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Abstract. A similarity join correlating fragments in XML documents,
which are similar in structure and content, can be used as the core al-
gorithm to support data cleaning and data integration tasks. For this
reason, built-in support for such an operator in an XML database man-
agement system (XDBMS) is very attractive. However, similarity assess-
ment is especially difficult on XML datasets, because structure, besides
textual information, may embody variations in XML documents repre-
senting the same real-world entity. Moreover, the similarity computation
is considerably more expensive for tree-structured objects and should,
therefore, be a prime optimization candidate. In this paper, we explore
and optimize tree-based similarity joins and analyze their performance
and accuracy when embedded in native XDBMSs.

1 Introduction

Data cleaning deals with the identification and correction of data inconsistencies.
Frequently, due to such inconsistencies (e.g., mis-spellings), multiple representa-
tions of real-world objects appear in data collections. Such redundancy may lead
to wrong results, confuse consistency maintenance, and, when integrated from
various data sources, may artificially inflate data files. Therefore, detection of
duplicates by correlation of (string) attribute values is a long-term research goal
in the relational world [BI6I4I2], often denoted as the fuzzy duplicate problem.

As a classical solution, relational DBMSs have correlated records by using
similarity joins. A similarity join pairs tuples from two relations whose specified
attribute values are similar. These values can be composed by a single column
or by the concatenation of column sequences (e.g., R/Name] and R[Name, Ad-
dress]). Using a similarity function, a pair of tuples is qualified if a similarity
value greater than a given threshold is returned.

Over the recent years, XML is increasingly used as standard for information
representation, in addition to provide a common syntax for data exchange. In this
context, similarity operators must deal with tree-structured documents instead
of table-structured objects. However, extending such operations to XML brings
a new quality dimension to the correlation problem. Because similar or even the
same information could be embodied by quite different structures or fragments
in XML documents, textual techniques developed for relational data are not
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Fig. 1. Sample XML document fragments

sufficient, as disclosed by the example in Fig. Il Consider a situation where tree
a) has to be correlated to tree b). Although they are obviously identical (for
human observers), they would not be classified as equal because of variations
in the XML content part. However, the use of an appropriate textual similarity
predicate would easily classify them as matching candidates. On the other hand,
although c¢) refers to another article, the comparison of a) with ¢) using the same
similarity predicate would probably lead to an erroneous classification, i.e., to a
match, when only textual similarity is considered. In this case, the information
needed to lower the overall similarity is conveyed in the XML structure part.
Due to the increased modeling flexibility of XML, e.g., by optional elements and
attributes, even data sources sharing a same DTD may not have an identical tree
structure. Therefore, accurate and efficient DBMS methods to correlate XML
data need to cope with additional complexities induced by the XML structure.

Our Contribution. We propose built-in support for similarity joins in an
XDBMS query engine and design a foundational framework for approximation
operators based on three main conceptual components: system embedding, can-
didate pair generation, and quality measures. System embedding means subtree
access using index-based location of qualified XML fragments. We complement
this component with the support of various types of predicates to select specific
parts of a subtree for similarity evaluation. Using techniques from the relational
world such as signature schemes and equi-joins, we facilitate candidate pair gen-
eration. For quality measures, we concentrate on set-overlap-based similarity
functions. In this setting, we introduce a novel mechanism, extended pg-grams,
to derive tokens combining structure and content of XML tree structures. For
this new concept, we propose three versions of token generation which jointly
use textual and structural information. Furthermore, we explore a tokenization
scheme called path-gram. Our solution has important advantages over previous
work on XML data: it unifies string- and tree-based techniques in a single pro-
cessing and scoring model thereby providing efficiency and improving the overall
matching quality; the resulting operation can be combined with regular XML
queries (e.g., by delivering the resulting nodes in document order) to compose
processing logic which enables more complex data cleaning solutions. Finally,
we give detailed quantitative results by conducting empirical experiments and
performance measurements using our prototype XDBMS called XTC [10].
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2 Related Word

Chaudhuri et al. [4] introduced the idea of extending the set of physical op-
erators to provide support for similarity joins inside database engines. A core
component of this approach uses signature schemes, which is used to avoid un-
necessary comparisons|2]. Alternatively, similarity joins can be specified by using
languages such as SQL [BI6/I]. Such a specification offers high flexibility and en-
ables system-controlled optimization as key advantages. However, the related
approaches have some serious performance limitations. First, they require con-
siderable effort in a pre-processing stage where a number of auxiliary tables have
to be constructed, e.g., tables to store tokens and cardinalities. Second, the set
of candidates consists of all pair of tuples that share at least one token. Even
by using well-known techniques such as stop-word removal, the set of candidates
can potentially become very large and can be frequently populated by tuples
that do not make it to the final result. A solution proposed for this problem
uses sampling methods to one or both of the join partners [5], and thus are
compromising the ezactness of the result, i.e., they may miss some valid results.

