
Towards Cost-based Query Optimization in Native XML
Database Management Systems∗

c© Andreas M. Weiner Christian Mathis Theo Härder

Databases and Information System Group
Department of Computer Science

University of Kaiserslautern
P.O. Box 3049

D-67653 Kaiserslautern, Germany
{weiner, mathis, haerder}informatik.uni-kl.de

Abstract

In the last few years, XML became a de-facto
standard for the exchange of structured and
semi-structured data. The database research
community took this development into account
by proposing native XML database manage-
ment systems for efficient and transactional
management of XML documents. One of the
most important factors for success of such sys-
tems is a powerful query optimizer. Many
researchers proposed sophisticatedStructural
Join andHolistic Twig Joinalgorithms as well
as several index structures supporting the eval-
uation of twig query patterns. Even though al-
most all XML query evaluation approaches pro-
posed so far use some of these methods, we be-
lieve that they provide no sufficient input for
real-world cost-based query optimization sce-
narios, because they only cover a small part of
the overall query evaluation process. To provide
adequate input for a cost-based XML query
optimizer, we propose theXML Query Graph
Modelas a new internal representation enabling
a smooth transition between XQuery language
level and physical algebra operators. Further-
more, we introduce a set of rewrite rules for
improving the execution of twig queries, e. g.,
by fusing two adjacent binary join operators to
a complexn-way join operator. By presenting
further rewrite rules, we make the most of exist-
ing joins and indexes—even before query trans-
formation. Using these concepts, we are ready
to sketch its integration into our upcoming cost-
based XML query optimizer.

1 Introduction
Nowadays, XQuery is the language of choice for evaluat-
ing queries—ranging from trivial to complex—on XML

∗ This work has been supported by the Rheinland-Pfalz cluster
of excellence “Dependable adaptive systems and mathematical mod-
elling” (seehttp://www.dasmod.de).

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Saint-Petersburg, Rus-
sia, 2008

documents. In recent years, the database community
suggested manyPath Processing Operators (PPOs)for
efficiently evaluating structural relationships—such as
parent/child or ancestor/descendant as defined
by twig query patterns:

Definition 1 (Twig query pattern) A twig query pat-
tern (TQP) is a treeQT = (V,E, λ, r) with a set of
verticesV , a set of edgesE ⊆ V × V , a mapping
λ : E → {child , descendant}, and the root of the tree
r. Every TQP contains at least one output node, i. e., one
or more vertices are part of the query result.

The algorithms for PPOs can be further partitioned into
two classes:Structural Joins (SJs)[1, 32, 22] andHolis-
tic Twig Joins (HTJs)[5, 15]. SJ algorithms decompose a
TQP into binary structural relationships, evaluate each of
those relationships separately, and finally “stitch” the re-
sults together. In contrast, HTJ algorithms evaluate TQPs
as a whole.

PPOs were optimized by various kinds of index struc-
tures enabling fast access to element, attribute, and text
nodes. They even allow to obtain answers for complete
TQPs. Basically, the XML indexing algorithms pro-
posed so far can be partitioned into four classes: path
indexes, element indexes, content indexes, and hybrid
indexes. Path indexes[25, 10, 9, 17] are using struc-
tural summaries such asDataguides[11] for providing
efficient access to nodes satisfying structural relation-
ships likeparent/child or ancestor/descendant.
Element indexes[5, 8, 15], which are indexing element
nodes, serve for efficient input to SJ and HTJ operators.
Content indexes[23, 19] provide efficient access to text
or attribute value nodes. They can be implemented very
efficiently usingB⋆-trees or inverted lists. Finally,hybrid
indexes[30, 33, 16, 18], which are also calledcontent-
and-structure (CAS) indexes, are a promising approach
for indexing content and structure at a time. CAS indexes
can contribute in a cost-effective way to the evaluation of
components of—or even complete—TQPs. Therefore,
they are a challenging competitor for SJ/HTJ algorithms.

Besides the various indexing approaches, there exist
three different classes of XML algebras that allow for an
algebraic optimization of XML queries: tree-based alge-
bras such asTAX [14] or TLC [27], tuple-based algebras
such as theNatix Algebra (NAL)[3] or NALSTJ [21], and

Figure 1: Overall query evaluation process

finally hybrid approaches like the proposal of Re et al.
[29].

Whereas the database community has been doing re-
search on query optimization of relational queries for 30
years, the field of XML query optimization is still in its
infancy. We have learned from the experience on re-
lational query optimization, that cost-based approaches
outperform heuristic-based approaches in most cases.
We believe that cost-based query optimization is also the
method of choice for XML query languages like XQuery.
To reach this goal, we have to define an overall process
for query evaluation that considers all stages of the query
evaluation lifecycle beginning with the translation of the
query and ending with the provision of the final query
result.

1.1 The Query Evaluation Process

Figure 1 shows the three stages of the overall query eval-
uation process:analysis, optimization, andcode genera-
tion [26]. During the analysis stage, the query is checked
for syntactical and semantical correctness. These checks
are followed by a normalization phase, where semanti-
cally equivalent queries are mapped to a common normal
form expression. The last step of this stage is formed by
a simplification process that removes redundant parts of
the query. The result of the first stage is delivered as a
Query Graph (QG)which is equivalent to a logical alge-
bra expression. During query rewrite, an algebraic opti-
mization of the QG is performed by transforming it into
a semantically equivalent structure which can be evalu-
ated more efficiently than the initial expression. In the
query transformation step, a rewritten QG is mapped to
aQuery Execution Plan (QEP)(physical algebra expres-
sion) using a heuristics-based or a cost-based plan gen-
eration process. The third stage, which is responsible for
providing the query result, is executing the plan, either
by direct interpretation or by translating it first to an ex-
ecutable module.

1.2 Evaluation Strategies for XML Queries

In general, there are two strategies for evaluating
XQuery/XPath expressions:node-at-a-timeand set-at-
a-timeprocessing.

Node-at-a-time evaluation is inherent to theXQuery
Core Languageand follows a nested-loops-style evalu-
ation approach which is similar to sub-selects in SQL.

