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Abstract. Fine-grained lock protocols should allow for highly concur-
rent transaction processing on XML document trees, which is addressed
by the taDOM lock protocol family enabling specific lock modes and
lock granules adjusted to the various XML processing models. We have
already proved its operational flexibility and performance superiority
when compared to competitor protocols. Here, we outline our experiences
gained during the implementation and optimization of these protocols.
We figure out their performance drivers to maximize throughput while
keeping the response times at an acceptable level and perfectly exploiting
the advantages of our tailor-made lock protocols for XML trees. Because
we have implemented all options and alternatives in our prototype system
XTC, benchmark runs for all “drivers” allow for comparisons in identical
environments and illustrate the benefit of all implementation decisions.
Finally, they reveal that careful lock protocol optimization pays off.

1 Motivation

Native XML database systems (XDBMSs) promise tailored processing of XML
documents, but most of the systems published in the DB literature are designed
for efficient document retrieval only [17]. However, XML’s standardization and,
in particular, its flexibility (e.g., data mapping, cardinality variations, optional or
non-existing structures, etc.) are driving factors to attract demanding write/read
applications, to enable heterogeneous data stores and to facilitate data inte-
gration. Because business models in practically every industry use large and
evolving sets of sparsely populated attributes, XML is more and more adopted
by those companies which have even now launched consortia to develop XML
Schemas adjusted to their particular data modeling needs.! For these reasons,
XML databases currently get more and more momentum if data flexibility in
various forms is a key requirement of the application and they are therefore
frequently used in collaborative or even competitive environments [11]. As a
consequence, the original “retrieval-only” focus — probably caused by the first
proposals of XQuery respectively XPath where the update part was left out
— is not enough anymore. Hence, update facilities are increasingly needed in

! World-leading financial companies defined more than a dozen XML vocabularies to
standardize data processing and to leverage cooperation and data exchange [20].



XDBMSs, i.e., fine-grained, concurrent, and transaction-safe document modifi-
cations have to be efficiently supported. For example, workloads for financial
application logging include 10M to 20M inserts in a 24-hour day, with about 500
peak inserts/sec. Because at least a hundred users need to concurrently read the
data for troubleshooting and auditing tasks, concurrency control is challenged
to provide short-enough response times for interactive operations [11].

Currently, all vendors of XML(-enabled) DBMSs support updates only at
document granularity and, thus, cannot manage highly dynamic XML docu-
ments, let alone achieve such performance goals. Hence, new concurrency con-
trol protocols together with efficient implementations are needed to meet these
emerging challenges. To guarantee broad acceptance, we strive for a general so-
lution that is even applicable for a spectrum of XML language models (e.g.,
XPath, XQuery, SAX, or DOM) in a multi-lingual XDBMS environment. Al-
though predicate locking for declarative XML queries would be powerful and
elegant, its implementation rapidly leads to severe drawbacks such as undecid-
ability and application of unnecessarily large lock granules for simplified pred-
icates — a lesson learned from the (much simpler) relational world. Beyond,
tree locks or key-range locks [5,12] are not sufficient for fine-grained locking of
concurrently evaluated stream-, navigation- and path-based queries. Thus, we
necessarily have to map XQuery operations to a navigational access model to
accomplish fine-granular locking supporting other XML languages like SAX and
DOM [3], too, because their operations directly correspond to a navigational
access model.

To approach our goal, we have developed a family consisting of four DOM-
based lock protocols called the taDOM group by adjusting the idea of multi-
granularity locking (MGL) to the specific needs of XML trees. Their empirical
analysis was accomplished by implementing and evaluating them in XTC (XML
Transaction Coordinator), our prototype XDBMS [9]. Its development over the
last four years accumulated substantial experience concerning DBMS perfor-
mance in general and efficient lock management in particular.

