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Abstract

In the last few years, XML became a de-facto
standard for the exchange of structured and
semi-structured data. The database research
community took this development into account
by proposing native XML database manage-
ment systems for efficient and transactional
management of XML documents. One of the
most important factors for success of such sys-
tems is a powerful query optimizer. Many
researchers proposed sophisticatetiuctural
Join andHolistic Twig Joinalgorithms as well

as several index structures supporting the eval-
uation of twig query patterns. Even though al-
most all XML query evaluation approaches pro-
posed so far use some of these methods, we be-
lieve that they provide no sufficient input for
real-world cost-based query optimization sce-
narios, because they only cover a small part of
the overall query evaluation process. To provide
adequate input for a cost-based XML query
optimizer, we propose thEML Query Graph
Modelas a new internal representation enabling
a smooth transition between XQuery language
level and physical algebra operators. Further-
more, we introduce a set of rewrite rules for
improving the execution of twig queries, e.qg.,
by fusing two adjacent binary join operators to
a complexn-way join operator. By presenting
further rewrite rules, we make the most of exist-
ing joins and indexes—even before query trans-
formation. Using these concepts, we are ready
to sketch its integration into our upcoming cost-
based XML query optimizer.

Introduction

documents. In recent years, the database community
suggested mankpath Processing Operators (PPO®y
efficiently evaluating structural relationships—such as
parent/child or ancestor/descendant as defined

by twig query patterns:

Definition 1 (Twig query pattern) A twig query pat-
tern (TQP) is a treeQT = (V, E, A\, r) with a set of
verticesV, a set of edge¥ C V x V, a mapping

A E — {child, descendant}, and the root of the tree

r. Every TQP contains at least one output node, i. e., one
or more vertices are part of the query result.

The algorithms for PPOs can be further partitioned into
two classesStructural Joins (SJ9)L, 32, 22] ancHolis-

tic Twig Joins (HTJs)5, 15]. SJ algorithms decompose a
TQP into binary structural relationships, evaluate each of
those relationships separately, and finally “stitch” the re
sults together. In contrast, HTJ algorithms evaluate TQPs
as a whole.

PPOs were optimized by various kinds of index struc-
tures enabling fast access to element, attribute, and text
nodes. They even allow to obtain answers for complete
TQPs. Basically, the XML indexing algorithms pro-
posed so far can be partitioned into four classes: path
indexes, element indexes, content indexes, and hybrid
indexes. Path indexed25, 10, 9, 17] are using struc-
tural summaries such d3ataguides[11] for providing
efficient access to nodes satisfying structural relation-
ships likeparent/child Or ancestor/descendant.
Element indexefb, 8, 15], which are indexing element
nodes, serve for efficient input to SJ and HTJ operators.
Content indexef23, 19] provide efficient access to text
or attribute value nodes. They can be implemented very
efficiently usingB*-trees or inverted lists. Finallizybrid
indexeg[30, 33, 16, 18], which are also calledntent-
and-structure (CAS) indexeare a promising approach
for indexing content and structure at a time. CAS indexes

Nowadays’ XQuery isthe |anguage of choice for eva|uat_can contribute in a cost-effective way to the evaluation of
ing queries—ranging from trivial to complex—on XML components of—or even complete—TQPs. Therefore,
they are a challenging competitor for SJ/HTJ algorithms.
. y Tnis WO[‘B has zeﬁln Sudppo_”ed by the hai”'a”ﬂ‘Pfa'Z_cglusmr Besides the various indexing approaches, there exist
g”iﬁg?e(sigflftp iy daeS:o:P;Zf systems and mathematichl mo . .00 gifferent classes of XML algebras that allow for an
Proceedings of the Spring Young Researcher's Colloquium algebraic optimization of XML queries: tree-based alge-
bras such a$AX[14] or TLC[27], tuple-based algebras

on Database and Information Systems, Saint-Petersburg, R )
sia, 2008 such as thélatix Algebra (NAL)3] or NALS™[21], and




Q"f"y Even though it is not very efficient in most cases, it can

Syntactic Analysis be beneficial in low-selectivity scenarios. Figure 2(a)
Analysis SegwanticllAntallvsis shows how a simple XPath expressiaf/b/c is eval-
ormalization . .
Simplification uated using this strategy: For evedynode, the evalua-
tion context for the evaluation ¢f/v is provided (dashed
Queryﬁraph line). By iterating over all qualifie® nodes the evalua-
ontimization Query Rewrite tion context for/c is furnished. Finally, every qualified
P Query Transformation c node is OUtpUt.
v TcOmp”etime On the other hand, set-at-a-time query evaluation is
Query Execution Plan e .. . .. .
l Run time similar to relational merge joins. It is employed by al-
Code Generation | Code Generation | Interpretation most all SJ and HTJ algorithms and is in most cases
Execution very efficient. Unfortunately, its employment is not al-

ways possible, because SJ and HTJ operators provide
only limited support for XPath axes (in most cases only
child/descendant axes are supported). Figure 2(b)
shows how the XPath expressiari/b/c is evaluated
finally hybrid approaches like the proposal of Re et al.using this approach: First, the structural predicates
[29]. evaluated between allandb nodes. Afterwards, the re-
Whereas the database community has been doing réult of the first join operator serves together with all
search on query optimization of relational queries for 3onodes as input for the second join operator which evalu-
years, the field of XML query optimization is still in its ates the structural predicate
infancy. We have learned from the experience on re-
lational query optimization, that cost-based approaches
outperform heuristic-based approaches in most cases.
We believe that cost-based query optimization is also the
method of choice for XML query languages like XQuery.
To reach this goal, we have to define an overall process
for query evaluation that considers all stages of the query
evaluation lifecycle beginning with the translation of the H
qguery and ending with the provision of the final query (a) Node-at-a-time (b) Set-at-a-time
result.