Even though it is not very efficient in most cases, it can
be beneficial in low-selectivity scenarios. Figure 2(a)
shows how a simple XPath expressiona//b/c is eval-
uated using this strategy: For everya node, the evalua-
tion context for the evaluation of//b is provided (dashed
line). By iterating over all qualifiedb nodes the evalua-
tion context for/c is furnished. Finally, every qualified
c node is output.

On the other hand, set-at-a-time query evaluation is
similar to relational merge joins. It is employed by al-
most all SJ and HTJ algorithms and is in most cases
very efficient. Unfortunately, its employment is not al-
ways possible, because SJ and HTJ operators provide
only limited support for XPath axes (in most cases only
child/descendant axes are supported). Figure 2(b)
shows how the XPath expressiona//b/c is evaluated
using this approach: First, the structural predicate// is
evaluated between alla andb nodes. Afterwards, the re-
sult of the first join operator serves together with allc
nodes as input for the second join operator which evalu-
ates the structural predicate/.

(a) Node-at-a-time (b) Set-at-a-time

Figure 2: Evaluation strategies for XML queries

1.3 Problem Statement

Today, there is—to the best of our knowledge—no
query processing proposal that completely covers the
query evaluation process described in Section 1.1. At
an abstract level, all proposals can be partitioned into
two classes: advances in algebraic optimization of
XML query languages and sophisticated algorithms for
twig query processing. Algebraic optimization leads
to sophisticated ideas on normalizing and simplifying
XQuery expressions [7, 29, 13, 24, 4], which are mostly
driven by the formal semantics of XQuery. On the
other hand, query evaluation primarily focuses on effi-
cient evaluation algorithms for TQPs such as PPOs and
indexes. As a consequence, even the analysis stage of
the overall query evaluation process is not covered com-
pletely. To provide adequate input for the optimization
stage, this divergence has to be closed by an appropri-
ate internal representation that is flexible enough to han-
dle both the node-at-a-time query processing inherent to
XQuery Core expressions and set-at-a-time query pro-
cessing performed by most PPOs and index operators.
Additionally, it must support an effective mapping of
logical operators to their physical counterparts.

Using indexes for query evaluation as much as possi-
ble is not only a good heuristics for the relational world.
We believe that an XML query evaluation engine should
also follow this approach. Nevertheless, there exists—to
the best of our knowledge—no approach which reduces

the usage of PPOs for twig query evaluation to a min-
imum, provided there exist indexes that can deliver the
results for components of—or even complete—TQPs.

The effective solution of these problems is precondi-
tional for providing appropriate input for query optimiza-
tion in general and for cost-based optimization scenarios
in particular.

1.4 Our Contribution

The contribution of this paper can be outlined as follows:
We introduce theXML Query Graph Model (XQGM)as
a new internal representation which is tailor-made for
XML query languages such as XQuery. By introducing a
new logicaln-way join operator which permits the eval-
uation of structural and positional predicates, the XQGM
is flexible enough to mediate between node-at-a-time and
set-at-a-time processing approaches as well as for finding
TQPs as early as possible. Using the XQGM, we provide
adequate input for the optimization stage.

To allow for a simpler detection of TQPs and their
subsequent mapping to QEPs, we propose a set of rewrite
rules which allow to fuse as much as possible adjacent
binary SJ operators to a single complexn-way join oper-
ator.

To make the most of available indexes, we define ad-
ditional rules which permit to decomposen-way join op-
erators during query transformation, if the query opti-
mizer recognizes matching index structures. Using these
rules, we can exploit existing indexes as far as possible
and employ join operators only where it is absolutely
necessary.

Finally, using the concepts proposed before, we
sketch the architecture of our upcoming query optimizer.

1.5 Related Work

Pirahesh et al. [28] introduced theQuery Graph Model
(QGM) in the context of Starburst as an extensible inter-
nal representation for relational queries. The data model
of the QGM is strongly related to the relational data
model which has to be adjusted to satisfy the needs of
XML query languages. Additionally, their QGM does
not offer any support for the evaluation of structural re-
lationships expressed as XPath axis steps.

Carey et al. [6] as well as Beyer et al. [2] provide
an XML query interface for object-relational database
systems. Compared to our approach, which relies on a
native XML storage rather than an object-relational one,
using their systems makes it very hard to exploit state-
of-the-art evaluation algorithms for TQPs as well as the
plethora of different indexing approaches described in
Section 1.

The classic work of McHugh and Widom [23] on
optimization of XML queries only focuses on optimiz-
ing path expressions using navigational access methods
and lacks support for sophisticated indexing methods like
CAS indexes.

Chen et al. [7] proposedGeneral Tree Patterns
(GTPs)as a generalization of TQPs enabling the repre-
sentation of a large XQuery subset. Compared to our
proposal, they perform a direct mapping of GTPs to exe-
cution plans. We believe that this approach is not very
flexible, because some XQuery expressions consist of

parts which can be mapped to GTPs and others that can-
not be mapped to such structures. Our approach enables
the evaluation of XQuery expressions having subtrees
corresponding to TQPs and subtrees that do not belong
to this class of query patterns.

Hidders et al. [13] are focusing on finding tree pat-
terns as early as possible during query optimization by
concentrating on XPath expressions having only one out-
put node. Their rewrite rules work on XQuery Core. The
tree patterns found are directly mapped to the so-called
Tree Pattern Normal Formwhich is their internal rep-
resentation. By using XQuery Core as a baseline, they
loose immediate access to thewhere clause of a FLWOR
expression which makes the evaluation of value-based
join conditions very hard [4]. In contrast, our internal
representation can deal withstructural, value-based, or
positionalpredicates.

Re et al. [29] introduce a set of rules for mapping
XQuery expressions to their logical algebra. Addition-
ally, they introduce a set of rewrite rules which enable
an algebraic optimization. Unfortunately, they lack sup-
port for the evaluation ofn-way joins and do not consider
promising indexing approaches like CAS indexes.

