
Usage-driven Storage Structures
for Native XML Databases

Karsten Schmidt and Theo Härder
∗

Department of Computer Science
University of Kaiserslautern, Germany

{kschmidt,haerder}@informatik.uni-kl.de

ABSTRACT
There are numerous and influential parameters associated
with the selection of suitable native storage structures for
XML documents within an XML DBMS. Such important
parameters are related to node labeling, path synopsis, text
compression, document container layout, and indexing. While
these storage and compression techniques primarily reduce
I/O overhead and space consumption, they imply additional
algorithmic costs for encoding/decoding during document
processing. We discuss how various storage options favor
different usage patterns and how they can be specified be-
forehand to influence native XML storage options by the
anticipated usages.

Keywords
XML database, storage structures, access patterns, work-
load classification

1. INTRODUCTION
With the dramatically increasing importance of XML and

XML-related query languages, several native and non-native
storage approaches have emerged. In the past, research of-
ten focused on the management of a few isolated documents
which are typically very large (up to several GBytes [11]).
On the other hand, many real-world applications require
DBMSs managing large collections of small to medium sized
XML documents (typically less than a few MBytes [1]). In
any case, the variety of parameters critical for the perfor-
mance of XML document representations (e.g., number of
nodes, document depths, varying fan-outs, distinct element
names, avg. size of text nodes, and document size) will often
lead to suboptimal or even bad solutions. For this reason, it
is highly recommended to equip the storage manager with

∗This work has been supported by the Rheinland-Pfalz clus-
ter of excellence “Dependable adaptive systems and mathe-
matical modeling” (see www.dasmod.de).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS08 2008, September 10-12, Coimbra [Portugal]
Editor: Bipin C. DESAI
Copyright 2008 ACM 978-1-60558-188-0/08/09 ...$5.00.

the ability to automatically select reasonable or even opti-
mal storage structures for documents.

1.1 Document Usage
Beside traditional workload analysis (offline and online),

the initial process of storing an XML document needs to
“guess” the prospective usage or requires some help by the
user. There are several metrics how to differentiate usages.
For instance, by evaluating the share of read and write op-
erations, whereby secondary structures (e.g., indexes) need
to be maintained as well. Furthermore, access patterns
may serve as distinguishing feature such as access frequency,
value range, and data volume processed. Thus, in the first
place, we started to classify the workloads present in native
XML databases. In doing that, we observed two major kinds
of usage patterns for XML documents—collections of small
(tiny) documents processed in a document-centric way and
single big (huge) documents processed in a data-centric way.

Document-centric Usage
XML database access for document-centric processing pri-
marily retrieves and stores a document as a whole. This
is often the case for tiny documents with storage sizes less
than a database disk page or for documents having only a
small structure part which often results from automatic data
transformations into the XML representation, e.g, “binary”
data, articles, or books. Although support by structural in-
dexing is possible, the additional I/O of secondary indexes
often does not pay off. Text collections and systems ex-
changing XML documents (Web services, messages) benefit
from downloading or retrieving entire documents to process
it at the client side. Even if the document is evaluated or
modified at the server side, e.g., using XPath or XQuery,
tiny documents (with a size less than a (few) disk page(s))
benefit from being processed as a whole. As a result, they
fit into a single (or a few) buffer page(s) and only require
marginal main-memory space. However, queries to docu-
ments requiring search (keyword search) often dominate the
workload for these kinds of XML documents and an addi-
tional full text index is usually oversized or too expensive.

Data-centric Usage
For example, benchmarks as specified in [15], XML stream
processing, and (semi-) structured data sets embedded into
XML documents (e.g., relational data) use query languages
and rely on index support to optimize selective data access
[2]. Often, tiny document fractions, aggregated data, or a
few element nodes constitute the final query result. In such
cases, exploiting indexes to minimize disk access is essential

bib 1

chapter

“Reuter”

book

title

“TP Proc.”

1.3

1.3.3 1.3.5
chapter

1.3.7

author
1.3.5.3

author
1.3.7.3

1.3.7.3.3

1.3.3.3

paper

title

“Cube” “Gray”

1.9001

1.9001.3
author

1.9001.5

1.9001.5.31.9001.3.3

...book book
...

bib

chapter

book

title series

author editor

paper

title author

a) b)

3

5 7

8

PCR:
series
1.3.9

editor
1.3.9.3

“Gray”
1.3.9.3.3

“Gray”
1.3.5.3.3

1

10

2

94 6

Figure 1: a) SPLID-labeled XML document cut-out and b) related path synopsis with PCRs

for huge documents. Exemplified by a subset of the Univer-
sity of Washington XML document collection [11] and the
TPoX benchmark documents [15], we elaborate the char-
acteristics and anticipated workloads for data-centric and
document-centric XML processing. This distinction only
helps to define indexes and storage parameters, but it does
not address the impact of write and read operations on them.
Therefore, it is further necessary to cope with their influence
on storage structures during transactional query processing.