Query Result

Figure 1: Overall query evaluation process

1.1 The Query Evaluation Process Figure 2: Evaluation strategies for XML queries

Figure 1 shows the three stages of the overall query eval-

uation processanalysis optimization andcode genera- 1.3 Problem Statement

tion [26]. During the analysis stage, the query is checke .

for syntactical and semantical correctness. These checkday: there is—to the best of our knowledge—no

are followed by a normalization phase, where semantjd4ery Processing proposal that. completely_covers the
i uery evaluation process described in Section 1.1. At

cally equivalent queries are mapped to a common norma . .
form expression. The last step of this stage is formed by abstract level, all proposals can be partitioned into

a simplification process that removes redundant parts o l\;;Lclassesl: advances dm alﬁg?raltc dOp':'m'Z.%t'on fOf
the query. The result of the first stage is delivered as gML guery languages and sophisticated algorithms for

e : : twig query processing. Algebraic optimization leads
Query Graph (QGwhich is equivalent to a logical alge- o2 i . e
bra expression. During query rewrite, an algebraic opti-to sophisticated ideas on normalizing and simplifying

mization of the QG is performed by transforming it into XQuery expressions [7, 29, 13, 24, 4], which are mostly

a semantically equivalent structure which can be evalugm’enhby dthe formal Ter?anncs of _?(query. On tr}?
ated more efficiently than the initial expression. In the ON€r hand, query evauation primarily focuses on effi-

query transformation step, a rewritten QG is mapped td:'gnt evaIL'JAatlon algorithms for TQPSEhSUCh als PPOIS and f
aQuery Execution Plan (QERphysical algebra expres- Indexes. AS a consequence, even (e analysis stage o
sion) using a heuristics-based or a cost-based plan geﬁhe overall query evaluation process is not covered com-

eration process. The third stage, which is responsible foP/€tly. To provide adequate input for the optimization

providing the query result, is executing the plan, either>t2ge; this divergence has to be closed by an appropri-

by direct interpretation or by translating it first to an ex- ate internal representati.on that is flexible enough to han-
ecutable module dle both the node-at-a-time query processing inherent to

XQuery Core expressions and set-at-a-time query pro-
cessing performed by most PPOs and index operators.
Additionally, it must support an effective mapping of
In general, there are two strategies for evaluatingogical operators to their physical counterparts.
XQuery/XPath expressionsode-at-a-timeand set-at- Using indexes for query evaluation as much as possi-
a-timeprocessing. ble is not only a good heuristics for the relational world.
Node-at-a-time evaluation is inherent to tKQuery  We believe that an XML query evaluation engine should
Core Languagend follows a nested-loops-style evalu- also follow this approach. Nevertheless, there exists—to
ation approach which is similar to sub-selects in SQL.the best of our knowledge—no approach which reduces

1.2 Evaluation Strategies for XML Queries



the usage of PPOs for twig query evaluation to a min-parts which can be mapped to GTPs and others that can-

imum, provided there exist indexes that can deliver thenot be mapped to such structures. Our approach enables

results for components of—or even complete—TQPs. the evaluation of XQuery expressions having subtrees
The effective solution of these problems is precondi-corresponding to TQPs and subtrees that do not belong

tional for providing appropriate input for query optimiza- to this class of query patterns.

tion in general and for cost-based optimization scenarios Hidders et al. [13] are focusing on finding tree pat-

in particular. terns as early as possible during query optimization by
concentrating on XPath expressions having only one out-
1.4 Our Contribution put node. Their rewrite rules work on XQuery Core. The

tree patterns found are directly mapped to the so-called

The contribution of this paper can be outlined as follows:Tree Pattern Normal Fornwhich is their internal rep-

We intrpduce thexML Query Graph quel (_XQGWS resentation. By using XQuery Core as a baseline, they
a new internal representation which is tailor-made for|j < immediate access to thigere clause of a ELWOR
XMLIqu_eryllanguza_ges such as X(%lljehry. By l_ntrohducm? dexpression which makes the evaluation of value-based
new logicaln-way join operator which permits the eval- i conditions very hard [4]. In contrast, our internal
uation of structural and positional predicates, the XQGMrepresentation can deal wititructural value-basedor

is flexible enough to mediate between node-at-a-time an%ositionalpredicates.

set-at-a-time processing appro_aches aswellas forf|n<_j|n Re et al. [29] introduce a set of rules for mapping
TQPs as early as possible. Using the XQGM, we proV'deXQuery expressions to their logical algebra. Addition-

adequate input for the optimization stage. ally, they introduce a set of rewrite rules which enable

To allow for a _simpler detection of TQPs and their.an algebraic optimization. Unfortunately, they lack sup-
subsequent mapping to QEPSs, we propose a set of rewrlg

) . . ort for the evaluation of-way joins and do not consider
rules which allow to fuse as much as possible adjacen

binarv SJ operators o a sinale com av 0in oner- romising indexing approaches like CAS indexes.
inary P ng plexvay join op Michiels et al. [24] propose a set of rewrite rules for

ator. . : X

. . ) XQuery expressions which correspond to single XPath

. .TO make the most of gvallable indexes, we Qeflne ad'expressions having only one output node. Their rewrites
ditional rules which permit to decomposeway join op-

erators during query transformation. if the query o ti_are based on the formal semantics of XQuery and consist

