreds of elements in a given schema – about
300 in DocBook –, this may seem like a daunting task.
It is rarely necessary to start from scratch, given nothing more than a list of ele-

ment names and descriptions: For didactic reasons, tutorials and reference material
for a schema normally describe the elements in related groups. For DocBook, for
example, there is a section about “Logical Divisions: The Categories of Elements in
DocBook” in the reference manual (Walsh and Muellner, 1999, section 2.5), and a
quick reference card where the easily parsable XML source code is available. Thus,
while the task is still far from trivial, it turns out to be manageable, as section 8.3.3
will show.

8.3.2 Element similarity in the element relationship graph
The graph described so far provides information about (almost hierarchical) re-
lationships of elements and newly-introduced categories, but it does not quantify
element similarity. A first approach could be to define the distance of two elements
– which can be seen as the inverse of similarity – to be the shortest path between
them, ignoring the direction of the edges. This approach is not entirely satisfac-
tory, however, because not all possible paths are equal: The information that the
elements structname and classname are both rendered in the same font is not as
meaningful as the information that they are both in the semantic group source
code (see figure 8.2).

Bergmann (1998) examined a similar problem in the context of similarity mea-
sures for taxonomies in structural case-based reasoning, which only needs minor
modifications to be used in this context. We start by labeling each inner node n
with a number cn ∈ [0, 1] denoting the coherence of the group formed by the direct
descendants. Furthermore, the values must satisfy the following condition: If the
inner node a is an ancestor of d, ca < cd must hold. This condition ensures that
similarity can never increase if the level of generality is increased.

137

8 Using background knowledge for content-and-structure search

Aspect
"semantics"

Aspect
"rendering"

symbol structname classname systemitem filename

0.7
source code

0.6

operating system

0.4

0.2

roman fixed width
0.2

computer items

Figure 8.2: Calculating similarity in the ERG. The names in the gray bar are
tags, the labels in the upper part are (semantic) concepts, the labels in the lower
part are presentation styles.

Given two different nodes n1 and n2, the search engine can then easily calcu-
late their similarity: It needs to find the set of their closest common ancestors A;
the similarity is maxa∈A(ca). In figure 8.2, the nearest set of common ancestors
for structname and classname is {source code,fixed width}, and the resulting
similarity is max(csource code, cfixed width) = max(0.7, 0.2) = 0.7.

The difference between this approach and an approach based purely on distance
is obvious for systemitem and classname: The closest common ancestor based on
path length is fixed width, but computer items has a higher coherence value,
so the resulting similarity is 0.4 instead of 0.2.

8.3.3 Constructing an example element relationship graph
To show that it is feasible to construct an ERG, I created one for DocBook and the
aspects of visual appearance and contents.

Visual appearance of the output is determined by XSL style sheets, so I took
the official ones2 and wrote a script to derive a graph from them, using the style
sheets for transforming to HTML as a basis. I am concerned about the markup of
inline elements, so I only used the file inline.xsl to avoid unnecessary clutter of the
resulting graph.

The style sheets also contain templates not directly tied to HTML tags for mod-
ularization. For example, the template inline.italicmonoseq indicates that the text
is both italic and monospace; having this intermediate node in the graph has the
advantage of expressing that both features are present. If the ERG contained two
separate links instead, only one of them would be used for similarity calculation,
so some information would be lost. Of course, there are also links from the corre-

2http://docbook.sourceforge.net/projects/xsl/ (version 1.66.1)

138

http://docbook.sourceforge.net/projects/xsl/

8.3 Element relationship

sponding HTML elements to this intermediate node, so that elements having only
one of these are still similar to elements having both.
The effort needed was low: It took one person less than two hours total, and a

significant fraction of that time was spent removing templates that are not relevant
in this context. Removing these nodes is only necessary for making the graph easier
to comprehend; leaving the additional nodes in the graph would not result in worse
similarity calculation.
Next, I looked at a possible semantic grouping of the elements based on the quick

reference mentioned previously3. It contains 46 overlapping groups of elements,
but not all groups are relevant in this context; only the 32 groups containing inline
elements are of interest. The authors categorized the elements with a focus on quick
look-up, not on semantic similarity, so I needed to modify them slightly.
Then I successively merged the low-level categories until I reached the high level of

abstraction mentioned above (computer-related text, emphasized text, metadata,
normal text). DocBook’s main application area is computer texts, so it is not
surprising that the computer items category is the most complex one, with 11
sub-categories in three levels.
The last step is to assign the coherence values. I found it easiest to create an

internally consistent labeling (on a scale from 0 to 1) for the sub-graph of each
aspect. When merging the sub-graphs, I then assigned a weight to each of them
denoting the relative importance. For example, the aspect of semantics is much
more important than the aspect of presentation, so the weights were 1.0 and 0.4.
The final coherence value of a category is then determined by multiplying the
preliminary coherence value and the importance of the corresponding sub-graph.
This approach makes it easy to adjust the relative importance later without needing
to revisit all nodes individually.
Overall, the construction of an initial version of the ERG took less than one day.