1.2 Our Contribution
In this contribution, we explore native XML storage con-

figurations and their performance effects for different work-
loads. For this reason, we identify and analyze typical XML
usage patterns to derive heuristics for what kind of docu-
ments may anticipate what kind of workloads. To deter-
mine suitable XML storage structures, we empirically test
various hypotheses for distinct usage patterns. Finally, we
corroborate or discard them by extensive performance mea-
surements using the XTC system [9], our native XDBMS
prototype. In Section 2, we discuss the most important
storage-related concepts for XML documents and sketch the
implementation of appropriate methods in XTC. In Section
3, we describe how to collect the necessary set of storage
parameters in an analysis phase, before we apply the cho-
sen concepts and methods on tailor-made storage structures
and empirically evaluate them for well-known sample docu-
ments in Section 4. A brief overview of proposed alternatives
is given in Section 5, before we wrap up with conclusions.

2. ESSENTIAL CONCEPTS FOR THE STOR-
AGE MANAGER

Currently, we are upgrading XTC [9] step by step towards
enhanced adaptivity. For physical document handling, the
adaptation primarily rests on the following concepts.

2.1 Node Labeling
As we have learned from many experiments and bench-

mark runs [7], the node labeling mechanism plays a funda-
mental role for storage consumption and efficient support of
navigational and declarative query evaluation. Moreover, it
is the key to processing flexibility and entire internal system
performance. We recommend the use of prefix-based label-
ing schemes such as OrdPaths [13], DLNs [3], or DeweyIDs
[4, 7] as sketched in the sample document in Figure 1a. Be-
cause any prefix-based scheme is appropriate for our docu-
ment storage, we use SPLIDs (Stable Path Labeling IDen-
tifiers) as a synonym for all of them.

Space economy and flexibility requires a dynamic, vari-

able, and effective storage scheme to capture tall/flat trees
with many/few nodes at a level and a huge fan-out per node
or only some children. At the same time, efficiency in stor-
age usage, encoding or decoding, and value comparisons at
the bit or byte level must be guaranteed. Huffman codes
serve such demands very well [7].

Our specific labeling mechanism enables—with a dist pa-
rameter used to increment division values and to leave gaps
in the numbering space between consecutive labels—a kind
of adjustment to expected update frequencies. These gaps
do not prevent “overflows” of the labeling scheme, they only
defer them. Nevertheless, overflows lead to an increased la-
bel size and a re-labeling is adviseable at a certain length
but not mandatory. A default scheme with minimum dist=2
can be overridden if specific knowledge is available. This re-
quires “future knowledge” of updates and, therefore, needs
user hints. Adaptivity is confined to observing “label over-
flows”which could trigger a re-labeling (in selected subtrees)
using a more appropriate value for the dist parameter. Pre-
analysis or sampling of a document, however, could reveal
characteristics of the structure, average depth, distribution
of nodes per level, etc., which are useful for an adjusted
SPLID encoding.

2.2 Path Synopsis
XML documents usually have a high degree of redundancy

in their structural part, i.e., they contain many paths having
identical sequences of element/attribute names (see Table
1). Such similar path instances, e.g., bib/book/chapter/author
in Figure 1a, only differ in the leaf values and the order in the
document. The structure part of them can be represented
as a so-called path class in the path synopsis (see Figure 1b)
kept as a kind of metadata. Typical path synopses have only
a limited number of element names and path classes and
can, therefore, be represented in a small memory-resident
data structure. Every node within the path synopsis carries
a number called path class reference (PCR), as illustrated
for the sample document in Figure 1b. The basic idea of a
path synopsis is similar to that of a DataGuide which, how-
ever, was introduced as a structural overview for the user,
for storing statistical document information, and, thus, en-
abling query optimization [6]. In contrast, the primary use
of a path synopsis is for structural virtualization, concur-
rency control, and supporting indexing and query processing
[9]. To enable the optimization of XPath/XQuery expres-
sions, we maintain a so-called EXsum summary (Element-
wise XML summarization), which can capture statistical in-
formation of all important query axes related to (the nodes
having) the same element name [1]. Moreover, a given syn-
opsis can be compared to existing document synopses to find

1.3.3.3

1. 1.3.1.3.1 1.3.5.3.3 1.3.5.5.3.1

1.3.5.3.3
1.3.5.3.3.1
1.3.5.5
1.3.5.5.3

1.3.1.3.1
1.3.1.5
1.3.1.5.1
1.3.3

1.3.3.3
1.3.3.3.1
1.3.5
1.3.5.3

1.3.5.5.3.1
1.3.7
1.3.7.3
1.3.7.3.1

1.
1.3.
1.3.1
1.3.1.3

SPLID (byte representation) node data (byte representation)

document index

document container

implemented as a B-tree

as a set of
doubly chained pages

Figure 2: Document store with a B-tree and container pages

documents with similar structure. In our system, a path syn-
opsis obtains its full expressiveness by the interplay of PCRs
and SPLIDs: a SPLID delivers all SPLIDs of its ancestors,
while a PCR connected to a SPLID identifies the path class
it belongs to. Furthermore, the SPLID of a node represents
positional information for that node and, in turn, for all
its ancestors. Starting from an arbitrary content, attribute,
or element node—whose unique position in the document is
identified by its SPLID—which is associated with a reference
to its path class, it is easy to completely reconstruct the spe-
cific instance of the path class it belongs to. For example,
with SPLID =1.3.5.3.3 and PCR=5, we can reconstruct the
entire path instance with value “Gray” as a leaf using the
path synopsis. This usage of the path synopsis indicates its
central role in all structural references and operations. To in-
crease its flexibility, we provide indexed access via PCRs and
hash-based access using leaf node names. Additional links
between vocabulary IDs (VocIDs —substituting the XML
element/attribute names) and their occurrences within the
path synopsis offer direct entry points for further naviga-
tional steps and matching/searching operations starting at
non-leaf nodes.