; g query transi ’ query Opl- ¢ 4 normalization and a simplification step. During nor-
mizer recognizes matching index structures. Using thesﬁwalization they map semantically equivalent XQuery
rules, we can exploit existing indexes as far as possibl !

and emplov ioin operators onlv where it is absolutel xpressions to a common XQuery Core expression. Sim-
necessaﬁy yl P y ypliﬁcation helps to remove unnecessary parts of XQuery

Finally, using the concepts proposed before WeCore expressions.
Y, 9 PiS prop ’ Mathis [21] presents NAE™ as an extension of the

sketch the architecture of our upcoming query opt|m|zer.NatiX Algebra [3], which introduces an SJ operator as a

logical algebra operator. Additional rules for unnesting
1.5 Related Work algebra expressions pernsit-at-a-timequery process-
Pirahesh et al. [28] introduced ti@uery Graph Model ing along with thenode-at-a-timeprocessing approach
(QGM)in the context of Starburst as an extensible inter-inherent to the nested version. Our work extends these
nal representation for relational queries. The data moddHeas by introducing rules for fusing adjacent logical SJ
of the QGM s strongly related to the relational dataoperators to complex-way join operators. This idea is
model which has to be adjusted to satisfy the needs ofiriven by the evidence given in [5] that, in most cases,
XML query languages. Additionally, their QGM does TQPs can be evaluated more efficiently using HTJ rather
not offer any support for the evaluation of structural re-than SJ operators.
lationships expressed as XPath axis steps. Brantner et al. [4] introduce a set of rewrite rules
Carey et al. [6] as well as Beyer et al. [2] provide for XQuery expressions. Their approach consists of
an XML query interface for object-relational databasetwo stages: During the normalization stage they pre-
systems. Compared to our approach, which relies on gare XQuery expressions as input for the second stage.
native XML storage rather than an object-relational one During the second stage, they try to merge inner and
using their systems makes it very hard to exploit state-outer XQuery FLWOR expressions into a single XQuery
of-the-art evaluation algorithms for TQPs as well as theFLWOR expression.
plethora of different indexing approaches described in
Sectionl. _ 2 The XML Query Graph Model
The classic work of McHugh and Widom [23] on
optimization of XML queries only focuses on optimiz- The XML Query Graph Model (XQGMis inspired by
ing path expressions using navigational access methodstarburst’'s Query Graph Model [28]. All XQGM graphs
and lacks support for sophisticated indexing methods likeare so-calledbperator graphs where the nodes repre-
CAS indexes. sentTuple Sequence Operators (TO3he data flow of
Chen et al. [7] proposedseneral Tree Patterns a query is described by the edges between the nodes.
(GTPs)as a generalization of TQPs enabling the repre- We define dupleas a mapping from a set of attributes
sentation of a large XQuery subset. Compared to outo a set of values. Every attribute has an assigned type
proposal, they perform a direct mapping of GTPs to exewhich corresponds to an XQuery node type or atomic
cution plans. We believe that this approach is not verytype, e. d.element oOr double. A value can be formed
flexible, because some XQuery expressions consist dby any atomic value in the value space of atomic types.
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Figure 3: Query graph after translation

1

All tuples, produced by a TO as output, form a so-called
tuple sequencehichis an ordered sequence oftuples. In [ T
contrast to the relational model, we additionally approve

that an attribute value can be a sequence of tuples, too.
We say a tuple isiested if at least one tuple contains a
tuple sequence as an attribute value. A TO is a generic
object that consumes tuple sequences, transforms them
according to its inherent evaluation strategy, and finally
delivers a tuple sequence as output. The following list
shows the operators we use in the context of the XQGM:

Definition edge .~

5

1
Tuple Var.
L

N

Struct. Predicate

Value-based Predicate

Positional Predicate

Predicate Edge

e SELECT Selects tuples by means of value-based
and positional predicates. Additionally, it supports
the evaluation of aggregate functions. Output Edge

Mi Boddy Attr.

¢ JOIN: Evaluates:-way structural joins. It is intro- Figure 4: The constituents of the GTO
duced after applying query unnesting as described

by Mathis [21]. There exist various subtypes for the Such as new predicate types, e.g., for evaluating struc-
evaluation of semi-, anti-, and left-outer joins. tural relationships. Figure 4 shows how the constituents

of the GTO relate to each other [26].

e ACCESSThe Node Access (NA) operator accesses All TOs except the access operators consistidéad
a sequence of element nodes satisfying a giverand aBody(Figure 5). The Head forms a projection spec-
predicate. In contrast, the Document Access (DA)ification encompassing every attributdgad Attr) that
operator provides access to the root node of a docis sent to a consuming operator
ument to supply an initial context for query evalua-  An attribute calculationAttr. Calculatio) may call

tion. the ddo function. It has the same semantics as the

fn:distinct-doc-order function introduced by the

e GROUP BY Groups tuple sequences according to aformal semantics of XQuery during query normalization.

All TOs inherit from aGeneric Tuple Operator (GTO)

specific group predicate. It is also accountable forlt sorts the outgoing tuple sequence in document order
calculating group-wise aggregate functions. and performs duplicate elimination.

