
Rules for Query Rewrite in Native XML Databases

Andreas M. Weiner, Christian Mathis, and Theo Härder
Databases and Information Systems Group, Department of Computer Science
University of Kaiserslautern, P. O. Box 3049, D-67653 Kaiserslautern, Germany

{weiner | mathis | haerder}@informatik.uni-kl.de

ABSTRACT
In recent years, the database community has seen many
sophisticated Structural Join and Holistic Twig Join algo-
rithms as well as several index structures supporting the
evaluation of twig query patterns. Even though almost all
XML query evaluation proposals in the literature use one
of those evaluation methods, we believe that (1) there is
no internal representation that enables a smooth transition
between the XQuery language level and physical algebra
operators, and (2) there is still no approach that consid-
ers the combination of content-and-structure indexes, Struc-
tural Join, and Holistic Twig Join algorithms to speed up
the evaluation of twig queries. To overcome this deficit, we
propose an enhancement to Starburst’s Query Graph Model
as an internal representation for XML query languages such
as XQuery. This representation permits the usage of simple
(binary) join operators—such as Structural Joins—and com-
plex (n-way) join operators—such as Holistic Twig Joins—
as part of the logical algebra. For twig queries, we define a
set of rewrite rules which initiate query graph transforma-
tions towards improved processability, e. g., to fuse adjacent
binary join operators to a complex join operator. To en-
hance the evaluation flexibility of twig queries, we come up
with further rewrite rules to prepare query graphs—even be-
fore query transformation—for making the most of existing
joins and indexes.

1. INTRODUCTION
The advent of XML as a de-facto standard for the ex-

change of structured and semi-structured data led to enor-
mous efforts in the database research community to propose
adequate Path Processing Operators (PPOs) for efficiently e-
valuating structural relationships (e. g., child/descendant).
These PPOs were optimized by various kinds of index struc-
tures enabling fast access to element, attribute, and text
nodes. They even allow to obtain answers to complete twig
query patterns (TQPs). The PPO algorithms can be further
partitioned into two classes: Structural Joins (SJs) [1] and
Holistic Twig Joins (HTJs) [3]. SJ algorithms decompose a
TQP into binary structural relationships, evaluate each of
those relationships separately, and finally“stitch” the results
together. In contrast, HTJ algorithms evaluate TQPs as a
whole.

Basically, the indexing algorithms proposed so far can be
partitioned into four classes: path indexes, element indexes,
content indexes, and hybrid indexes. Path indexes [13] are
using structural summaries such as Dataguides [5] for pro-
viding efficient access to nodes satisfying structural relation-

ships like child/descendant. Element indexes [3], which are
indexing element nodes, serve for efficient input to SJ and
HTJ operators. Content indexes [11] provide efficient access
to text or attribute value nodes. They can be implemented
very efficiently using B⋆-trees or inverted lists. Finally, hy-
brid indexes [17], which are also called content-and-structure
(CAS) indexes, are a promising approach for indexing con-
tent and structure at a time. CAS indexes can contribute
in a cost-effective way to the evaluation of components of—
or even complete—TQPs. Therefore, they are a challenging
competitor for SJ/HTJ algorithms.

Besides the various indexing approaches, there exist three
different classes of XML algebras that allow for an alge-
braic optimization of XML queries: tree-based algebras such
as TAX [8] or TLC [14], tuple-based algebras such as the
Natix Algebra (NAL) [2] or NALSTJ [9], and finally hybrid
approaches like the proposal of Re et al. [16].

1.1 The Query Evaluation Process

Figure 1: Overall query evaluation process

Figure 1 shows the three stages of the overall query eval-
uation process: analysis, optimization, and code generation.
During the analysis stage, the query is checked for syn-
tactical and semantical correctness. These checks are fol-
lowed by a normalization phase, where semantically equiva-
lent queries are mapped to a common normal form expres-
sion. The last step of this stage is formed by a simplifi-
cation process that removes redundant parts of the query.
The result of the first stage is delivered as a Query Graph
(QG) which is equivalent to a logical algebra expression.
During query rewrite, an algebraic optimization of the QG
is performed by transforming it into a semantically equiva-
lent structure which can be evaluated more efficiently than
the initial expression. In the query transformation step, a
rewritten QG is mapped to a Query Execution Plan (QEP)

(physical algebra expression) using a heuristics-based or a
cost-based plan generation process. The third stage, which
is responsible for providing the query result, is executing the
plan, either by direct interpretation or by translating it first
to an executable module.