1.1 The taDOM Protocol Family

Here, we assume familiarity of the reader with the idea of multi-granularity
locking (MGL) — also denoted as hierarchical locking [6] — which applies to
hierarchies of objects like tables and tuples and is used “everywhere” in the
relational world. The allow for fine-grained access by setting R (read) or X
(exclusive) locks on objects at the lower levels in the hierarchy and coarse grained
access by setting the locks at higher levels in the hierarchy, implicitly locking the
whole subtree of objects at smaller granules. To avoid lock conflicts when objects
at different levels are locked, so-called intention locks with modes IR (intention
read) or IX (intention exclusive) have to be acquired along the path from the
root to the object to be isolated and vice versa when the locks are released [6].

Although an MGL protocol can also be applied to XML document trees, it
is in most cases too strict, because both R and X mode on a node, would always
lock the whole subtree below, too. While this is the desired semantics for part-of
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Fig. 1. Example of the taDOM3+ protocol

object hierarchies as in relational databases, these restrictions do not apply to
XML where transactions must not necessarily be guaranteed to have no writers
in the subtree of their current node. Hence, MGL does not provide the degrees
of concurrency that could be achieved on XML documents.

For ease of comprehension, we will give a brief introduction into the essentials
of our taDOM lock protocols (beyond the MGL modes just sketched), which
refine the MGL ideas and provide tailored lock modes for high concurrency in
XML trees [9]. To develop true DOM-based XML lock protocols, we introduced a
far richer set of locking concepts, beyond simple intention locks and, in our terms,
subtree locks. We differentiate read and write operations thereby renaming the
well-known (IR, R) and (IX, X) lock modes with (IR, SR) and (IX, SX) modes,
respectively. We introduced new lock modes for single nodes called NR (node
read) and NX (node exclusive), and for all siblings under a parent called LR
(level read). As in the MGL scheme, the U mode (SU in our protocol) plays a
special role, because it permits lock conversion. The novelty of the NR and LR
modes is that they allow, in contrast to MGL, to read-lock only a node or all
nodes at a level (under the same parent), but not the corresponding subtrees.

To enable transactions to traverse paths in a tree having (levels of) nodes
already read-locked by other transactions and to modify subtrees of such nodes, a
new intention mode CX (child exclusive) had to be defined for a context (parent)
node. It indicates the existence of an SX or NX lock on some direct child nodes
and prohibits inconsistent locking states by preventing LR and SR locks. It does
not prohibit other CX locks on a context node ¢, because separate child nodes of ¢
may be exclusively locked by other transactions (compatibility is then decided on
the child nodes themselves). Altogether these new lock modes enable serializable
transaction schedules with read operations on inner tree nodes, while concurrent
updates may occur in their subtrees.? An important and unique feature (not
applicable in MGL or other protocols) is the optional variation of the lock depth
which can be dynamically controlled by a parameter. Lock depth n determines
that, while navigating through the document, individual locks are acquired for
existing nodes up to level n. If necessary, all nodes below level n are locked by
a subtree lock (SR, SX) at level n.

2 Although edge locks [9] are an integral part of taDOM, too, they do not contribute
specific implementation problems and are, therefore, not considered here.



Continuous improvement of these basic concepts led to a whole family of lock
protocols, the taDOM family, and finally resulted in a highly optimized protocol
called taDOM3+ (tailor-made for the operations of the DOM3 standard [3]),
which consists of 20 different lock modes and “squeezes transaction parallelism”
on XML document trees to the extent possible. Correctness and, especially,
serializability of the taDOM protocol family was shown in [9, 18].

Let us highlight by three scenarios taDOM'’s flexibility and tailor-made adap-
tations to XML documents as compared to competitor approaches. Assume
transaction 71 — after having set appropriate intention locks on the path from
the root — wants to read-lock context node cn. Independently of whether or not
T1 needs subtree access, MGL only offers a subtree lock on ¢n, which forces
concurrent writers (72 and T3 in Fig. la) to wait for lock release in a lock
request queue (LRQ). In the same situation, node locks (NR and NX) would
allow greatly enhance permeability in cn’s subtree (Fig. 1b). As the only lock
granule, however, node locks would result in excessive lock management cost and
catastrophic performance behavior, especially for subtree deletion [8]. A frequent
XML read scenario is scanning of c¢n and all its children, which taDOM enables
by a single lock with special mode (LR). As sketched in Fig. 1¢, LR supports
write access to deeper levels in the tree. The combined use of node, level, and
subtree locks gives taDOM its unique capability to tailor and minimize lock gran-
ules. Above these granule choices, additional flexibility comes from lock-depth
variations on demand — a powerful option only provided by taDOM.