The Body provides the procedural description of how
UNION, INTSCT, DIFE These operators calculate output tuples can be derived from input tuples using an
from ordered tuple sequences order-preserving anghner graph whose nodes are quantified tuple variables
dup|lcate-e|lmlnatlng union, |ntersect|0n, and d|f' (Tup'e Vao The edges of th|s inner graph can be parti_
ference. tioned into three classe®efinition edgesonnect TOs
with the head of the TO that provides input tuples for the
current TO.Predicate edgeslescribe predicate expres-
sions defined for the connected tuple variabl@utput
edgesconnect tuple variables, which have to be made

SORT Performs additional sorting and duplicate
elimination on tuple sequences.

that provides basic funCt.iona"ty needed to create query 1y gur graphical query representation, we hide the head @ afT
graphs. They are permitted to add additional features contains only one head attribute.



accessible to other TOs, with the head of the TO. process as described by Mathis [21]. A join operator
A correlated edgeconnects tuple variables with the contains two or moré’-quantified tuple variables. Bi-
body of other TOs, for which the current evaluation con-nary join operator contains exactly two tuple variables
text has to be provided, e.g., for evaluating existentialthat are connected to a structural predicate (XPath axis).
predicates. Correlated predicate edges are drawn as ddthe operator produces an output for each combination
ted lines in the graphical representation. In contrast, albf incoming tuples (associated with the tuple variables),
other edges are illustrated as solid lines. if they fulfill the structural predicate. We call a join op-
Throughout the rest of this paper, we use the fol-eratorcomplexif it contains three or moré’-quantified
lowing example—Q5 of the XMark benchmark queries tuple variables connected to structural predicates which

[31]—to show the application of our rewrite rules: may be linked to logical operators. We call a join oper-
ator asemi-joinoperator if at least one tuple variable is
let $a := doc("auction.xml") return not connected to the head of the operator.
count(for $i in $a/site/closed_auctions/ The select operator is accountable for the evaluation
closed_auction of value-based and positional predicates which can be
where $i/price/text() >= 40 assigned taF- or L-quantified tuple variables. Addi-
return $i/price) tionally, a select operator can evaluate functions, e.qg.,

. . - fn:count.
Figure 3 shows the corresponding query graph built dur- Let us have a look at our running example which is

ing the analysis step dgscribed in Figure 1. To enaple%hown in Figure 6: The left subtree provides a sequence
a set-at:a—tlrr;ehprocessmr? rather t_han EI‘ node-at-a-tim closed_auction tuples that satisfy the structural re-
processing of the query, the unnesting rules presentedq tionships evaluated by the semi-join operators. For

Mathis [21}—which we omit due to space restrictions— each tuple, the lower select operator provides the eval-

are used to introduce a logical structural join operator=~ . ) .
to the internal representatic?n. Figure 6 shcj)ws th% quer afion context for the ”g.ht. subtree which establl_shes
sequence of tuples fulfilling the structural predicate

graph after unnesting. For the discussion of our rewrite rice/text() W.It. to the evaluation context. Each

rules, it will be used as a baseline and serves as inputfog £ O tuple | At to the tob-most select cator if it
the query optimization stage. ext () tUpIe IS sent 1o the top-most select operato

fulfills the predicatefn:data >= 40. The top-most se-
Head s Structural Predicate lect operator applies thin : count aggregate function to
Head Atvioute——3¢ Ay -Output Edge the tuple sequence and outputs the number of tuples in it.

Attribute Calculation——»-{ ddo X & s o
Body——»| EMI JOIN
V.ﬁa child7 @ |

Tuple Variable Quantifier 1
Defi:ition Edge—/Predicate Edge 3 RU|eS for Query RveIte
Compared to query rewrite in relational database sys-
o~ tems, our approach considers the characteristics of

cost-effective PPOs (evaluation of TQPs as a whole)
and indexes (evaluation of components of—or even
complete—TQPs). For example, join operators can be
fused to a complex join operator that can be efficiently
evaluated using an HTJ or a CAS index access. Be-
21 Semantics of the TOs ing semant.ics-preservir!g transformgtions, the rules for

query rewrite are described according to the following
After discussing the constituents of a TO, we are nowtextual representatiodF (Condition) THEN (Action).
ready to take an in-detail look at the semantics. A bodyCondition describes the preconditions for applying the
of a TO can contain tuple variables with two different rule. In contrast,Action is a sequence of operations
quantifiers: AnF'-quantified tuple variable works simi- which have to be performed on the GTO and its subtypes.
lar to thef or expression of XQuery: For every tuple pro- Each operation is described by a function call whose se-
vided by an incoming output edge, it sends the tuple to gnantics is self-explanatory. The overall rewrite philoso-
connected predicate. In parallel, it can provide the evalphy that drives the rewrite process can be condensed into
uation context for a nested sub-expression (dotted line}he following statement:

On the other hand, ah-quantified tuple variable corre-

sponds to thaet expression of XQuery. It provides the Whenever possible, a query should be con-
complete tuple sequence associated with it and does not  verted to a single join operator.

iterate over it.

As mentioned in Section 2, we provide two differ-
ent access operators: Node Access (NA) and Docume
Access (DA). A DA operator provides the root node of
a document as a context node that serves as a starti
point for query evaluation. An NA operator supplies a
sequence of all nodes fulfilling the selection predicate,Rewrite rule 1 allows to fuse two adjacent join opera-
e.d., a node name. For example, the left NA operator irtors to a single—but probably more complex—join op-
Figure 5 provides alprice element nodes found in the erator. It is only applicable for two adjacent join oper-
document. ators that evaluate structural predicates wittild or

The join operator is responsible for the evaluation ofdescendant axes and which are connected over/én
structural joins and is introduced during the unnestingquantified definition edge.