2.3 Document Storage
Efficient processing of dynamic XML documents requires

arbitrary node insertions without re-labeling, maintenance
of document order, variable-length node representation, rep-
resentation of long fields, and indexed access. As sketched
in Figure 2, the document index enables direct access to a
node when its SPLID is given. Together with the document
container, the document store represents a B*-tree which
takes care of external storage mapping and dynamic reorga-
nization of the document structure. Combined with SPLID
usage, it embodies our basic implementation to satisfy the
above demands efficiently and forms a framework for further
specializations. In XTC, this basic structure comes with a
variety of options [9] concerning use of vocabularies, materi-
alized or referenced storage of content (in leaf nodes), and,
most important, prefixcompressed SPLIDs. As illustrated in
Figure 2, the sequence of SPLIDs in document order lends
itself to prefix compression as empirically evaluated in [7].

2.4 Structure Virtualization and
Content Compression

Two of the main issues to be regarded for XML document
compression in databases result from the XML structure it-
self and its content. A novel technique of structural virtu-
alization was described and evaluated in [8]. The so-called
elementless document storage does not contain any struc-
ture nodes (elem. & attr. nodes in Table 1) in its physical
representation, i.e., the document container only stores the
content (leaf) nodes, each equipped with a SPLID and a

PCR. As explained in Section 2.2, it is easy to reconstruct
all paths and nodes on demand, e.g., when referenced during
the evaluation of an XPath/XQuery expression. It is even
possible to perform DOM-based navigation on this virtual-
ized structure.

In case of content compression, we need to preserve the
fine-granular document representation (see Figure 2) for declar-
ative and navigational transaction processing and node in-
dexing. Even though, many compression techniques pro-
posed achieve impressive compression rates [12], they cannot
be applied for our finegranular purposes. However, when
the underlying structures are document-centric (an entire
book content as a single text node) such compression tech-
niques would pay off, whereas data-centric documents typ-
ically occurring in DB-based applications do hardly benefit
from them. Furthermore, such techniques often rely on large
auxiliary dictionaries and, hence, typically provoke substan-
tial compression and decompression overhead. Moreover,
they are restricted to static file-based structures and, thus,
they enable only single-user access. To avoid undue lim-
itations and overhead of XML processing, compression of
single node values seems to be an appropriate and challeng-
ing choice. In our compression study, we exclusively focused
on single nodes and their data stemming either from text
content or attribute values.

To provide some indicative results for the storage of XML
documents in different formats, we applied a number of em-
pirical tests in the context of our storage manager where we
used—to facilitate comparison—the frequently evaluated set
of test documents taken from [11, 14, 15]. For a representa-
tive subset, Table 1 assembles essential characteristics of the
documents in the “plain” format, i.e., in the verbose XML
representation in which they arrive at the DBMS.

Because content compression is orthogonal to the question
how the overall document is stored, we explore the compres-
sion efficiency to be gained irrespective of how it is used. In-
deed, the application of an encoding method could be spec-
ified as a storage parameter. Here, we focus on character-
based compression using Huffman trees, for which we have
performed experiments to explore various types of Huffman
encodings. Comparing all experiments, a document-wide
fixed Huffman encoding (FH) frequently produced better re-
sults than other more sophisticated alternatives. To charac-
terize the potential compression gain for data-centric XML,
we have listed the avg. value sizes of content nodes together
with a summary of our results in Table 1: Content com-
pression (FH) is fast and delivers considerable compression
rates varying from ∼23% to ∼35% on all (large) documents.
Note, as long as the compression dictionary’s overhead is
negligible, it also reduces the storage time up to ∼15% com-
pared to uncompressed content, because less I/O is needed
to store the document on disk. This observation emphasizes

Table 1: Characteristics of XML documents considered

Doc
name Description Size in

Mbytes
elem.&
attr. nodes

voc.
names

path
classes

Avg
depth

content
nodes

Avg con-
tent size

FH
compr.

Store
time

psd7003 DB of protein
sequences 716.0 22,595,465 70 76 5.68 17,245,756 17.0 74.0% 93.4%

lineitem LineItems from
TPC-H benchmark 32.3 1,022,977 19 17 3.45 962,801 6.5 70.8% 93.4%

dblp Computer science
index 330.2 9,070,558 41 153 3.39 8,345,289 20.9 69.9% 94.1%

nasa Astronomical data 25.8 532,963 70 73 6.08 371,593 33.4 64.4% 84.6%

xmark XMark benchmark
document 11.6 206,130 77 535 5.5 118,141 52.78 77.1% 83.2%

accnt
order
secty

TPoX benchmark
account, order, and

security data

~0.006
~0.002
~0.006

~193
~81
~52

<88
<139
<64

~100
~83
~53

4.7
2.6
3.5

~127
0

~46

10.6
8.1 (attr)

92.2

98%
125%
71.6%

>130%

that content compression is advisable only for large docu-
ments. In summary, character-based compression providing
the outlined benefits can be orthogonally applied to the con-
tent part without interfering with indexes or other auxiliary
structures as well as query evaluation, navigational process-
ing, and reconstruction of original documents (round-trip
property).