Of course this original version may well need to be refined based on feedback from
users in everyday use.

8.3.4 Search process
One important issue that has not been addressed yet is the actual retrieval process
from query to results.
The query is formulated on the basis of high-level categories, and although the

documents contain detailed markup, the element relationship graph is used for
grouping the element contents into categories at the same level as the query. For
each category, the similarity is calculated as follows: simglobal =

P
simi wi.

The weights wi with
P
wi = 1 represent the relative importance of category

ci. For example, in the example scenario, computer items are very important
compared to free text, as they have stricter, that is, less ambiguous, semantics.
The index described in chapter 5 contains all necessary data for answering queries

using an ERG. Retrieval is executed as normal on the full text as normal, but the
term frequency data in combination with the XPath expression of the element is

3http://www.dpawson.co.uk/docbook/qrefplain.xml

139

http://www.dpawson.co.uk/docbook/qrefplain.xml

8 Using background knowledge for content-and-structure search

used to determine whether the query term is marked up with markup from the
query. If additional index structures can be used, it is possible to further reduce
retrieval time (Dopichaj, 2005).

8.4 Evaluation

To put these concepts to test, a suitable test collection would be needed. The test
collections from INEX are not suitable for this purpose: The document schemas have
a small vocabulary that mostly allows for visual markup. The only data-centric
parts are the metadata (author information) and the bibliography, and these parts
do not really lend themselves to specialized similarity measures.

For INEX 2005, we implemented a prototype version of element-relationship
graphs (Eger, 2005; Dopichaj, 2006b), with a rudimentary ERG derived from the
DTD. However, for the reasons outlined above, the performance of the runs with
the ERG was not better than the performance of the runs without it.

8.5 Summary

This chapter has outlined how content-and-structure retrieval can be improved by
introducing similarity measures from case-based reasoning. As an example, a simi-
larity measure for ontologies was adapted to be used for vague matching of structural
constraints in queries. This is achieved by introducing element relationships, which
can be used to determine how similar two elements from a given schema are.

I have shown that the construction of the ERG for a reasonably well-documented
XML-based language can be accomplished in very short time, and that the increase
in index size is tolerable. One important component that is still missing is an
experimental verification of the retrieval quality of this approach.

140

9 Conclusions and future work

Thus encouraged, our scientific friend
drew his papers from his pocket, and
presented the whole case as he had done
the morning before.

(The Hound of the Baskervilles)

9.1 Conclusions

In this thesis, I have examined various aspects of content-only element retrieval,
ranging from indexing and other implementation aspects to similarity calculation
and XML-specific improvements.

The most surprising result of this thesis is that standard information retrieval
techniques work very well for XML retrieval with only minor tweaking; the ex-
periments show that approaches developed specifically for XML retrieval are no
better than the standard methods. This suggests two possible explanations: Either
content-only XML element retrieval is really not much different from document-
based information retrieval, or – more likely – good ways to make use of the XML
structure have not yet been discovered.
Obviously, a wealth of findings have been reported in the context of INEX and

other venues; many of the publications in this area have shown more or less pro-
nounced improvements over a baseline of the respective authors’ choice. This does
not imply that these findings are invalid, but they highlight an important problem
in XML retrieval evaluation in general: There is no generally accepted baseline to
compare with; if every author chooses his or her own baseline, it is not surprising
that this baseline can be beaten, but this tells us little about the absolute quality
of the improvements.
Furthermore, it is important to realize that a retrieval system is a complex entity

with innumerable parameters. As I have experienced myself, much to my dismay, is
that an apparent improvement based on a certain configuration of parameters can
turn out to lead to worse retrieval quality if the configuration is slightly changed.
The complexity of a retrieval system is in my opinion a major hindrance to the

ability to reproduce other researchers’ results; I tried to implement the GPX search
engine to have a valid baseline. It turned out that various important points were
missing in the published description of the system. Even with clarifications from
Shlomo Geva, the author of the corresponding papers, I did not manage to re-
produce the results closely. So many things that play a role are left unspecified,
starting from seemingly irrelevant matters such as tokenization. Obviously, a pa-

141

9 Conclusions and future work

per is rather short, so one cannot expect a complete description, but even a long
description such as this thesis is unlikely to be complete enough to allow an exact
reimplementation.

Also, as the INEX workshops have shown, bugs in the implementation are fre-
quent, often changing the results dramatically. If these bugs have a negative impact
on retrieval quality, they are likely to be found, but if they have a positive effect,
nobody will even get the idea of searching for them.
In line with this observation, my own attempts at exploiting the structure of the

XML documents have shown mixed results: In some parameter configurations, they
lead to an improvement of retrieval quality, whereas in other configurations, they
show no improvement or even a decrease of retrieval quality. I have speculated
about possible causes for this behavior, but there is little that can be said with
confidence, other than that the properties of the documents play an important role.

