
Implementing and Optimizing Fine-Granular

Lock Management for XML Document Trees

Sebastian Bächle1, Theo Härder1, and Michael P. Haustein2

1 Department of Computer Science,
University of Kaiserslautern, Germany

{baechle, haerder}@informatik.uni-kl.de
2 SAP AG

Hopp-Allee 16, 69190 Walldorf, Germany
haustein@h-ms.de

Abstract. Fine-grained lock protocols with lock modes and lock gran-
ules adjusted to the various XML processing models, allow for highly
concurrent transaction processing on XML trees, but require locking fa-
cilities that efficiently support large and deep hierarchies with varying
fan-out characteristics. We discuss these and also further requirements
like prefix-based node labels, and present a lock management design that
fulfills all these requirements and allows us to perfectly exploit the ad-
vantages of our tailor-made lock protocols for XML trees. Our design
also supports the flexible use of heuristics for dynamic lock escalation
to enhance workload adaptivity. Benchmark runs convincingly illustrate
flexibility and performance benefits of this approach and reveal that care-
ful lock protocol optimization pays off.

1 Motivation

Native XML database systems (XDBMS) promise tailored processing of XML
documents, but most of the systems published in the DB literature are designed
for efficient document retrieval [13, 19]. This “retrieval-only” focus was probably
caused by the first proposals of XQuery respectively XPath where the update
part was left out [21]. With the advent of the update extension [22] and its
support in commercial systems, however, the requirement for concurrent and
transaction-safe document modifications became widely accepted.

Currently, all vendors of XML(-enabled) database management systems sup-
port updates only at document granularity. Although this approach reduces some
of the complexity of updating XML, it is only feasible if the database consists of
collections of small documents. Efficient and effective transaction-protected col-
laboration on XML documents, however, becomes a pressing issue for medium-
to large-sized documents, especially, in the face of a growing number of use cases
for XML as the central data representation format in business environments.
Therefore, our goal is to provide a suitable solution for highly concurrent trans-
action processing on XML documents that fulfills all requirements of an XDBMS
in terms of applicability and flexibility.



In recent years, a great variety of XML storage models, indexing approaches
and sophisticated query processing algorithms have been proposed. Unfortu-
nately, they all make different assumptions about the availability of specific
data access operators, or even do not touch the problem of an embedding in a
real system environment at all. This diversity in conjunction with the various
language models and programming interfaces for XML is the most crucial prob-
lem in XML concurrency control. All those different ways of accessing the same
pieces of data makes it impossible to guarantee that only serializable schedules of
operations occur. Hence, we strive for a general solution that is even applicable
for a whole spectrum of XML language models (e.g., XPath, XQuery, SAX, or
DOM) in a multi-lingual XDBMS environment.

Because of the superiority of locking in other areas, we also focus on lock pro-
tocols for XML. We have already developed a family consisting of four DOM-
based lock protocols called the taDOM group by adjusting the idea of multi-
granularity locking [8] to the specific needs of XML trees. Here, we discuss mech-
anisms how such protocols can be efficiently implemented in a native XDBMS
or any other system that requires concurrent access to XML documents.

In Sect. 2, we emphasize the need and advantage of lock protocols tailored
to the specific characteristics of XML processing, sketching the properties of
our taDOM protocols, and discuss the role of prefix-based node labeling for
efficient lock management. Sect. 3 gives an overview of related work. In Sect.
4, we demonstrate how to embed XML lock protocols in a system environment
and describe some implementation details of a lock manager that simplifies the
use of a hierarchical lock protocol for large and deep document trees. In Sect.
5, we introduce an approach to dynamically balance benefit and lock overhead,
outline the problem of conversion deadlocks, and demonstrate the feasibility of
our approach with experimental results in Sect. 6. Finally, Sect. 7 concludes the
paper and gives an outlook on future work.

2 Preliminaries

XML lock protocols aim to enable XDBMS concurrent read and write accesses
of different transactions to the same documents, and thus increasing the overall
performance of the system. Hence, regarding the tree structure of XML, the
protocols have to synchronize read and write operations inside of a tree structure
at different levels and in different granularities.