NODE ACCESS NODE ACCESS

Figure 5: A simple query graph

We believe that this strategy is helpful for the evaluation
f TQPs, because they can often be evaluated more effi-
ciently using HTJ operators rather than SJ operators [5].

"Y1 Fusion of Join Operators
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Figure 6: Query graph after unnesting

The correctness of this rule is obvious: Fusingtwo ad- The correctness of this rewrite is preserved by the fact
jacent join operators along the definition edge—by copy-that the early evaluation of the selection predicate by the
ing the body of the upper operator into the lower opera-NA operator does not change the query semantics com-
tor's one—does not change the semantics of the strugpared to filtering the output of an NA operator by the
tural relationships, because we still perform a left-to-select operator.

right evaluation of the predicates.
J P Rewrite rule 3 IF ((t is Select with F-quantified tuple

Rewrite rule 1 IF ((t is Join with F-quantified  variable v) A (v references b) N (b is Node Access))

tuple variable v) A (v references b) A (b  THEN ({CopyBody(t,b), CopyHead(t,b), CopyPredi-

is Join) A (b and t only contain structural  cateEdge(t,b), UpdatePredicateEdge(v), CopyOutput-

predicates evaluating child or descendant axes))  Edge(t,b), Delete(t)});

THEN ({CopyBody(b,t), CopyHead(b,t), CopyPred-

icateEdge(b,t), UpdatePredicateEdge(v), UpdateDef- 3.4 Commutativity Rule

initionEdge(v), Delete(b), UpdateHeadAttributes(t). | the relational world, commutativity is an important

UpdateAttributeCalculation(t)}); property of binary join operators which approves to ex-
) _ change the left and the right join partner. Rewrite rule 4

Example 1 Figure 7 shows the query graph presented ingefines how we can partially make use of this property to

Figure 6 after applying rewrite rule 1 which results in a provide an import operation for query transformation to

complex 4-way join operator extend the search space for join reordering. This rule is
beneficial, e. g., for a hash-based structural join operator
3.2 Fusion of Select and Join Operators as described by Mathis et al. [22], where an exchange of

the left and right join partner may lead to better perfor-

Rewrite rule 2 permits to fuse a join operator and an ad'mance, because the hash table might be created for the

jacent select operator. The correctness of the rule is Obs'maller input sequence rather than the larger one. The

vious: Consider a join operator that receives its mputscommutativity rule holds for almost all XPath axes, ex-

from a select operator. The structural predicate is evaluéept for theattribute axis, because it has no reverse

ated on a tuple sequence that.has a".e’?‘dy been filtered %&is. For all other axes, there exists a corresponding re-
the select operator. After rewrite, the join operator evalu verse resp. forward axis. Exchanging join partners for

ates the predicates addet_j_during the_fusion,_ in addition t% join operator that evaluatessalf axis is even trivial
its own ones. Those additional predicates filter the tupleDecause it is reflexive '

sequence in the same way, as it is done before rewrite.

_ ) ) ] o Rewrite rule 4 IF ((t0 is binary Join) A (t0 contains
Rewr'te,rme 2 IF ((t is Join with F-quantified tu- 1 ple variables v1 and v2) A (vl and v2 are connected
ple variable v) A (v references b) A (b Is Se- o a structural predicate p) A (p does not evaluate
lect) \ (b contains no L-quantified tuple variable)) — the attribute axis) A (v1 references TO t1) A (v2 ref-
THEN ({CopyBody(b,t), CopyHead(b,t), CopyPred-  orences TO v2)) THEN ({ExchangeRef(vI:tl, v2:t1),
icateEdge(b,t), UpdatePredicateEdge(v), UpdateDefi-  EychangeRef(v2:t2, vi:t2), ReversePredicate(p), Up-
nitionEdge(v), Delete(b)}); dateOutputEdge(vl), UpdateOutputEdge(v2)});

3.3 Fusion of Select and Node Access Operators 3.5 Associativity Rules

Rewrite rule 3 permits to merge a select and an adjacern associativity rule empowers a relational plan gener-
NA operator by moving the predicates from the select op-ator to traverse the search space of semantically equiv-
erator to the body of the NA operator. This rewrite is ben-alent queries by changing the join order. However, in
eficial, because an NA operator can be directly mappedhe world of XML query languages, a single associativ-
to a physical element or CAS index access operator. ity rule is not sufficient, due to the dualism of content
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Figure 7: Query graph after join fusion

and structure. Instead, we will need a rule for reorder-we cannot discuss all associativity rules provided in our
ing content-based joins and a set of associativity rulesramework, except for one rile
for structural joins that take combinations of several axes Figure 8 shows the associativity rule for one output

as well as early duplicate elimination and sorting into ac-5de and two adjacent semi-join operators that evaluate
count. the descendant axis’. To support a more fine-granular
Every TO that forms the root node of a tree-structuredyeaiment of sorting and duplicate elimination, we re-

query graph has to perform duplicate elimination andpace 3 call to theido function, which only eliminates
sorting, independent of its operator type. On the othely pjicates, by.