Michiels et al. [24] propose a set of rewrite rules for
XQuery expressions which correspond to single XPath
expressions having only one output node. Their rewrites
are based on the formal semantics of XQuery and consist
of a normalization and a simplification step. During nor-
malization, they map semantically equivalent XQuery
expressions to a common XQuery Core expression. Sim-
plification helps to remove unnecessary parts of XQuery
Core expressions.

Mathis [21] presents NALSTJ as an extension of the
Natix Algebra [3], which introduces an SJ operator as a
logical algebra operator. Additional rules for unnesting
algebra expressions permitset-at-a-timequery process-
ing along with thenode-at-a-timeprocessing approach
inherent to the nested version. Our work extends these
ideas by introducing rules for fusing adjacent logical SJ
operators to complexn-way join operators. This idea is
driven by the evidence given in [5] that, in most cases,
TQPs can be evaluated more efficiently using HTJ rather
than SJ operators.

Brantner et al. [4] introduce a set of rewrite rules
for XQuery expressions. Their approach consists of
two stages: During the normalization stage they pre-
pare XQuery expressions as input for the second stage.
During the second stage, they try to merge inner and
outer XQuery FLWOR expressions into a single XQuery
FLWOR expression.

2 The XML Query Graph Model

The XML Query Graph Model (XQGM)is inspired by
Starburst’s Query Graph Model [28]. All XQGM graphs
are so-calledoperator graphs, where the nodes repre-
sentTuple Sequence Operators (TOs). The data flow of
a query is described by the edges between the nodes.

We define atupleas a mapping from a set of attributes
to a set of values. Every attribute has an assigned type
which corresponds to an XQuery node type or atomic
type, e. g.,element or double. A value can be formed
by any atomic value in the value space of atomic types.

Figure 3: Query graph after translation

All tuples, produced by a TO as output, form a so-called
tuple sequencewhich is an ordered sequence of tuples. In
contrast to the relational model, we additionally approve
that an attribute value can be a sequence of tuples, too.
We say a tuple isnested, if at least one tuple contains a
tuple sequence as an attribute value. A TO is a generic
object that consumes tuple sequences, transforms them
according to its inherent evaluation strategy, and finally
delivers a tuple sequence as output. The following list
shows the operators we use in the context of the XQGM:

• SELECT: Selects tuples by means of value-based
and positional predicates. Additionally, it supports
the evaluation of aggregate functions.

• JOIN: Evaluatesn-way structural joins. It is intro-
duced after applying query unnesting as described
by Mathis [21]. There exist various subtypes for the
evaluation of semi-, anti-, and left-outer joins.

• ACCESS: The Node Access (NA) operator accesses
a sequence of element nodes satisfying a given
predicate. In contrast, the Document Access (DA)
operator provides access to the root node of a doc-
ument to supply an initial context for query evalua-
tion.

• GROUP BY: Groups tuple sequences according to a
specific group predicate. It is also accountable for
calculating group-wise aggregate functions.

• UNION, INTSCT, DIFF: These operators calculate
from ordered tuple sequences order-preserving and
duplicate-eliminating union, intersection, and dif-
ference.

• SORT: Performs additional sorting and duplicate
elimination on tuple sequences.

All TOs inherit from aGeneric Tuple Operator (GTO)
that provides basic functionality needed to create query
graphs. They are permitted to add additional features

Figure 4: The constituents of the GTO

such as new predicate types, e. g., for evaluating struc-
tural relationships. Figure 4 shows how the constituents
of the GTO relate to each other [26].

All TOs except the access operators consist of aHead
and aBody(Figure 5). The Head forms a projection spec-
ification encompassing every attribute (Head Attr.) that
is sent to a consuming operator1.

An attribute calculation (Attr. Calculation) may call
the ddo function. It has the same semantics as the
fn:distinct-doc-order function introduced by the
formal semantics of XQuery during query normalization.
It sorts the outgoing tuple sequence in document order
and performs duplicate elimination.

The Body provides the procedural description of how
output tuples can be derived from input tuples using an
inner graph whose nodes are quantified tuple variables
(Tuple Var.). The edges of this inner graph can be parti-
tioned into three classes:Definition edgesconnect TOs
with the head of the TO that provides input tuples for the
current TO.Predicate edgesdescribe predicate expres-
sions defined for the connected tuple variables.Output
edgesconnect tuple variables, which have to be made

1In our graphical query representation, we hide the head of a TO, if
it contains only one head attribute.

accessible to other TOs, with the head of the TO.
A correlated edgeconnects tuple variables with the

body of other TOs, for which the current evaluation con-
text has to be provided, e. g., for evaluating existential
predicates. Correlated predicate edges are drawn as dot-
ted lines in the graphical representation. In contrast, all
other edges are illustrated as solid lines.

Throughout the rest of this paper, we use the fol-
lowing example—Q5 of the XMark benchmark queries
[31]—to show the application of our rewrite rules:

let $a := doc("auction.xml") return
count(for $i in $a/site/closed_auctions/

closed_auction
where $i/price/text() >= 40
return $i/price)

Figure 3 shows the corresponding query graph built dur-
ing the analysis step described in Figure 1. To enable
a set-at-a-time processing rather than a node-at-a-time
processing of the query, the unnesting rules presented by
Mathis [21]—which we omit due to space restrictions—
are used to introduce a logical structural join operator
to the internal representation. Figure 6 shows the query
graph after unnesting. For the discussion of our rewrite
rules, it will be used as a baseline and serves as input for
the query optimization stage.

Figure 5: A simple query graph

2.1 Semantics of the TOs

After discussing the constituents of a TO, we are now
ready to take an in-detail look at the semantics. A body
of a TO can contain tuple variables with two different
quantifiers: AnF -quantified tuple variable works simi-
lar to thefor expression of XQuery: For every tuple pro-
vided by an incoming output edge, it sends the tuple to a
connected predicate. In parallel, it can provide the eval-
uation context for a nested sub-expression (dotted line).
On the other hand, anL-quantified tuple variable corre-
sponds to thelet expression of XQuery. It provides the
complete tuple sequence associated with it and does not
iterate over it.

