
Tailor-made Lock Protocols and their DBMS Integration
Sebastian Bächle

University of Kaiserslautern
67663 Kaiserslautern, Germany

baechle@informatik.uni-kl.de

Theo Härder
University of Kaiserslautern

67663 Kaiserslautern, Germany
haerder@informatik.uni-kl.de
ABSTRACT
We outline the use of fine-grained lock protocols as a concurrency
control mechanism for the collaboration on XML documents and
show that their tailor-made optimization towards the access model
used (e.g., DOM operations) pays off. We discuss how hard-wired
lock services can be avoided in an XML engine and how we can,
based on loosely coupled services, exchange lock protocols even at
runtime without affecting other engine services. The flexible use of
these lock protocols is further enhanced by enabling automatic run-
time adjustments and specialized optimizations based on knowl-
edge about the application. These techniques are implemented in
our native XML database management system (XDBMS) called
XTC [5] and are currently further refined.1

1. MOTIVATION
The hierarchical structure of XML documents is preserved in native
XDBMSs. The operations applied to such tree structures are quite
different from those of tabular (relational) data structures. There-
fore, solutions for concurrency control optimized for relational
DBMSs will not meet high performance expectations. However, ef-
ficient and effective transaction-protected collaboration on XML
documents [11] becomes a pressing issue because of their number,
size, and growing use. Tailor-made lock protocols that take into ac-
count the tree characteristics of the documents and the operations of
the workload are considered a viable solution. But, because of
structure variations and workload changes, these protocols must ex-
hibit a high degree of flexibility as well as automatic means of run-
time adjustments.

Because a number of language models are available and standard-
ized for XML [9,10], a general solution has to support fine-grained
locking – besides for separating declarative XQuery requests – for
concurrently evaluating stream-, navigation-, and path-based que-
ries. With these requirements, we necessarily have to map all de-
clarative operations to a navigational access model, e.g., using the
DOM operations, to provide for fine-granular concurrency control.
We have already developed a family consisting of four DOM-based
lock protocols [6]. Here, our focus is on the engineering aspects
how such protocols can be efficiently integrated, but sufficiently
encapsulated in an XDBMS such that they can be automatically ex-
changed or adapted to new processing situations at runtime.

1 This work has been partially supported by the German Research Founda-
tion (DFG).
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT SETMDM Workshop 2008, March 29, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-000-0/00/0000...$5.00.
In Section 2, we explain the need for lock protocols tailored to the
specific characteristics of XML processing, before we outline the
mechanism underlying the runtime exchange of lock protocols in
Section 3. Using the concept of meta-locking, we sketch in
Section 4 how we achieved cross-comparison of 12 lock protocols
in an identical XDBMS setting without any system modification.
Here, XTC (XML Transaction Coordinator, [5]) served as a testbed
for all implementations and comparative experiments. Various
forms of runtime adjustments on lock protocols are discussed in
Section 5, before we introduce further ways of protocol specializa-
tions in Section 6. Finally, Section 7 concludes the paper.

2. FINE-GRAINED DOM-BASED LOCKING
Because our XML documents are stored in a B*-tree structure [5],
the question whether or not specific tree-based lock protocols can
be used immediately arises. So-called B-tree lock protocols provide
for structural consistency while concurrent database operations are
querying or modifying database contents and its representation in
B-tree indexes [2]. Such locks also called latches isolate concurrent
operations on B-trees, e.g., while traversing a B-tree, latch coupling
acquires a latch for each B-tree page before the traversal operation
is accessing it and immediately releases this latch when the latch for
the successor page is granted or at end of operation at the latest [1].
In contrast, locks isolate concurrent transactions on user data and –
to guarantee serializability [4] – have to be kept until transaction
commit. Therefore, such latches only serve for consistent process-
ing of (logically redundant) B-tree structures.