hand, TOs that have incoming and outgoing edges po- hat th f hioi .
tentially need to perform duplicate elimination. Fortu- We assume that the output of each join operator is im-

nately, not every join operator needs additional dupli—p“Citly sorted bY the node thgt is used by a subsequent
cate elimination operations. For example, a full-join TO 10 OF that contributes to the final result. On the left hand
will not create any duplicates, independent of the strucSide of Figure 8, a structural f_uII-Jom IS perform_ed be-
tural predicate it evaluates. On the other hand, a semi¥Ve€n tuples of TQ4 and 5 which needs no additional
join TO can create duplicates on its output. We canS°'ing or duplicate elimination. The following semi-
partition binary semi-join operators into two different 0N operator requires dupllcatg ellml.natlon and sorting
equivalence ciasses depending on the emergence of d[f’ WO reasons: (1) ithas only incoming edges, (2) each
plicates: (1) semi-join operators where only tuples of onglUP!€ Of the incoming tuple sequence can have multiple
incoming tuple sequence can contain duplicates afterjoirﬁiescendan‘t nodes. On the right side, a structural join

evaluation (join operators that evaluaterent/child |.:,]_performed|f|r?t _betwr(]a_er_] @ Iand -CI;OC Because
or previous-/following-sibling axes), and (2) this Strué:tuéz. re atlloc?s Il_p IS ev? uatec USIrtl)g asenmJol
semi-join operators where both incoming tuple se-Vé need additional duplicate elimination, because every

quences can contain duplicates after join evaluatiorf "°d€ can have multiple descendants. The following

(join operators that evaluattcestor/descendant O semi-join operator requires duplicate elimination for the
previous/following axes) same reason, but it needs no additional sorting because

of our implicit sorting assumption.
Example 2 Let a denote the left join partneb, denote

the right join partner of a binary structural semi-jgin ddo
that evaluates thehild axis. If j only produces: tuples SEMI JOIN
satisfying the structural predicate, then duplicate elimi ’ —
nation has to be performed, because every node can have ?@ JOIN
multiple child nodes. In contrast, jfonly deliversb tu- £ £
ples to consuming operators, then duplicate elimination / [
is not needed, because every node has at most one par- 7/

ent node. Ifj would evaluate @escendant axis, then TOA TOB TOC TOA TOB TOC

duplicate elimination could be necessary in both cases,

because every node can have multiple descendants aigure 8: Associativity rule for twalescendant axes
multiple ancestors. and one output node

As mentioned before, to provide a complete set of asso-

ciativity rules, all combinations of axes have to be con-

sidered. Additionally, different output nodes need to be 2 e ot of ativity rul be found in Weh
taken into account. A node is called antput nodeif [34]‘.3 complete set ot associativity rules can be found in YWeeter

its tuple sequence contributes to the query result or iS  3this query graph corresponds to the following XPath exjoess
processed in a subsequent TO. Due to space constraints,. //b//c1.




count SELECT

SELECT

ddo

Cand> SEMI JOIN
0-<Gilc>§_<chic>

N . Y ddo

w : EMI JOIN
— "\ jon | <child> @ SENIO
<child> F i [ ddo \ /

|
— \
sequence sequence sequence 4 axis:child || Caxisichild > sequence

‘auction.xml‘ ‘ site ‘ ‘ closed_auctions ‘ ‘ closed_auction ‘ ‘ price ‘ text()
DOCUMENT ACCESS NODE ACCESS NODE ACCESS NODE ACCESS NODE ACCESS NODE ACCESS NODE ACCESS

Figure 9: Query graph after join decomposition

3.6 Complex Join Decomposition (for each path from v0 over vl resp. v2 at least
one index matches) THEN ({ CreateJoinOp(tl), Cre-

The main idea that justifies our rewrite philosophy OfateJoinOp(tr), MoveSubtree(t, tl, v1), MoveSubtree(t,

S.e.Ctlon 3 is used for physlcal HT.J operators that can ef_tr, v2), InsertTupleVar(t, v3), InsertTupleVar(t, v4),
ficiently evaluaten-way joins. If the plan generator rec-

ognizes the availability of path or CAS indexes that canlnsertpredlcate(t' self, v3, v4), UpdateHead(t), Up-
evaluate a branch of—or even a complete—TQP, this in—d ateHead(tl). UpdateHead(tr), InsertDefEdge(v3, tl),
. ; : . "InsertDefEdge(t4, tr)});
dex should be used instead of evaluating the twig using
a join operatdt. To enable a decomposition of complex By applying rewrite rules 5 and 6 recursively on the
(n-way) join operators, we have to consider two casesgquery graph, we obtain a resulting query graph that uses
depending on how many twig paths can be answered usas much as possible existing path indexes or CAS indexes
ing indexes. If there are several indexes available for gor query evaluation.
given path, then the one is chosen that can answer the C .
largest fraction of the path. To make use of this index=X@mple 3 To  show —the —application = of rewrite
for query evaluation, we apply rewrite rule 5 to split the 'UléS 5, we assume that there exist two different
complex join operator into two parts: one part that isNdéxes which we can use for query evaluation:
evaluated using the index and the other part that will bd1(/

/closed_auctions/closed_auction) and
evaluated using an HTJ or an SJ operator. I2(//price[String]). The right subtree of the query

graph shown in Figure 7 can be directly mapped to an
Rewrite rule 5 IF ((t is n-way Join) A (t contains one ~ index access operator for index 10n the other hand,
path that can be answered using an available index) A index I cannot be used for query evaluation, yet. By
(t contains tuple variables v0, v1, and v2) A (v0 is the ~ @pplying rewrite rule 5, we get the query graph shown in
twig’s root node) A (all paths from v0 over vl can be ~ Figure 9. As a consequence, indgxcan now be used
answered by no index) A (at least one index can answer ~ for query evaluation.
a path from v0 over v2)) THEN ({ CreateJoinOp(tb),
MovePath(v0, v2, t, tb), UpdateHead(tb), Insert-
DefEdge(v0, tb});