1.2 Related Work and our Own Contribution

To the best of our knowledge, we are not aware of contributions in the open
literature dealing with implementation of an XML lock manager. So far, most
publications just sketch ideas of specific problem aspects and are less compelling
and of limited expressiveness, because they are not implemented and, hence,
cannot provide empirical performance results [4, 14, 15]. Four Natix lock proto-
cols [10] focus on DOM operations, provide node locks only, and do not enable
direct jumps to inner document nodes and effective escalation mechanisms for
large documents. Together with four MGL implementations supporting node and
subtree locks, their lock protocol performance was empirically compared against
our taDOM protocols [8]. The taDOM family exhibited for a given benchmark
throughput gains of 400% and 200% compared to the Natix resp. MGL proto-
cols which clearly confirmed that availability of node, level, and subtree locks
together with lock modes tailored to the DOM operations pays off.

While these publications only address ideas and concepts, no contribution
is known how to effectively and efficiently implement lock protocols on XML
trees. Therefore, we start in Sect. 2 with implementation and processing cost of
a lock manager. In Sect. 3, we emphasize the need and advantage of prefix-based
node labeling for efficient lock management. Sect. 4 outlines how we coped with
runtime shortcomings of protocol execution, before effectiveness and success of
tailored optimizations are demonstrated by a variety of experimental results in
Sect. 5. Finally, Sect. 6 summarizes our conclusions.



2 Lock Manager Implementation

Without having a reference solution, the XTC project had to develop such a
component from scratch where the generic guidelines given in [6] were used.
Because we need to synchronize objects of varying types occurring at diverse
system layers (e.g., pinning pages by the buffer manager and locking XML-
related objects such as nodes and indexes), which exhibit incomparable lock
compatibilities, very short to very long lock durations, as well as differing access
frequencies, we decided to provide specialized lock tables for them (and not a
common one). Where appropriate, we implemented lock tables using suitable
lock identification (see node labeling scheme, Sect. 3) and dynamic handling of
lock request blocks and queues. Lock request scheduling is centralized by the
lock manager. The actions for granting a lock are outlined below. Otherwise, the
requesting transaction is suspended until the request can be granted or a time-
out occurs. Detection and resolution of deadlocks is enabled by a global wait-
for graph for which the transaction manager initiates the so-called transaction
patrol thread in uniform intervals to search for cycles and, in case of a deadlock,
to abort the involved transaction owning the fewest locks.

2.1 Lock Services

Lock management in-
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entries, each consisting of a configurable number (m) of blocks, as depicted in
Fig. 2. This use of separate buffers serves for storage saving (differing entry sizes
are used) and improved speed when searching for free buffer locations and is
supported by tables containing the related free-placement information. To avoid
frequent blocking situations when lock table operations (look-up, insertion of
entries) or house-keeping operations are performed, use of a single monitor is
not adequate. Instead, latches are used on individual hash-table entries (in hash
tables T (for transactions) and L (for locks)) to protect against access by concur-
rent threads thereby guaranteeing the maximum parallelism possible. For each
locked object, a lock header is created, which contains name and current mode
of the lock together with a pointer to the lock queue where all lock requests for



the object are attached to. Such a lock request carries among administration
information the requested/granted lock mode together with the transaction ID.
To speed-up lock release, the lock request entries are doubly chained and contain
a separate pointer to the lock header, as shown in Fig. 2. Further, a transaction
entry contains the anchor of a chain threading all lock request entries, which
minimizes lock release effort at transaction commit.