Hierarchical lock protocols [3] – also denoted as multi-granularity
locking (MGL) – are used “everywhere” in the relational world. For
performance reasons in XDBMSs, fine-granular isolation at the
node level is needed when accessing individual nodes or traversing
a path, whereas coarser granularity is appropriate when traversing
or scanning entire trees. Therefore, lock protocols, which enable the
isolation of multiple granules each with a single lock, are also ben-
eficial in XDBMSs. Regarding the tree structure of documents, ob-
jects at each level can be isolated acquiring the usual locks with
modes R (read), X (exclusive), and U (update with conversion op-
tion), which implicitly lock all objects in the entire subtree ad-
dressed. To avoid lock conflicts when objects at different levels are
locked, so-called intention locks with modes IR (intention read) or
IX (intention exclusive) have to be acquired along the path from the
root to the object to be isolated and vice versa when the locks are
released [3]. Hence, we could map the relational IRIX protocol to
XML trees and use it as a generic solution where the properties of
the DOM access model are neglected.

Using the IRIX protocol, a transaction reading nodes at any tree
level had to use R locks on the nodes accessed thereby locking these
nodes together with their entire subtrees. This isolation is too strict,

because the lock protocol unnecessarily prevents writers to access
nodes somewhere in the subtrees. Giving a solution for this prob-
lem, we want to sketch the idea of lock granularity adjustment to
DOM-specific navigational operations. To develop true DOM-
based XML lock protocols, we introduce a far richer set of locking
concepts. While MGL essentially rests on intention locks and, in
our terms, subtree locks, we additionally define locking concepts
for nodes, edges, and levels. Edge locks having three modes [6]
mainly serve for phantom protection and, due to space restrictions,
we will not further discuss them.

We differentiate read and write operations thereby renaming the
well-known (IR, R) and (IX, X) lock modes with (IR, SR) and (IX,
SX) modes, respectively. As in the MGL scheme, the U mode (SU
in our protocol) plays a special role, because it permits lock conver-
sion. Novel lock modes are NR (node read) and LR (level read) in
a tree which, in contrast to MGL, read-lock only a node or all nodes
at a level, but not the corresponding subtrees. Together with the CX
mode (child exclusive), these locks enable serializable transaction
schedules with read operations on inner tree nodes, while concur-
rent updates may occur in their subtrees. Hence, these XML-speci-
fic lock modes behave as follows:

• An NR mode is requested for reading context node c. To isolate
such a read access, an IR lock has to be acquired for each node
in the ancestor path. Note, the NR mode takes over the role of IR
combined with a specialized R, because it only locks the speci-
fied node, but not any descendant nodes.

• An LR mode locks context node c together with its direct-child
nodes for shared access. For example, evaluation of the child
axis only requires an LR lock on context node c and not individ-
ual NR locks for all child nodes.

• A CX mode on context node c indicates the existence of an SX
lock on some direct-child nodes and prohibits inconsistent lock-
ing states by preventing LR and SR locks. It does not prohibit
other CX locks on c, because separate child nodes of c may be
exclusively locked by other transactions (the compatibility is
then decided on the child nodes themselves).

Figure 1 contains the compatibility matrix for our basic lock proto-
col called taDOM2. To illustrate its use, let us assume that the node

manager has to handle for transaction T1 an incoming request
GetChildNodes() for context node book in Figure 2. This requires
appropriate locks to isolate T1 from modifications of other transac-
tions. Here, the lock manager can use the level-read optimization
and set the perfectly fitting mode LR on book and, in turn, protect
the entire path from the document root by appropriate intention
locks of mode IR. Our prefix-based node labeling scheme called
SPLIDs (stable path labeling identifiers are similar to OrdPaths [8])
greatly supports lock placement in trees, because SPLIDs carry the
node labels of all ancestors. Hence, access to the document is not
needed to determine the path to a context node. After having tra-
versed all children, T1 navigates to the content of the price element
after the lock manager has set an NR lock for it. Then, transaction
T2 starts modifying the value lname and, therefore, acquires an SX
lock for the corresponding text node. The lock manager comple-
ments this action by acquiring a CX lock for the parent node and IX
locks for all further ancestors. Simultaneously, transaction T3 wants
to delete the author node and its entire subtree, for which, on behalf
of T3, the lock manager must acquire an IX lock on the bib node, a
CX lock on the book node, and an SX lock on the author node. The
lock request on the book node cannot immediately be granted be-
cause of the existing LR lock of T1. Hence, T3 – placing its request
in the lock request queue (LRQ: CX3) – must synchronously wait
for the release of the LR lock of T1 on the book node.