Hierarchical lock protocols [9]—also denoted as multi-granularity locking—
were designed for hierarchies of objects like tables and tuples and are used “ev-
erywhere” in the relational world. The allow for fine-grained access by setting
R (read) or X (exclusive) locks on objects at the lower levels in the hierarchy
and coarse grained access by setting the locks at higher levels in the hierarchy,
implicitly locking the whole subtree of objects at smaller granules. To avoid lock
conflicts when objects at different levels are locked, so-called intention locks with
modes IR (intention read) or IX (intention exclusive) have to be acquired along



the path from the root to the object to be isolated and vice versa when the locks
are released [9].

Although the MGL protocol can also be applied to XML document trees, it
is in most cases too strict, because both R and X mode on a node, would always
lock the whole subtree below, too. While this is the desired semantics for part-of
object hierarchies as in relational databases, these restrictions do not apply to
XML where transactions must not necessarily be guaranteed to have no writers
in the subtree of their current node. Hence, MGL does not provide the degrees
of concurrency, that could be achieved on XML documents.

In the following, we will give a brief introduction into our TaDOM lock
protocols, which refine the ideas of the MGL approach and provide tailored lock
modes for high concurrency in XML trees.

2.1 TaDOM Protocol Family

To develop true DOM-based XML lock protocols, we introduced a far richer set
of locking concepts, beyond simple intention locks and, in our terms, subtree
locks. We differentiate read and write operations thereby renaming the well-
known (IR, R) and (IX, X) lock modes with (IR, SR) and (IX, SX) modes,
respectively. We introduced new lock modes for single nodes called NR (node
read) and NX (node exclusive), and levels of siblings called LR (level read). As in
the MGL scheme, the U mode (SU in our protocol) plays a special role, because
it permits lock conversion. The novelty of the NR and LR modes is that they
allow, in contrast to MGL, to read-lock only a node or all nodes at a level (under
the same parent), but not the corresponding subtrees.

The LR mode required further a new intention mode CX (child exclusive).
It indicates the existence of an SX or NX lock on some direct child nodes and
prohibits inconsistent locking states by preventing LR and SR locks. It does not
prohibit other CX locks on a context node c, because separate child nodes of c

may be exclusively locked by other transactions (compatibility is then decided on
the child nodes themselves). Alltogether these new lock modes enable serializable
transaction schedules with read operations on inner tree nodes, while concurrent
updates may occur in their subtrees.

For phantom protection, edge locks are used as a secondary type of locks.
They have only three different modes (read, update, and exclusive) and are re-
quested for the so-called virtual navigation edges of elements (previous/next sib-
ling, first/last child) and text nodes (previous/next sibling). Transactions have
to request shared edge locks when they navigate “over” such an edge to another
node, and exclusive edge locks when they want to insert new child/sibling nodes
in the tree. This mechanism signals readers node deletions of uncommitted trans-
actions and hinders writers from inserting nodes at positions where they would
appear as phantoms for others.3

3 Although edge locks are an integral part of taDOM, they are not in the focus of this
work and will not be further regarded due to space restrictions.



Continuous improvement of this basic concepts lead to a whole family of lock
protocols, the taDOM family, and finally ended in a protocol called taDOM3+,
which consists of 20 different lock modes and allows highest degrees of paral-
lelism on XML document trees. Correctness and, especially, serializability of the
taDOM protocol family was shown in [11, 20].

To illustrate the general principles of these protocols, let us assume that
transaction T1 navigates from the context node journal in Fig. 1 to the first
child title and proceeds to the editoral sibling. This requires T1 to request NR
locks for all visited nodes and IR locks for all nodes on the ancestor path from
root to leaf. Then, T1 navigates to the first article to read all child nodes and
locks the article node and all children at once with the perfectly fitting mode
LR. Then, transaction T2 deletes a section from the editorial, and acquires an
SX lock for the corresponding node, CX for the editorial parent and IX locks
for all further ancestors. Simultaneously, transaction T3 is able to update the
firstname node, because the LR lock of T1 is compatible with the required IX
intention modes.

Fig. 1. Example of the taDOM3+ protocol

2.2 Node Labeling

XML operations often address nodes somewhere in subtrees of a document and
these often require direct jumps “out of the blue” to a particular inner tree
node. Efficient processing of all kinds of language models [6, 21] implies such
label-guided jumps, because scan-based search should be avoided for direct node
access and navigational node-oriented evaluation (e.g., getElementById() or get-
NextSibling()) as well as for set-oriented evaluation of declarative requests (e.g.,
via indexes).