To understand the general principles, it is sufficient to focus on the man-
agement of node locks. A lock request of transaction T'1 for a node with label
ID1 proceeds as follows. A hash function delivers hT(7T7) in hash table T. If
no entry is present for T1, a new transaction entry is created. Then, hL(ID1)
selects (possibly via a synonym chain) a lock entry for node ID1 in hash table
L. If a lock entry is not found, a lock header is created for it and, in turn, a
new lock request entry; furthermore, various pointer chains are maintained for
both entries. The lock manager enables protocol adaptation to different kinds
of workloads by providing a number of registered lock schemes [9]. For checking
lock compatibility or lock conversion, a pre-specified lock scheme is used.

2.2 Cost of Lock Management

Lock management for XML trees is hardly explored so far. It considerably dif-
fers from the relational multi-granularity locking, the depth of the trees may
be much larger, but more important is the fact that operations may refer to
tree nodes whose labels — used for lock identification — are not delivered by the
lock request. Many XML operations address nodes somewhere in subtrees of a
document and these often require direct jumps “out of the blue” to a particular
inner tree node. Efficient processing of all kinds of language models [3,19] im-
plies such label-guided jumps, because scan-based search should be avoided for
direct node access and navigational node-oriented evaluation (e. g., getElement-
ById() or getNextSibling()) as well as for set-oriented evaluation of declarative
requests (e.g., via indexes). Because each operation on a context node requires
the appropriate isolation of its path to the root, not only the node itself has
to be locked in a sufficient mode, but also the corresponding intention locks
on all ancestor nodes have to be acquired. Therefore, the lock manager often
has to procure the labels for nodes and their contexts (e.g., ancestor paths) re-
quested. No matter what labeling scheme is used, document access cannot always
be avoided (e.g., getNextSibling()). If label detection or identification, however,
mostly need document access (to disk), dramatic overhead burdens concurrency
control. Therefore, node labeling may critically influence lock management cost.

In a first experiment, we ad-
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generate a variety of XML documents consisting of 5,000 up to 40,000 individ-
ual XML nodes. These nodes are stored in a B*-tree — a set of doubly chained
pages as document container (the leaves) and a document index (the inner pages)
— and reconstructed by consecutive traversal in depth-first order (i.e., document
order corresponds to physical order) within a transaction in single-user mode.

To explore the performance impact of fine-grained lock management, we have
repeated this experiment under various isolation levels [6]. Furthermore, we have
reconstructed the document twice to amplify the differing behavior between iso-
lation levels committed and repeatable read (in this setting, repeatable is equiv-
alent to serializable). Because of the node-at-a-time locking, such a traversal
is very inefficient, indeed, but it drastically reveals the lock management over-
head for single node accesses. Depending on the position of the node to be locked,
committed may cause much more locking overhead, because each individual node
access acquires short read locks on all nodes along its ancestor path and their
immediate release after the node is delivered to the client. In contrast, isolation
level repeatable read sets long locks until transaction commit and, hence, does
not need to repetitively lock and unlock ancestor nodes. In fact, they are al-
ready locked due to the depth-first traversal. Fig. 3 summarizes the number of
individual node locks requested for the various isolation levels.

In our initial XTC version, we had implemented SEQIDs (including a level
indicator) where node IDs were sequentially assigned as integer values. SEQIDs
allow for stable node addressing, because newly inserted nodes obtain a unique,
ascending integer ID. Node insertions and deletions preserve the document order
and the relationships to already existing nodes. Hence, the relationship to a
parent, sibling, or child can be determined based on their physical node position
in the document container, i.e., within a data page or neighbored pages. While
access to the first child is cheap, location of parent or sibling may be quite
expensive depending on the size of the current node’s subtree. Because intention
locking requires the identification of all nodes in the ancestor path, this crude
labeling scheme frequently forces the lock manager to locate a parent in the
stored document. Although we optimized SEQID-based access to node relatives
by so-called on-demand indexing, the required lock requests (Fig. 3) were directly
translated into pure lock management overhead as plotted in Fig. 4a. Hence, the
unexpectedly bad and even “catastrophic” traversal times caused a rethinking
and redesign of node labeling in XTC (see Sect. 3).
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2.3 Lower Isolation Levels are Not Always Superior