Hence, by tailoring the lock granularity to the LR operation, the
lock protocol enhances concurrency by allowing modifications of
other transactions in subtrees whose roots are read-locked.

3. USE OF A PROTOCOL FAMILY
Experimental analysis of this protocol led to some severe perfor-
mance problems in specific situations which were solved by the fol-
low-up protocol taDOM2+. Conversion of LR was particularly ex-
pensive. Assume T1 wants modify price and has to acquire an SX
lock on it in the scenario sketched in Figure 2. For this purpose, the
taDOM2 protocol requires a CX lock on its parent book. Hence, the
existing LR has to be converted into a CX lock and, in turn, a suc-
cessful conversion requires NR locks on all children (potentially
read by T1) of book. As opposed to ancestor determination by the
SPLID of a context node, the lock manager cannot calculate the
SPLIDs of its children and, hence, has to access the document to ex-
plicitly locate all affected nodes – a very expensive operation. By
introducing suitable intention modes, we obtained the more com-
plex protocol taDOM2+ having 12 lock modes. The DOM3 stan-
dard introduced a richer set of operations which led to several new
tailored lock modes for taDOM3 and – to optimize specific conver-

Figure 1. Lock compatibilities for taDOM2

- IR NR LR SR IX CX SU SX

IR + + + + + + + - -

NR + + + + + + + - -

LR + + + + + + - - -

SR + + + + + - - - -

IX + + + + - + + - -

CX + + + - - + + - -

SU + + + + + - - - -

SX + - - - - - - - -

Figure 2. taDOM2 locking example

bib

book

49.99The Title

First Name Last Name

authortitle price

fname lname

IR1

LR1

NR1

IX2

IX2

IX2

CX2

SX2

IX3

LRQ: CX3

sions – we added even more intention modes resulting in the truly
complex protocol taDOM3+ specifying compatibilities and conver-
sion rules for 20 lock modes (see [6] for details).

While in our initial implementation the taDOM2 protocol was hard-
wired, we looked for an elegant integration mechanism to transpar-
ently enable protocol changes (e.g., another compatibility matrix)
or use of alternative protocols. Therefore, we decoupled the logic
for navigating and manipulating the documents from all protocol-
specific aspects by encapsulating them in so-called lock services,
which are provided by the lock manager. The node manager uses
them to enforce its isolation needs, instead of directly requesting
specific locks from the lock manager. For this purpose, the lock ser-
vice interface offers a collection of methods, which sufficiently
cover all relevant cases, e.g., for locking a single node or an entire
subtree in either shared or exclusive mode. Figure 3 sketches the in-
teraction of the node manager and the locking facilities involved in
protocol use, lock mode selection, and application of conversion
rules.

This small restructuring reduced the responsibility of the node man-
ager for coping with how the resources have to be locked to simply
saying what resources have to be locked. Based on such “declara-
tive” lock requests, the lock service infers the appropriate locks and
lock modes according to the respective protocol and acquires them
from the lock manager. The granted locks and the waiting lock re-
quests are maintained in a conventional lock table and a wait-for
graph as it is known from relational systems. For protocol-specific
details like compatibility matrix and lock conversions, however, the
lock manager depends on information provided by the lock service.
Thus, the internal structures of the lock manager like the lock table
and the deadlock detector could be completely decoupled from the
used protocols, too. Finally, we are now able to change the lock pro-
tocol by simply exchanging the lock service used by the node man-
ager. Furthermore, it is now even possible to use multiple protocols,
e.g., taDOM2+ and taDOM3+, simultaneously for different kinds
of and workloads for documents inside the same server instance.