A very large body of work is available on textual similarity [4UT3] for which
we only mention the well-known concept of edit distance [11]. More important
for our work is the tree edit distance which—using tree edit operations such
as node insertion, node deletion, and node renaming—is defined as the cost-
minimal operation sequence transforming a tree into the one to be compared [I5].
Unfortunately, all algorithmic results have more than O(n?) runtime complexity
and are, therefore, impractical for XDBMS use with potentially large trees.

Close to our idea, Guha et al. [7] present a framework for XML similarity
joins based on tree edit distance. To improve scalability, they optimized and
limited distance computations by using lower and upper bounds for the tree edit
distance as filters and a pivot-based approach for partitioning the metric space.
However, these computations are still in O(n?) and heavily depend on a good
choice of parameters (reference set). Avoiding this cost/scalability penalty and
manual parameter choices, applying pg-grams [3] to derive an efficient tree-based
distance approximation seems to be more interesting for XDBMS use. Moreover,
the use of structural information enabled by a generalization of ¢g-grams allows
leveraging a large body of similarity join techniques addressing performance
enhancements (e.g., signature schemes [2/4] and pipelined evaluation [4]) as well
as versatile applications of similarity functions (e.g., set-overlap-based similarity
methods [4I13]). Moreover, in contrast to [7], this framework easily deals with
modifications of the underlying tree structures.

3 Concepts Used for Similarity Join Computation

An XML document is modeled as an ordered labeled tree. We distinguish be-
tween element nodes and text nodes, but not between element nodes and at-
tribute nodes; each attribute is child of its owning element. Disregarding other
node types such as Comment, we consider only data of string type.
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3.1 Similarity Joins on XML Collections

A general tree similarity join takes as input two collections of XML documents
(or document fragments) and outputs a sequence of all pairs of trees from the
two collections that have similarity greater than a given threshold. The notion of
similarity between trees is numerically assessed by a similarity function used as
join predicate and applied on the specified node subsets of the respective trees.

Definition 1 (General Tree Similarity Join). Let F} and F» be two forests
of XML trees. Given two trees Th and Ta, we denote by sim(Ty,Ts) a similarity
function on node sets of Ty and Ty, respectively. Finally, let v be a constant
threshold. A tree similarity join between Fy and Fy returns all pairs (T1,Ts) €
Fy x Fy such that sim(T1,Ta) > 7.

Note that the similarity function is applied to node sets instead to trees. When
comparing trees, we need the flexibility to evaluate their similarity using node
subsets that do not have containment relationships among them, e.g., node sets
only consisting of text nodes. If structure matters, the node labeling scheme
allows identifying containment relationships among a set of nodes.

3.2 Set-Overlap-Based Similarity Measures

Given two sets representing two objects, different ways to measure their overlap
raise various notions of similarity (or dissimilarity). There are several proposals
for such measures, among others the Jaccard similarity, binary cosine similar-
ity, and the Hamming distance. We observed that the method used to map an
object to a set also has influence on the notion of similarity, because it deter-
mines which properties of the object are under consideration by the similarity
measure. For example, given an XML tree, we can produce sets representing its
textual information or its structural information (in the approximation sense).
Therefore, the overall set-overlap-based similarity calculation unfolds two oper-
ations that can be independently dealt with: conversion of objects to sets and,
afterwards, set-overlap measurement. As an example, consider the well-known

Jaccard similarity that, for two sets let r and s, is given by: Jacc (r,s) = |32 ].

3.3 Signature Schemes

To avoid bulky similarity evaluation for each pair of sets, a signature scheme is
commonly used. Given a collection of sets as input, a signature scheme produces
a shorter representation of each set, called signature, that roughly maintains
their pairwise similarity according to a given measure. An essential correctness
requirement is that false negatives must not be produced [2]: for any two sets r,
s, and their respective signatures Sig(r), Sig(s), we have Sig(r) N Sig(s) # &
whenever sim(r, s) > .