Overall, it appears not to be advisable to use any variant of these extensions.
Even if they can achieve minor improvements in some special cases, it is unclear
what exactly characterizes these cases; thus, it is not possible to predict how the
extensions will behave in a new context. Considering that the enhancements in-
troduce several new parameters – adaptation method, title detection, parameters
of both –, the added complexity and instability offsets the minor improvements of
retrieval quality that may be possible.

Considering that the standard methods yield good quality, it is important to see
that new index structures can help to make retrieval more efficient. The new index
structures achieve a significant reduction of space usage and retrieval time com-
pared to a straightforward implementation. Overall, although there still is a large
overhead compared to document-based retrieval, it is now much more manageable
and can be used as a starting point for a retrieval engine that is useful for real-world
use.

Although it was not possible to do a quantitative evaluation of the use of back-
ground knowledge, it still appears likely that much can be gained in the context of
content-and-structure retrieval. A combination of type-specific similarity measures
from case-based reasoning and standard information retrieval methods could be the
ideal match for XML documents that contain text with some semantic markup.

9.2 Future work

Although the aim of the thesis has been achieved, this is only the beginning; more
research needs to be done to understand XML retrieval better. Two areas are
particularly worthy of attention: optimization of the search engine’s performance
and the support of content-and-structure search.

9.2.1 Implementation issues
Although the performance is acceptable for a research prototype, there is a lot
of room for improvement. The system has been designed to be very flexible, so
that different implementations for various core parts of the search engine can be

142

9.2 Future work

replaced easily to compare them. This flexibility comes at a price – it demands a
clear separation of the different subsystems, which prohibits certain optimizations.
Storing each result as an object in main memory is expensive both in terms of

time and of memory usage; in long-running experiments with many queries executed
in a row, Java’s garbage collection takes more than 10 percent of the total time.
Furthermore, to accommodate different similarity measures, these internal results
contain data that is not needed – any specific similarity measure only uses a subset
of the data. This makes the implementation simpler and less error-prone than using
simple accumulators (Witten et al., 1999, chapter 4), but for a production system,
this should be changed.
Measurements clearly show that for the index structures described in chapter 5,

obtaining the metadata is the most costly operation, so applying top-k methods to
avoid getting the metadata for all results seems promising (Dopichaj, 2007d). The
rationale is that we are hardly ever interested in all retrieval results, but only in
the best k; for typical interactive retrieval scenarios, k will typically be just large
enough to cover a few result pages.
So far, execution of the queries is single-threaded, but it would be simple to par-

allelize the reading of the inverted lists and the similarity calculation. Preliminary
experiments with multi-threading on a dual-core system suggest that the perfor-
mance gain is small, but memory usage increases dramatically.
For extremely large collections like the world wide web, scalability on a single

system is not enough, the execution should be distributed in a cluster. For this,
the MapReduce programming model (Dean and Ghemawat, 2004) suggests itself.
In this model, the various steps of execution can be executed on different nodes in
the cluster, and the parallelization can be between different computers instead of
different threads on the same computer.
When the results are presented to the user, it is necessary to access the contents

of the documents rapidly. This is completely infeasible if the documents are stored
as files in a file system; instead an XML database like the XTC research prototype
(Härder, 2005; Haustein, 2005) is needed. The index structures of this database
could also be used for faster content-and-structure search.
The current index structures are not update-friendly; if the usage scenario differs

from the expected scenario of unchanging documents, the index structures will have
to be adapted to deal with this. This is of major importance if the retrieval system
is to be integrated in a database system.

9.2.2 Evaluation and user interfaces
Clearly, the INEX test collections and evaluation methods are not ideal for eval-
uating the effectiveness of title exploitation. As outlined in section 7.5.2, a new
experiment should be set up, with a test collection that provides long texts (ideally
books) that have largely self-contained parts.
Such an evaluation is obviously not easy to set up and should be done on a large

scale to allow the comparison of different retrieval systems. Unfortunately, a useful
document collection is probably of commercial interest, so it is doubtful whether it
is possible to get access for research purposes.

143

9 Conclusions and future work

Another problem for the evaluation is that few XML retrieval systems are in real-
world use, so user interfaces are still a matter of debate. For content-only queries, a
keyword-based query language appears to be most useful, because most people are
familiar with them from web search engines. The output format for the results is
another matter; in contrast to standard information retrieval, a flat result list might
not be ideal. Probably, the result display should in some way reflect the structure
of the original documents, but so far it is unclear exactly how this should be done.
This is still largely an unresolved research problem; one of the basic questions is
whether the results should be presented as a flat list or grouped by document. The
best way to present the results will depend on the specific use case.

If it is not even known how the results should be displayed to the searchers, it is
obviously not possible to determine whether the results would be useful.

9.2.3 Further forms of XML retrieval
As chapter 3 outlined, there are many facets of XML retrieval, ranging from pure
data retrieval to content-only retrieval. The work in this thesis mainly focuses
on content-only retrieval; the next logical step would be to make the step to-
wards content-and-structure retrieval by adding content constraints to the full-text
queries.