4. META-LOCKING
As described in the previous section, the key observation for trans-
parent lock protocol exchange is an information exchange between
lock manager and a lock service about the type of locks and com-
patibilities present. The lock services controlled by the lock manag-
er can then be called by specific methods and each individual lock
service can act as a kind of abstract data type. As a consequence, the
node manager can plan and submit the lock requests in a more ab-
stract form only addressing general tree properties. Using this
mechanism, we could exchange all “closely related” protocols of
the taDOM family and run them without additional effort in an

identical setting. By observing their behavior under the same
benchmark, we gained insight into their specific blocking behavior
and lock administration overhead and, in turn, could react with
some fine-tuning.

Even more important is a cross-comparison between different lock
protocol families to identify strengths and weaknesses in a broader
context. On the other hand, when unrelated lock protocols having a
different focus can be smoothly exchanged, we would get a more
powerful repertoire for concurrency control optimization under
widely varying workloads.

We found quite different approaches to fine-grained tree locking in
the literature and identified three families with 12 protocols in total:
Besides our taDOM* group with 4 members, we adjusted the rela-
tional MGL approach [3] to the XML locking requirements and in-
cluded 5 variants of it (i.e., IRX, IRX+, IRIX, IRIX+, and URIX) in
the so-called MGL* group. Furthermore, three protocol variants de-
scribed in [7] were developed as DOM-based lock protocols in the
Natix context (i.e., Node2PL, NO2PL, and OO2PL), but not imple-
mented so far. They are denoted as the *2PL group.

To run all of them in an identical system setting – by just exchang-
ing the service responsible for driving the specific lock protocol –
is more challenging than that of the taDOM family. The protocol
abilities among the identified families differ to a much larger extent,
because the MGL* group does not know the concept of level locks
and the mismatch of the *2PL group with missing subtree and level
locks is even larger.

For this reason, we developed the concept of meta-locking to bridge
this gap and to automatically adjust the kinds of lock requests de-
pending on the current service available. Important properties of a
lock protocol influencing the kind of service request are the support
of shared level locking, shared tree locking, and exclusive tree lock-
ing. To enable an inquiry of such properties by the node manager,
the lock service provides three methods.

• supportsSharedLevelLocking: If a protocol supports the level
concept, a request for all children or a scan traversing the child
set can be isolated by a single level lock (i.e., LR). Otherwise, all
nodes (and navigation edges) must be locked separately.

• supportsSharedTreeLocking: Analogously to level locks, sub-
trees can be read-locked by a single request, if the protocol has
this option. Otherwise, all nodes (and navigation edges) of the
subtree must be locked separately.

• supportsExclusiveTreeLocking: This protocol property enables
exclusive locking of a subtree by setting a lock on its root node.
If this option is not available, then subtree deletion requires tra-
versal and separate locking of all nodes, before the deletion can
take place in a second step.

For a lock request on a context node, the node manager can select a
specification of the lock mode (Read, Update, or Exclusive) for the
context node itself, the context node and the level of all its children
or the context node and its related subtree. For navigational access-
es, a lock mode for one of the edges prevSibling, nextSibling, first-
Child, or lastChild can be specified, in addition. Then, the lock
manager translates the lock request to a specific lock mode depen-
dent on the chosen protocol.

Figure 3. Interaction of node manager and locking facilities

node manager

record manager

lock manager

lock service

transaction

1
*

transaction
service

mapping
hierarchy

(partial view)

manager

Although the MGL* group is only distantly related and the *2PL
group is not related at all to our protocol family, this meta-locking
concept enabled without further “manual” interaction a true and
precise cross-comparison of all 12 protocols, because they were run
under the same benchmark in XTC using the same system configu-
ration parameters. All benchmark operations and the node-manag-
er-induced lock protocols were applied to the taDOM storage mod-
el [5] of XTC and took advantage of its refined node structure and
the salient SPLID properties concerning lock management support.