As compared to repeatable, isolation level committed provides for higher de-
grees of concurrency with (potentially) lesser degrees of consistency concerning
read /write operations on shared documents. Hence, if chosen for a transaction
program, the programmer must be carefully consider potential side-effects, be-
cause he accepts responsibility (because of early releases and later reacquisitions
of the same locks) to achieve full consistency. As shown in Fig. 4, committed
may cause higher lock management overhead at the system side. Nevertheless,
the programmer expects higher transaction throughput — as always obtained for
isolation level committed in relational systems — compensating for his extra care.

In a dedicated experiment, we went into this matter whether or not the po-
tentially high locking overhead for isolation level committed can be compensated
by reduced blocking in multi-user mode. For this scenario, we set up a benchmark
with three client applications on separate machines and an XDBMS instance on
a forth machine. The clients are executing for a fixed time interval a constant
load of over 60 transactions on the server. The workload — repeatedly executed
for the chosen isolation levels and the different lock depths — consisted of about
16 short transaction types with an equal share of reader and writer transactions,
which processed common access patterns like node-to-node navigation, child and
descendant axes evaluation, node value modifications, and fragment deletions.

Fig. 5a shows the results of this benchmark run. Isolation level none means
that node and edge locks are not acquired at all for individual operations. Of
course, processing transactions without isolation is inapplicable in real systems,
because the atomicity property of transactions (in particular the transaction
rollback) cannot be guaranteed. Here, we use this mode only to derive the upper
bound for transaction throughput in a given scenario. Isolation level repeatable
acquires read and write locks according to the lock protocol and lock depth
used, whereas committed requires write locks but only short read locks. Note,
committed leads to a fewer number of successful transactions than the stronger
isolation level repeatable — and obtains with growing lock depth (and, hence,
reduced conflict probability) an increasing difference. Although less consistency
guarantees are given in mode committed to the user, the costs of separate acqui-
sitions and immediate releases of entire lock paths for each operation reduced
the transaction throughput. Running short transactions, this overhead may not
be amortized by higher concurrency.
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After we had artificially increased the run times of the same transactions
by programmed delays (in this way simulating human interaction), of course,
the overall transaction throughput decreases, but meets the expectations of tra-
ditional transaction processing (see Fig. 5b): A lower degree of isolation leads
to a higher transaction throughput. If few access conflicts are occurring (lock
depths 2 and higher), lock management costs hardly influence the “stretched”
transaction durations and transaction throughput is decoupled from the chosen
isolation level. Hence, higher throughput on XML trees is not given for granted
using isolation level committed. Surprisingly, committed seems to be inappropri-
ate for large lock depths and short transactions.

3 Prefix-based Node Labeling is Indispensable

Range-based and prefix-based node labeling [2] are considered the prime compet-
itive methods for implementation in XDBMSs. A comparison and evaluation of
those schemes in [7] recommends prefix-based node labeling based on the Dewey
Decimal Classification. Each label represents the path from the document’s root
to the related node and the local order w.r.t. the parent node. Some schemes
such as OrdPaths [13], DeweyIDs, or DLNs [7] provide immutable labels by sup-
porting an overflow technique for dynamically inserted nodes. Here, we use the
generic name stable path labeling identifiers (SPLIDs) for them.

Whenever a node, e.g., with SPLID 1.19.7.5, has to be locked, all its ancestor
node labels are needed for placing intention locks on the entire path up to the
root. Hence, they can be automatically provided: 1.19.7, 1.19, and 1 for the
example. Because such lock requests occur very frequently, the use of SPLIDs is
the key argument for locking support.® Referring to our lock table (see Fig. 2),
intention locks for the ancestors of 1.19.7.5 can be checked or newly created
using hLL(1.19.7), hL(1.19) and hL(1) without document access. Because of the
frequency of this operation, we provide a function which acquires a lock and all
necessary intention locks at a time. A second important property for stable lock
management is the immutability of SPLIDs, i.e., they allow the assignment of
new IDs without the need to reorganize the IDs of nodes present.