As mentioned in Section 2, we provide two differ-
ent access operators: Node Access (NA) and Document
Access (DA). A DA operator provides the root node of
a document as a context node that serves as a starting
point for query evaluation. An NA operator supplies a
sequence of all nodes fulfilling the selection predicate,
e. g., a node name. For example, the left NA operator in
Figure 5 provides allprice element nodes found in the
document.

The join operator is responsible for the evaluation of
structural joins and is introduced during the unnesting

process as described by Mathis [21]. A join operator
contains two or moreF -quantified tuple variables. Abi-
nary join operator contains exactly two tuple variables
that are connected to a structural predicate (XPath axis).
The operator produces an output for each combination
of incoming tuples (associated with the tuple variables),
if they fulfill the structural predicate. We call a join op-
eratorcomplexif it contains three or moreF -quantified
tuple variables connected to structural predicates which
may be linked to logical operators. We call a join oper-
ator asemi-joinoperator if at least one tuple variable is
not connected to the head of the operator.

The select operator is accountable for the evaluation
of value-based and positional predicates which can be
assigned toF - or L-quantified tuple variables. Addi-
tionally, a select operator can evaluate functions, e. g.,
fn:count.

Let us have a look at our running example which is
shown in Figure 6: The left subtree provides a sequence
of closed auction tuples that satisfy the structural re-
lationships evaluated by the semi-join operators. For
each tuple, the lower select operator provides the eval-
uation context for the right subtree which establishes
a sequence of tuples fulfilling the structural predicate
price/text() w. r. t. to the evaluation context. Each
text() tuple is sent to the top-most select operator if it
fulfills the predicatefn:data >= 40. The top-most se-
lect operator applies thefn:count aggregate function to
the tuple sequence and outputs the number of tuples in it.

3 Rules for Query Rewrite
Compared to query rewrite in relational database sys-
tems, our approach considers the characteristics of
cost-effective PPOs (evaluation of TQPs as a whole)
and indexes (evaluation of components of—or even
complete—TQPs). For example, join operators can be
fused to a complex join operator that can be efficiently
evaluated using an HTJ or a CAS index access. Be-
ing semantics-preserving transformations, the rules for
query rewrite are described according to the following
textual representation:IF (Condition) THEN (Action).
Condition describes the preconditions for applying the
rule. In contrast,Action is a sequence of operations
which have to be performed on the GTO and its subtypes.
Each operation is described by a function call whose se-
mantics is self-explanatory. The overall rewrite philoso-
phy that drives the rewrite process can be condensed into
the following statement:

Whenever possible, a query should be con-
verted to a single join operator.

We believe that this strategy is helpful for the evaluation
of TQPs, because they can often be evaluated more effi-
ciently using HTJ operators rather than SJ operators [5].

3.1 Fusion of Join Operators

Rewrite rule 1 allows to fuse two adjacent join opera-
tors to a single—but probably more complex—join op-
erator. It is only applicable for two adjacent join oper-
ators that evaluate structural predicates withchild or
descendant axes and which are connected over anF -
quantified definition edge.

Figure 6: Query graph after unnesting

The correctness of this rule is obvious: Fusing two ad-
jacent join operators along the definition edge—by copy-
ing the body of the upper operator into the lower opera-
tor’s one—does not change the semantics of the struc-
tural relationships, because we still perform a left-to-
right evaluation of the predicates.

Rewrite rule 1 IF ((t is Join with F-quantified
tuple variable v) ∧ (v references b) ∧ (b
is Join) ∧ (b and t only contain structural
predicates evaluating child or descendant axes))
THEN ({CopyBody(b,t), CopyHead(b,t), CopyPred-
icateEdge(b,t), UpdatePredicateEdge(v), UpdateDef-
initionEdge(v), Delete(b), UpdateHeadAttributes(t),
UpdateAttributeCalculation(t)});

Example 1 Figure 7 shows the query graph presented in
Figure 6 after applying rewrite rule 1 which results in a
complex 4-way join operator.

3.2 Fusion of Select and Join Operators

Rewrite rule 2 permits to fuse a join operator and an ad-
jacent select operator. The correctness of the rule is ob-
vious: Consider a join operator that receives its inputs
from a select operator. The structural predicate is evalu-
ated on a tuple sequence that has already been filtered by
the select operator. After rewrite, the join operator evalu-
ates the predicates added during the fusion, in addition to
its own ones. Those additional predicates filter the tuple
sequence in the same way, as it is done before rewrite.

Rewrite rule 2 IF ((t is Join with F-quantified tu-
ple variable v) ∧ (v references b) ∧ (b is Se-
lect) ∧ (b contains no L-quantified tuple variable))
THEN ({CopyBody(b,t), CopyHead(b,t), CopyPred-
icateEdge(b,t), UpdatePredicateEdge(v), UpdateDefi-
nitionEdge(v), Delete(b)});

3.3 Fusion of Select and Node Access Operators

Rewrite rule 3 permits to merge a select and an adjacent
NA operator by moving the predicates from the select op-
erator to the body of the NA operator. This rewrite is ben-
eficial, because an NA operator can be directly mapped
to a physical element or CAS index access operator.

The correctness of this rewrite is preserved by the fact
that the early evaluation of the selection predicate by the
NA operator does not change the query semantics com-
pared to filtering the output of an NA operator by the
select operator.

Rewrite rule 3 IF ((t is Select with F-quantified tuple
variable v) ∧ (v references b) ∧ (b is Node Access))
THEN ({CopyBody(t,b), CopyHead(t,b), CopyPredi-
cateEdge(t,b), UpdatePredicateEdge(v), CopyOutput-
Edge(t,b), Delete(t)});

3.4 Commutativity Rule

In the relational world, commutativity is an important
property of binary join operators which approves to ex-
change the left and the right join partner. Rewrite rule 4
defines how we can partially make use of this property to
provide an import operation for query transformation to
extend the search space for join reordering. This rule is
beneficial, e. g., for a hash-based structural join operator
as described by Mathis et al. [22], where an exchange of
the left and right join partner may lead to better perfor-
mance, because the hash table might be created for the
smaller input sequence rather than the larger one. The
commutativity rule holds for almost all XPath axes, ex-
cept for theattribute axis, because it has no reverse
axis. For all other axes, there exists a corresponding re-
verse resp. forward axis. Exchanging join partners for
a join operator that evaluates aself axis is even trivial,
because it is reflexive.