As it turned out by empirical experiments, lock depth is an impor-
tant and performance-critical parameter of an XML lock protocol.
Lock depth n specifies that individual locks isolating a navigating
transaction are only acquired for nodes down to level n. Operations
accessing nodes at deeper levels are isolated by subtree locks at lev-
el n. Note, choosing lock depth 0 corresponds to the case where
only document locks are available. In the average, the higher the
lock depth parameter is chosen, the finer are the lock granules, but
the higher is the lock administration overhead, because the number
of locks to be managed increases. On the other hand, lock conflicts
typically occur at levels closer to the document root (lower lock
depth) such that fine-grained locks (and their increased manage-
ment) at levels deeper in the tree do not pay off. Obviously, the ta-
DOM and the MGL protocols can easily be adjusted to the lock-
depth parameter, whereas the *2PL group cannot benefit from it.

In our lock protocol competition, we used a document of about
580,000 tree nodes (~8MB) and executed a constant system load of
66 transactions taken from a mix of 5 transaction types. For our dis-
cussion, neither the underlying XML documents nor the mix of
benchmark operations are important. Here, we only want to show
the overall results in terms of successfully executed transactions
(throughput) and, as a complementary measure, the number of
transactions to be aborted due to deadlocks.

Figure 4a clearly indicates the value of tailor-made lock protocols.
With the missing support for subtree and level locks, protocols of
the *2PL group needed a ponderous conversion delivering badly

adjusted granules. On the other hand, the MGL protocols (only lev-
el locks missing) roughly doubled the transaction throughput as
compared to the *2PL group. Finally, the taDOM* group almost
doubled the throughput compared to the MGL* group. A reason-
able application to achieve fine-grained protocols requires at least
a lock depth of 2, which also confirms the superiority of MGL and
taDOM in terms of deadlock avoidance (see Figure 4b).

Hence, the impressive performance behavior of the taDOM* group
reveals that a careful adaptation of lock granules to specific opera-
tions clearly pays off (see again the discussion in Section 2).

5. RUNTIME PROTOCOL ADJUSTMENT
At runtime, the main challenge for concurrency control is the pre-
servation of a reasonable balance of concurrency achieved and
locking overhead needed. The most effective and widely used solu-
tion for this objective is called lock escalation: The fine-grained
resolution of a lock protocol is – preferably in a step-wise manner
– reduced by acquiring coarser granules. For example in relational
systems, the page containing a specific record is locked instead of
the record itself. If too many pages are to be locked in the course of
processing, the lock manager may try to acquire a single lock for
the entire table. In B-tree indexes, separator keys of non-leaf pages
can be exploited as intermediate lock granularities to improve scal-
ability [2]. Although native XDBMSs often store the document
nodes in page-oriented, tree-based index structures, too, an escala-
tion from node locks to page locks is not suitable anymore. Because
the nodes are stored in document order and, as a consequence, frag-
ments of multiple subtrees can reside in the same physical page,
page level locks would jeopardize the concurrency benefits of hier-
archical locks on XML document trees. Hence, lock escalation in
our case means the reduction of the lock depth: we lock subtrees at
a higher level using a single lock instead of separately locking each
descendant node visited. Consequently, the number of escalation
levels is limited by the structure of a document and not by its phys-
ical DBMS representation. This is also a notable aspect of our en-
capsulation design.

Figure 4. Overall results of a transaction benchmark (variation of lock depth)

0

100

200

300

400

500

600

700

0 1 2 3 4 5

RIX(+),IRIX(+)

taDOM,URIX

Node2PL,NO2PL,OO2PL

lock protocol
taDOM3+
taDOM3
taDOM2+
taDOM2
URIX
IRIX
IRIX+
RIX
RIX+
OO2PL
NO2PL
Node2PL

0

100

200

300

400

500

600

700

0 1 2 3 4 5

RIX(+),IRIX(+)

taDOM,URIX

Node2PL,NO2PL,OO2PL

lock protocol
taDOM3+
taDOM3

0

100

200

300

400

500

600

700

0 1 2 3 4 5

RIX(+),IRIX(+)

taDOM,URIX

Node2PL,NO2PL,OO2PL

lock protocol
taDOM3+
taDOM3
taDOM2+
taDOM2
taDOM2+
taDOM2
URIXURIX
IRIX
IRIX+
IRIX
IRIX+
RIX
RIX+
RIX
RIX+
OO2PL
NO2PL
Node2PL