3. CAPTURING STORAGE OPTIONS
An accurate prediction of future document processing is

confined to pre-defined document operations. To enable au-
tomatic selection of suitable (if not optimal) storage struc-
tures upon XML document arrival, our storage manager re-
lies on information that is accessible beforehand, such as
document structure and typical access heuristics.

3.1 Document Characteristics
If the entire document is present for parameter analysis,

all desired parameters can be perfectly determined. How-
ever in case of stream-based processing, “guessing” or some
kind of parameter approximation must suffice. Statistical
data may include—besides the degree of document-centric
compression behavior—the number of nodes (i.e., element,
attribute, and text nodes), maximum depth and average
depth, various fan-out ratios, number of distinct element

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

% of total document sampled

Extrapolated sampling errors when doc size is known

lineitem
uniprot

dblp
psd7003

nasa
treebank

Figure 3: Relative estimation error of sampling

names, number of distinct paths per path class, as well as
instances per path class (see Table 1). For these parame-
ters, some dynamic approximations can be derived. Future
document usage could be heuristically anticipated to tune
fundamental storage parameters (see Section 4).

To enhance storage speed, we explored the potentials of
document sampling. For simplification, the head of an XML
document is scanned and analyzed, instead of a real sam-
pling technique requiring the analysis of distributed non-
connected parts. For our reference documents, Figure 3
shows the proportional estimation error achieved by sam-
pling up to 50% of their size. Surprisingly, our results reveal
that, even with only a 1% sample, an error of not more
than ∼10% may be expected. Of course, larger sample sizes
improve this error margin. Figure 3 also shows that there
exist “simply-structured” documents where sampling deliv-
ers perfect knowledge of storage parameters even when using
only very small samples. As a worst case of our reference
documents, nasa exemplifies the sampling and extrapolation
of unbalanced documents: its error is bounded to ∼12%.
In summary, sampling often delivers parameters accurate
enough to plan the physical configuration of an XML docu-
ment.

3.2 Document Access
As introduced in Section 1.1, different workloads on XML

documents may favor different storage options. Further-
more, we can specify what kind of operations imply cer-
tain drawbacks for the chosen set of parameters. First of
all, we classify document operations in the following three
categories:

• document-based – storing and reconstructing com-
plete documents (SAX API), obviously favoring document-
centric XML data.

• index-based – point and range queries often bene-
fit from indexes (query optimization), however, the
penalty of index creation (which implies a document
scan) has to be amortized by frequent search opera-
tions; for data-centric XML, indexes are essential.

• fragment-based – the most complex and varying op-
erations refer to node/subtree lookups, modifications,
and deletions; both, document-centric and data-centric
documents may be accessed in this way.

Furthermore, large documents typically require selective
access when XPath/XQuery predicates are evaluated or sub-
trees are inserted or modified. In contrast, usually small doc-
uments are units of processing, i.e., they are entirely fetched,
processed in memory, and, when modified, completely re-
stored to disk. Anticipated operations are specified by a
mix of simple queries for searching and modifying data [15].
In contrast, large XML documents vastly benefit from addi-
tional indexes when processed as DB objects.

In the following section, we show for various storage mod-
els how suitable parameters can be estimated, what storage
and processing gain can be achieved as compared to a stan-
dard representation, and how various operations scale on
theses models. For that, document characteristics serving
as a reasonable foundation for decisions are revealed.

4. CHOOSING THE RIGHT
STORAGE CONFIGURATION

So far, we have outlined the essential concepts and the
sampling of critical parameters for XML document storage.
In our empirical study, we focus on the improvement of stor-
age structures which can be chosen by the DBMS for incom-
ing documents. Documents sent by a client arrive in the
so-called Plain format where the verbose “external” format
having long element and attribute names is still present. In
a fine-grained native storage structure, all element and at-
tribute names as well as all content values are stored as tree
nodes having a unique label, e.g., a SPLID (see Figure 2). A
vocabulary is essential for saving document storage space by
encoding the element and attribute names, e.g., using one-
byte or two-byte integers as VocIDs. It can be represented
by a small main-memory data structure (typically keeping
only a few hundred names). Such a straightforward docu-
ment representation, where structure nodes are encoded by
a combination of VocIDs and SPLIDs and where content
nodes are encoded by text values and SPLIDs, is called the
Standard model. It serves as the baseline for experiments to
show the possible performance gains.

4.1 Standard Storage Configuration
As it is our aim to enable XTC to handle any kind of

XML document arriving at the DBMS, the storage manager
applies a basic set of storage parameters (including page
size, SPLID compression, content compression, and stor-
age model), which normally cannot be changed afterwards.
While future access behavior is not considered, all kinds of
documents can be stored using the following set of parame-
ters, enabling a maximum degree of flexibility:

• page size: 16 KB allows to store large documents, be-
cause the addressable storage space is bounded to the
maximum page number

• SPLID compression: off avoids overhead of compres-
sion encoding and offers direct SPLID access (no need
to compute predecessors)

• content compression: off avoids encoding maintenance
and unbiased compression gains

• full storage model: does not reqiuire an additional path
synopsis for structure virtualization , which may blow
up memory consumption when dealing with too many
paths; no path encoding required (PCRs)

In the following section, we will show how we can optimize
XML storage using this predefined parameter set and how
the resulting configurations perform under certain conceiv-
able workloads.