1.2 Problem Statement
Today, in the world of XML query languages, it is not clear

how to perform a mapping from QGs to QEPs, because a
divergence exists between the contributions of the algebraic
optimization community and the proposals of the query eval-
uation community. Algebraic optimization leads to sophisti-
cated ideas on normalizing and simplifying XQuery expres-
sions, which are mostly driven by the formal semantics of
XQuery. On the other hand, query evaluation primarily fo-
cuses on efficient evaluation algorithms for TQPs such as
PPOs and indexes. To build query optimizers that are as
powerful as their relational counterparts, this gap has to
be closed by an appropriate internal representation that is
flexible enough to handle both the node-at-a-time query pro-
cessing inherent to XQuery Core expressions and set-at-a-
time query processing performed by most PPOs and index
operators. Additionally, this internal representation must
support an effective mapping of logical operators to their
physical counterparts. Using indexes for query evaluation
as much as possible is not only a good heuristics for the re-
lational world. We believe that an XML query evaluation
engine should also follow this approach. Nevertheless, there
exists—to the best of our knowledge—no query evaluation
process which reduces the usage of PPOs for TQP evaluation
to a minimum, provided there exist indexes that can deliver
the results for components of—or even complete—TQPs.

1.3 Our Contribution
The contribution of this paper can be summarized as fol-

lows: We propose an enhancement to the Query Graph
Model of Starburst—called the XML Query Graph Model
(XQGM)—which is tailor-made for being used in the con-
text of XML query languages such as XQuery. It provides
a new logical n-way join operator which supports the evalu-
ation of structural and positional predicates. We introduce
a set of rules for query rewrite which allow to fuse as much
adjacent binary SJ operators as possible to a single com-
plex join operator. Those rewrites are solely performed at
the logical algebra level and prepare the QG for a simpler
mapping to a QEP. To make the most of available indexes,
we define additional rules which permit to decompose n-way
join operators during query transformation, if the query op-
timizer recognizes matching indexes. Using these rules, we
can use existing indexes as far as possible and employ join
operators only where it is absolutely necessary.

1.4 Related Work
Pirahesh et al. [15] introduced the Query Graph Model

(QGM) in the context of Starburst as an extensible inter-
nal representation for relational queries. The data model of
the QGM is strongly related to the relational data model
which has to be adjusted to satisfy the needs of XML query
languages. Additionally, their QGM does not offer any sup-
port for the evaluation of structural relationships expressed
as XPath axis steps.

The classic work of McHugh and Widom [11] focuses only
on optimizing path expressions using navigational access

methods and lacks support for sophisticated indexing meth-
ods like CAS indexes.

Chen et al. [4] proposed General Tree Patterns (GTPs)
as a generalization of TQPs enabling the representation of a
large XQuery subset. Compared to our proposal, they per-
form a direct mapping of GTPs to QEPs. We believe that
this approach is not very flexible, because some XQuery ex-
pressions consist of parts which can be mapped to GTPs
and others that cannot be mapped to such structures. Our
approach enables the evaluation of XQuery expressions hav-
ing subtrees corresponding to TQPs and subtrees that do
not belong to this class of query patterns.

Hidders et al. [7] are focusing on finding TQPs as early
as possible during query optimization of XPath expressions.
Their rewrite rules work on XQuery Core. The tree patterns
found are directly mapped to the so-called Tree Pattern Nor-
mal Form which is their internal representation. By using
XQuery Core as a baseline, they loose immediate access to
the where clause of a FLWOR expression which makes the
evaluation of value-based join conditions very hard. In con-
trast, our internal representation can deal with structural,
value-based, or positional predicates.