OO2PL
NO2PL
Node2PL

100

150

200

250

300

350

400

0 1 2 3 4 5

taDOM3+, taDOM2+

taDOM3, taDOM2

URIX

RIX(+), IRIX(+)

Node2PL, NO2PL, OO2PL

lock protocol
taDOM3+
taDOM3
taDOM2+
taDOM2
URIX
IRIX
IRIX+
RIX
RIX+
OO2PL
NO2PL
Node2PL

100

150

200

250

300

350

400

0 1 2 3 4 5

taDOM3+, taDOM2+

taDOM3, taDOM2

URIX

RIX(+), IRIX(+)

Node2PL, NO2PL, OO2PL

lock protocol
taDOM3+
taDOM3

100

150

200

250

300

350

400

0 1 2 3 4 5

taDOM3+, taDOM2+

taDOM3, taDOM2

URIX

RIX(+), IRIX(+)

Node2PL, NO2PL, OO2PL

lock protocol
taDOM3+
taDOM3
taDOM2+
taDOM2
taDOM2+
taDOM2
URIX
IRIX
URIX
IRIX
IRIX+
RIX
IRIX+
RIX
RIX+
OO2PL
NO2PL
Node2PL

RIX+
OO2PL
NO2PL
Node2PL

a) Number of committed transactions b) Number of aborted transactions

The acquisition of a coarser lock granule than actually needed is
typically triggered by the requestor of the locks itself, e.g., a subtree
scan operator, or by the lock manager, when the number of main-
tained locks for a transaction reaches a critical level or the requested
lock is at a deeper level than the pre-defined maximum lock depth.
Admittedly, especially the heuristics of the lock manager is rather a
mechanism enabling a system to handle large documents than an
optimization for higher transaction throughput. The lock escalation
is performed independently of the processing context, because it is
necessary and not because it is wise. Therefore, we present in the
following some concepts that allow us to go further than a simple
reduction of the global lock depth and to increase the performance
of the system by doing smart lock escalation.

We aim to preserve fine-grained resolution of our lock protocols in
hot spot regions of a document to maintain high concurrency, while
we gracefully give it up in low-traffic regions to save system re-
sources. In doing so, we have to face the challenge to decide wheth-
er or not it is good idea to perform a lock escalation on a subtree.
Again, the solution lies in the design of our locking facilities. By
making the lock manager “tree-aware”, we can very easily exploit
its implicit knowledge about the traffic on a document. Lock re-
quests for a specific document node trigger the lock manager to
transparently acquire the required intention locks on the ancestor
path. The ancestor nodes and the appropriate lock modes are, of
course, provided by the lock service. Thus, the lock table knows not
only the current lock mode of a node, the number of requests and
the transactions that issued these requests, but also its level in the
document and the level of the target node when it requests the in-
tention locks on the path from root to leaf. This information can be
used as input for a heuristics to decide about local lock escalations
in specific subtrees.

The example depicted in Figure 5 illustrates how this cheaply gath-
ered information can be used effectively: Transaction T1 requests a
shared lock for the highlighted element node at level 6, but before
this request can be granted, appropriate intention locks on the an-
cestor path have to be acquired. At level 4, the lock table recognizes
that T1 already requested 50 shared intention locks on this node.
This indicates that T1 has already done some navigation steps in the
subtree rooted at the current node, and that it will probably perform
some more. Therefore, the lock table asks the lock service if the ini-
tial lock request at level 6 should be overridden by a stronger lock
at level 4 to limit the number of locks in case that T1 continues its
navigation in the subtree. Because the target level is more than one
level deeper and locks of other transactions are not present on this
node, the lock service decides in favor of a shared subtree lock on
the ancestor node to save resources. If the node at level 4, however,
would also be locked by another transaction T2 with an intention
exclusive lock, it would probably apply the escalation to the parent
node at level 5 to avoid a blocking situation.