Chapter 8 presented preliminary work in this area, and there have been several
Master’s theses touching this area (Eger, 2005; Hartel, 2007). Without access to
suitable test collections for further analysis (the INEX collections are not suitable),
however, this work is necessarily rather speculative and difficult to quantify.

It will be difficult to create a useful test collection for content-and-structure
queries as long as there is no consensus about the details: The current query lan-
guages like NEXI and XIRQL are clearly not fit to be used by end-users, but it is
hard to imagine what a good query language supporting complex structural queries
could look like.

144

Bibliography

“Did she give any references
when she came?”

(The Adventure of the Veiled Lodger)

Amer-Yahia, Sihem; Botev, Chavdar; Buxton, Stephen; Case, Pat; Doerre, Jochen;
Holstege, Mary; McBeath, Darin; Rys, Michael; Shanmugasundaram, Jayavel.
XQuery 1.0 and XPath 2.0 full-text. 2006. W3C Working Draft 1 May 2006.

Baeza-Yates, Ricardo; Ribeiro-Neto, Berthier. Modern Information Retrieval. Ad-
dison Wesley, Harlow, Essex, England, 1999.

Beigbeder, Michel. Structured content-only information retrieval using term prox-
imity and propagation of title terms. In INEX 2006 proceedings. Springer, 2007.

Bentley, Jon Louis; Yao, Andrew Chi-Chih. An almost optimal algorithm for un-
bounded searching. Information Processing Letters, 5(3):82–87, 1976.

Berglund, Anders. Extensible stylesheet language (XSL) version 1.1. 2006. W3C
Recommendation 05 December 2006.

Berglund, Anders; Boag, Scott; Chamberlin, Don; Fernández, Mary F.; Kay,
Michael; Robie, Jonathan; Siméon, Jérôme. XML path language (XPath) 2.0.
2007. W3C Recommendation 23 January 2007.

Bergmann, Ralph. On the use of taxonomies for representing case features and local
similarity measures. In GWCBR 1998 proceedings. Universität Rostock, 1998.

Boag, Scott; Chamberlin, Don; Fernández, Mary F.; Florescu, Daniela; Robie,
Jonathan; Siméon, Jérôme. XQuery 1.0: An XML query language. 2007. W3C
Recommendation 23 January 2007.

Bos, Bert; Çelik, Tantek; Hickson, Ian; Lie, Håkon Wium. Cascading style sheets,
level 2 revision 1. 2006. W3C Working Draft 06 November 2006.

Bray, Tim; Hollander, Dave; Layman, Andrew; Tobin, Richard. Namespaces in
XML 1.0 (second edition). 2006a. W3C Recommendation 16 August 2006.

145

Bibliography

Bray, Tim; Paoli, Jean; Sperberg-McQueen, C. M.; Maler, Eve; Yergeau, François;
Cowan, John. Extensible markup language (XML) 1.1 (second edition). 2006b.
W3C Recommendation 16 August 2006, edited in place 29 September 2006.

Brownell, David. SAX2 – Processing XML Efficiently with Java. O’Reilly, 2002.

Buckley, Chris; Voorhees, Ellen M. Evaluating evaluation measure stability. In
SIGIR 2000 proceedings, pages 33–40. ACM, 2000.

Carmel, David; Farchi, Eitan; Petruschka, Yael; Soffer, Aya. Automatic query
refinement using lexical affinities with maximal information gain. In SIGIR 2002
proceedings, pages 283–290. 2002.

Carmel, David; Maarek, Yoelle S.; Mandelbrod, Matan; Mass, Yosi; Soffer, Aya.
Searching XML documents via XML fragments. In SIGIR 2003 proceedings,
pages 151–158. ACM, 2003.

Carmel, David; Maarek, Yoëlle; Soffer, Aya. XML and information retrieval: a
SIGIR 2000 workshop. SIGIR Forum, 34(1), 2000.

Chiaramella, Yves; Mulhem, Philippe; Fourel, Franck. A model for multimedia
information retrieval. Technical Report FERMI ESPRIT BRA 8134, University
of Glasgow, 1996.

Connolly, Dan; Khare, Rohit; Rifkin, Adam. The evolution of Web documents:
The ascent of XML. World Wide Web Journal, 2(4):119–128, 1997.

Croft, W. Bruce. Language models for information retrieval. In Dayal, Umeshwar;
Ramamritham, Krithi; Vijayaraman, T. M., editors, ICDE 2003 Proceedings,
pages 3–7. IEEE Computer Society, 2003.

Crouch, Carolyn J.; Khanna, Sudip; Potnis, Poorva; Doddapaneni, Nagendra. The
dynamic retrieval of XML elements. In INEX 2005 proceedings, pages 268–281.
2006.

Cutler, M.; Deng, H.; Maniccam, S. S.; Meng, W. A new study on using HTML
structures to improve retrieval. In ICTAI 1999 proceedings, pages 406–409. IEEE,
1999.