Re et al. [16] introduce a set of rules for mapping XQuery
expressions to their logical algebra. Additionally, they in-
troduce a set of rewrite rules which enable an algebraic op-
timization. Unfortunately, they lack support for the evalua-
tion of n-way joins and do not consider promising indexing
approaches like CAS indexes.

Michiels et al. [12] propose a set of rewrite rules for
XQuery expressions which have only one output node. Their
rewrites are based on XQuery Core and consist of a nor-
malization and a simplification step. During normalization,
they map semantically equivalent XQuery expressions to a
common XQuery Core expression. Simplification helps to
remove unnecessary parts of XQuery Core expressions.

Mathis presents NALSTJ [9] as an extension of the Natix
Algebra [2], which introduces an SJ operator as a logical
algebra operator. Additional rules for unnesting algebra ex-
pressions permit set-at-a-time query processing along with
the node-at-a-time processing approach inherent to the nest-
ed version. Our work extends these ideas by introducing
rules for fusing adjacent logical SJ operators to complex n-
way join operators. This idea is driven by the evidence given
in [3], that, in most cases, TQPs can be evaluated more ef-
ficiently using HTJ rather than SJ operators.

2. THE XML QUERY GRAPH MODEL
The XML Query Graph Model (XQGM) is inspired by

Starburst’s Query Graph Model [15]. All XQGM graphs are
so-called operator graphs, where the nodes represent Tuple
Sequence Operators (TOs). The data flow of a query is de-
scribed by the edges between the nodes.

We define a tuple as a mapping from a set of attributes to
a set of values. Every attribute has an assigned type which
corresponds to an XQuery node type or atomic type, e. g.,
element or double. A value can be formed by any atomic
value in the value space of atomic types. All tuples, pro-
duced by a TO as output, form a so-called tuple sequence
which is an ordered sequence of tuples. In contrast to the
relational model, we additionally permit that an attribute
value can be a sequence of tuples, too. We say a tuple is
nested, if at least one tuple contains a tuple sequence as an
attribute value. A TO is a generic object that consumes

Figure 2: Query graph after translation

tuple sequences, transforms them according to its inherent
evaluation strategy, and finally delivers a tuple sequence as
output. In this paper, we concentrate on the following op-
erators: Select filters tuples by means of value-based and
positional predicates. Additionally, it supports the evalua-
tion of aggregate functions. Join evaluates n-way structural
joins. It is introduced after applying query unnesting as de-
scribed by Mathis [9]. There exist various subtypes for the
evaluation of semi-, anti-, and left-outer joins. The Node
Access (NA) operator accesses a sequence of element nodes
satisfying a given predicate. In contrast, the Document Ac-
cess (DA) operator provides access to the root node of a
document to supply an initial context for query evaluation.

All TOs inherit from a Generic Tuple Operator (GTO)
that provides basic functionality needed to create QGs. They
are permitted to add additional features such as new predi-
cate types, e. g., for evaluating structural relationships. All
TOs except the access operators consist of a Head and a
Body (Figure 3). The Head forms a projection specification
encompassing every attribute (Head Attr.) that is sent to a
consuming operator1.

An attribute calculation (Attr. Calculation) may call the
ddo function. It has the same semantics as the fn:distinct-
doc-order function introduced by the formal semantics of
XQuery during query normalization. It sorts the outgoing
tuple sequence in document order and performs duplicate
elimination. The Body provides the procedural description
of how output tuples can be derived from input tuples using
an inner graph whose nodes are quantified tuple variables
(Tuple Var.). The edges of this inner graph can be parti-
tioned into three classes: Definition edges connect TOs with
the head of the TO that provides input tuples for the current
TO. Predicate edges describe predicate expressions defined
for the connected tuple variables. Output edges connect tu-
ple variables, which have to be made accessible to other TOs,
with the head of the TO.

A Correlated edge connects tuple variables with the body
of other TOs, for which the current evaluation context has
to be provided, e. g., for evaluating existential predicates.
Correlated predicate edges are drawn as dotted lines in the

1In our graphical query representation, we hide the head of
a TO, if it contains only one head attribute.

graphical representation. In contrast, all other edges are
illustrated as solid lines.