The great advantage of this approach is that collection of additional
information is avoided and that all relevant information is always
immediately available when needed. In our example, the levels and
the distance of the current and the target level served as weights in
this decision process. Nevertheless, it is also possible to incorporate
high-level information like statistics about the current transaction
workload or the document itself. Besides the maximum depth and
the number of document nodes, especially the fan-out characteris-

tics of the document can be helpful. Depending on the complexity
of the heuristics used, however, it is reasonable to reduce the addi-
tional computational overhead to a minimum. For that reason, the
lock modes and the number of requests for a specific resource might
only be consulted, if the number of locks held by the current trans-
action reaches a certain threshold, and only if they indicate an opti-
mization potential, further information has to be evaluated.

Although navigation on the XML document tree or evaluation of
declarative queries formulated in XPath or XQuery allow many de-
grees of freedom and cause varying access patterns, some basic
tasks like the evaluation of positional predicates are repeated very
often. Hence, another promising way to optimize the application of
our protocols is the adaptation to typical access patterns. To give a
simple example, assume that a transaction wants to navigate to the
first child node of an element that satisfies a certain search criterion.
The transaction can either fetch all child nodes by a single call of
GetChildNodes() and pick the searched one, or descend to the first
child node with GetFirstChild() and scan for the child node with
GetNextSibling(). In the first case, only a single LR lock is required
to protect the operation, but many child nodes are unnecessarily
locked possibly causing lower concurrency. In the second case,
concurrency may be much higher, since only those nodes are locked
that are necessary to keep the navigation path stable. However, the
lock overhead is higher, too, because each call of GetNextSibling()
requires the acquisition of additional locks.

Obviously, it depends on the position of the searched child node and
the fan-out of the specific element whether the first or the second
alternative is better, and, ideally, the caller respectively the query
optimizer should choose the appropriate alternative. In most cases,
however, it is not possible to reliably predict the best one. Then, it
is reasonable to start with the second strategy to preserve high con-
currency. If the search does not stop until the k-th child is reached,
the lock service can be advised to try lock escalation and to lock all
siblings with an LR lock on the parent, because further calls of Get-
NextSibling() will follow with high probability. Instead of waiting
for an explicit hint, the node manager itself could also keep track of
the n most recent navigation steps and predict the best lock mode
for the next steps.

The goal of this kind of pre-claiming is to request locks that are not
only sufficient for the current operation but also optimal for future
operations. In contrast to the on-demand escalation capabilities we

Figure 5. Lock escalation example

IR1(50)

NR1 LR1
. . . NR1 SR1

. . . NR1

NR1(9) . . . NR1(4) . . . NR1(2)

SR1(51) L4

L5

L6

described before, such context-sensitive heuristics can be applied
much earlier and lead to better overall performance, because not
only locking overhead but also danger of deadlocks are reduced.

Further heuristics are primarily designed to speed up the evaluation
of declarative queries. The context nodes for a query result, for ex-
ample, are usually identified before the actual output is computed.
Because the output often embodies nodes in the subtree rooted at
the context nodes, the respective nodes or subtrees can already be
locked when a context node is identified. This avoids late blocking
of a transaction during result construction. Contrarily, the lock
depth can be locally increased in the identification phase to reduce
the risk of blocking other transactions on examined nodes that did
not qualify for the query result.

6. PROTOCOL SPECIALIZATION
So far, we described general runtime optimizations for a universal
XDBMS. Further improvements are possible if we take also aspects
of the applications themselves into account and adjust our lock pro-
tocols accordingly. Since the adaptations are by nature very special
to a specific application area, we do only sketch a few scenarios at
this point to give an idea of how such specializations may look like.

Applications that change the documents in a uniform manner ap-
pear to be a promising field. A special case are “append-only” sce-
narios like digital libraries where the document order does not play
an important role, and new nodes or subtrees are only appended.
Existing structures remain untouched and, at the most, the content
of existing nodes is updated, e.g., to correct typing errors. This al-
lows us to omit the edge locks most of the time because transactions
must not protect themselves from phantom insertions between two
existing nodes. In addition to that, insertions can be flagged with an
additional exclusive insert lock to signal other transactions that they
can skip the new last child if they do not rely on the most recent ver-
sion of the document.