Cutler, Michael; Shih, Yungming; Meng, Weiyi. Using the structure of HTML
documents to improve retrieval. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems. 1997.

Dean, Jeffrey; Ghemawat, Sanjay. MapReduce: Simplified data processing on large
clusters. In OSDI 2004 proceedings. 2004.

Denoyer, Ludovic; Gallinari, Patrick. The Wikipedia XML corpus. SIGIR Forum,
40(1):64–69, 2006.

146

Bibliography

Dopichaj, Philipp. Exploiting background knowledge for better similarity calcula-
tion in XML retrieval. In BNCOD 2004 proceedings, Volume 2, pages 126–127.
Heriot-Watt University, 2004.

Dopichaj, Philipp. Element relationship: Exploiting inline markup for better XML
retrieval. In BTW 2005 proceedings, pages 285–294. GI, 2005.

Dopichaj, Philipp. Element retrieval in digital libraries: Reality check. In SIGIR
XML Element Retrieval Methodology Workshop 2006 proceedings, pages 1–4.
2006a.

Dopichaj, Philipp. The University of Kaiserslautern at INEX 2005. In INEX 2005
proceedings, pages 196–210. Springer, 2006b.

Dopichaj, Philipp. Improving content-oriented XML retrieval by applying structural
patterns. In ICEIS 2007 proceedings, pages 5–13. INSTICC, 2007a.

Dopichaj, Philipp. Improving content-oriented XML retrieval by exploiting small
elements. In BNCOD 2007 workshop proceedings, pages 68–74. IEEE, 2007b.

Dopichaj, Philipp. Space-efficient indexing of XML documents for content-only
retrieval. Datenbank-Spektrum, 7(23), 2007c.

Dopichaj, Philipp. The University of Kaiserslautern at INEX 2006. In INEX 2006
proceedings, pages 223–232. Springer, 2007d.

Doyle, Arthur Conan. The Complete Illustrated Strand Sherlock Holmes. The Com-
plete Facsimile Edition. Midpoint Press, 2007.

Eger, Benedikt. Entwurf und Implementierung einer XML-Volltext-Suchmaschine.
Master’s thesis, University of Kaiserslautern, 2005.

Elias, Peter. Universal codeword sets and representations of the integers. IEEE
Transactions on Information Theory, 21(2):194–203, 1975.

Fox, Edward A. Composite document extended retrieval: an overview. In SIGIR
1985 proceedings, pages 42–53. ACM, 1985.

Fuhr, Norbert; Großjohann, Kai. XIRQL: A query language for information re-
trieval in XML documents. In SIGIR 2001 proceedings, pages 172–180. ACM,
2001.

Fuhr, Norbert; Malik, Saadia; Lalmas, Mounia. Overview of the INitiative for the
Evaluation of XML Retrieval (INEX) 2003. In INEX 2003 pre-proceedings. Avail-
able at http://inex.is.informatik.uni-duisburg.de:2003/PrePreceeding.pdf, 2003.

Geva, Shlomo. Extreme file inversion. In INEX 2002 proceedings, pages 155–161.
2002.

147

http://inex.is.informatik.uni-duisburg.de:2003/PrePreceeding.pdf

Bibliography

Geva, Shlomo. GPX – gardens point XML IR at INEX 2005. In INEX 2005
proceedings, pages 240–253. Springer, 2006.

Geva, Shlomo. GPX – gardens point XML IR at INEX 2006. In INEX 2006
proceedings, pages 137–150. Springer, 2007.

Geva, Shlomo; Sahama, Tony. The NLP task at INEX 2004. SIGIR Forum,
39(1):50–53, 2005.

Gövert, Norbert; Kazai, Gabriella. Overview of the initiative for the evaluation of
XML retrieval (INEX) 2002. In INEX 2002 proceedings. 2002.

Härder, Theo. XML databases and beyond – plenty of architectural challenges
ahead. In ADBIS 2005 proceedings. Springer, 2005.

Hartel, Christoph R. Improving XML Retrieval by Exploiting Content and Struc-
ture. Diploma thesis, University of Kaiserslautern, 2007. To appear.

Haustein, Michael P. Feingranulare Transaktionsisolation in nativen XML-
Datenbanksystemen. Ph.D. thesis, University of Kaiserslautern, 2005.

Hersh, William; Turpin, Andrew; Price, Susan; Chan, Benjamin; Kramer, Dale;
Sacherek, Lynetta; Olson, Daniel. Do batch and user evaluations give the same
results? In SIGIR 2000 proceedings, pages 17–24. ACM, 2000.

Hors, Arnaud Le; Hégaret, Philippe Le; Wood, Lauren; Nicol, Gavin; Robie,
Jonathan; Champion, Mike; Byrne, Steve. Document object model (DOM) level
3 core specification, version 1.0. 2004. W3C Recommendation 07 April 2004.

Huffman, David A. A method for the construction of minimum-redundancy codes.
Proc. of the I. R. E., 40(9):1098–1101, 1952.