Figure 3: A simple query graph

Throughout the rest of this paper, we use the following
example—Q5 of the XMark benchmark queries2—to show
the application of our rewrite rules:

let $a := doc("auction.xml") return

count(

for $i in $a/site/closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price)

Figure 2 shows the QG—which is similar to a corresponding
XQuery Core expression—after finishing the analysis stage
of Figure 1. Consider the left subtree: The DA operator
sends the root node of document auction.xml to the left-
most select operator (incoming solid line) which sends it
as evaluation context to the left-most NA operator (dot-
ted line). Every site node that fulfills the structural rela-
tionship doc("auction.xml")/site is transfered to the next
select operator. Every qualified site node provides the con-
text for the evaluation of the following structural relation-
ship site/closed_auctions and so on. Finally, the NA op-
erator accessing closed_auction nodes propagates the qual-
ified tuples to the cascade of consuming select operators. To
enable a set-at-a-time processing rather than a node-at-a-
time processing of the query, the unnesting rules presented
by Mathis [9]—which we omit due to space restrictions—are
used to introduce a logical SJ operator to the internal repre-
sentation. Figure 4 shows the QG after unnesting. For the
discussion of our rewrite rules, it will be used as a baseline
and serves as input for the query optimization stage.
2http://www.xml-benchmark.org/

Figure 4: Query graph after unnesting

2.1 Semantics of the TOs
After discussing the constituents of a TO, we are now

ready to take an in-detail look at the semantics of unnested
QGs. A body of a TO can contain tuple variables with two
different quantifiers: An F -quantified tuple variable works
similar to the for expression of XQuery: For every tuple
provided by an incoming output edge, it sends the tuple to
a connected predicate. In parallel, it can provide the evalu-
ation context for a nested sub-expression (dotted line). On
the other hand, an L-quantified tuple variable corresponds
to the let expression of XQuery. It provides the complete
tuple sequence associated with it and does not iterate over
it.

As mentioned in Section 2, we provide two different access
operators: NA and DA. A DA operator provides the root
node of a document as a context node that serves as a start-
ing point for query evaluation. An NA operator supplies a
sequence of all nodes fulfilling the selection predicate, e. g.,
a node name. For example, the left NA operator in Figure
3 provides all price element nodes found in the document.

The join operator is responsible for the evaluation of SJs
and is introduced during the unnesting process as described
by Mathis [9]. A join operator contains two or more F -
quantified tuple variables. A binary join operator contains
exactly two tuple variables that are connected to a structural
predicate (XPath axis). The operator produces an output
for each combination of incoming tuples (associated with the
tuple variables), if they fulfill the structural predicate. We
call a join operator complex if it contains three or more F -
quantified tuple variables connected to structural predicates
which may be linked to logical operators. We call a join
operator a semi-join operator if at least one tuple variable
is not connected to the head of the operator.

The select operator evaluates value-based and positional
predicates which can be assigned to F - or L-quantified tuple
variables. Additionally, a select operator can apply func-
tions, e. g., fn:count.

Let us have a look at our running example which is
shown in Figure 4: The left subtree provides a sequence
of closed_auction tuples that satisfy the structural rela-
tionships evaluated by the semi-join operators. For each tu-
ple, the lower select operator provides the evaluation context
for the right subtree which establishes a sequence of tuples
fulfilling the structural predicate price/text() w. r. t. to
the evaluation context. Each text() tuple is sent to the
top-most select operator if it fulfills the predicate fn:data

>= 40. The top-most select operator applies the fn:count

aggregate function to the tuple sequence and outputs the
number of tuples in it.