One previously proposed signature scheme is the prefix-filter [4], which is
based on the following intuition: for two sets r and s of size ¢ under a same total
order, if |r N's| > ~, then subsets consisting of the first ¢ — v + 1 elements of
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Fig. 2. Steps for the generation of pg-gram tokens

r and s should intersect. Minor variations of this basic idea are used to handle
weighted sets and normalized similarity functions. Please, see [4] for details. The
ordering of the sets is picked to keep the elements with smallest frequencies in
the signature, i.e., the elements are ordered by increasing frequency values.

4 Mapping Trees to Sets by Token Generation

The technique of decomposing a string in substrings of length ¢, the so-called
g-grams, is widely used in the approximate string matching area [11]. The main
idea is to assess the “closeness” between two strings by using the overlap of their
sets of g-grams [14]. Hence, g-grams provide a natural choice for their use in
conjunction with set-overlap-based similarity measures. Moreover, this approach
carries over to tree-structured data as well: trees can be split into subtrees of
a same shape and the structural similarity between two trees can be calculated
on basis of the number of common subtrees. Next, we review a generalization
of g-grams for structural similarity assessment and then present approaches for
combining structural and textual similarity into a single measure.

4.1 The Concept of pg-Grams

The concept of pg-grams was presented by Augsten et al. [3] to map a tree
structure to a set of tokens. All subtrees of a specific shape are denoted pg-
grams of the corresponding tree. This shape is defined by two positive integer
values p and ¢: a pg-gram consists of an anchor node together with p—1 ancestors
and ¢ children, as visualized by a sample pg-gram in Fig. Zla. The concatenation
of the node labels of a pg-gram forms a pg-gram token (pg-gram, for short).
To be able to obtain a set of pg-grams from any tree shape, an expanded tree
TP4 is (conceptually) constructed from the original T' by inserting null nodes as
follows: p — 1 ancestors to the root node; ¢ — 1 children before the first and after
the last child of each non-leaf node and ¢ children to each leaf node. Fig. 2b
and ¢ show tree T and its expanded form T%3. A pg-gram profile is obtained by
collecting all the pg-grams of an expanded tree resulting in a profile cardinality
|PP4(T)| = 21 + kq — 1 for a tree with [ leaf nodes and k non-leaf nodes. Fig. 2ld
shows the pg-gram profile of 723,
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Fig. 3. Versions of extended pg-grams

The set of pg-grams can be easily calculated using a preorder traversal of the
corresponding tree [3]. In our case, the input is a stream of structure nodes in
document order provided by the underlying document access mechanism.

4.2 Adding Content Information

We now study ways to simultaneously deal with structural and textual similarity.
The notion of pg-grams captures variations in the XML structure part, but
entirely ignores the presence of text variations, i.e., deviations in XML text
nodes. Hence, it falls short in identifying duplicates in datasets with poor textual
data quality. If we disregard the structure using ¢-grams only, we may incur in
the problem described in Sect. [} unrelated content may be compared leading
to wrong matching results. Hence, an intuitive approach is to produce tokens
(grams) that jointly capture structural and textual properties of a tree.

To achieve the objective above, we propose an extension of the original defi-
nition of pg-grams. When the objects of interest are represented by strings, their
sets of g-grams are used to enrich the respective pg-grams, leading to extended
pg-grams (epg-grams for short). For epg-gram generation, we focus on the con-
ceptual representation of strings in an expanded tree, denoted by ET?:?. This
approach allows us to use an almost identical algorithm to produce epg-grams
from a stream of nodes, with minor variations to handle text nodes. Further-
more, the generated grams seamlessly reduce to normal pg-grams when the input
stream only contains structural nodes. There are several conceivable ways to rep-
resent strings as nodes in an expanded tree. Next, we analyze three versions.

The first alternative consists of considering each character of a string as a
character node. Hence, whenever a parent of a text node is selected as an anchor
node, g character nodes are selected to form a new epg-gram version called epg-
vl. Given a T%2 in Fig. Bla, the corresponding ET%? for epg-vl together with the
resulting epg-profile are shown in FigBlb. Note that the epg-profile is separated
into two subsets: epg-grams having a as anchor node, the other having character
nodes as anchor node. When the node labels are concatenated, sequences of
character nodes form ¢-grams, which are combined with structural information.
Unfortunately, epg-vl always forms I-grams when the character node is the
anchor, which is independent of the choice of q. Note that for ¢ = 1, different
strings containing an identical (multi-) set of characters have the same ¢-gram
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profile and, hence, maximum similarity. For ¢ > 1, more complex patterns must
be present to get this (unwanted) effect [14].