ISO. Information processing – text and office systems – standard generalized
markup language (SGML). ISO 8879, 1986.

Jang, Hyunchi; Kim, Youngil; Shin, Dongwook. An effective mechanism for index
update in structured documents. In CIKM 1999 proceedings. 1999.

Jansen, Bernard J.; Spink, Amanda; Bateman, Judy; Saracevic, Tefko. Real life
information retrieval: a study of user queries on the web. SIGIR Forum, 32(1):5–
17, 1998.

Järvelin, Kalervo; Kekäläinen, Jaana. Cumulated gain-based evaluation of IR tech-
niques. ACM Transactions on Information Systems, 20(4):422–446, 2002.

Kamps, Jaap; de Rijke, Maarten; Sigurbjörnsson, Börkur. The importance of length
normalization for XML retrieval. Information Retrieval, 8:631–654, 2005.

148

Bibliography

Kay, Michael. XSL transformations (XSLT) version 2.0. 1999. W3C Recommen-
dation 23 January 2007.

Kazai, Gabriella; Lalmas, Mounia. Notes on what to measure in INEX. In Pro-
ceedings of the INEX 2005 Workshop on Element Retrieval Methodology. 2005.

Kazai, Gabriella; Lalmas, Mounia. INEX 2005 evaluation metrics. In Fuhr, Norbert;
Lalmas, Mounia; Malik, Saadia; Kazai, Gabriella, editors, INEX 2005 proceed-
ings, pages 16–29. Springer, 2006.

Kazai, Gabriella; Lalmas, Mounia; de Vries, Arjen P. The overlap problem in
content-oriented XML retrieval evaluation. In SIGIR 2004 proceedings, pages
72–79. ACM, 2004.

Larsen, Birger; Tombros, Anastasios; Malik, Saadia. Is XML retrieval meaningful
to users? Searcher preferences for full documents vs. elements. In SIGIR 2006
proceedings, pages 663–664. ACM, 2006.

Lee, Dik L.; Chuang, Huei; Seamons, Kent. Document ranking and the vector-space
model. IEEE Software, 14(2):67–75, 1997.

Lee, Yong Kyu; Yoo, Seong-Joon; Yoon, Kyoungro; Berra, P. Bruce. Index struc-
tures for structured documents. In DL 1996 proceedings, pages 91–99. 1996.

Lehtonen, Miro. Designing user studies for XML retrieval. In SIGIR XML Element
Retrieval Methodology Workshop 2006 proceedings, pages 28–34. 2006.

Lehtonen, Miro; Pharo, Nils; Trotman, Andrew. A taxonomy for XML retrieval
use cases. In INEX 2006 proceedings, pages 413–422. Springer, 2007.

Lenz, Mario; Bartsch-Spörl, Brigitte; Burkhard, Hans-Dieter; Wess, Stefan, editors.
Case-Based Reasoning Technology: From Foundations to Applications. Springer,
1998.

Liu, Yiqun; Wang, Canhui; Zhang, Min; Ma, Shaoping. Finding “abstract fields”
of web pages and query specific retrieval – THUIR at TREC 2004 web track. In
TREC 2004 proceedings. 2004.

Lu, Wei; Robertson, Stephen; Macfarlane, Andrew. Field-weighted XML retrieval
based on BM25. In INEX 2005 proceedings, pages 161–171. Springer, 2006.

Luk, Robert W.P.; Leong, H. V.; Dillon, Tharam S.; Chan, Alvin T.S.; Croft,
W. Bruce; Allan, James. A survey in indexing and searching XML docu-
ments. Journal of the American Society for Information Science and Technology,
53(6):415–437, 2002.

Malik, Saadia; Kazai, Gabriella; Lalmas, Mounia; Fuhr, Norbert. Overview of
INEX 2005. In INEX 2005 proceedings, pages 1–15. Springer, 2006.

149

Bibliography

Malik, Saadia; Trotman, Andrew; Lalmas, Mounia; Fuhr, Norbert. Overview of
INEX 2006. In INEX 2006 proceedings, pages 1–11. Springer, 2007.

Mass, Yosi; Mandelbrod, Matan. Retrieving the most relevant XML components.
In INEX 2003 proceedings, pages 58–64. 2003.

Mass, Yosi; Mandelbrod, Matan. Component ranking and automatic query re-
finement for XML retrieval. In INEX 2004 proceedings, pages 73–84. Springer,
2005.

Mass, Yosi; Mandelbrod, Matan. Using the INEX environment as a test bed for
various user models for XML retrieval. In INEX 2005 proceedings, pages 187–195.
Springer, 2006.

Mass, Yosi; Mandelbrod, Matan; Amitay, Einat; Maarek, Yoelle; Soffer, Aya. Ju-
ruXML – an XML retrieval system at INEX ’02. In INEX 2002 proceedings,
pages 73–80. 2002.