Many applications do also rely on a specific schema to define tree-
structured compounds that reflect logical entities like customer da-
ta, addresses, or products, and are typically accessed as a whole.
Hence, such entities in a document may be identified with the help
of a schema and directly locked with a single subtree lock, whereas
other parts are still synchronized with fine-grained node locks. In an
XML-based content management system, for example, the metada-
ta is accessed and modified in very small granules, whereas the con-
tent parts usually consist of large subtrees with some sort of XML
markup that are always accessed as a logical unit. In some applica-
tions it might even be possible to change the basic lock granule
from single document nodes to larger XML entities like complex
XML-Schema types.

7. CONCLUSION
In this paper, we proposed the use of techniques adaptable to vari-
ous application scenarios and configurations supporting high con-
currency in native XDBMS. We started with an introduction into
the basics of our tailor-made lock protocols, which are perfectly el-

igible for a fine-grained transaction isolation on XML document
trees, and showed how they can be encapsulated and integrated in
an XDBMS environment. By introducing the concept of meta-lock-
ing, we discussed the software-engineering principles for the ex-
change of the lock service responsible for driving a specific lock
protocol. Furthermore, we demonstrated how we could extend our
approach initially designed for taDOM protocols to also support
other locking approaches in our prototype XTC to cross-compare
foreign protocols and to prove the superiority of our protocols with
empirical tests in an identical system configuration.

Moreover, we presented further refinements of our encapsulation
design, which allows us to easily control and optimize the runtime
behavior of our lock protocols without making concessions to the
encapsulation and exchangeability properties. Finally, we outlined
some possibilities to customize the protocols for special application
scenarios. In our future work, we will focus on improvements con-
cerning the efficient evaluation of declarative queries based on the
XQuery language model as well as the self-optimizing capabilities
of our XDBMS prototype.

8. REFERENCES
[1] R. Bayer and M. Schkolnick: Concurrency of Operations on

B-Trees. Acta Informatica 9:1–21 (1977)

[2] G. Graefe: Hierarchical locking in B-tree indexes. Proc. Na-
tional German Database Conference (BTW 2007), LNI P-65,
Springer, pp. 18–42 (2007)

[3] J. Gray: Notes on Database Operating Systems. In Operating
Systems: An Advanced Course, Springer-Verlag, LNCS 60:
393-481 (1978).

[4] J. Gray and A. Reuter: Transaction Processing: Concepts and
Techniques. Morgan Kaufmann (1993)

[5] M. Haustein and T. Härder: An Efficient Infrastructure for
Native Transactional XML Processing. Data & Knowledge
Engineering 61:3, pp. 500–523 (2007)

[6] M. Haustein and T. Härder: Optimizing lock protocols for na-
tive XML processing. To appear in Data & Knowledge Engi-
neering 2008.

[7] S. Helmer, C.-C. Kanne, and G. Moerkotte: Evaluating Lock-
Based Protocols for Cooperation on XML Documents. SIG-
MOD Record 33:1, pp. 58–63 (2004)

[8] P. O'Neil, E. O'Neil, S. Pal, I. Cseri, G. Schaller, N. Westbury.
ORDPATHs: Insert-Friendly XML Node Labels. Proc. SIG-
MOD Conf.: 903–908 (2004)

[9] Document Object Model (DOM) Level 2 / Level 3 Core Spe-
cific., W3C Recommendation

[10] XQuery 1.0: An XML Query Language. http://www.w3.org/
XML/XQuery

[11] XQuery Update Facility. http://www.w3.org/TR/xqupdate

	1. MOTIVATION
	2. Fine-GRAINED DOM-Based LockinG
	3. Use of a Protocol Family
	4. Meta-Locking
	5. Runtime Protocol Adjustment
	6. Protocol Specialization
	7. CONCLUSION
	8. REFERENCES