We have repeated document traversal using SPLID-based lock management
(see Fig. 4b). Because the difference between none and committed/repeatable
is caused by locking overhead, we see drastic performance gains compared to
SEQIDs. While those are responsible for an up to ~600% increase of the re-
construction times in our experiment, SPLIDs keep worst-case locking costs in
the range of ~10 — ~20%. SEQIDs have fixed length, whereas SPLIDs require
handling of variable-length entries. Coping with variable-length fields adds some
complexity to SPLID and B*-tree management. Furthermore, prefix-compression
of SPLIDs is a must [7]. Nevertheless, reconstruction time remained stable when
SPLIDs were used — even when locking was turned off (case none).

3 Range-based schemes [21] cause higher locking overhead than SPLIDs. They enable
the parent label computation, but not those of further ancestors. An optimization
would include a parent label index to compute that of the grandparent and so on.



Comparison of document reconstruction in Fig. 4a and b reveals for identical
XML operations that the mere use of SPLIDs (instead of SEQIDs) improved the
response times by a factor of up to 5 and more. This observation may convince
the reader that node labeling is of utmost importance for XML processing. It is
not only essential for internal navigation and set-based query processing, but,
obviously, also most important for lock manager flexibility and performance.

4 Further Performance Drivers

Every improvement of the lock protocol shifts the issue of multi-user synchro-
nization a bit more from the level of logical XML trees down to the underlying
storage structures, which is a B*-tree in our case. Hence, an efficient and scalable
B*-tree implementation in an adjusted infrastructure is mandatory.

D1: B*-tree Locking Our initial implementation revealed several concur-
rency weaknesses we had to remove. First, tree traversal locked all visited index
pages to rely on a stable ancestor path in case of leaf page split or deletion. Thus,
update operations lead to high contention. Further, the implemented page access
protocol provoked deadlocks under some circumstances. Although page locking
itself was done by applying normal locks of our generic lock manager, where
deadlocks could be easily detected and resolved, they had a heavy effect on the
overall system performance. Thus, we re-implemented our B*-tree to follow the
ARIES protocol [12] for index structures, which is completely deadlock-free and
can therefore use cheap latches (semaphores) instead of more expensive locks.
Further, contention during tree traversals is reduced by latch coupling, where at
most a parent page and one of its child pages are latched at the same time.

D2: Storage Manager Navigational performance is a crucial aspect of an
XML engine. A B*-tree-based storage layout, however, suffers from indirect ad-
dressing of document nodes, because every navigation operation requires a full
root-to-leaf traversal, which increases both computational overhead and page-
level contention in the B*-tree. Fortunately, navigation operations have high
locality in B*-tree leaves, i.e., a navigation step from a context node to a related
node mostly succeeds in locating the record in the same leaf page. We exploit
this property, by remembering the respective leaf page and its version number
for nodes accessed as a hint for future operations. Each time when re-accessing
the B*-tree for a navigation operation, we use this information to first locate the
leaf page of the context node. Then, we quickly inspect the page to check if we
can directly perform the navigation in it, i.e., if the record we are looking for is
definitely bound to it. Only if this check fails, we have to perform a full root-to-
leaf traversal of the index to find the correct leaf. Note, such an additional page
access is also cheap in most cases, because the leaf page is likely to be found in
the buffer due to locality of previous references.

D3: Buffer Manager As shown in [7], prefix-compression of SPLIDs is
very effective to save storage space when representing XML documents in B*-
trees. As with all compression techniques, however, the reduced disk I/O must
be paid with higher costs for encoding and decoding of compressed records.



With page-wide prefix compression as in our case, only the first record in a
page is guaranteed to be fully stored. The reconstruction of any subsequent
entry potentially requires to decode all of its predecessors in the same page.
Accordingly, many entries will have to be decoded over and over again, when a
buffered page is frequently accessed. To avoid this unnecessary decoding overhead
and to speed up record search in a page, we enabled buffer pages to carry a cache
for already decoded entries. Using page latches, the page-local cache may be
accessed by all transactions and does not need further considerations in multi-
user environments. Although such a cache increases the actual memory footprint
of a buffered disk page, it pays off when a page is accessed more than once — the
usual case, e.g., during navigation. Further, it is a non-critical auxiliary structure
that can be easily shrinked or dropped to reclaim main memory space.