To prevent from the potential drawback of epg-v1, we propose a hybrid ap-
proach, called epg-v2 (see Fig. Blc). Now, character nodes are used when the
parent is the anchor node, and ¢-gram nodes when the text node itself is the
anchor. As a result, all epg-grams with textual information have ¢-grams of the
same size (epg-grams having a as anchor node are the same to those of epg-v1).

The previous versions may consume substantial space because of large profile
sizes. This observation motivates the third approach, epg-v3, which is derived
by using character nodes, but pruning their ¢-null children from the expanded
tree (see Fig. Bld). Compared to the previous versions, this approach roughly
produces only half of the epg-grams embodying text; therefore, textual similarity
receives less weight. However, this property can be compensated by the fact that
tokens containing text are likely to be less frequent than structure-only tokens.
The rationale is that by using common notions of weights that are inversely
proportional to frequency, e.g., IDF, we can balance the effect of the ¢-gram
reduction. In Sect. [G] we empirically evaluate this conjecture.

Theorem [l shows the relation between the resulting profile cardinality and
the number of non-leaf nodes, empty nodes, and text nodes.

Theorem 1. Let p > 0, ¢ > 0, and T be a tree with e empty nodes, k non-
leaf nodes and t text nodes. Assume that all text nodes have a fixed length of
n. The size of the extended epg-gram profile (version 1) is: |(EPy)" " (T)| =
kq+ 2e + 2tn — 1.

Proof (Sketch). Theorem [Il can be shown by structural induction similarly to
the strategy used in [3]. The deletion of leaves should be done in two stages:
first deletion of empty nodes and then deletion of text nodes. Deleting a text
node decreases the cardinality of the pg-gram profile by 2n if the text node
has siblings, otherwise by 2n 4+ ¢ — 2; deletion of an empty node decreases the
cardinality by ¢ if the node has no siblings, otherwise by 2.

Similarly, the profile cardinality can be derived for version 2 and 3 leading to
|(EPy2)" (T)| = kq+2e+t (2n — g+ 1)—1 and |(EP,3)"? (T)| = kq+2e+tn—1.

Especially when applied to text nodes with long strings, the epg-gram pro-
file can have a cardinality considerably larger than that of normal pg-grams.
However, our similarity join methods aim at data-centric XML datasets which
usually have strings of moderate length. Further, we can use DB accesses to
obtain shorter strings in selected parts of a document-centric XML for similarity
evaluation on content and structure; in the remainder, the evaluation is done on
structure only (see Sect. [1.2)).

Path-Grams. Additionally, we have explored another approach to combining
structure and content information. For each text node, we generated the normal
set of g-grams and appended the root-to-leaf path of the containing element
node. Path-gram (PG) denotes this method of composing information used for
similarity computation. In an XDBMS environment, its evaluation can be sup-
ported by the documents path synopsis [9] which delivers such path information
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for free. Finally, because the path-gram generation is performed on the basis of
each text node in isolation, we (conceptually) extended each string by prefixing
and suffixing it with ¢-1 null characters (a null character is a special symbol not
present in any string) in a way similar to [6].

5 Tree Similarity Joins and Their XDBMS Integration

A tree similarity join needs to locate the root nodes of the candidate subtrees
to be compared. For this reason, we use XPath or XQuery expressions which
declaratively specify two sets of nodes defining both sides of the join operands.
For example, a tree similarity join (TSJ) can be used to validate incoming tree
structures against an assume-to-be-correct (atbc) reference data source. Intu-
itively, we could denote such an operation by (X)T'SJ(Y) where X specifies the
reference structure (e.g., doc(atbe.xml)/atbe/article[reviewer = J.Gray]) and
Y the subtrees to be correlated (e.g., doc(pub.xml)/pub/paper).

We have designed a family of tree similarity joins, where we focused on the
combination of structural and textual similarity. Hence, T'SJgpg and its ver-
sions vl — v3 jointly consider tokenized text nodes and element nodes using
epg-grams (T'SJ,1—3 for short). Furthermore, T'SJpg exploits path-gram tokens
in a similar way. In contrast, T'SJcs independently evaluates textual and struc-
tural similarity, which can be achieved in either sequence. The final result is the
(weighted) average of each evaluation.

5.1 TSJ Processing

The various phases of XDBMS-based join 5.
processing are illustrated in Fig. @l Subtree
access indicates that the subtrees qualified 4,
for TSJ have to be identified and fetched
from their disk-based storage locations to 3.
a memory-resident working area for further
processing. This aspect is more than es-
sential, because, in large XML documents,
inappropriate selection of subtrees to be
checked may consume the largest fraction
of the overall response time for a similar-
ity join. Moreover, repeated subtree access
may become necessary if the intermediate token sets are too large to be kept
in memory. Hence, it is of particular importance that document scans can be
avoided and that index-based scans minimize physical disk accesses. In addition,
support of predicates based on node type and subtree paths is also required
(see Sect. B.2]).