Rewrite rule 4 IF ((t0 is binary Join) ∧ (t0 contains
tuple variables v1 and v2) ∧ (v1 and v2 are connected
to a structural predicate p) ∧ (p does not evaluate
the attribute axis) ∧ (v1 references TO t1) ∧ (v2 ref-
erences TO v2)) THEN ({ExchangeRef(v1:t1, v2:t1),
ExchangeRef(v2:t2, v1:t2), ReversePredicate(p), Up-
dateOutputEdge(v1), UpdateOutputEdge(v2)});

3.5 Associativity Rules

An associativity rule empowers a relational plan gener-
ator to traverse the search space of semantically equiv-
alent queries by changing the join order. However, in
the world of XML query languages, a single associativ-
ity rule is not sufficient, due to the dualism of content

Figure 7: Query graph after join fusion

and structure. Instead, we will need a rule for reorder-
ing content-based joins and a set of associativity rules
for structural joins that take combinations of several axes
as well as early duplicate elimination and sorting into ac-
count.

Every TO that forms the root node of a tree-structured
query graph has to perform duplicate elimination and
sorting, independent of its operator type. On the other
hand, TOs that have incoming and outgoing edges po-
tentially need to perform duplicate elimination. Fortu-
nately, not every join operator needs additional dupli-
cate elimination operations. For example, a full-join TO
will not create any duplicates, independent of the struc-
tural predicate it evaluates. On the other hand, a semi-
join TO can create duplicates on its output. We can
partition binary semi-join operators into two different
equivalence classes depending on the emergence of du-
plicates: (1) semi-join operators where only tuples of one
incoming tuple sequence can contain duplicates after join
evaluation (join operators that evaluateparent/child
or previous-/following-sibling axes), and (2)
semi-join operators where both incoming tuple se-
quences can contain duplicates after join evaluation
(join operators that evaluateancestor/descendant or
previous/following axes).

Example 2 Let a denote the left join partner,b denote
the right join partner of a binary structural semi-joinj
that evaluates thechild axis. If j only producesa tuples
satisfying the structural predicate, then duplicate elimi-
nation has to be performed, because every node can have
multiple child nodes. In contrast, ifj only deliversb tu-
ples to consuming operators, then duplicate elimination
is not needed, because every node has at most one par-
ent node. Ifj would evaluate adescendant axis, then
duplicate elimination could be necessary in both cases,
because every node can have multiple descendants and
multiple ancestors.

As mentioned before, to provide a complete set of asso-
ciativity rules, all combinations of axes have to be con-
sidered. Additionally, different output nodes need to be
taken into account. A node is called anoutput nodeif
its tuple sequence contributes to the query result or is
processed in a subsequent TO. Due to space constraints,

we cannot discuss all associativity rules provided in our
framework, except for one rule2.

Figure 8 shows the associativity rule for one output
node and two adjacent semi-join operators that evaluate
thedescendant axis3. To support a more fine-granular
treatment of sorting and duplicate elimination, we re-
place a call to theddo function, which only eliminates
duplicates, byD.

We assume that the output of each join operator is im-
plicitly sorted by the node that is used by a subsequent
TO or that contributes to the final result. On the left hand
side of Figure 8, a structural full-join is performed be-
tween tuples of TOA andB which needs no additional
sorting or duplicate elimination. The following semi-
join operator requires duplicate elimination and sorting
for two reasons: (1) it has only incoming edges, (2) each
tuple of the incoming tuple sequence can have multiple
descendantc nodes. On the right side, a structural join
is performed first between TOB and TOC. Because
this structural relationship is evaluated using a semi-join,
we need additional duplicate elimination, because every
b node can have multiplec descendants. The following
semi-join operator requires duplicate elimination for the
same reason, but it needs no additional sorting because
of our implicit sorting assumption.

Figure 8: Associativity rule for twodescendant axes
and one output node

2The complete set of associativity rules can be found in Weineret
al. [34].

3This query graph corresponds to the following XPath expression:
a[.//b//c].

Figure 9: Query graph after join decomposition

3.6 Complex Join Decomposition

The main idea that justifies our rewrite philosophy of
Section 3 is used for physical HTJ operators that can ef-
ficiently evaluaten-way joins. If the plan generator rec-
ognizes the availability of path or CAS indexes that can
evaluate a branch of—or even a complete—TQP, this in-
dex should be used instead of evaluating the twig using
a join operator4. To enable a decomposition of complex
(n-way) join operators, we have to consider two cases,
depending on how many twig paths can be answered us-
ing indexes. If there are several indexes available for a
given path, then the one is chosen that can answer the
largest fraction of the path. To make use of this index
for query evaluation, we apply rewrite rule 5 to split the
complex join operator into two parts: one part that is
evaluated using the index and the other part that will be
evaluated using an HTJ or an SJ operator.

Rewrite rule 5 IF ((t is n-way Join) ∧ (t contains one
path that can be answered using an available index) ∧
(t contains tuple variables v0, v1, and v2) ∧ (v0 is the
twig’s root node) ∧ (all paths from v0 over v1 can be
answered by no index) ∧ (at least one index can answer
a path from v0 over v2)) THEN({CreateJoinOp(tb),
MovePath(v0, v2, t, tb), UpdateHead(tb), Insert-
DefEdge(v0, tb});

If we can answer more than one twig path using avail-
able indexes, then the path of those indexes overlaps at
the twig query’s root node. To get rid of this overlap, we
use rewrite rule 6 to split the operator into two new join
operators and connect them using the old join operator
now evaluating a structural self-join to perform an inter-
section on the outgoing tuples of the newly created join
operators.