4.2 Improved Storage Configurations
When storing documents using our improved concepts,

we accept higher algorithmic costs for the sake of space ef-
ficiency. Here, the related path synopsis containing all path
classes and PCRs is constructed in memory to primarily sup-
port index access and virtualization of the document struc-
ture. The question, which secondary element/attribute or
text indexes should be provided, is orthogonal to the choice
of the native document structure and has to be answered
w.r.t. the expected workload; how indexes can be built is
discussed in [8].

Here, we primarily illustrate which configurations tailored
to the parameters of the documents reduce processing time
for several scenarios. Due to the given complexity of all mea-
sures reducing storage consumption or query processing, we
show under which conditions they support specific workload
types. An important optimization is the use of optimized
SPLIDs, which was applied in all experiments. Note, in
all cases neither set-oriented processing (e.g., XQuery) nor
node-oriented processing (e.g., DOM) are restrained or im-
peded.

Storage Configuration and Access Patterns for Sin-
gle Documents
To illustrate the various storage configurations, we assem-
bled a set of pre-defined configurations. Note, in this work,
we confine them to the most promising aspects and combi-
nations, i.e., parameters and configuration combinations not
presented here may also improve (some) of the conducted
test cases, but their benefit is too small to be evaluated and
to be presented in detail.

• Standard Storage Configuration (default)

• Full Storage, SPLID compression, 4k/8k/16k/32k/64k
pages, optional content compression, shared/distinct
vocabulary encoding

• Elementless Storage, SPLID compression, 4k/8k/16k/
32k/64k pages, fixed/adjusted PCR encoding, optional
content compression, shared/distinct vocabulary en-
coding

As introduced in Section 1.1, an XDBMS has to support
different access types, while these types not necessarily fa-
vor the same storage configuration for an XML document.
Therefore, we have pre-defined specific workload scenarios
representing different document usages.

• Storage Space Consumption – does indirectly mat-
ter when processing takes place size – document’s space
consumption (including path synopsis when stored in
elementless mode)

• SAX-based – for document-based access; read/write
of the entire XML document (SAX API)
put – storing the XML document once
get 1 – reading the entire XML document once
get 5 – reading the entire XML document multiple
times (5 times)

����
�
����

	

�

����

����

�� �
�����

	

�
����

	

�
�

���

���

��

���
������
!��"���#

$%
����

�
����

	

�

����

����

�� �
�����

	

�
����

	

�
�

���

���

��

���
������
!��"���#

$%

����
�
����

	

�

����

����

�� �
�����

	

�
����

	

�
�

���

���

��

���
������
!��"���#

$%
����

�
����

	

�

����

����

�� �
�����

	

�
����

	

�
�

���

���

��

���
������
!��"���#

$%

�����������

����

a) nasa.xml

c) dblp.xml

b) lineitem.xml

d) TPoX samples

Single workload scenarios
(e.g., store documents, create
indexes, workload mixes) pre-
fer different page sizes and
storage models depending on
the underlying XML docu-
ment. It is clearly noticeable
that similarly structured docu-
ments (e.g., dblp and lineitem)
exhibit similar characteristics.
In contrast, the tiny TPoX
benchmark documents do
more often prefer a full stor-
age model. Thus, it is often
not possible to setup one stor-
age configuration supporting
all kinds of workloads.

Figure 4: Workload vs. Storage Model benefits

• IB – index building costs (only evaluated for element
index creation, because other index types, e.g., CAS
and path indexes are not available in all storage modes)

• Index-based or fragment-based
ReadWorkload – read-only access; a mixture of XPath
expressions and/or DOM navigational steps
MixedWorkload – a mix of read/write and naviga-
tional operations XPath, simple XQuery, DOM-based
units of work, updates, and deletions
WriteWorkload – write-only workload; inserts, up-
dates, and deletes on nodes and/or subtrees

To compare the results of different storage configurations,
single documents are assigned to separate storage structures.
The storage structure’s corresponding schema shown in Fig-
ure 2 shows that the SPLIDs occur in document order and
that they lend themselves to a very effective prefix compres-
sion [7]. Hence, space saving achieved by all tests can be
primarily contributed to this optimization step. The related
optional path synopsis is kept in a separate structure; a num-
ber of user-specified content and/or element indexes can be
additionally specified and allocated to speed up declarative
document access.

All experiments were conducted on a Dual Pentium IV
(3.2GHz) with a mirrored disk array of two 80GB disks and
1 GByte of main memory.

In the first part, we evaluate what kind of storage model in
combination with varying page sizes leverages certain work-
load types for certain document types. In Figure 4, we as-
sembled four representative diagrams for various document
types. The vertical axis scales the page size used and the
other axis identifies the analyzed workloads. The storage
models compared (elementless and full storage) are illus-
trated by dots and rectangles, respectively. A filled symbol
means that this storage mode is the best one for such a

kind of workload (e.g., diagram in Figure 4a shows that the
fastest storing of the nasa document is done in elementless
mode using 16 KByte pages), whereas an unfilled symbol
means that this storage mode is inferior but, when enforced,
would suit that page size at best (e.g., diagram in Figure 4a
shows that storing the nasa document in full storage mode
is worse than in elementless, but would be best using 16
KByte pages).