Token generation is essentially determining the quality of the overall T'SJ
processing (see Sect. [6.2]). For each qualified subtree, token sets in the form of
g-grams, pg-grams, or epg-grams have to be generated whose sizes depend on

Overlap Calculation )

Candidate Generation )

Signature Generation )

Token Generation )

el ayalala

Subtree Access )

Fig. 4. Phases of TSJ processing
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the underlying structure and content of the tree and the tokenization method
itself (their fundamentals are sketched in Sect.[d]). The primary goal of signature
generation is to filter the potentially large token sets and to derive a compact
representation facilitating candidate generation. A signature scheme such as pre-
fix filter considerably reduces the original set of tokens; for example using the
(unweighted) Jaccard similarity with a threshold of 0.9, the obtained signature
has a cardinality of roughly 10% of the original token set. In the forth phase,
candidate generation applies to the sets of signatures delivered by both join
operands. Using equi-joins, this method selects those signature sets sharing at
least one element. Hence, candidate pairs are prepared for the final processing
phase, where overlap calculation delivers quantities to which similarity metrics
can be directly applied. Depending on threshold values, some pairs of subtrees
are satisfying the similarity condition. The nodes of the matching subtrees are
then forwarded to the output structure.

5.2 Integration into XTC

As a testbed for XML research, we have developed XTC as a prototype XDBMS
exhibiting full DB capabilities [10]. Because similarity join functionality is domain-
related and optimal results strongly depend on application characteristics, we did
not deeply integrate the T'SJ operator. Instead we implemented this operator using
a plug-in at a higher layer of abstraction while, however, exploiting the efficient
XDBMS core functionality such as indexes, scans, etc., to access and extract disk-
based XML fragments and provide them for T'SJ processing.

For all storage structures, we heavily rely on B*-trees as the proven base
structure guaranteeing balanced trees, logarithmic accesses, and dynamic reor-
ganization. Most important for fine-granular and flexible processing is the node
labeling scheme used for XML trees. A substantial amount of empirical experi-
ments with various schemes led us to the conclusion that prefix-based labeling is
superior to all competitor schemes [§]. In XTC, we implemented (after less con-
vincing experiments with other schemes) a variant of prefix-based node labeling,
called SPLID scheme (Stable Path Labeling IDentifier).

In Fig. Bl we have illustrated the storage structure of a sample XML docu-
ment, where the B*-tree is composed by the document index and the document
container as a set of doubly-chained pages. Because the document is stored in



Evaluating Performance and Quality of XML-Based Similarity Joins 255

document order, the SPLIDs in the container pages lend themselves to prefix
compression which typically reduces the storage space needed for SPLIDs to
20% of the original size [§]. Furthermore, element and attribute names are re-
placed by means of a vocabulary of VocIDs (consisting of two bytes). We can
optionally apply content compression based on Huffman codes, thus resulting in
a space-economical native XML storage representation. In addition to the doc-
ument index needed to directly access structure or text nodes via their SPLIDs,
we provide a variety of indexes for element/attribute or path access, content
search, or even CAS queries (content&structure). All of them are based on B*-
trees and use lists of SPLIDs for document access. For example, an element index
would deliver for value author the locations for all author elements (1.3.3, 1.3.5,
1.3.7, ...), whereas a content index would provide the locations of the indexed
text values in the document, e.g., 1.3.7.3, ... for Gray.

The most important access mechanism for 7'SJ is the IndexSubtreeScan [12].
With a reference list of SPLIDs, typically delivered from a suitable index, it
locates the related nodes for the join operand via the document index. Then,
the respective subtrees are scanned and their nodes are delivered to the token
generation process. Optionally, IndexSubtreeScan may take a set of predicates
to return selected parts of a subtree. Predicates based on node type are used to
retrieve only structural nodes or textual nodes from a subtree. A more complex
type of predicate is the so-called path predicate where a path expression is used
to locate specific nodes of subtrees and then only the text nodes attached to
these nodes are delivered for token set generation. Note that all structural nodes
are returned, regardless of whether they are contained in the matching nodes or
not. Fig. [0l illustrates an example with two path predicates. Such predicates are
used by instances of T'SJ,1_3 to avoid long strings in document-centric XML.

