
©2009 Gesellschaft für Informatik e.V. (GI) This is a preprint of the paper that appeared in Proceedings der
13. GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web, Lecture Notes in Informatics,
Volume P-144, 2. bis 6. März 2009, Münster, Germany, pp. 257–276. ISBN 978-3-88579-238-3

GEM: A Generic Visualization and Editing Facility for
Heterogeneous Metadata

Jürgen Göres, Thomas Jörg, Boris Stumm, Stefan Dessloch
Heterogeneous Information Systems Group, University of Kaiserslautern
{goeres|joerg|stumm|dessloch}@informatik.uni-kl.de

Abstract: Many model management tasks, e.g., schema matching or merging, require
the manual handling of metadata. Given the diversity of metadata, its many differ-
ent representations and modes of manipulation, meta-model- and task-specific editors
usually have to be created from scratch with a considerable investment in time and
effort. To ease the creation of custom-tailored editing facilities, we present GEM, a
generic editor capable of visualizing and editing arbitrary metadata in an integrated
manner. GEM provides a stylesheet language based on graph transformations to cus-
tomize both, the mode of visualization and the available manipulation operations.

1 The importance of metadata

The vision of generic model management spurred by the works of Bernstein et al.
[BHP00, MRB03] aims at reducing the effort to create metadata-intensive applications
by defining generic operators that work on entire models and providing a model manage-
ment system that implements these operators. Metadata-intensive applications can then
be built on these systems like data-intensive applications are built on database manage-
ment systems today. Examples of such applications include the broad area of information
integration or the development of complex software systems.

In our research group, we work on novel approaches to create and maintain information
integration systems. Creating an integration system subsumes numerous tasks, which all
require the handling of metadata artifacts: Integrated schemas are designed from scratch or
created by merging the source schemas. Semantic correspondences between the schemas
have to be identified and be made explicit by schema matching. Based on these corre-
spondences or “matches”, mappings that perform the required data transformations have
to be developed, e.g., by configuring wrappers of a federated DBMS and specifying view
definitions over the wrapped sources, or by creating ETL scripts for replication-based in-
tegration. Existing integration systems require intensive maintenance operations: Changes
to system components require the modification of matches and mappings.

30+ years of research have resulted in numerous approaches to automate some of these
tasks, like automatic schema matching and merging techniques. However, for the foresee-
able future, these approaches can at best be used in a semi-automatic fashion, therefore
requiring human expertise to review, correct, and amend their results. Other tasks, like the
design of schemas and software artifacts, are intrinsically manual. Human integration ex-
perts and software engineers therefore have to be provided with suitable interfaces to ma-
nipulate the many different kinds of metadata required for these tasks: Database schemas

are often designed using conceptual metamodels like one of the many E/R variants, and
are only later mapped to physical schemas, represented by a data definition language of
the respective data model like SQL DDL or XSD. For the design of the structure and the
dynamic aspects of software components, diagrams of the UML family are used. Concep-
tualizations of application domains as ontologies are often represented by RDF or OWL
documents.

Problem statement Metadata can truly be said to be omnipresent in many disciplines
of computer science and manual metadata manipulation is often a necessity. Due to the
complexity of metadata artifacts and the diversity of metadata representations this is by
no means a trivial task. Many types of metadata have a native textual representation, but
graphical representations are generally considered easier to handle by humans. Already
a 1:1 mapping from textual to a graphical representation can often improve the under-
standing and manageability of models. But given the enormous volume and complexity
of real-world metadata, different degrees of abstraction are often an absolute necessity to
make handling of large models by human developers feasible.

The development of editors for such graphical representations means a significant in-
vestment in time and effort, and incurs the well-known risks of any large software project.
This is acceptable when creating a commercial tool for an established and well-defined
metamodel, e.g., a UML CASE tool. These tools are, however, limited to their native
metamodel and only support the editing functionality anticipated by their designers. Ex-
tending the capabilities requires changing the code of the editor – if available as open
source – or is simply not possible for closed-source tools.