We can further see that disk utilization (labeled size) is
directly depending on document size and structural com-
plexity. Hence, simply-structured and uniform documents
(e.g., lineitem and dblp) do prefer larger page sizes, whereas
complex-structured documents (e.g., nasa) or tiny docu-
ments (e.g., TPoX) better utilize small pages of 4 KBytes
[16].

The middle part of each diagram depicts so-called SAX-
based workloads for storing and reconstructing XML doc-
uments. Document storage (labeled put) performs best on
medium-sized pages and in elementless mode for large doc-
uments, whereas tiny documents prefer the full storage and
the smallest page size covering the entire document. For
SAX-based reconstruction, small and medium-sized (e.g.,
nasa) documents and very simply-structured documents (e.g.,
lineitem) benefit from the full-storage mode. This benefit
becomes a drawback when a document needs to be recon-
structed (labeled get 5) repeatedly. Here all kinds of docu-
ments favor the elementless storage, even though the stor-
age model is almost irrelevant for tiny documents. Index-
building costs (labeled IB) are a mixture of a SAX scan
on an already stored document and the actual index cre-
ation. The benchmark results show that simply-structured
and small documents favor the full storage mode, whereas
all kinds of documents prefer small page sizes.

The right part shows node-based and subtree-based work-
load scenarios. Read-only workload (labeled ReadWorkload)

reads tiny fractions of a document and, therefore, all kinds
of documents favor small page sizes. Because every query
of such a workload needs to repeatedly access the path syn-
opsis, elementless storage is preferable in all cases. This
observation also holds for mixed workload scenarios apply-
ing read and write operations on XML documents. But
for write-only scenarios (labeled WriteWorkload) sometimes
(e.g., nasa and lineitem) the full storage model is preferred,
because the additional path synopsis structure in elementless
mode needs to be maintained when subtree/node insertions
extend it.

Observation for Single Documents
To interpret the results w.r.t the documents, it is obvi-
ous that the small TPoX documents favor completely dif-
ferent configurations. Furthermore, simple and often flat-
structured documents like dblp and lineitem tend to favor
configurations different from those of complex-structured
documents like nasa, psd7003, or xmark. However, regard-
ing space and document storage/reconstruction times, there
is a strong correlation between them indicating that I/O
reduction is the main objective for document-based access.

Fragment-based access was compared using several bench-
marks having read-only, mixed, and write-only workloads.
As known from relational database research, workload shifts
may occur in databases and, of course, also in XML databases.
Unfortunately, a different set-up is required to maintain op-
timality. Thus, document storage parameters have to be
adjusted to the most frequent workloads or need to become
more flexible to enable adjustments even during runtime.

Moreover, a first indicator of scaling properties, CPU load,
and I/O throughput was measured by a step-wise increase
of the number of repetitions concerning the same workload.
In XML data processing, the CPU cost for handling com-
plex XML nodes is higher compared to the handling of a
relational record and, therefore, access and processing in
XML databases performs differently. That means, simple
I/O reduction by using indexes or compression is not that
effective to speed up data processing, because the expensive
data handling often leads to a high and constant CPU load.

We disclosed further drawbacks resulting from the simplic-
ity of small documents. Let us consider such documents as
in [15] having “plain” sizes between 1 and 20 KBytes. They
often contain datasets having only a few distinct paths and
rarely more than one instance per path class. In such cases,
the use of path synopses does not pay off (compare Figure
4d). Due to space limitations, we omit a detailed discussion
and simply present our heuristics gained from dedicated ex-
periments. In the average, only 4–5 instances per path class
are needed to compensate the additional space consumption
of a path synopsis. That means, for the TPoX documents,
elementless storage needs 7%–26% more space than full stor-
age.

Fine-Tuning of the Storage
Compression is also applied to encode the vocabulary (XML
tag and attribute names) for XML documents. In all bench-
marks, we used a shared vocabulary for all documents and
a fixed encoding size of 2 Bytes allowing 65K different tag
names. Although this decision limits the extensibility to
capture tag names, all test cases used a fairly small fraction
of the possible 65K. In specific cases, it may be preferable to
separate vocabularies for each document (or group of docu-

ments) and choose encoding sizes of 1 or 3 Bytes, allowing
256 or 16.7 Mio different tag names, respectively. This would
lead to an adjusted space consumption and, as a result, to
another or even better adapted I/O behavior.

Similar effects can be observed when PCR encoding is ap-
plied. Usually the path synopsis stays very stable and thus
the number of path classes does not vary much during a
document’s lifetime. However, this observation must not be
true for all kind of documents and for the applications op-
erating on them. Hence, PCR encoding must be adaptable
to the anticipated processing, too. In our experiments, we
therefore used adjusted PCR encodings of dLog2PathClasses

8
e

Bytes.
The optional content compression seems to be application-

dependent, because only for documents having a large frac-
tion of text (e.g., nasa and xmark) the I/O reduction is
significant and leads to shorter processing times. Especially
processing tiny documents (e.g., TPoX) is slowed down by
the compression overhead. Thus, applications only retriev-
ing and storing large documents (SAX-based access) may
benefit from content compression, as long as size consump-
tion does not play a role. Further on, internal XML node
processing is completely done on SPLIDs and PCRs when
possible and, thus, often content access causing decompres-
sion is not needed except when the final result is materialized
as a sequence of nodes, a single node, or a tree.