Because each operation on a context node requires the appropriate isolation
of its path to the root, not only the node itself has to be locked in a sufficient
mode, but also the corresponding intention locks on all ancestor nodes have to be
acquired. Therefore, the lock manager often has to procure the labels for nodes



and their contexts (e.g., ancestor paths) requested. No matter what labeling
scheme is used, document access cannot always be avoided (e.g., getNextSib-
ling()). If label detection or identification, however, mostly need access to the
document (usually stored on disk), a dramatic cost factor may burden concur-
rency control. Therefore, the node labeling scheme used may critically influence
lock management overhead [10].

In the literature, range-based and prefix-based node labeling [4] are consid-
ered the prime competitive methods for implementation in XDBMSs. A com-
parison and evaluation of those schemes in [10] recommends prefix-based node
labeling based on the Dewey Decimal Classification [5]. As a property of Dewey
order encoding, each label represents the path from the document’s root to the
related node and the local order w.r.t. the parent node; in addition, sparse num-
bering facilitates node insertions and deletions. Refining this idea, a number of
similar labeling schemes were proposed differing in some aspects such as overflow
technique for dynamically inserted nodes, attribute node labeling, or encoding
mechanism. Examples of these schemes are ORDPATHs [14], DeweyIDs [10], or
DLNs [2]. Because all of them are adequate and equivalent for our processing
tasks, we prefer to use the substitutional name stable path labeling identifiers
(SPLIDs) for them.

Here, we can only summarize the benefits of the SPLID concept; for details,
see [10, 14]. Existing SPLIDs are immutable, that is, they allow the assignment of
new IDs without the need to reorganize the IDs of nodes present – an important
property for stable lock management. As opposed to competing schemes, SPLIDs
greatly support lock placement in trees, e.g., for intention locking, because they
carry the node labels of all ancestors. Hence, access to the document is not needed
to determine the path from a context node to the document root. Furthermore,
comparison of two SPLIDs allows ordering of the related nodes in document
order and computation of all XPath axes without accessing the document, i.e.,
this concept provides holistic query evaluation support which is important for
lock management, too.

3 Related Work

To the best of our knowledge, we are not aware of contributions in the open lit-
erature dealing with XML locking in the detail and completeness presented here.
So far, most publications just sketch ideas of specific problem aspects and are
less compelling and of limited expressiveness, because they are not implemented
and, hence, cannot provide empirical performance results. As our taDOM pro-
tocols, four lock protocols developed in the Natix context [12] focus on DOM
operations and acquire appropriate locks for document nodes to be visited. In
contrast to our approach, however, they lack support for direct jumps to inner
document nodes as well as effective escalation mechanisms for large documents.
Furthermore, only a few high-level simulation results are reported which indicate
that they are not competitive to the taDOM throughput performance.



DGLOCK [7], proposed by Grabs et al., is a coarse-grained lock protocol for
a subset of XPath that locks the nodes of a structural summary of the document
instead of the document nodes themselves. These “semantic locks” allow to cover
large parts of a document with relatively few locks, but require annotated content
predicates to achieve satisfying concurrency. Hence, even if only simple predicates
are used, a compatibility check of a lock request may require physical access to
all document nodes affected by a lock, respectively by its predicate. Furthermore,
the protocol does not support the important descendant axis.

XDGL [15] works in a similar way, but provides higher concurrency due to
a richer set of lock modes, and introduces logical locks to support also the de-
scendant axis. The general problem of locks with annotated predicates, however,
remains unsolved. SXDGL [16] is snapshot-based enhancement of XDGL that
uses additional lock modes to capture also the semantics of XQuery/XUpdate.
It employs a multi-version mechanism for read-only transactions to deliver a
snapshot-consistent view of the document without requesting any locks.

OptiX and SnaX [17] are two akin approaches, which make also extensive use
of a multi-version architecture. OptiX is the only optimistic concurrency control
approach adapted to the characteristics of XML so far. SnaX is a variant of
OptiX that relaxes serializability and only guarantees snapshot consistency for
readers.

4 Infrastructure

As shown in Sect. 2 the taDOM protocols are applied only on the level of log-
ical operations on prefix-labeled trees. In a real system environment, however,
different data access methods might be used for performance reasons or because
the underlying physical representation of a document can only support a subset
of these operations.

The rationale of our approach is to map all types of data access requests—
at least logically—to one or a series of operations of a DOM-like access model.
Hence, our approach can be used in many different system environments, as long
as they natively support or at least additionally provide a prefix-based node
addressing. Note again, that this is a crucial requirement for XML lock proto-
cols, but anyway also worthwhile for many processing algorithms and indexing
methods. For the mapped operation primitives, we can apply the lock protocol
independently of the actual access model or physical data representation. So, we
can profit from both, the performance of fast, native data access operations as
well as the concurrency benefits gained from the use of the fine-grained taDOM
protocols.