6 Experiments

<!ELEMENT imdb (movie)>

After ha‘VIHg introduced the algo— <!ELEMENT movie (title, production_year?,

rithms and their system embedding, cast®, crew*)>
Iy t ¢ ; <!ELEMENT title (#PCDATA)>
we are ready tO present our experl- | gy EMENT production_year (fPCDATA)>

mental results. The main goal of our | <!ELEMENT cast (actor¥, actress*)>
luation is t tivel <!ELEMENT name (#PCDATA)>
evaluation is to comparatively mea- | |E EMENT role (#PCDATA)>

sure performance and accuracy of the <!ELEMENT note =~ (#PCDATA)>
TSJ f i <!ELEMENT actor (name,role?,note?)>
amily. <!ELEMENT actress (name,role?,note?)>

We start with three well-known <!ELEMENT crew (producer¥*, director®)>
datasets: DBLP containing com- jl%‘iﬂ%ﬁggﬁ‘gf :y(;:: gg;‘yﬁi?f
puter science publications, IMDB <!ELEMENT director (name, note?)>
(www.imdb.com) storing information
about movies, and NASA presenting
astronomical data. DBLP and NASA
are already available in XML format. For the IMDB dataset, we generated
an XML document, whose DTD is shown in Fig. [{l Statistics describing all

datasets are given in Table[ll (We consider only article subtrees in DBLP.) DBLP

Fig. 7. DTD of the IMDB dataset
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Table 1. Dataset statistics

#sub avg distinct |max/avg|structure|avg node| max |avg tree
dataset Sub nodes/ | tags/ path | /content| string | string | string
trees . . . .
subtrees| paths | length ratio size size size
DBLP | 328838 24 26/37 | 6/3.02 1.083 19.99 665 239.65
IMDB | 380000 56 13/14 | 5/4.88 1.64 12.9 224 277.85
NASA | 2435 371 69/78 | 8/7.76 1.43 33.22 14918 |5069.31

and IMDB show data-centric characteristics whereas NASA is more document-
centric. We then produce “dirty” copies of these datasets by performing con-
trolled transformations on content and structure. We implemented a program
for error injection in XML datasets, which enabled the variation of “dirtiness”
by specifying parameters: percentage of duplicates to which transformations are
applied (erroneous duplicates) and extent of transformations applied to each er-
roneous duplicate (error extent). Injected errors on text nodes consist of word
swappings and character-level modifications (insertions, deletions, and substitu-
tions). Structural modifications consist of node insertion and deletion, position
swapping, and relabeling of nodes. Insertion and deletion operations follow the
semantics of the tree edit distance algorithm [I5]. Swapping operations replace
the whole subtree under the selected node, while relabeling only changes the
nodes name (with a DTD-valid substitute). Frequency of modifications (textual
and structural) is uniformly distributed among all nodes of each subtree.

In all evaluations, we used the IDF-weighted Jaccard similarity. The ordering
of the prefix-filter signature elements is defined by also using IDF weights w(t)

specified as w(t) = 1 + log (ml;#), where ft is the total number of subtrees

in Ty and T3, which contain ¢ as a token. We use ¢-grams of size 2 for text nodes
and pg-grams with p of size 2 and ¢ of size 2 for structural nodes. We observed
best results with this setting, especially in the accuracy experiments. All tests
were run on an Intel Pentium IV computer (two 3.2 GHz CPUs, 1GB main
memory, 80GB external memory, Java Sun JDK 1.6.0) as the XDBMS server
machine where we configured XTC with a DB buffer of 250 8KB-sized pages.

6.1 Performance Results

In the first experiment, we analyze and compare execution time and scalability of
our similarity join algorithms and their suboperator components, subtree scan
and signature generation, for an increasing number of input trees which were
selected from IMDB and DBLP datasetd]. We only report the results for IMDB,
since the results for DBLP are consistently similar to them in all experiments.
Subtree scan operators are the main component of the XTC system embed-
ding. Therefore, we can properly observe the integration effects of T'SJ into the

! NASA has a richer structure, however, T'SJpe and T'SJcs do not support path
predicates, which is necessary for queries against document-centric XML.
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Fig. 8. Suboperator performance results

XTC architecture by analyzing it separately. Fig. Ba compares the execution
time of the 4 types of tree scan access used by our operators: content only (C),
structure only (5), and content and structure without and with path search ar-
guments (CS and CS-P, respectively). The search argument used is the path
expression /movie/cast/author. All tree scan operators perfectly scale with the
input dataset size, which emphasizes that we have achieved a smooth embedding
of these operators into the XTC architecture. Furthermore, there is no signif-
icant performance variation among the suboperators. Finally, the path search
argument used by CS-P does not present any impact on performance.