3. RULES FOR QUERY REWRITE
Compared to query rewrite in relational database systems,

our approach considers the characteristics of cost-effective
PPOs (evaluation of TQPs as a whole) and indexes (eval-
uation of components of—or even complete—TQPs). For
example, join operators can be fused to a complex join op-
erator that can be efficiently evaluated using an HTJ or a
CAS index access. Being semantics-preserving transforma-
tions, the rules for query rewrite are described according to
the following textual representation: IF (Condition) THEN

(Action). Condition describes the preconditions for apply-
ing the rule. In contrast, Action is a sequence of operations
which have to be performed on the GTO and its subtypes.
Each operation is described by a function call whose se-
mantics is self-explanatory. The overall rewrite philosophy
that drives the rewrite process can be condensed into the
following statement: Whenever possible, a query should be
converted to a single join operator. We believe that this
strategy is helpful for the evaluation of TQPs, because they
can often be evaluated more efficiently using HTJ operators
rather than SJ operators [3].

3.1 Fusion of Join Operators
Rewrite rule 1 allows to fuse two adjacent join operators

to a single—but probably more complex—join operator. It
is only applicable for two adjacent join operators that eval-
uate structural predicates with child/descendant axes and
which are connected over an F -quantified definition edge.
The correctness of this rule is obvious: Fusing two adja-
cent join operators along the definition edge—by copying
the body of the upper operator into the lower operator’s
one—does not change the semantics of the structural rela-
tionships, because we still perform a left-to-right evaluation
of the predicates. Figure 5 shows the QG presented in Fig-
ure 4 after applying rewrite rule 1 which results in a complex
4-way join operator.

Rewrite rule 1. IF ((t is Join with F-quantified tuple var-
iable v) ∧ (v references b) ∧ (b is Join) ∧ (b and t
only contain structural predicates evaluating child/descen-
dant axes)) THEN ({CopyBody(b,t), CopyHead(b,t), Copy-
PredicateEdge(b,t), UpdatePredicateEdge(v), UpdateDefini-
tionEdge(v), Delete(b), UpdateHeadAttributes(t), UpdateAt-
tributeCalculation(t)});

Figure 5: Query graph after join fusion

3.2 Fusion of Select and Join Operators
Rewrite rule 2 permits to fuse a join operator and an adja-

cent select operator. The correctness of the rule is obvious:
Consider a join operator that receives its inputs from a select
operator. The structural predicate is evaluated on a tuple
sequence that has already been filtered by the select opera-
tor. After rewrite, the join operator evaluates the predicates
added during the fusion, in addition to its own ones. Those
additional predicates filter the tuple sequence in the same
way, as it is done before rewrite.

Rewrite rule 2. IF ((t is Join with F-quantified tuple vari-
able v) ∧ (v references b) ∧ (b is Select) ∧ (b contains no
L-quantified tuple variable)) THEN ({CopyBody(b,t), Copy-
Head(b,t), CopyPredicateEdge(b,t), UpdatePredicateEdge(v),
UpdateDefinitionEdge(v), Delete(b)});

3.3 Extending the Search Space for a Cost-
based XML Query Optimizer

In the relational world, commutativity is an important
property of binary join operators which allows to exchange
the left and the right join partner. Rewrite rule 3 defines
how we partially can make use of this property to provide
an import operation for query transformation to extend the
search space for join reordering. This rule is beneficial, e. g.,
for a hash-based structural join operator as described by
Mathis and Härder [10], where an exchange of the left and
right join partner may lead to better performance, because
the hash table might be created for the smaller input se-
quence rather than the larger one. The commutativity rule
holds for almost all XPath axes, except for the attribute

axis, because it has no reverse axis. For all other axes, there
exists a corresponding reverse resp. forward axis. Exchang-
ing join partners for a join operator that evaluates a self

axis is even trivial, because it is reflexive.

Rewrite rule 3. IF ((t0 is binary Join) ∧ (t0 contains tuple
variables v1 and v2) ∧ (v1 and v2 are connected to a structural
predicate p) ∧ (p does not evaluate the attribute axis) ∧ (v1
references TO t1) ∧ (v2 references TO v2)) THEN ({Exchan-
geRef(v1:t1, v2:t1), ExchangeRef(v2:t2, v1:t2), ReversePredi-
cate(p), UpdateOutputEdge(v1), UpdateOutputEdge(v2)});