Database management systems typically follow the principle of a layered
architecture to encapsulate the logic for disk and buffer management, physical
and logical data representation, query evaluation and so on. Except from cross-
cutting system services like the transaction management, monitoring or error
handling, it is relatively easy to exchange such a layer as long as it provides the
same functionality to the next higher system layer. In our approach, we use this



property to introduce a new layer in this hierarchy, which realizes the mapping
of data access operations to logical taDOM operations and back to physical
data access operations. Fig. 2 shows the two core parts of our design—a stack
of three thin layers, placed between the physical representation and the higher
engine services, and the lock manager implementation itself.

Fig. 2. Embedding of the lock protocols in a system infrastructure.

4.1 Data Access Layer

The taDOM stack provides the query engine or the client transparently with
a transaction consistent, “single-user view” on the data. It is located on top
of the physical access layer, which provides access primitives for the underlying
storage structures. Hence, the stack replaces the classic, monolithic logical access
layer, responsible for the translation of high-level data access requests to the
corresponding data access primitives.

At the top is the so-called translation manager. It maps all different kinds
of access requests to the one or a series of calls of the node manager, which
provides a set of operations which can be easily covered by the lock modes of
the taDOM protocols. These are the navigation and modification operations as
they are known from DOM, efficient bulk operations for subtrees like scans,
insertions, and deletions, and, of course, direct jumps to nodes via their SPLID.
The latter is certainly the biggest strength of the whole protocol as we will
see later. For our explanations, we consider first the most simple case, where
the translation manager only has to provide node-wise access and manipulation
operations, because they directly correspond to DOM operations.

The node manager is responsible for the acquisition of the appropriate node
and edge locks according to the taDOM protocols. When the required locks for
an operation are granted, it simply passes the request directly to the record

manager, which provides the same set of operations as the node manager.
The record manager translates the operations finally into the actual physical

data access operations of the physical storage layer. Depending on the chosen
storage model, this can be, for example, a simple access to a main memory



representation of the document tree, or a B*-tree access. Independent of the
chosen storage model, however, the physical storage layer only has to preserve
structural consistency, e.g., if multiple threads representing different transactions
access and modify the shared data structures concurrently. The transactional

consistency will always be preserved, because the taDOM protocol applied at the
node manager level already ensures that the operations will create a serializable
schedule.

Depending on the needs of the higher system layers and the capabilities of the
underlying storage structures, it may be desirable or necessary to use efficient
indexes, e.g., to fetch attribute nodes by their value, or to fetch all element
nodes of a certain name. Of course, these are complex operations, which can
not be easily mapped to the navigational base model. From the point of view
of the taDOM model, however, this can be also considered as “random” jumps
to specific document nodes, which, in turn, are supported very well through the
SPLID-labeling. Hence, with a small extension of the physical storage layer, our
approach can also support efficient index accesses. The diverse index structures
only have to lock every node with a node lock, before they return it as a result. In
contrast to the previous case, however, index structures have to take additional
care of phantoms themselves.4

4.2 Lock Manager

Although taDOM is based on the idea of widely used concepts of multi-granularity
locking, hierarchical locking on XML trees is fairly different from the common
way. While multi-granularity locking in relational databases usually requires only
four or less granules of locks, e.g., for single tuples and whole tables, XML trees
have a varying and dynamic depth and also varying and much smaller fanouts
than a table with millions of tuples.

So far, hardly anything was reported in the literature about the implemen-
tation of XML lock managers. Without having a reference solution, we had to
develop such a component from scratch where the generic guidelines given in [9]
were used.

The central part of the lock manager is the lock table. It coordinates all
required data structures and is also responsible for granting lock requests. For
each locked object, a lock header is created, which contains name and current
mode of the locked object together with a pointer to the lock queue where all
lock requests for the object are attached to. Each lock request carries the ID of
the respective transaction, the requested/granted mode. All lock requests of a
transaction are doubly chained to speed-up lock release at transaction end.

Further necessary data structures are transaction entries to store housekeep-
ing information for each transaction, as well as two hash tables hta and hlock

for fast lookups of lock headers and transaction entries. The hash tables, lock

4 Mechanisms for the prevention of phantoms are specific to the index structures, but,
because this is also a problem in relational indexes, similar solutions are usually
applicable.



headers and the transaction entries use a fast latching mechanism to minimize
synchronization points between concurrent threads.