Rewrite rule 6 IF (t is n-way Join) ∧ (t describes TQP
that can make use of at least two indexes) ∧ (t con-
tains tuple variables v0, v1, and v2) ∧ (v0 forms the
twig pattern’s root node) ∧ (v1 and v2 are child nodes
of v0) ∧ (v1 and v2 are root nodes of subtrees) ∧

4Using HTJ or SJ operators for twig query evaluation always serves
as a fallback strategy, if no index matches the twig.

(for each path from v0 over v1 resp. v2 at least
one index matches) THEN({CreateJoinOp(tl), Cre-
ateJoinOp(tr), MoveSubtree(t, tl, v1), MoveSubtree(t,
tr, v2), InsertTupleVar(t, v3), InsertTupleVar(t, v4),
InsertPredicate(t, self, v3, v4), UpdateHead(t), Up-
dateHead(tl), UpdateHead(tr), InsertDefEdge(v3, tl),
InsertDefEdge(t4, tr)});

By applying rewrite rules 5 and 6 recursively on the
query graph, we obtain a resulting query graph that uses
as much as possible existing path indexes or CAS indexes
for query evaluation.

Example 3 To show the application of rewrite
rules 5, we assume that there exist two different
indexes which we can use for query evaluation:
I1(//closed auctions/closed auction) and
I2(//price[String]). The right subtree of the query
graph shown in Figure 7 can be directly mapped to an
index access operator for index I2. On the other hand,
index I1 cannot be used for query evaluation, yet. By
applying rewrite rule 5, we get the query graph shown in
Figure 9. As a consequence, index I1 can now be used
for query evaluation.

Considering the transformations illustrated in Figures 6
to 9, we can see how the rewritings push the QG to-
wards a better starting point for query transformation by
finding TQPs and exploiting existing indexes as early as
possible. After query unnesting shown in Figure 6, the
sequence of three semi-join operators was transformed
into a single 4-way join operator (see Figure 7). Figure 8
sketched how associativity rules can be defined that help
to enhance the search space for a cost-based query op-
timizer. Finally, Figure 9 exemplified how the knowl-
edge on existing indexes helps to rewrite the QG w. r. t. a
simpler mapping to index access operators during query
transformation.

4 Setting-up an Infrastructure for Cost-
based XML Query Optimization

After having introduced the XQGM as our internal rep-
resentation for XQuery expressions and defined various
rules for query rewrite, we are now ready to discuss the

infrastructure for cost-based XML query optimization
which takes a rewritten QG as input and transforms it
into a—hopefully—near-optimal QEP.

4.1 The Big Picture

Figure 10 shows the overall architecture of an XML
query optimizer which will be integrated into our pro-
totype of a native XML database management sys-
tem called theXML Transaction Coordinator (XTC)5.
The optimizer consists of five major components: The
Generic Pattern Matcher (GPM)provides means for ex-
tensible rule-based pattern matching on arbitrary graph-
structured trees. Using the GPM, a developer just de-
scribes the pattern to be matched in a declarative manner.
As a consequence, the developer has only to implement
the transformation code manually.

The Rewriter applies the rewrite rules described in
Section 3 to the QG and uses the GPM for pattern match-
ing.

The Plan Generatoris responsible for the transfor-
mation of QGs to QEPs. Depending on the plan gen-
eration strategy employed, a heuristics-based or a cost-
based optimization approach is chosen. If no cost model
is present, a heuristics-based approach has to be followed
by using a static set of transformation rules. On the other
hand, using a cost model and statistical information, a
cost-based query optimization can be applied. No matter
which plan generation approach is used, we also use the
GPM for pattern matching to allow for a generation of
alternative plans.

One of the main ingredients of a cost-based query op-
timizer is theCost Model. It uses the statistical informa-
tion provided by theStatisticscomponent for cost esti-
mation. In contrast to classic cost-based query optimiza-
tion, the cost model is not solely used during query trans-
formation. If we step back and have a look at the overall
query evaluation process, the following question arises
even during the analysis stage:Is it beneficial to perform
a query unnesting or not?—in other words, shall we fol-
low a set-at-a-time rather than a node-at-a-time process-
ing approach. This is only one example where costing
information is needed even before query transformation.

Figure 10: The architecture of the optimizer

4.2 Managing the search space

We have learned from classic relational cost-based op-
timization, that the search space—consisting of all se-

5Project website:http://www.xtc-project.de

mantically equivalent QEPs—for a plan generator gets
tremendously large. If we consider cost-based optimiza-
tion of XML queries, the situation gets even worse due
to many different alternative evaluation methods for SJs
and HTJs as well as different index-based access meth-
ods. To enable a query optimizer to keep as much as pos-
sible promising QEPs in main-memory, we use a kind of
mesh data structure as proposed by Graefe and DeWitt
[12]. Figure 11 shows how a new graph is stored in the
mesh. On the left-hand side, a graphGraphand its cor-
responding mesh representationMesh is shown. After
applying query rewrite by fusion two adjacent operators
to a new one,Graph is transformed intoGraph’. The
transformation causes an update of the mesh. To allow
for space-efficient management of a large amount of dif-
ferent plans, only the newly added nodes are physically
stored in the mesh. All other nodes are reused and ref-
erenced by virtual edges (dotted lines). The filled cir-
cles are associated with an equivalence class that encom-
passes all semantically equivalent subtrees. For example,
the top-most operator inMesh’contains two equivalence
classes, where the first class has one representative and
the second class contains two alternatives.

Figure 11: Updating the mesh

4.3 Choosing a Good Initial Plan

To reduce the time for finding a near-optimal query plan,
we employ a two-phase query optimization approach:
First we choose a good initial QEP using a heuristics-
based approach. This QEP can either be immediately
passed on to the code generation component or sent to a
cost-based query optimizer.

4.3.1 Mapping of access operators

The XQGM access operators are providing input for con-
suming operators. In general, we can distinguish be-
tween two access methods: document scan and index ac-
cess. A document access operator—e. g., the left-most
access operator in Figure 6—is always mapped onto a
document scan, because it only accesses the document’s
root node. For all other access operators, an element in-
dex scan—if present—is the access method of choice.