An associativity rule empowers a relational plan generator
to perform movements in the search space of semantically
equivalent queries by changing the join order. However, in
the world of XML query languages, a single associativity rule

is not sufficient, due to the dualism of content and structure.
Instead, we will need a rule for reordering content-based
joins and a set of associativity rules for structural joins that
take combinations of several axes as well as early duplicate
elimination and sorting into account. Every TO that forms
the root node of a tree-structured query graph has to per-
form duplicate elimination and sorting, independent of its
operator type. On the other hand, TOs that have incoming
and outgoing edges potentially need to perform duplicate
elimination. Fortunately, not every join operator needs ad-
ditional duplicate elimination operations. For example, a
full-join TO will not create any duplicates, independent of
the structural predicate it evaluates. Due to space restric-
tions, we cannot discuss the large set of associativity rules
we developed. Instead, we provide them as an appendix to
this paper on the web [18].

3.4 Complex Join Decomposition
The main idea that justifies our rewrite philosophy of

Section 3 is used for physical HTJ operators that can effi-
ciently evaluate n-way joins. If the plan generator recognizes
the availability of path or CAS indexes that can evaluate a
branch of—or even a complete—TQP, this index should be
used instead of evaluating the twig using a join operator3.
To enable a decomposition of complex (n-way) join opera-
tors, we have to consider two cases, depending on how many
twig paths can be answered using indexes. If there are sev-
eral indexes available for a given path, then the one is chosen
that can answer the largest fraction of the path. To make
use of this index for query evaluation, we apply rewrite rule
4 to split the complex join operator into two parts: one part
that is evaluated using the index and the other part that
will be evaluated using an HTJ or an SJ operator.

Rewrite rule 4. IF ((t is n-way Join) ∧ (t contains one path
that can be answered using an available index) ∧ (t contains
tuple variables v0, v1, and v2) ∧ (v0 is the twig’s root node)
∧ (all paths from v0 over v1 can be answered by no index)
∧ (at least one index can answer a path from v0 over v2))
THEN({CreateJoinOp(tb), MovePath(v0, v2, t, tb), Update-
Head(tb), InsertDefEdge(v0, tb});

If we can answer more than one twig path using available
indexes, then the path of those indexes overlaps at the twig

3Using HTJ or SJ operators for twig query evaluation always
serves as a fallback strategy, if no index matches the twig.

query’s root node. To get rid of this overlap, we use rewrite
rule 5 to split the operator into two new join operators and
connect them using the old join operator now evaluating a
structural self-join to perform an intersection on the outgo-
ing tuples of the newly created join operators.

Rewrite rule 5. IF (t is n-way Join) ∧ (t describes TQP
that can make use of at least two indexes) ∧ (t contains tuple
variables v0, v1, and v2) ∧ (v0 forms the twig pattern’s root
node) ∧ (v1 and v2 are child nodes of v0) ∧ (v1 and v2 are
root nodes of subtrees) ∧ (for each path from v0 over v1 resp.
v2 at least one index matches) THEN({CreateJoinOp(tl),
CreateJoinOp(tr), MoveSubtree(t, tl, v1), MoveSubtree(t, tr,
v2), InsertTupleVar(t, v3), InsertTupleVar(t, v4), InsertPredi-
cate(t, self, v3, v4), UpdateHead(t), UpdateHead(tl), Update-
Head(tr), InsertDefEdge(v3, tl), InsertDefEdge(t4, tr)});

By applying rewrite rules 4 and 5 recursively on the QG,
we obtain a QG that uses as much as possible existing
path indexes or CAS indexes for query evaluation. To
show the application of rewrite rules 4, we assume that
there exist two different indexes which we can use for
query evaluation: I1(//closed_auctions/closed_auction)
and I2(//price[String]). The right subtree of the QG
shown in Figure 5 can be directly mapped to an index access
operator for index I2. On the other hand, index I1 cannot
be used for query evaluation, yet. By applying rewrite rule
4, we get a QG where index I1 can now be used for query
evaluation.