Melton, Jim; Muralidhar, Subramanian. XML syntax for XQuery 1.0 (XQueryX).
2007. W3C Recommendation 23 January 2007.

Moffat, Alistair; Sacks-Davis, Ron; Wilkinson, Ross; Zobel, Justin. Retrieval of
partial documents. In TREC, pages 181–190. 1993.

Myaeng, Sung Hyon; Jang, Don-Hyun; Kim, Mun-Seok; Zhoo, Zong-Cheol. A
flexible model for retrieval of SGML documents. In SIGIR 1998 proceedings,
pages 138–145. ACM, 1998.

Ogilvie, Paul; Callan, Jamie. Using language models for flat text queries in XML
retrieval. 2003.

Ogilvie, Paul; Callan, Jamie. Hierarchical language models for XML component
retrieval. In INEX 2004 proceedings, pages 224–237. Springer, 2005.

Pawson, Dave. XSL-FO. O’Reilly, 2002.

Pehcevski, Jovan; Thom, James A. HiXEval: Highlighting XML retrieval evalua-
tion. In INEX 2005 proceedings, pages 43–57. Springer, 2006.

Piwowarski, Benjamin. EPRUM metrics and INEX 2005. In INEX 2005 proceed-
ings, pages 30–42. Springer, 2006.

Ponte, Jay M.; Croft, W. Bruce. A language modeling approach to information
retrieval. In SIGIR 1998 proceedings, pages 275–281. ACM, 1998.

Porter, Martin F. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

Ramírez, Georgina; Westerveld, Thijs; de Vries, Arjen P. Using small XML elements
to support relevance. In SIGIR 2006 proceedings, pages 693–694. 2006a.

150

Bibliography

Ramírez, Georgina; Westerveld, Thijs; de Vries, Arjen P. Using structural relation-
ships for focused XML retrieval. In FQAS 2006 proceedings. 2006b.

Richter, Michael M. Fallbasiertes Schließen: Vergangenheit, Gegenwart, Zukunft.
Informatik-Spektrum, 26(3):180–190, 2003.

Robertson, Stephen. Understanding inverse document frequency: On theoretical
arguments for IDF. Journal of Documentation, 60(5):503–520, 2004.

Robertson, Stephen; Zaragoza, Hugo; Taylor, Michael. Simple BM25 extension to
multiple weighted fields. In CIKM 2004 proceedings, pages 42–49. ACM, 2004.

Robertson, Stephen E.; Walker, Steve. Some simple effective approximations to the
2-poisson model for probabilistic weighted retrieval. In SIGIR 1994 proceedings,
pages 232–241. ACM, 1994.

Salton, Gerard; Allan, James; Buckley, Chris. Approaches to passage retrieval in
full text information systems. In SIGIR 1993 proceedings, pages 49–58. ACM,
1993.

Schwartz, Candy. Web search engines. Journal of the American Society for Infor-
mation Science, 49(11):973–982, 1998.

Shannon, Claude E. Prediction and entropy of printed English. Bell Systems
Technical Journal, 30:51–64, 1951.

Shin, Dongwook; Jang, Hyuncheol; Jin, Honglan. BUS: an effective indexing and
retrieval scheme in structured documents. In DL 1998 proceedings, pages 235–
243. 1998.

Sigurbjörnsson, Börkur; Kamps, Jaap. The effect of structured queries and selective
indexing on XML retrieval. In INEX 2005 proceedings, pages 104–118. Springer,
2006.

Spärck Jones, Karen. IDF term weighting and IR research lessons. Journal of
Documentation, 60(5):521–523, 2004.

Spärck Jones, Karen; Walker, Steve; Robertson, Stephen E. A probabilistic model
of information and retrieval:development and status. Technical report, Computer
Laboratory, University of Cambridge, 1998.

Stahl, Armin; Gabel, Thomas. Using evolution programs to learn local similarity
measures. In ICCBR 2003 proceedings. Springer, 2003.

Theobald, Anja; Weikum, Gerhard. The index-based XXL search engine for query-
ing XML data with relevance ranking. In EDBT 2002 proceedings, pages 477–495.
Springer-Verlag, 2002.

151

Bibliography

Theobald, Martin. TopX – Efficient and Versatile Top-k Query Processing for Text,
Structured, and Semistructured Data. Ph.D. thesis, Universität des Saarlandes,
2006.

Theobald, Martin; Schenkel, Ralf; Weikum, Gerhard. An efficient and versatile
query engine for TopX search. In VLDB 2005 proceedings, pages 625–636. 2005.

Theobald, Martin; Schenkel, Ralf; Weikum, Gerhard. TopX and XXL at INEX
2005. In INEX 2005 proceedings, pages 282–295. 2006.

Trotman, Andrew. Wanted: Element retrieval users. In Trotman, Andrew; Lalmas,
Mounia; Fuhr, Norbert, editors, Proceedings of the INEX 2005 Workshop on
Element Retrieval Methodology, pages 63–69. 2005. See http://www.cs.otago.ac.
nz/inexmw/.