Figure 12: Decision tree for mapping join operators

4.3.2 Mapping of binary join operators

As outlined in Section 1, there exists a huge variety of
different SJ and HTJ algorithms. Using the rewrite rules
of Section 3, we can reduce the number of binary struc-
tural join operators to a minimum. If there are still bi-
nary structural joins, we use the decision tree shown in
Figure 12 to choose the evaluation method. If positional
predicates are missing, the join operator has three options
depending on the structural relationship it has to evalu-
ate: TheStackTreealgorithm by Al-Khalifa et al. [1] is
used, when the join operator evaluates aparent/child
or ancestor/descendant axis. For the evaluation
of theprevious-sibling/following-sibling axis,
we use one of the structural hash-join algorithms pro-
posed by Mathis and Ḧarder [22]. In all other cases,
we use a classic nested-loops join approach. On the
other hand, if the binary structural join operator evalu-
ates a positional predicate, we have two alternative eval-
uation methods: Vagena et al. [32] proposedEPPP
which will be used for the evaluation ofparent/child
and previous-sibling/following-sibling struc-
tural relationships. For all other combinations, we also
choose a nested-loops join algorithm.

4.3.3 Mapping of complexn-way join operators

Complexn-way join operators are created during query
rewrite by fusing two adjacent binary structural joins.
If there is no path or CAS index that can be used for
the evaluation of a complexn-way join, we use the
TwigStackalgorithm proposed by Bruno et al. [5].

4.3.4 Making the most of available indexes

In Section 3.6 we showed how to prepare QGs to make
the most of available indexes. During query transforma-
tion, we can benefit from join decomposition. Whenever
a join operator—no matter whether binary orn-nary—
and its subtree(s) can be evaluated using an available
CAS or path index, we immediately map it to an index
access operator.

4.4 Handling of Statistical Information by Profiles

During query transformation, we use a profile-based ap-
proach for managing statistical information as proposed
by Mannino et al. [20]. Every QG is associated with a
correspondingprofile hierarchywhich is formed by two
different node types:base profile (BP)andintermediate

profile (IP). Figure 13 shows a QG and its associated pro-
file hierarchy. Every QG leaf node (access operator) has
its own BP which contains statistical information about
the chosen physical access method. For example, an in-
dex scan contains information about the height of the
search tree and the number of its leaf pages. Base pro-
files are periodically updated by the database manage-
ment system and provide the foundation for cost estima-
tion.

On the other hand, IPs are associated with QG inner
nodes and do not provide accurate statistical information.
Instead, they use the statistical information provided by
their child nodes (BPs or BIs) as input for cost estima-
tion. This is not done automatically by the database man-
agement system. Instead, a database administrator has to
run a statistics collection tool similar to DB2’srunstats
manually to update the intermediate profiles. Using cost
formulas which strongly depend on the assigned physi-
cal operator, they allow for an estimation of I/O and CPU
costs.

Figure 13: Query graph with associated profile hierarchy

5 Conclusions and Future Work
In this paper, we smoothed the way for cost-based XML
query optimization. First, we introduced the XML Query
Graph Model that serves as our internal representation
for XML queries and permits an easier transition be-
tween QPs and QEPs. Second, we introduced a set of
rewrite rules which allow to fuse as much as possible ad-
jacent binary structural join operators to a singlen-way
join operator. Using these rules, a query optimizer can
evaluate TQPs using HTJ or appropriate CAS or path in-
dexes more easily. To make the most out of all existing
indexes—especially those that can only answer parts of

a TQP—we introduced further rules for join decomposi-
tion. Using these rules in combination with our knowl-
edge on existing indexes allows for a separation of paths
in TQPs, that can be answered using indexes, from those,
that have to be evaluated using PPOs. Third, we sketched
the architecture of our query optimizer that will be inte-
grated in our prototype of a native XML database man-
agement system. Using the concepts described in this
paper, we are already able to provide a heuristics-based
query optimizer.

In the future, we will focus on the definition of an
appropriate cost model. Choosing the right formulas for
cost estimation is far from trivial. Compared to relational
join algorithms—e. g., nested-loops join or merge join—
SJ and HTJ algorithms are very complex in terms of how
they process data. We expect that this leads to com-
plex cost formulas whose quality can only be verified
by extensive empirical experiments. Currently, we do
not know which plan generation strategy, e. g., dynamic
programming or simulated annealing, works best. For
that reason, our plan generator will be flexible enough to
switch between different strategies to allow for a com-
parison w. r. t. execution time, quality of the chosen plan
and resource consumption.

Acknowledgments
We thank the anonymous reviewers for their valuable
comments on this paper.

References

[1] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Pa-
tel, Yuqing Wu, Nick Koudas, and Divesh Srivas-
tava. Structural Joins: A Primitive for Efficient
XML Query Pattern Matching. InProc. ICDE,
pages 141–154, 2002.

[2] Kevin S. Beyer, Roberta Cochrane, Vanja Josi-
fovski, Jim Kleewein, George Lapis, Guy M.
Lohman, Robert Lyle, FatmäOzcan, Hamid Pi-
rahesh, Norman Seemann, Tuong C. Truong,
Bert Van der Linden, Brian Vickery, and Chun
Zhang. System RX: One Part Relational, One Part
XML. In Proc. SIGMOD Conference, pages 347–
358, 2005.

[3] Matthias Brantner, Sven Helmer, Carl-Christian
Kanne, and Guido Moerkotte. Full-fledged Alge-
braic XPath Processing in Natix. InProc. ICDE,
pages 705–716, 2005.

[4] Matthias Brantner, Carl-Christian Kanne, and
Guido Moerkotte. Let a Single FLWOR Bloom.
In Proc. XSym, LNCS 4704, pages 46–61, 2007.

[5] Nicolas Bruno, Nick Koudas, and Divesh Srivas-
tava. Holistic Twig Joins: Optimal XML Pattern
Matching. InProc. SIGMOD Conference, pages
310–321, 2002.

[6] Michael J. Carey, Daniela Florescu, Zachary G.
Ives, Ying Lu, Jayavel Shanmugasundaram, Eu-
gene J. Shekita, and Subbu N. Subramanian.