Benchmark Findings
While document storage and reconstruction indicates a clear
superiority of elementless configurations in terms of space
and, in turn, I/O time, selective processing sometimes ruins
these performance advantages because of increased encod-
ing/decoding overhead. The initial fixed storage configu-
ration is only advisable when nothing about the expected
workload or document characteristics is known in advance.
Moreover, the benchmarks have shown that index-based ac-
cess is more independent from the underlying storage model
than SAX-based document processing. Finally, having knowl-
edge about how XML data will be processed can help to op-
timize the entire parameter set of the storage configuration
beforehand, instead of only optimizing storage size or initial
store time.

4.3 Extension to Document Collections
Looking at a specific XML usage where a large number of

small or tiny documents are stored [15], our so far considered
configurations disclose tremendous drawbacks. Given a min-
imum of one container page per document, most space would
be unused. In addition, separately stored auxiliary struc-
tures would consume an enormous number of weakly filled
pages. To avoid such a low storage occupancy, a trick can be
applied to compose a single artificial document from a col-
lection of otherwise stand-alone XML structures by adding
a common root for all of them. Moreover, the allocation of
combined indexes may also save substantial storage space
and, at the same time, accelerate the evaluation of queries,
primarily due to reference locality. Such compositions are
often beneficial if the individual documents stem from the
same domain. Then, they may share path classes such that
the number of different path classes is limited within the
composed document. Combined storage of documents with
similar structures is one of our main objectives. When user
hints are missing, the storage manager tries to dynamically

 0

 0.2

 0.4

 0.6

 0.8

 1

nasa lineitem xmark TPoX dblp psd7003

a) SAX workload optimized b) Read workload optimized c) Write workload optimized

 0

 0.2

 0.4

 0.6

 0.8

 1

nasa lineitem xmark TPoX dblp psd7003

Database
Optimal

 0

 0.2

 0.4

 0.6

 0.8

 1

nasa lineitem xmark TPoX dblp psd7003

Figure 5: Performance gains for database-chosen and theoretical optimal configuration compared to Standard
configuration

assign a new document to an existing collection via path
synopsis matching and vocabulary comparison. If no suit-
able match can be found, a new document is considered
dissimilar to all existing collections. To preserve their ben-
eficial storage and processing properties, the best decision
in such a case is to store it as a singleton. Hence, for such
“compounds”, even elementless storage is appropriate and
according configurations are applicable to fully represent the
composed document. To illustrate its effectiveness, we ran
several analyses of typical document collections.

We evaluated a bunch of TPoX benchmark [15] docu-
ments, where our storage manager applied three different
path synopses to store 80,000 small documents (1–20KBytes)
of three different categories. A simple topdown comparison
by path synopsis matching suffices to determine the collec-
tion membership. The mapping of path synopses to doc-
uments and vice versa can be handled by a simple lookup
table in the system catalog. For the TPoX documents, the
structural information within each group is confined to a
maximum of 139 path classes and to 139 VocIDs to encode
node names of the document. Including a number of com-
mon structural elements, the resulting TPoX collection is
confined to 295 distinct path classes and a vocabulary of
276 elements. This experiment has shown that, because of
the structural similarity of these documents, such database-
driven collections remain quite stable and, furthermore, the
path synopsis preserves its small size.

4.4 Workload Dependencies
A second group of benchmarks was performed to compare

the standard storage performance with a database-chosen
configuration—based on heuristics and experimentally eval-
uated rules—and a theoretically optimal setup. In Figure 5,
we have assembled three benchmark results reflecting three
different workload patterns. We further weighted the work-
load as shown in Table 2 to distinguish between typical usage
patterns. The workload scenarios introduced above (Fig-
ure 4) were combined and weighted. In each diagram, the
standard configuration is used as reference (y-axis gain is
exactly 1). The solid bar shows the performance gains of
the database-chosen setup. The second bar is the theoret-
ical limit if each workload within a pattern is executed on
an optimal configuration on its own; unfortunately that is
not possible because most storage parameters cannot be eas-
ily changed during runtime. In Figure 5a, we can see that
a workload dominated by SAX-based operations does not
benefit much from an optimized storage configuration. But

especially for the Read-operation-dominated workload, de-
picted in Figure 5b, a database-chosen setup is competitive
and nearly as good as the theoretical optimum. Even the
Write-dominated workload, depicted in Figure 5c, can be
improved by a respectable margin.

5. RELATED WORK
As XML documents are likely to be “verbose”, applying

appropriate compressions for their physical representation
is obviously a good choice. XML structure transformation
into relational schemes (“shredding”) require complex query
translation into SQL. In contrast, native approaches, using
suitable labeling schemes, were designed to provide solutions
without the need to convert documents between different
data models. Prefix-based schemes enabling the evaluations
of all XPath axes (see Section 2.1) offer comprehensive sup-
port for dynamic documents in a multi-user environment
[7].

