
Associativity Rules for Native XML Databases∗

Andreas M. Weiner, Christian Mathis, and Theo Härder

Databases and Information Systems Group

Department of Computer Science

University of Kaiserslautern

D-67653 Kaiserslautern, Germany

{weiner, mathis, haerder}@informatik.uni-kl.de

March 10, 2008

1 Introduction

An associativity rule empowers a relational plan generator to perform move-
ments in the search space of semantically equivalent queries by changing the
join order. However, in the world of XML query languages, a single associativ-
ity rule is not sufficient, due to the dualism of content and structure. Instead,
we will need a rule for reordering content-based joins and a set of associativity
rules for structural joins that take combinations of several axes as well as early
duplicate elimination and sorting into account.

Every tuple operator (TO) that forms the root node of a tree-structured
query graph has to perform duplicate elimination and sorting, independent of
its operator type. On the other hand, TOs that have incoming and outgoing
edges potentially need to perform duplicate elimination. Fortunately, not every
join operator needs additional duplicate elimination operations. For example,
a full-join TO will not create any duplicates, independent of the structural
predicate it evaluates. On the other hand, a semi-join TO can create duplicates
on its output.

We can partition binary semi-join operators into two different equiva-
lence classes depending on the emergence of duplicates: (1) semi-join op-
erators where only tuples of one incoming tuple sequence can contain du-
plicates after join evaluation (join operators that evaluate parent/child or
previous-/following-sibling axes), and (2) semi-join operators where both
incoming tuple sequences can contain duplicates after join evaluation (join op-
erators that evaluate ancestor/descendant or previous/following axes).

Let a denote the left join partner, b denote the right join partner of a bi-
nary structural semi-join j that evaluates the child axis. If j only produces a

∗Appendix to Weiner et al.[WMH08]

1



tuples satisfying the structural predicate, then duplicate elimination has to be
performed, because every node can have multiple child nodes. In contrast, if j

only delivers b tuples to consuming operators, then duplicate elimination is not
needed, because every node has at most one parent node. If j would evaluate a
descendant axis, then duplicate elimination could be necessary in both cases,
because every node can have multiple descendants and multiple ancestors.

As mentioned before, to provide a complete set of associativity rules, all
combinations of axes have to be considered. Additionally, different output nodes
need to be taken into account. A node is called an output node if its tuple
sequence contributes to the query result or is processed in a subsequent TO.

Figure 1 shows the associativity rule for one output node and two adjacent
semi-join operators that evaluate the descendant axis1. To support a more
fine-granular treatment of sorting and duplicate elimination, we replace a call
to the ddo function, which only eliminates duplicates, by D.

We assume that the output of each join operator is implicitly sorted by the
node that is used by a subsequent TO or that contributes to the final result. On
the left hand side of Figure 1, a structural full-join is performed between tuples
of TO A and B which needs no additional sorting or duplicate elimination. The
following semi-join operator requires duplicate elimination and sorting for two
reasons: (1) it has only incoming edges, (2) each tuple of the incoming tuple
sequence can have multiple descendant c nodes. On the right side, a structural
join is performed first between TO B and TO C. Because this structural rela-
tionship is evaluated using a semi-join, we need additional duplicate elimination,
because every b node can have multiple c descendants. The following semi-join
operator requires duplicate elimination for the same reason, but it needs no
additional sorting, because of our implicit sorting assumption.

Figure 1: Associativity rule for two descendant axes and one output node

1This query graph corresponds to the following XPath expression: a[.//b//c].

2



2 Associativity Rules

This section shows the associativity rules for binary structural join operators. To
allow for semantics-preserving transformations, necessary duplicate elimination
operations have to be considered. Table 1 shows under which circumstances
duplicate elimination (D) is needed.

Table 1: Duplicate elimination depending on the output node

Output child of, parent of, anc of, desc of,

node following sibling of previous sibling of following of,

previous of

A D – D

B – D D

2.1 Only descendant axes

This section shows the associativity rules for two join operators which
only evaluate descendant axis. These rules also hold for a combina-
tion of two join operators having structural predicates x, y with x, y ∈
{desc of, anc of, following of, previous of} and x = y.

2.1.1 Output node a

3



2.1.2 Output node b

2.1.3 Output node c

2.1.4 Output nodes a and b

4



2.1.5 Output nodes a and c

2.1.6 Output nodes b and c

2.1.7 Output nodes a, b, and c

5



2.2 Only child axes

This section shows the associativity rules for two join operators which only
evaluate child axes. These rules also hold for two join operators where x, y

are structural predicates with x, y ∈ {child of, following sibling of} and
x = y.

2.2.1 Output node a

2.2.2 Output node b

6



2.2.3 Output node c

2.2.4 Output nodes a and b

2.2.5 Output nodes a and c

7



2.2.6 Output nodes b and c

2.2.7 Output nodes a, b, and c

2.3 Descendant and child axes

This section shows the associativity rules for one join operator which eval-
uates a descendant axis and one operator which calculates a child axis.
These rules also hold for a combination of two join operators having struc-
tural predicates x, y where x ∈ {desc of, anc of, following of, previous of}
and y ∈ {child of, following sibling of}

8



2.3.1 Output node a

2.3.2 Output node b

2.3.3 Output node c

9



2.3.4 Output nodes a and b

2.3.5 Output nodes a and c

2.3.6 Output nodes b and c

10



2.3.7 Output nodes a, b, and c

2.4 Child and descendant axes

This section shows the associativity rules for one join operator which eval-
uates a child axis and one operator which calculates a descendant axis.
These rules also hold for a combination of two join operators having struc-
tural predicates x, y where x ∈ {child of, following sibling of} and y ∈
{desc of, anc of, following of, previous of}.

2.4.1 Output node a

11



2.4.2 Output node b

2.4.3 Output node c

2.4.4 Output nodes a and b

12



2.4.5 Output nodes a and c

2.4.6 Output nodes b and c

2.4.7 Output nodes a, b, and c

13



References

[WMH08] Andreas M. Weiner, Christian Mathis, and Theo Härder. Rules for
Query Rewrite in Native XML Databases. In Proceedings of the
EDBT Workshops, Third International Workshop on Database Tech-
nologies for Handling XML Information on the Web (DataX 2008),
March 25, 2008, Nantes, France, 2008.

14