Considering the transformations illustrated in Figures 6
to 9, we can see how the rewritings push the QG to-
wards a better starting point for query transformation by
If we can answer more than one twig path using avail-1"diNg TQPs and exploiting existing indexes as early as
able indexes, then the path of those indexes overlaps &°SSible. After query unnesting shown in Figure 6, the
the twig query’s root node. To get rid of this overlap, we sequence of three Semr-join operators was trangformed
use rewrite rule 6 to split the operator into two new join INt© @ single 4-way join operator (see Figure 7). Figure 8
operators and connect them using the old join Operato§ketched how associativity rules can be defined that help

now evaluating a structural self-join to perform an inter- [© €nhance the search space for a cost-based query op-

section on the outgoing tuples of the newly created joinimizer- Finally, Figure 9 exemplified how the knowl-
operators. edge on existing indexes helps to rewrite the QG w.r.t. a

simpler mapping to index access operators during query

Rewrite rule 6 IF (t is n-way Join) A (t describes TQP  transformation.

that can make use of at least two indexes) A (t con- )

tains tuple variables v0, v1, and v2) A (VO forms the 4 Setting-up an Infrastructure for Cost-
twig pattern’s root node) A (v1 and v2 are child nodes based XML Query Optimization

of v0) A (v1 and v2 are root nodes of subtrees) A After having introduced the XQGM as our internal rep-

4Using HTJ or SJ operators for twig query evaluation alwaysese ~ F€Sentation for XQuery expressions and defined various
as a fallback strategy, if no index matches the twig. rules for query rewrite, we are now ready to discuss the




infrastructure for cost-based XML query optimization mantically equivalent QEPs—for a plan generator gets
which takes a rewritten QG as input and transforms ittremendously large. If we consider cost-based optimiza-

into a—hopefully—near-optimal QEP. tion of XML queries, the situation gets even worse due
to many different alternative evaluation methods for SJs
4.1 The Big Picture and HTJs as well as different index-based access meth-

ods. To enable a query optimizer to keep as much as pos-
sible promising QEPs in main-memory, we use a kind of
mesh data structure as proposed by Graefe and DeWitt
T12]. Figure 11 shows how a new graph is stored in the
mesh. On the left-hand side, a graphaph and its cor-
responding mesh representatibleshis shown. After
applying query rewrite by fusion two adjacent operators
fo a new oneGraph s transformed intdGraph’. The

Figure 10 shows the overall architecture of an XML
query optimizer which will be integrated into our pro-
totype of a native XML database management sys
tem called theXML Transaction Coordinator (XT€)
The optimizer consists of five major components: The
Generic Pattern Matcher (GPMjrovides means for ex-
tensible rule-based pattern matching on arbitrary graph
strqctured trees. Using the GPM' a developer Just de'Eransformation causes an update of the mesh. To allow
scribes the pattern to be matched in a declarative mann

A the devel h v 10 impl or space-efficient management of a large amount of dif-
$ a consequence, the developer has only to Implement, o plans, only the newly added nodes are physically
the transformation code manually.

: ; . . . stored in the mesh. All other nodes are reused and ref-
The Rewriter applies the rewrite rules described in erenced by virtual edges (dotted lines). The filled cir-
_Sect|on 3tothe QG and uses the GPM for pattern matc Cles are associated with an equivalence class that encom-
Ing. passes all semantically equivalent subtrees. For example,

The PI]:':m generatglr:l)s reépons,lg_le for thﬁ tralmsfor- the top-most operator iMesh’ contains two equivalence
mation of QGs to QEPs. Depending on the plan gent|,sqes where the first class has one representative and
eration strategy employed, a heuristics-based or a cos

NN , Elhe second class contains two alternatives.
based optimization approach is chosen. If no cost mode

is present, a heuristics-based approach has to be followed
by using a static set of transformation rules. On the other

hand, using a cost model and statistical information, a Fusion

cost-based query optimization can be applied. No matter -

which plan generation approach is used, we also use the %

GPM for pattern matching to allow for a generation of

alternative plans. Query Graph Query Graph'
One of the main ingredients of a cost-based query op- Update

timizer is theCost Model It uses the statistical informa-
tion provided by theStatisticscomponent for cost esti-
mation. In contrast to classic cost-based query optimiza-
tion, the cost model is not solely used during query trans-
formation. If we step back and have a look at the overall
query evaluation process, the following question arises
even during the analysis stage:it beneficial to perform

a query unnesting or not?in other words, shall we fol- Mesh Mesh’
low a set-at-a-time rather than a node-at-a-time process-
ing approach. This is only one example where costing
information is needed even before query transformation.

Figure 11: Updating the mesh

Query Graph 4.3 Choosing a Good Initial Plan

Query Optimizer To reduce the time for finding a near-optimal query plan,

Generic / Rewriter % ,,,,,,,,, + Cost Model ‘ we employ a two-phase_q_u_ery optimiz_ation appr_oa_lch:
Pattorn l First we choose a good initial QEP using a heuristics-
a based approach. This QEP can either be immediately
Matcher Plan Generator
\

| Statistios | passed on to the code generation component or sent to a

| cost-based query optimizer.