Concerning XML’s variety in size, depth, fan-out, and
vocabulary, a fixed storage scheme is often charged with a
non-negligible trade-off, often not explicitly dealt with. So
far, proposed approaches [5, 10] are storing XML documents
separately and“complete”, implying that the inner structure
is fully represented. DataGuides [6] are used for auxiliary
indexes and statistic support, but not, to the best of our
knowledge, to tailor XML storage consumption. Tree seg-
mentation, such as used in [5, 10], split documents into sub-
trees. Such hybrid storage formats regard document struc-
ture and content sizes, while connecting the parts with so-
called proxy nodes.

In native DBMS-based XML, content compression should

Table 2: Workload weights

Workload SAX Read Write

put 3 1 1

get 1 3 1 1

get 5 3 0 0

read 1 7 2

mixed 0 1 3

write 0 0 3

preserve the structure and should be orthogonal to structure
encoding; hence, queryable and non-queryable compressors
are not appropriate. The latter ones [12] are only applicable
for document interchange or archiving and most queryable
compressors focus on read-only scenarios, where document
modifications would imply an enormous effort to re-compress
changed parts.

6. CONCLUSIONS
In this paper, we primarily discussed important concepts

needed to obtain optimal and tailor-made storage configu-
rations for XML documents. We elaborated the potential
benefit of XML structure and content compression meth-
ods. Heuristics for typical document usages as well as a
kind of analysis is needed to identify structure parameters
for optimal and, if possible, automatic selection of a stor-
age model. Our performance measures indicate the poten-
tial storage saving and operational gain using concepts of
adaptivity. Besides hardware limitations, algorithmic costs
become more important as operations on documents were
repeated very frequently. Here, small documents and docu-
ments with a few instances per path class may benefit using a
slightly larger storage model. We have shown that heuristics
may help to find these “break-even” points to automatically
switch storage parameters by the storage manager. Based
on three fundamental storage types (full, elementless, and
collection), additional encodings for labeling, indexes, and
content compression should be adjusted to expected work-
loads and CPU/memory capabilities.

Future work will explore more sophisticated complex doc-
ument operations (i.e., modifications) requiring index main-
tenance in case of additional indexes. Moreover, schema evo-
lution may play a central role in adaptive XML document
handling [1] and storage parameters may be automatically
adjusted to workload shifts.

7. REFERENCES
[1] Aguiar Moraes Filho, K., and Härder, T.: EXsum -

An XML Summarization Framework, submitted

[2] Balmin, A., Beyer, K. S., Özcan, F., and Nicola, M.:
On the Path to Efficient XML Queries. Proc. VLDB :
1117-1128 (2006)

[3] Böhme, T., and Rahm, E. Supporting Efficient
Streaming and Insertion of XML Data in RDBMS.
Proc. 3rd Int. Workshop Data Integration over the
Web (DIWeb), Riga, Latvia, 70-81 (2004)

[4] Dewey, M.: Dewey Decimal Classification System.
http://www.mtsu.edu/˜vvesper/dewey.html

[5] Fiebig, T., Helmer, S., Kanne, C.-G., Moerkotte, G.,
Neumann, J., Schiele, R., and Westmann, T.:
Anatomy of a native XML database management
system. VLDB J. 11(4): 292-314 (2002)

[6] Goldman, R. and Widom, J.: DataGuides: Enabling
Query Formulation and Optimization in
Semistructured Databases. Proc. VLDB: 436-445
(1997)

[7] Härder, T., Haustein, M., Mathis, C., and Wagner,
M.: Node Labeling Schemes for Dynamic XML
Documents Reconsidered. Data & Knowl. Engineering
60:1, 126-149 (2007)

[8] Härder, T., Mathis, C., and Schmidt, K.: Comparison
of Complete and Elementless Native Storage of XML

Documents. Proc. IDEAS 2007, Banff Canada, Sept
2007, pp. 102-113

[9] Haustein, M. and Härder, T.: An Efficient
Infrastructure for Native Transactional XML
Processing. Data & Knowl. Enineering 61, 500-532
(2007)

[10] Jagadish, J.V., Al-Khalifa, S., Chapman, A.,
Lakshmanan, L. V S., Nierman, A., Paparizos, S.,
Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu,
Y., and Yu, C.: TIMBER: A native XML database.
VLDB Journal 11(4): 274-291 (2002)

[11] Miklau, G.: XML Data Repository,
www.cs.washington.edu/research/xmldatasets

[12] Ng, W., Lam, W. Y., and Cheng, J.: Comparative
Analysis of XML Compression Technologies. World
Wide Web 9(1): 5-33 (2006)

[13] O’Neil, P. E., O’Neil, E.J., Pal, S., Cseri, I., Schaller,
G., Westbury, N.: ORDPATHs: Insert-Friendly XML
Node Labels. Proc. SIGMOD : 903-908 (2004)

[14] Schmidt, A.R., Waas, F., Kersten, M. L., Carey, M. J.,
Manolescu I., and Busse, R.: Xmark: A benchmark for
xml data management. Proc. VLDB : 974-985 (2002)

[15] XML Database Benchmark: Transaction Processing
over XML (TPoX), http://tpox.sourceforge.net/
(January 2007)

[16] Zhang, N., Özsu, M. T., Aboulnaga, A., and Ilyas, I.
F.: XSEED: Accurate and Fast Cardinality
Estimation for XPath Queries. Proc. ICDE 2006 : 61