A lock request is generally processed as follows. When a transaction T re-
quests lock mode m for object o, hta is used to find the transaction entry te of
T. If it does not exist, a new one is created. Then hlock is used to find the lock
header h of o. If o is not locked, a new lock header for o is registered in hlock. If
T already holds a lock for o, it tries to replace the currently granted mode with
a mode that covers both the old granted and the requested mode. If it is T ’s first
lock request for o it creates a new request r and appends it to the request queue
of h. If the requested mode is compatible with all requests of other transactions,
the lock is granted. Otherwise, T must wait until either all incompatible locks
of other transactions are released, the request timed out or the transaction is
aborted by the deadlock detector due to a circular wait-for-relationship.

Because we need to synchronize objects of varying types occurring at diverse
system layers (e.g., pinning pages by the buffer manager and locking XML-
related objects such as nodes, edges, and indexes), which exhibit incomparable
lock compatibilities, very short to very long lock durations, we encapsulated
everything in so-called lock services, which provide a convenient interface to the
various system components [1].

To simplify and speed up lock management for our hierarchical lock protocols,
we made our lock implementation “tree-aware”. First, the node lock service
automatically infers from a request, e.g., mode NR for SPLID 1.25.3.7 directly
the ancestor path and the required intention locks on this path. These locks are
acquired from the lock table in a single request. The lock table itself gets the
transaction entry for the requesting transaction and starts granting the requests
along the ancestor path from root to the leaf generally in the similar manner as
sketched above.

When an intention lock on an ancestor node is granted that has been locked
by the requestor before, it checks if the granted mode on the ancestor is strong
enough to cover also the actual leaf request, e.g., when the node with SPLID
1.25 was already locked with an SR lock. If the ancestor lock is strong enough
to satisfy the actual leaf request, we can directly stop the acquisition of further
locks along the path.

5 Protocol Optimization

As it turned out by empirical experiments, lock depth is the most important and
performance-critical parameter of an XML lock protocol. Lock depth n specifies
that individual locks isolating a transaction are only acquired for nodes down
to level n. Operations accessing nodes at deeper levels are isolated by subtree
locks at level n. Note, choosing lock depth 0 corresponds to the case where only
document locks are available. In the average, the higher the lock depth parameter
is chosen, the finer are the lock granules, but the higher is the lock administration
overhead, because the number of locks to be managed increases. On the other
hand, conflicting operations often occur at levels closer to the document root



(at lower levels) such that fine-grained locks (and their increased management)
at levels deeper in the tree do not always pay off. Obviously, taDOM can easily
be adjusted to the lock-depth parameter. A general reduction of the lock depth,
however, would jeopardize the benefits of our tailored lock protocols.

5.1 Dynamic Lock Depth Adjustment

Obviously, the optimal choice of lock depth depends on document properties,
workload characteristics and other runtime parameters like the number of con-
current users etc., and cannot be decided statically. The most effective solution to
reduce lock management overhead at runtime is lock escalation: The fine-grained
resolution of a lock protocol is—preferably in a step-wise manner—reduced by
acquiring coarser lock granules. Applied to our case, we have to dynamically
reduce lock depth and lock subtrees closer to the document root using single
subtree locks instead of separately locking each descendant node visited. We
aim at running transactions initially at a high lock depth to benefit from the
fine-grained resolution of our lock protocols in hot-spot regions, but reserve the
option to dynamically reduce the lock depth in low-traffic regions encountered
to save system resources.

We use a counter for each request object, which is incremented everytime
a node is locked intentionally as the direct parent for a lock request. If this
counter reaches a certain threshold, indicating that—depending on the level,
which we know from the tree-aware lock table—relatively much children of this
node are already locked5, it seems very likely that the transaction will access
further child nodes, and it would be beneficial to escalate the intention lock
request either with an LR lock if a simple NR lock was requested for the child,
or even with a shared or exclusive lock for the whole subtree depending on the
requested mode for the child. To avoid blocking situations, we exploit the context
knowledge from lock table about the current lock mode and the requests of all
transactions for that node again, and check whether concurrent transactions
already hold incompatible locks, before we finally decide about the subtree-local
lock escalation.