Query Execution Plan

4.3.1 Mapping of access operators

Figure 10: The architecture of the optimizer The XQGM access operators are providing input for con-
suming operators. In general, we can distinguish be-
tween two access methods: document scan and index ac-

4.2 Managing the search space cess. A document access operator—e. g., the left-most

We have learned from classic relational cost-based opaCCess operator in Figure 6—is always mapped onto a

timization, that the search space—consisting of all sedocument scan, because it only accesses the document's
root node. For all other access operators, an element in-

SProject websitehttp: //www.xtc-project .de dex scan—if present—is the access method of choice.




Evaluation methods for binary structual joins

Positional predicate No Yes
Structural relationship parent/child, previous-sibling/ other parent/child, other
ancestor/descendant following-sibling previous-sibling/
‘ ‘ following-sibling
Approach Stack Tree Structural Hash-Join Nested-Loops Join EP}‘DP Nested-Loops Join
(Al Khalifa et al.) (Mathis and Harder) (Vagena et al.)

Figure 12: Decision tree for mapping join operators

4.3.2 Mapping of binary join operators profile (IP). Figure 13 shows a QG and its associated pro-

As outlined in Section 1, there exists a huge variety o f'le hierarchy. Every QG leaf node (access operator) has

different SJ and HTJ algorithms. Using the rewrite rules|ts own BP which contains statistical information about
of Section 3, we can reduce the. number of binary struc—the chosen physical access method. For example, an in-
- ! g . dex scan contains information about the height of the
tural join operators to a minimum. If there are still bi- ; )
nary structural joins, we use the decision tree shown i search tree and the number of its leaf pages. Base pro
ary ] ' ; OWN e are periodically updated by the database manage-
F'gufe 1210 ChOF’S‘? the eV"?‘"_Ja“O” method. If posmo_nalment system and provide the foundation for cost estima-
predicates are missing, the join operator has three optio 3
depending on the structural relationship it has to evalu-
ate: TheStackTreealgorithm by Al-Khalifa et al. [1] is

used, when the join operator evaluatgm@ent/child

On the other hand, IPs are associated with QG inner
nodes and do not provide accurate statistical information.
; . Instead, they use the statistical information provided by
Or ancestor/descendant axis. For the evaluation their child nodes (BPs or BIs) as input for cost estima-

of theprevious-sibling/following-sibling axis, . L /
we use one of the structural hash-join algorithms pro—tlon' This is not done automatically by the database man

: N agement system. Instead, a database administrator has to
posed by Math|§ and atder [22]'. .In all other cases, run a statistics collection tool similar to DBZ&nstats
we use a classic nested-loops join approach. On th(rananuall to update the intermediate profiles. Using cost
other hand, if the binary structural join operator evalu- y P P ' 9

ates a positional predicate, we have two alternative evaf_ormulas which strongly depend on the assigned physi-

uation methods: Vagena et al. [32] proposEBPP cal (t)perator, they allow for an estimation of I/O and CPU
which will be used for the evaluation hrent/child 0o
and previous-sibling/following-sibling struc-

tural relationships. For all other combinations, we also
choose a nested-loops join algorithm.

Query Graph  Profile Hierarchy

4.3.3 Mapping of complexn-way join operators

Complexn-way join operators are created during query
rewrite by fusing two adjacent binary structural joins.
If there is no path or CAS index that can be used for
the evaluation of a complex-way join, we use the
TwigStackalgorithm proposed by Bruno et al. [5].

434 Making the most of available indexes Figure 13: Query graph with associated profile hierarchy

In Section 3.6 we showed how to prepare QGs to make
the most of available indexes. During query transforma-
tion, we can benefit from join decomposition. Whenever5 Conclusions and Future Work

a join operator—no matter whether binaryomary—

and its subtree(s) can be evaluated using an availabllé] this paper, we smo_othed the way for cost-based XML
CAS or path index, we immediately map it to an index query optimization. First, we mtrod_uced the XML Query
access operator ' Graph Model that serves as our internal representation

for XML queries and permits an easier transition be-
tween QPs and QEPs. Second, we introduced a set of
rewrite rules which allow to fuse as much as possible ad-
During query transformation, we use a profile-based apjacent binary structural join operators to a singlevay
proach for managing statistical information as proposedoin operator. Using these rules, a query optimizer can
by Mannino et al. [20]. Every QG is associated with a evaluate TQPs using HTJ or appropriate CAS or path in-
correspondingrofile hierarchywhich is formed by two  dexes more easily. To make the most out of all existing
different node typesbase profile (BPandintermediate indexes—especially those that can only answer parts of

4.4 Handling of Statistical Information by Profiles



a TQP—uwe introduced further rules for join decomposi-

tion.

Using these rules in combination with our knowl-

edge on existing indexes allows for a separation of paths
in TQPs, that can be answered using indexes, from those[7]
that have to be evaluated using PPOs. Third, we sketched
the architecture of our query optimizer that will be inte-
grated in our prototype of a native XML database man-
agement system. Using the concepts described in this
paper, we are already able to provide a heuristics-base
guery optimizer.

In the future, we will focus on the definition of an
appropriate cost model. Choosing the right formulas for
cost estimation is far from trivial. Compared to relational
join algorithms—e. g., nested-loops join or merge join—
SJ and HTJ algorithms are very complex in terms of how
they process data. We expect that this leads to com-
plex cost formulas whose quality can only be verified

by extensive empirical experiments. Currently, we do[lo]

not know which plan generation strategy, e. g., dynamic
programming or simulated annealing, works best. For
that reason, our plan generator will be flexible enough to
switch between different strategies to allow for a com-

parison w.r.t. execution time, quality of the chosen plan[11]

and resource consumption.
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