A second group of optimizations was concerned with XML lock protocols
for which empirical experiments identified lock depth as the most performance-
critical parameter (see Sect. 1.1). Choosing lock depth 0 corresponds to document-
only locks. In the average, growing lock depth refines lock granules, but enlarges
administration overhead, because the number of locks to be managed increases.
But, conflicting operations often occur at levels closer to the document root (at
lower levels) such that fine-grained locks at levels deeper in the tree do not al-
ways pay off. A general reduction of the lock depth, however, would jeopardize
the benefits of our tailored lock protocols.

D4: Dynamic Lock Depth Adjustment Obviously, optimal lock depth
depends on document properties, workload characteristics, and other runtime
parameters like multiprogramming level, etc., and has to be steadily controlled
and adjusted at runtime. Therefore, we leveraged lock escalation/deescalation as
the most effective solution: The fine-grained resolution of a lock protocol is —
preferably in a step-wise manner — reduced by acquiring coarser lock granules
(and could be reversed by setting finer locks, if the conflict situation changes).
Applied to our case, we have to dynamically reduce lock depth and lock sub-
trees closer to the document root using single subtree locks instead of separate
node locks for each descendant visited. Hence, transactions initially use fine lock
granules down to high lock depths to augment permeability in hot-spot regions,
but lock depth is dynamically reduced when low-traffic regions are encountered
to save system resources. Using empirically proven heuristics for conflict poten-
tial in subtrees, the simple formula threshold = k % 27'v¢! delivered escalation
thresholds, which takes into account that typically fanout and conflicts decrease
with deeper levels. Parameter k is adjusted to current workload needs.

D5: Avoidance of Conversion Deadlocks Typically, deadlocks occurred
when two transactions tried to concurrently append new fragments under a
node already read-locked by both of them. Conversion to an exclusive lock in-
volved both transactions in a deadlock. Update locks are designed to avoid such
conversion deadlocks [6]. Tailored to relational systems, they allow for a direct
upgrade to exclusive lock mode when the transaction decides to modify the cur-
rent record, or for a downgrade to a shared lock when the cursor is moved to the
next record without any changes. Transactions in XDBMS do not follow such



easy access patterns. Instead, they often perform arbitrary navigation steps in
the document tree, e.g., to check the content child elements, before modifying a
previously visited node. Hence, we carefully enriched our access plans with hints
when to use update locks for node or subtree access.

5 Effects of Various Optimizations

We checked the effectivity of the infrastructure adjustments (D1, D2, and D3),
before we focused on further XML protocol optimizations (D4 and D5). Based on
our re-implemented B*-tree version with the ARIES protocol (D1), we verified
the performance gain of navigation optimizations for D2 and D3. We stored an
8MB XMark document in a B*-tree with 8K pages and measured the average
execution time of the dominating operations FirstChild and NextSibling during
a depth-first document traversal. We separated the execution times for each
document level, because locality is potentially higher at deeper levels.

The results in Fig. 6a and b confirm that the optimizations of D2 and D3
help to accelerate navigation operations. With speed-ups of roughly 70% for all
non-root nodes, the benefit of both is nearly the same for the FirstChild opera-
tion. The fact that the use of cached page entries results even in a slightly higher
performance boost than the drastic reduction of B*-tree traversals through the
use of page hints, underlines the severeness of repeated record decoding. The
actual depth of the operation does not play a role here. In contrast, the page-
hint optimization shows a stronger correlation to the depth of a context node.
As expected, page hints are less valuable for the NextSibling operation at lower
levels, because the probability that two siblings reside in the same leaf page is
lower. For depths higher than 2, however, this effect completely disappears. For
the whole traversal, the hit ratio of the page hints was 97.88%. With documents
of other size and/or structure, we achieved comparable or even higher hit ra-
tios. Even for a 100MB XMark document, e.g., we still obtained a global hit
ratio of 93.34%. With the combination of both optimizations, we accomplished
a performance gain in the order of a magnitude for both operation types.