The escalation thresholds are computed from the simple formula threshold =
k ∗ 2−level, which takes into account that typically the fanout as well as the
conflict potential decreases on deep levels. The parameter k can be adjusted
according to current runtime properties.

5.2 Use of Update Locks

Update locks are special lock modes used to avoid so-called conversion deadlocks.
These deadlocks arise if two transactions read the same object and then both
attempt to upgrade the lock for modification. In relational systems, update locks
are mainly used for update cursors. They allow for a direct upgrade to exclusive

5 The actual number of locked child nodes may be less if the same child node is locked
several times.



lock mode when the transaction decides to modify the current record, or for a
downgrade to a shared lock when the cursor is moved to the next record without
any changes. Transactions in XDBMS do not follow such easy access patterns.
Instead, they often perform arbitrary navigation steps in the document tree, e.g.,
to check the content child elements, before modifying a previously visited node.

Tests with our XDBMS prototype XTC revealed that many deadlocks result
from the conversion of edge locks and not from the conversion of node locks. In a
typical situation of such deadlocks, for example, two transactions try to append
a new fragment under a node when they have already acquired a shared lock
for its last-child edge while checking the value of the ID attribute of the current
last child. As the insertion of a new last child requires conversion to an exclusive
lock for the current last-child edge, both transactions form a deadlock. Hence,
we have to carefully enrich our access plans with hints when to use update locks
for accessing nodes, subtrees, or edges.

6 Experimental Results

We evaluated the described optimizations in our XDBMS prototype XTC with
a mix of eight transaction types, which access and modify a generated XMark
document at varying levels and in different granules. Three transaction types
are read-only and access the document in various ways. The first one simply
reconstructs the subtree of an item, the second iterates over the person siblings
and item siblings to find the seller of an item, and the third one fetches the mails
in the mailbox of an item. The update transactions examine smaller parts of the
document through navigation, before they change the structure and the content
of the document, e.g., by placing bids on items, by changing user data, or by
inserting new users, items, or mails.

In all cases, we used an additional element index to randomly select a jump-
in point for the transaction. To place a bid, for example, we first perform some
navigation in a randomly selected open auction subtree to check the current
highest bid and to determine which content nodes have to be modified, before
the new bid is actually inserted.

As we wanted to examine only the behaviour of the locking facilities in sit-
uations with a high blocking potential and not the influence of other system
parameters, we chose an initial document size of only 8 MB and used a buffer
size large enough for the document and the additional element index. In our
experiments, we only used the taDOM3+ protocol, because it outperforms all
other protocols of the taDOM family, and focused on lock-depth optimization.

In the first experiment, we evaluated the influence of the escalation heuristics
and the parameter k on the effectiveness and efficiency of the lock protocol. The
benchmark load was produced by 50 client instances, which continuously started
transactions of a randomly selected type. We weighted the transaction types to
achieve a balanced workload that evenly accesses and modifies the document at
lower and deeper levels. For each escalation heuristics, we varied the initial lock
depth from 0 to 8 and measured throughput, response time, abort rate, and the



number of locks required for each configuration in several benchmark runs of one
minute. For the escalation heuristics, we chose the parameter k equal to 2048
(called moderate) and 1536 (eager) respectively 512 (aggressive).

To document the general benefit of an XML lock protocol, we run the bench-
mark also in a “single-user mode”, which allowed scheduled transactions only
exclusive access to the documents.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

SU 0 1 2 3 4 5 6 7 8

(a) Committed transactions per minute

 200

 400

 600

 800

 1000

 1200

SU 0 1 2 3 4 5 6 7 8

no escalation
moderate
eager
aggressive

(b) Avg. response time of committed
transactions in ms

 200

 400

 600

 800

 1000

 1200

 1400

 1600

SU 0 1 2 3 4 5 6 7 8

(c) Aborted transactions per minute

 100

 200

 300

 400

 500

SU 0 1 2 3 4 5 6 7 8

(d) Avg. number of locks per transaction

Fig. 3. Effect of lock escalation on transaction throughput and response times.

The results in Fig. 3(a) reveal that the reduced lock overhead of our dynamic
escalation mechanism has a positive influence on transaction throughput. The
highest transaction rates were already achieved at lock depth 2, which seems
fitted best to our test workload. For all higher lock depths, throughput remains
relativley constant for all heuristics and also remarkably higher than in single
user mode. The comparison of the escalation heuristics proves that less lock
overhead directly leads to higher throughput.