XPERANTO: Publishing Object-Relational Data
as XML. In Proc. WebDB, pages 105–110, 2000.

[7] Zhimin Chen, H. V. Jagadish, Laks V. S. Laksh-
manan, and Stelios Paparizos. From Tree Patterns
to Generalized Tree Patterns: On Efficient Evalua-
tion of XQuery. InProc. VLDB Conference, pages
237–248, 2003.

[8] Shu-Yao Chien, Zografoula Vagena, Donghui
Zhang, Vassilis J. Tsotras, and Carlo Zaniolo. Effi-
cient Structural Joins on Indexed XML Documents.
In Proc. VLDB Conference, pages 263–274, 2002.

[9] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim.
APEX: An Adaptive Path Index for XML Data. In
Proc. SIGMOD Conference, pages 121–132, 2002.

[10] Brian F. Cooper, Neal Sample, Michael J. Franklin,
Gı́sli R. Hjaltason, and Moshe Shadmon. A Fast In-
dex for Semistructured Data. InProc. VLDB Con-
ference, pages 341–350, 2001.

[11] Roy Goldman and Jennifer Widom. Dataguides:
Enabling Query Formulation and Optimization in
Semistructured Databases. InProc. VLDB Confer-
ence, pages 436–445, 1997.

[12] Goetz Graefe and David J. DeWitt. The Exodus
Optimizer Generator.SIGMOD Rec., 16(3):160–
172, 1987.

[13] Jan Hidders, Philippe Michiels, Jérôme Siḿeon,
and Roel Vercammen. How To Recognize Differ-
ent Kinds of Tree Patterns from Quite a Long Way
Away. In Proc. Plan-X, pages 14–24, 2007.

[14] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Sri-
vastava, and Keith Thompson. TAX: A Tree Alge-
bra for XML. In Proc. DBPL, LNCS 2397, pages
149–164, 2001.

[15] Haifeng Jiang, Wei Wang, Hongjun Lu, and Jef-
frey Xu Yu. Holistic Twig Joins on Indexed XML
Documents. InProc. VLDB Conference, pages
273–284, 2003.

[16] Raghav Kaushik, Rajasekar Krishnamurthy, Jef-
frey F. Naughton, and Raghu Ramakrishnan. On
the Integration of Structure Indexes and Inverted
Lists. In Proc. SIGMOD Conference, pages 779–
790, 2004.

[17] Raghav Kaushik, Pradeep Shenoy, Philip Bohan-
non, and Ehud Gudes. Exploiting Local Similarity
for Indexing Paths in Graph-Structured Data. In
Proc. ICDE, pages 129–140, 2002.

[18] Hua-Gang Li, S. Alireza Aghili, Divyakant
Agrawal, and Amr El Abbadi. FLUX: Content and
Structure Matching of XPath Queries with Range
Predicates. InProc. XSym, pages 61–76, 2006.

[19] Quanzhong Li and Bongki Moon. Indexing and
Querying XML Data for Regular Path Expressions.
In Proc. VLDB Conference, pages 361–370, 2001.

[20] Michael V. Mannino, Paicheng Chu, and Thomas
Sager. Statistical Profile Estimation in Database
Systems. ACM Comput. Surv., 20(3):191–221,
1988.

[21] Christian Mathis. Extending a Tuple-Based XPath
Algebra to Enhance Evaluation Flexibility.Infor-
matik – Forschung und Entwicklung, 21(3–4):147–
164, 2007.

[22] Christian Mathis and Theo Ḧarder. Hash-Based
Structural Join Algorithms. InProc. EDBT DataX
Workshop, LNCS 4254, pages 136–149, 2006.

[23] Jason McHugh and Jennifer Widom. Query Op-
timization for XML. In Proc. VLDB Conference,
pages 315–326, 1999.

[24] Philippe Michiels, George A. Mihaila, and Jérôme
Siméon. Put a Tree Pattern in Your Algebra. In
Proc. ICDE, pages 246–255, 2007.

[25] Tova Milo and Dan Suciu. Index Structures for Path
Expressions. InProc. ICDT, pages 277–295, 1999.

[26] Bernhard Mitschang. Anfrageverarbeitung in
Datenbanksystemen (German only). Vieweg, 1995.

[27] Stelios Paparizos, Yuqing Wu, Laks V. S. Laksh-
manan, and H. V. Jagadish. Tree Logical Classes
for Efficient Evaluation of XQuery. InProc. SIG-
MOD Conference, pages 71–82, 2004.

[28] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar
Hasan. Extensible/Rule Based Query Rewrite Op-
timization in Starburst. InProc. SIGMOD Confer-
ence, pages 39–48, 1992.

[29] Christopher Re, J́erôme Siḿeon, and Mary F.
Ferńandez. A Complete and Efficient Algebraic
Compiler for XQuery. InProc. ICDE, page 14,
2006.

[30] Flavio Rizzolo and Alberto O. Mendelzon. Index-
ing XML Data with ToXin. InProc. WebDB, pages
49–54, 2001.

[31] Albrecht Schmidt, Florian Waas, Martin L. Ker-
sten, Michael J. Carey, Ioana Manolescu, and Ralph
Busse. XMark: A Benchmark for XML Data Man-
agement. InProc. VLDB Conference, pages 974–
985, 2002.

[32] Zografoula Vagena, Nick Koudas, Divesh Srivas-
tava, and Vassilis J. Tsotras. Efficient Handling
of Positional Predicates Within XML Query Pro-
cessing. InProc. XSym, LNCS 3671, pages 68–83,
2005.

[33] Haixun Wang, Sanghyun Park, Wei Fan, and
Philip S. Yu. ViST: A Dynamic Index Method for
Querying XML Data by Tree Structures. InProc.
SIGMOD Conference, pages 110–121, 2003.

[34] Andreas M. Weiner, Christian Mathis, and
Theo Ḧarder. Associativity Rules for Native
XML Databases. Internal Report, AG DBIS,
http://wwwlgis.informatik.uni-kl.de/,
2008.