To examine and stress-test the locking facilities with the lock protocol op-
timizations of D4 and D5, situations with a high blocking potential had to be
provoked. We created mixes of read /write transactions, which access and modify
a generated XMark document at varying levels and in different granules [1]. We
again chose an initial document size of only 8 MB and used a buffer size large
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Fig. 6. Relative execution times of navigation operations (%)
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Fig. 7. Effects of lock depth and lock escalation on transaction throughput (tpm)

enough for the document and auxiliary data structures. Further details of the
specific workloads are not important here, because we only aim at a differen-
tial performance diagnosis under identical runtime conditions. To get insight in
the behavior of the lock-depth optimization D4, we measured the throughput
of transactions per minute (tpm) and ran the experiments for three escalation
thresholds (moderate, eager, aggressive) in single user mode (SU) and in multi-
user mode with various initial lock depths (0-8).

To draw the complete picture and to reveal the dependencies to our other op-
timizations, we repeated the measurements with two XTC versions: XTC based
on the old B*-tree implementation and XTC using the new B*-tree implemen-
tation together with the optimizations D2 and D3. To identify the performance
gain caused by D1-D3, we focused on transaction throughput, i.e., commit and
abort rates, and kept all other system parameters unchanged. Fig. 7 compares
the experiment results. In single-user mode, the new version improves through-
put by a factor of 3.5, which again highlights the effects of D2 and D3. The
absence of deadlocks and the improved concurrency of the latch-coupling proto-
col in the B*-tree (D1) becomes visible in the multi-user measurements, where
throughput speed-up even reaches a factor of 4 (Fig. 7a and ¢) and the abort
rates almost disappear for lock depths > 2 (Fig. 7b and d).

Deadlocks induced by the old B*-tree protocol were also responsible for the
fuzzy results of the dynamic lock depth adjustment (D4). With a deadlock-free
B*-tree, throughput directly correlates with lock overhead saved and proves the
benefit of escalation heuristics (Fig. 7c and d).

In a second experiment, we modified the weights of the transactions in the
previously used mix to examine the robustness of the approach against shifts in
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the workload characteristics. In the default workload, the document was modified
both in lower and deeper levels. In contrast, the focus in the two other workloads
is on nodes at deeper (deep) and lower (flat) levels, respectively. Additionally, we
provided optimized, update-aware variants of the transaction types to examine
the effect of careful use of update locks. For simplicity, we ran the multi-user
measurements only with initial lock depth 8.

The results in Fig. 8 generally confirm the observations of the previous exper-
iment. But, throughput comparison between old and new B*-tree variants attest
the new one a clearly better applicability for varying workloads. The value of
update locks is observable both in throughput and in abort rates. The optimized
workloads are almost completely free of node-level deadlocks, which directly pays
off in higher throughput. Here, the performance penalty of page-level deadlocks
in the old B*-tree becomes particularly obvious. Further, the results show that
our lock protocol optimizations by the performance drivers D4 and D5 comple-
ment each other, similar to the infrastructure optimizations D1-D3.

6 Conclusions

In this paper, we outlined the implementation of XML locking, thereby showing
that the taDOM family is perfectly eligible for fine-grained transaction isolation
on XML document trees. We disclosed lock management overhead and empha-
sized the performance-critical role of node labeling, in particular, for acquiring
intention locks on ancestor paths. In the course of lock protocol optimization,
we have revealed the real performance drivers: adjusted measures in the sys-
tem infrastructure and flexible options of the lock protocols to respond to the



workload characteristics present. All performance improvements were substanti-
ated by numerous measurements in a real XDBMS and under identical runtime
conditions which enabled performance comparisons of utmost accuracy — not
reachable by comparing different systems or running simulations.
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