The average response times of successful transactions (Fig. 3(b)) mirror the
results shown in Fig. 3(a) for the lock depth 2 and higher. Shortest response
times correspond to highest transaction throughput.

Fig. 3(c) shows that the lock depths 0 and 1 suffered from extremely high
abort rates, caused by a high amount of conversion deadlocks, which immediately
arise when a write transaction first uses shared subtree locks at root level or level
1, and then tries to convert this lock into an exclusive subtree lock the perform
an update operation. Fig. 3(c) also clearly indicates that the escalation heuristics
do not lead to higher deadlock rates when the maximum lock depth is chosen
appropriately.



Fig. 3(d) demonstrates how effective simple escalation heuristics could reduce
overhead of lock management. The number of required locks grows with higher
lock depths and then saturates at a certain level. As expected, the aggressive
heuristics achieved the best results in this category and saved in the average
30%6 compared to the plain protocol variant without any escalation. Also the
eager heuristics could save a mentionable amount of locks, whereas the benefit
of the moderate heuristics was only marginal.

 1000

 2000

 3000

 4000

 5000

 6000

Default Deep Flat

(a) Committed transactions per minute

 200

 400

 600

 800

 1000

 1200

 1400

Default Deep Flat

single user
no escalation
moderate
optimized
optimized + agg.

(b) Avg. response time in ms

 50

 100

 150

 200

 250

 300

Default Deep Flat

(c) Aborted transactions per minute

 200

 400

 600

 800

Default Deep Flat

no escalation
moderate
optimized
optimized + aggressive

(d) Avg. number of locks per transaction

Fig. 4. Results of workload variations and adjusted escalation strategies.

For our second experiment series, we took the balanced workload of the pre-
vious experiment (denoted default) and changed the weights of the transaction
types to create a workload mix that mainly consists of transaction types that
access and modify the document at deeper levels (deep) and another one that
mainly operates on higher document levels (flat). We ran the benchmark with
maximum lock depth 8, which allows fine-grained locks even deep in the docu-
ment, and again in single-user mode. For these configurations, we also evaluated
variants with moderate escalation heuristics from the previous experiment, a
variant where we modified the transaction types to make careful use of update
locks (optimized) to avoid conversion-induced deadlocks, and a fourth variant
(optimized + aggressive) that combined the use of update locks with the aggres-
sive heuristics, which produced the best results in the previous experiment.

The results in Fig. 4(a) proof again that all variants of taDOM3+ achieve
higher transaction throughput than the solution with exclusive document access.

6 The actual savings potential is in fact even considerably higher, because acquired
locks can be removed as soon as they become obsolete after an escalation.



The optimized version with aggressive escalation nearly achieves a gain of 20%
in throughput as compared to the plain taDOM version. Of course, we observe
similar results for the response times in Fig. 4(b), too.

The abort rates in Fig. 4(c) show the benefit of carfully set update lock
modes during processing. The deadlock rate decreases to nearly zero, which in
turn explains the throughput gain in Fig. 4(a).

Finally, Fig. 4(d) illustrates that our optimizations complement each other.
On the one hand, correct application of update lock modes is helpful if lock
escalations are used, because this increases danger of deadlocks otherwise. On
the other hand, lock escalations help to reduce the overhead of lock management.

Altogether, the experimental results demonstrate well that a fine-grained
locking approach pays off and provides higher throughput and shorter response
times than exclusive document locks. The experiments also confirmed that ta-
DOM3+ in combination with our adaptations is able to provide constantly high
transaction throughput for higher lock depths, and that it can effectively and
efficiently be adjusted to varying workloads to achieve high concurrency without
a waste of system resources.

A closer analysis of the shown results revealed that our protocols would allow
even much higher concurrency in the XML tree for lock depths higher than 2.
Here, however, the data structures of the physical storage layer—which is a
B*-tree in our prototype—became the bottleneck.

7 Conclusions and Outlook

In this paper, we explained the realization of fine-grained concurrency control for
XML. We started with an introduction into the basics of our tailor-made lock
protocols, which are perfectly eligible for a fine-grained transaction isolation
on XML document trees, and emphasized the advantages of prefix-based node
labeling schemes for lock management. Thereafter, we turned on general imple-
mentation aspects, where we showed how the XML protocols can be integrated
in a layered architecture and how even different storage models and indexes
can be incorporated into our concept. We also explained how we adapted the
a widely used lock manager architecture for our needs and presented ways to
optimize the runtime behaviours of the lock protocols.