Fig. Bb shows the results of the prefix-filter signature generation time of the
three versions of epg-grams, path-gram, and the two components of T'SJcg,
content-only (g-grams) and structure-only (pg-grams). Again, all suboperators
scale very well with the input size. The relative results reflect almost exactly
the token set sizes produced by each tokenization method. Since the token sets
have to be ordered during the prefix-filter computation, larger sets cause higher
overhead. This fact is emphasized by the best performance of the signature
generation for pg-grams, which produces the shortest token sets, even though the
algorithm used for textual token set generation is much simpler. Furthermore,
the calculation of pg-gram sets is entirely performed using SPLIDs which are
highly optimized in XTC and, consequently, does not negatively impact the
performance. The signature generation of path-gram is slower than that of ¢-
gram, because it operates on extended strings resulting in larger token sets.

The results for the complete TSJ
evaluation of are depicted in the
Fig. @ For this experiment, we used [—*—V1 = V2 & V3 > PG —%—CsS|
datasets containing 50% of erroneous
duplicates. The error extent was con-
figured to be 30%, i.e., the percentage
of erroneous structural and textual
nodes in duplicate subtrees. We use a
threshold fixed at 0.85. T'S Jo g is eval- 10k i?; GfTre;"" 100k
uated by first evaluating text nodes - -
and afterwards structural nodes; this
processing sequence was superior in
our experiments. In addition, T'SJcg

Execution time (sec)

Fig. 9. Full TSJ evaluation
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is evaluated in conjunctive mode, where only the subtrees returned by the textual
operator are considered by the structural operator.

We observe that all operators scale and do not present dramatic performance
variations. T'SJpg, T'SJy3, and T'SJcog are superior and very close, whereas
TSJy,1 and T'SJ,o are 15%—25% slower. Because they produce larger token sets,
the number of signature collisions is higher, thereby requiring more similarity
evaluations. Finally, we mention that the size of the input dataset determines
only partially the execution time. In addition, the number of similar tree pairs
occurring in the experiment significantly influences the execution time required.

6.2 Accuracy Evaluation

We now evaluate the quality of our similarity operators. For this experiment, we
generate each dataset by first randomly selecting 500 subtrees from the original
dataset and then generating 4500 duplicates from them (9 per subtree). As query
workload, we randomly select 100 subtrees from the above dataset. For each
queried input subtree T, the trees Tk in the result returned by our similarity join
are ranked according to their calculated similarity with 7. In this experiment, we
do not use any threshold parameter, and therefore the rank reported is complete.
Further, during data generation, we keep track of all duplicates generated from
each subtree; those duplicates form a partition and carry the same identifier.
We use well-known evaluation metrics from Information Retrieval to evaluate
the quality of our methods: the non-interpolated Average Precision (AP), the
mazimum F'1 score, and the interpolated precision at recall levels 0.0, 0,1,...,1,0.
AP is ——L— x "N [P(r) x rel(r)], where r is the rank, N the total

#relevanttrees r=1
number of subtrees returned. P(r) is the number of relevant subtrees ranked

before r, divided by the total number of subtrees ranked before r, and rel(r)
is 1 if the subtree at rank r is relevant and 0 otherwise. The F1 measure is
the harmonic mean of precision and recall over the ranking. The interpolated
precision at recall r is the highest precision found for recall levels higher than r.
We report the mean of the AP and F1 measure over the query workload.

We applied the T'SJcg operator

using the weights 0.5 (0.5) and 0.25 Table 2. Duplicate dataset classes
(0.75) for structural (textual) simi- Percentage of
larity score in the weighted average Class Name |erroneous| error
calculation and represented them in duplicates| extent
our experimental charts as CS-0.5 Low L1 10 10
and CS-0.25, respectively. Following Low L2 30 10
a strategy similar to [I], we classify [Moderate M1 30 30
our test datasets into dirty, moderate, | Moderate M2 60 10
and low error datasets according to Dirty D1 60 30
the parameters used in the data gen- Dirty D2 90 30
eration as shown in Table[2l Errors in - E1-E4 50 10-50

duplicate subtrees (i.e., the error ex-
tent) are applied to structural nodes at the same rate as to the textual nodes.
For example, L1 contains 10% of alteration on its text nodes as well as 10% of
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Fig. 10. MAP values for DBLP and IMDB datasets

alteration on its structural nodes. We also generated datasets containing only
one specific type of structural error and with a fixed textual error extent to
evaluate the effect of specific structural deviations.