Trotman, Andrew; Pharo, Nils; Jenkinson, Dylan. Can we at least agree on some-
thing? In Trotman, Andrew; Geva, Shlomo; Kamps, Jaap, editors, Proceedings
of the SIGIR 2007 Workshop on Focused Retrieval, pages 49–56. 2007a.

Trotman, Andrew; Pharo, Nils; Lehtonen, Miro. XML-IR users and use cases. In
INEX 2006 proceedings, pages 400–412. Springer, 2007b.

Trotman, Andrew; Sigurbjörnsson, Börkur. Narrowed extended XPath I (NEXI).
In INEX 2004 proceedings, pages 16–40. Springer, 2005.

Voorhees, Ellen M. TREC: Improving information access through evaluation. Bul-
letin of the American Society for Information Science and Technology, 32(1):16–
21, 2005.

Walsh, Norman; Muellner, Leonard. DocBook: The Definitive Guide. O’Reilly,
Sebastopol, 1999.

Wilkinson, Ross. Effective retrieval of structured documents. In SIGIR 1994 pro-
ceedings, pages 311–317. ACM, 1994.

Witten, Ian H.; Moffat, Alistair; Bell, Timothy C. Managing Gigabytes. Morgan
Kaufmann, 1999.

Witten, Ian H.; Neal, Radford M.; Cleary, John G. Arithmetic coding for data
compression. Commun. ACM, 30(6):520–540, 1987.

Zobel, Justin. How reliable are the results of large-scale information retrieval ex-
periments? In SIGIR 1998 proceedings, pages 307–314. ACM, 1998.

Zobel, Justin; Moffat, Alistair. Exploring the similarity space. SIGIR Forum,
32(1):18–34, 1998.

Zobel, Justin; Moffat, Alistair; Sacks-Davis, Ron; Wilkinson, Ross. Efficient re-
trieval of partial documents. Inf. Process. Manage., 31(3):361–377, 1995.

152

http://www.cs.otago.ac.nz/inexmw/
http://www.cs.otago.ac.nz/inexmw/

	Title
	Contents
	Nomenclature
	Introduction
	Motivation
	Real-world use cases
	Aims of this thesis
	Overview

	Preliminaries
	Overview of XML
	XML documents
	Processing models
	Well-formedness and validity
	Types of XML documents
	Rendering XML
	XML information set
	Terminology

	Information retrieval and data retrieval
	The vector-space model
	Probabilistic retrieval and language models
	Evaluating information retrieval effectiveness
	Retrieval of partial documents

	Summary

	XML retrieval
	Information retrieval on XML
	Data retrieval languages
	Data and information retrieval languages

	The Initiative for the Evaluation of XML Retrieval
	INEX tracks
	Ad-hoc tasks
	Test collections
	Document collections
	NEXI

	Probabilistic and language-modeling approaches
	Okapi-based
	Language-modeling approaches

	Vector-space-based approaches
	Extended vector-space model
	JuruXML
	GPX
	Document frequency

	Summary

	Base retrieval engine
	Assumptions and design goals
	Assumptions
	Design goals

	Interpreting XML
	Tokenization
	What to index

	Retrieval model
	Base similarity function
	Term weighting
	Full similarity calculation versus reconstruction

	Summary

	Implementation of the base retrieval engine
	Existing XML index structures
	Index structures
	Tokenization
	Lexicon
	Inverted lists
	Building the inverted lists
	Metadata
	Index compression

	Evaluation
	Implementation and test environment
	Test collections
	Index size
	Retrieval time
	Comparison to traditional information retrieval

	Indexing process
	Performance versus accuracy
	Summary

	Exploiting small elements
	Small elements in standard information retrieval
	Small elements in XML retrieval
	Preliminaries
	Example

	Adaptation methods
	Similarity adaptation
	Term weight adaptation

	Title detection
	Name-based title detection
	Length-based title detection

	Efficiency
	Summary

	Evaluation of retrieval quality
	Evaluation metrics
	Relevance in XML retrieval
	Extended cumulated gain
	Test collections

	Official INEX results
	Parameter tuning for the base retrieval engine
	Lucene similarity measure
	BM25 similarity measure
	Comparison with the official submissions

	Evaluation of title-element exploitation
	Analysis of potential
	Adaptation methods
	Section-based evaluation
	Stability
	Title detection strategies
	Per-topic evaluation

	Discussion
	Suitability of the test collection
	Design of a more suitable experiment

	Summary

	Using background knowledge for content-and-structure search
	Specialized similarity measures
	Current state of XML retrieval
	Applying CBR similarity measures to XML retrieval

	Generalizing content-and-structure queries
	Element relationship
	Facets of element similarity
	Element similarity in the element relationship graph
	Constructing an example element relationship graph
	Search process

	Evaluation
	Summary

	Conclusions and future work
	Conclusions
	Future work
	Implementation issues
	Evaluation and user interfaces
	Further forms of XML retrieval

	Bibliography