In our future work, we will focus on the integration of advanced XML indexes,
which make use of structural document summaries, in our isolation concept, and
the interplay between XML concurrency control on the one hand and efficient
query evaluation algorithms for declarative queries based on XQuery on the other
hand.

References

1. Bächle, S., and Härder, T.: Tailor-made Lock Protocols and their DBMS Integra-
tion. In Proc. EDBT’08 Workshop on Software Engineering for Tailor-made Data
Management: 18-23 (2008).



2. Böhme, T., and Rahm, E.: Supporting Efficient Streaming and Insertion of XML
Data in RDBMS. In Proc. 3rd Int. Workshop Data Integration over the Web, Riga,
Latvia, (2004) 70-81.

3. Chen, Q., Lim, A., Ong, K. W., and Tang, J.: Indexing XML documents for XPath
query processing in external memory. Data & Knowledge Engineering 59(3): 681-699
(2006).

4. Christophides, W., Plexousakis, D., Scholl, M., and Tourtounis, S.: On Labeling
Schemes for the Semantic Web. In Proc. 12th Int. WWW Conf., Budapest, 544-555
(2003).

5. Dewey, M.: Dewey Decimal Classification System. http://frank.mtsu.edu/ vves-
per/dewey2.htm.

6. Document Object Model (DOM) Level 2 / Level 3 Core Specific., W3C Recommen-
dation.

7. Grabs, T., Böhm, K., and Schek, H.-J.: XMLTM: Efficient transaction management
for XML documents. In Proc. CIKM Conf., 142-152 (2002).

8. Gray, J: Notes on Database Operating Systems. In Operating Systems: An Advanced
Course, Springer, LNCS 60: 393-481 (1978).

9. Gray, J., and Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann (1993).

10. Härder, T., Haustein, M. P., Mathis, C., and Wagner, M.: Node Labeling Schemes
for Dynamic XML Documents Reconsidered. Data & Knowledge Engineering 60(1):
126-149 (2007).

11. Haustein, M. P., and Härder, T.: Optimizing lock protocols for native XML pro-
cessing. Data & Knowledge Engineering 65(1): 147-173 (2008).

12. Helmer, S., Kanne, C.-C., and Moerkotte, G.: Evaluating Lock-Based Protocols for
Cooperation on XML Documents. SIGMOD Record 33(1): 58–63 (2004).

13. Jagadish, H. V., Al-Khalifa, S., and Chapman, A.: TIMBER: A native XML
database. The VLDB Journal 11(4): 274-291 (2002).

14. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., and Westbury, N.: ORD-
PATHs: Insert-Friendly XML Node Labels. In Proc. SIGMOD Conf.: 903–908 (2004).

15. P. Pleshachkov, P. Chardin, and S. Kusnetzov: XDGL: XPath-based Concurrency
Control Protocol for XML Data. In Proc. 22nd Britisch National Conf. on Databases
(BNCOD), UK Bd. 3567, Springer, pp. 145-154 (2005)

16. P. Pleshachkov, P. Chardin, and S. Kusnetzov: SXDGL: Snapshot Based Concur-
rency Control Protocol for XML Data. In Proc. 5th International XML Database
Symposium, XSym 2007, LNCS 4704, Springer, 122-136 (2007).

17. Sardar Z., and Kemme, B.: Don’t be a Pessimist: Use Snapshot based Concurrency
Control for XML. In Proc. 22nd Int. Conf. on Data Engineering, 130 (2006).

18. Schmidt, A., Waas, F., Kersten, M. L., Carey, M. J., Manolescu, I., and Busse,
R.: et al.: XMark: A Benchmark for XML Data Management. In Proc. VLDB Conf.:
974-985 (2002).

19. Schöning, H.: Tamino – A DBMS designed for XML. In Proc. 17th Int. Conf. on
Data Engineering: 149-154 (2001).

20. Siirtola A., and Valenta, M.: Verifying Parameterized taDOM+ Lock Managers.
In Proc. SOFSEM Conf., Springer, LNCS 4910: 460-472 (2008).

21. XQuery 1.0: An XML Query Language. http://www.w3.org/XML/XQuery
22. XQuery Update Facility. http://www.w3.org/TR/xqupdate
23. Yu, J. X., Luo, D., Meng, X., and Lu, H.: Dynamically Updating XML Data:

Numbering Scheme Revisited. World Wide Web 8(1): 5-26 (2005)