Fig. [0 shows the mean AP (MAP) values for the classes of datasets gener-
ated from DBLP and IMDB. All operators perform well on the L1 dataset. The
performance of CS-0.5, however, suffers a considerable degradation already on
L2 and presents a very poor accuracy for dirty datasets. On the other hand,
CS-0.25 shows much more resilience to errors. In fact, its performance is com-
parable to the epg-gram-based operators for low and moderate data set classes.
These results demonstrate the higher importance of textual tokens for the sim-
ilarity evaluation. Because text tends to be more selective than structure, our
results confirm the common notion that less frequent elements contribute more
to similarity assessment. In general, the epg-grams operators outperformed all
competitors, with T'SJ,2 being the best and T'SJ,3 being the worst among them.
Clearly, the reduction of the number of appearances of each character node in
version 3 (decreased by 1 achieved by pruning of gnull, see Sect. [£.2) negatively
impacts the quality of the results.

The next experiment we report explores the sensitivity of our operators to
specific types of structural deviations. We consider four types of errors: Add
nodes, that inserts nodes along a root-to-leaf path, thereby increasing the depth
of a subtree; Tree-up moves nodes up in a subtree modifying ancestor-descendant
relationships; Swap changes the ordering of nodes (it may also move nodes to
the sibling of its parent); and Rename that changes the nodes name. We do not
include deletion of trees in this experiment, because this kind of error also (sub-
stantially) changes the content of a subtree and, therefore, would blur the results
with text-related modifications. For these datasets, we restricted the erroneous
duplicates to 50%, the textual error extent to 10%, and increased the structural
error extent from 10% to 50% in steps of 10%.

The results are shown in Fig. [Tl Our first observation pertains to the poor per-
formance of T'S Jpg for all types of errors. Because this method relies on root-to-
leaf information to generate its token set, it suffers large accuracy degradation as
the structural errors increase. CS-0.25 shows the best results for Add Nodes and
Rename datasets. Indeed, they are practically not affected by these types of struc-
tural errors. Because the evaluation of textual and structural similarity is done
independently and the structural score has less weight, in addition, the method
is resilient to structural errors. However, a natural question that may arises is
whether or not it is a good behavior for a similarity measure to report high scores
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Fig. 11. MAP values for datasets with specific errors

for subtrees containing nodes having different tags. Note that this is similar to the
case in our example in Fig.[Il Among the epg-gram-based operators, T'S Jy - again
presents the best results. Because its underlying tokenization method neither pro-
duces g-grams of size 1 (in contrast to 7°'S.J,1) nor decreases the number of text
nodes appearing in epg-grams (in contrast to T'SJy3), T'SJ,2 can better explore
textual similarity to deliver more accurate results.

In our final experiment, we fo-

cussed on the NASA dataset which [ a1 mv2 ovs
has a more document-centric flavour, 1

with much larger string sizes in | °°°

the content part than the previous £ °°

datasets. For our experiment, we gen- EO::

erated the same classes of datasets | ..

described in Table @ However, we 07

only evaluated the epg-grams-based ot o M2 e bl
operators, since T'SJos and T'SJpa Fig. 12. NASA accuracy results

do not support path predicates. We

used //author and /dataset/title as path predicates to obtain the textual con-
tent of the subtrees. The results shown in Fig.[I2 are similar to those of the other
datasets: epg-v2 has the best accuracy among the various versions of epg-grams.
We note that, in general, the results of all operators are better than those for
DBLP and IMDB. Besides the textual information obtained by the path predi-
cates, the rich structure of the subtrees provides a large amount of information
to be exploited by the similarity evaluation.

7 Conclusion

In this paper, we primarily explored an approach to tree-based similarity joins
and analyzed its performance and accuracy when embedded in native XDBMSs.



Evaluating Performance and Quality of XML-Based Similarity Joins 261

Our results have shown that we achieved a seamless integration of similarity oper-
ators into XTC. The internal XDBMS processing, i.e., the specific support of our
lower-level suboperators, enabled efficient evaluation of XML documents stored
on disk thereby providing scalability in all scenarios considered. Our framework
provides multiple instances of similarity joins which support different ways of
tree similarity evaluation in a unified manner. We also explored a new concept,
the so-called epg-grams, combining structural and textual information to im-
prove the quality of similarity joins. Our results have shown that this technique
considerably enhances the matching quality, i.e., the accuracy of the similarity
join, especially on dirty datasets.

Acknowledgement: Work supported by CAPES /Brazil under grant BEX1129/
04-0.
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