This is especially a problem in the context of information integration and metadata or
model management in general, where both the metadata and the operations on this meta-
data are often too diverse to be handled by a single tool. As a consequence, different tools
have to be used in combination. Consequently, not only do developers have to familiarize
themselves with each of these tools, but are also impeded by the lack of interoperability,
caused by the many proprietary formats to represent the metadata artifacts that are created
and manipulated. In addition, often metadata from different metamodels has to be handled
in an integrated fashion, e.g., for schema matching. Simply using different tools in paral-
lel cannot help here. As an alternative, integrated tool suites avoid the metadata exchange
problem (at least for those aspects covered by the suite), but will in general not be able to
provide the optimal solution for each individual task. In addition, tools and tool suites are
often tightly coupled with other products of their respective vendor, limiting the potential
reuse of the artifacts created by such a tool.

While a manual combination of existing tools and tool suites may sometimes offer a
cumbersome yet working way to perform the desired metadata management tasks in pro-
duction environments, researchers often have very specific editing requirements for which
no tools exist: They have to handle proprietary, complex models, where both the meta-
models and the kinds of operations on the models are ever evolving as research progresses.
Unable to commit the resources to create their own editor from scratch and adapt it to the
changes, very often they have to go without a suitable editing tool.

Contribution In this paper, we present GEM, a generic visualization and editing facility
for arbitrary graph-based data. GEM allows to rapidly develop metamodel- and task-
specific editors without the need to write a single line of program code. For this purpose,
GEM provides a declarative graph stylesheet language to easily adapt its visualization and
editing functionality to any such metamodel and editing task.

Graph stylesheets are based on the concept of graph transformations and define a set
of visualization rules that translate the application data provided in a graph representation
to a visualization graph. The nodes and edges of the visualization graph correspond to
an extensible set of user interface elements (so-called widgets). The visualization graph is
directly interpreted and displayed by the editor.

For editing, a graph stylesheet contains a set of edit operations, which define how
manipulations of the graphical elements are to be propagated to the application model.
GEM stores application and visualization graphs in a relational database system; graph
transformations are translated to SQL DML statements. This implementation approach
has shown to have adequate performance even for large models, and outperforms any of
the existing graph transformation systems we evaluated.

The remainder of the paper is structured as follows: Section 2 gives an overview of
the general concepts of the editor. Section 3 introduces the graph-based representation of
arbitrary (meta-)data. Section 4 gives an introduction on graph transformations in gen-
eral and the specific transformation formalism underlying the GEM stylesheets, which are
presented in detail in Section 5. Section 6 demonstrates GEM’s practical usability in a re-
alistic scenario. Section 7 highlights interesting aspects of the prototype’s implementation
and gives performance measurements. Section 8 gives an overview of related work, and
Section 9 closes with a summary and an outlook on future work and usage scenarios.

2 Overview

In this section, we give an introduction into GEM. First, we describe the editor from
a user perspective, to show its applicability in real world scenarios. Then, we give an
overview from a stylesheet developer perspective, illustrating the steps needed to adapt
the editor to a certain metamodel. Finally, we give a high-level architectural introduction
into the editor.

The primary goal in the development of GEM was to provide a customizable editor
for arbitrary metadata. However, the editor is not limited to the role of metadata editing:
it works on graphs representing any kind of data. To emphasize our focus on metadata
editing and to use a terminology that is in line with our application scenarios, we will refer
to the data being displayed and edited as an application model, or application graph. The
prototype of GEM will be made publicly available on the GEM project site1. Currently
supported DBMSs are Apache Derby, H2, IBM DB2, and PostgreSQL.