4. CONCLUSIONS
In this paper, we proposed an extension to Starburst’s

Query Graph Model—namely the XML Query Graph Model
(XQGM)—that serves as our internal representation for
XML queries and permits a smooth transition between QPs
and QEPs. To find TQPs as early as possible in unnested
QGs, we introduced a set of rewrite rules which were driven
by our rewrite philosophy: Whenever possible, a query
should be converted to a single join operator. Using these
rules, a query optimizer can evaluate TQPs using HTJ or
appropriate CAS or path indexes. To make the most out of
all existing indexes—especially those that can only answer
parts of a TQP—we introduced further rules for join decom-
position. Using these rules in combination with our knowl-
edge on existing indexes allows for a separation of paths in
TQPs, that can be answered using indexes, from those, that
have to be evaluated using PPOs. In the future, we will
integrate our rewrite rules in the query optimizer of XTC
(XML Transaction Coordinator) [6] which is our prototype
of a native XML database management system. To allow
for a cost-based query optimization, we will develop an ap-
propriate cost model that will drive the decision process for
the application of the rewrite rules.

Acknowledgments
We thank Sebastian Bächle and the anonymous reviewers
for their valuable comments on this paper.

5. REFERENCES
[1] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,

N. Koudas, and D. Srivastava. Structural Joins: A
Primitive for Efficient XML Query Pattern Matching.
In Proc. ICDE, pages 141–154, 2002.

[2] M. Brantner, S. Helmer, C.-C. Kanne, and
G. Moerkotte. Full-fledged Algebraic XPath
Processing in Natix. In Proc. ICDE, pages 705–716,
2005.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic
Twig Joins: Optimal XML Pattern Matching. In Proc.
SIGMOD Conference, pages 310–321, 2002.

[4] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and
S. Paparizos. From Tree Patterns to Generalized Tree
Patterns: On Efficient Evaluation of XQuery. In Proc.
VLDB Conference, pages 237–248, 2003.

[5] R. Goldman and J. Widom. Dataguides: Enabling
Query Formulation and Optimization in
Semistructured Databases. In Proc. VLDB
Conference, pages 436–445, 1997.

[6] M. Haustein and T. Härder. An Efficient
Infrastructure for Native Transactional XML
Processing. Data & Knowledge Engineering,
61(3):500–523, 2007.

[7] J. Hidders, P. Michiels, J. Siméon, and R. Vercammen.
How To Recognize Different Kinds of Tree Patterns
from Quite a Long Way Away. In Proc. Plan-X, pages
14–24, 2007.

[8] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava,
and K. Thompson. TAX: A Tree Algebra for XML. In
Proc. DBPL, LNCS 2397, pages 149–164, 2001.

[9] C. Mathis. Extending a Tuple-Based XPath Algebra
to Enhance Evaluation Flexibility. Informatik –
Forschung und Entwicklung, 21(3–4):147–164, 2007.

[10] C. Mathis and T. Härder. Hash-Based Structural Join
Algorithms. In Proc. EDBT DataX Workshop, LNCS
4254, pages 136–149, 2006.

[11] J. McHugh and J. Widom. Query Optimization for
XML. In Proc. VLDB Conference, pages 315–326,
1999.

[12] P. Michiels, G. A. Mihaila, and J. Siméon. Put a Tree
Pattern in Your Algebra. In Proc. ICDE, pages
246–255, 2007.

[13] T. Milo and D. Suciu. Index Structures for Path
Expressions. In Proc. ICDT, pages 277–295, 1999.

[14] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V.
Jagadish. Tree Logical Classes for Efficient Evaluation
of XQuery. In Proc. SIGMOD Conference, pages
71–82, 2004.

[15] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/Rule Based Query Rewrite Optimization
in Starburst. In Proc. SIGMOD Conference, pages
39–48, 1992.

[16] C. Re, J. Siméon, and M. F. Fernández. A Complete
and Efficient Algebraic Compiler for XQuery. In Proc.
ICDE, page 14, 2006.

[17] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A
Dynamic Index Method for Querying XML Data by
Tree Structures. In Proc. SIGMOD Conference, pages
110–121, 2003.

[18] A. M. Weiner, C. Mathis, and T. Härder. Associativity
Rules for Native XML Databases—Appendix.
http://www.xtc-project.de, 2008.