1http://wwwlgis.informatik.uni-kl.de/cms/index.php?id=GEM

2.1 GEM from a user perspective

The basic process of editing an application model consists of several steps. First, the
user imports an application model file into the editor database, comparable with the “open”
action in conventional editors. Several different models can be imported and edited simul-
taneously. Before the model can be edited, the user has to apply a graph stylesheet to
it. GEM will then visualize the application model according to the rules defined in the
stylesheet. The default stylesheet gives an 1:1 view of the graph. Custom stylesheets can
provide an abstracted view of the model, depending on the actual needs. For example, an
SQL schema could be represented in an UML-like notation, as an E/R diagram, or even
as a set of plain, pretty-printed DDL statements. The design of the GEM prototype makes
it easy to enable support for multiple views of the same application model. For example,
an abstract view can be combined with a detail view (maybe only of the selected part of
the graph), or different spanning trees for hierarchic displays of the same model may be
produced. This can be achieved by using different stylesheets on the same model.

Editing functionality can be separated into two categories: GEM directly provides a
basic layouting functionality pertaining solely to the presentation of the model, like man-
ually or automatically layouting graph elements. These operations will not change the
application model. All such layout data is preserved between edit sessions. To actually
edit the application model, a stylesheet provides edit operations. An edit operation is an
arbitrarily complex, model-specific operation. A stylesheet for SQL schemas could pro-
vide operations like “create new table”, “add column to table”, or “rename table”. For
model management, there also might be more complex operations like “copy table” or
“denormalize tables”. GEM automatically provides a menu with all possible edit opera-
tions defined in the stylesheet. To apply an operation, the user might have to select a part
of the graph (e.g., the table to which he wants to add a column) and provide input pa-
rameters (like column name and type). Then the operation is executed, directly changing
the application model. After that, the visualization is updated to reflect the changes in the
application model, preserving as much of the manual layouting as possible. Manipulations
done through one editor window will directly update the views in the other windows. At
any point, the user can export the application model for further processing by other tools.

2.2 Stylesheets in GEM

One of the distinguishing characteristics of GEM is the use of graph stylesheets to
customize and adapt the editor to a specific data model. This allows us to visualize and
edit not only SQL schemas or XSD files, but arbitrary metadata, possibly in a specialized
format. Thus, the customization process must be powerful enough to cope with a great
diversity of requirements, but also simple enough to allow for a fast adaptation of GEM
to a specific data model even by non-experts. We believe that we have achieved this goal
and in this section we will illustrate this by looking at GEM from the perspective of a
stylesheet developer.

The first step in developing a custom stylesheet is creating the visualization part. The
developer needs to define rules to specify how elements in the application model should be
displayed in the edit pane. This is similar to the development of CSS or XSLT stylesheets.

To represent stylesheets, the current GEM prototype uses an XML format, but future ver-
sions will support a more concise textual and later a more vivid graphical representation.
With a stylesheet, a developer can choose to present an SQL model as plain text DDL, or
choose to hide details and only show the table names and how they are related through
foreign key relations. The details of defining these rules are explained in Section 4.

The second part of a stylesheet are the edit operations. Instead of having users resort
to tedious, fine-grained operations on the atomic elements of the graph structure like with
other graph editors, the stylesheet developer defines high-level edit operations for all tasks
that should later be performed by users of the stylesheet. This not only greatly improves the
usability of the resulting editing functionality, as very complex modifications can now be
performed with a single editing step. Properly designed edit operations can also guarantee
the consistency of the application model, as users can only perform semantically valid
edits. Moreover, edit rules allow us to resolve the view-update problem which arises when
editing a model through an abstracted visualization.

For most requirements, using the built-in widgets and functions is sufficient for defin-
ing visualization rules and edit operations to adapt GEM to custom needs. Sometimes,
however, the built-in functionality might not be enough, or might require very complex
and non-intuitive stylesheets. Therefore, GEM allows customization not only by defin-
ing declarative stylesheets, but also by providing an extension mechanism for user-defined
functions and widgets.

User-defined functions in GEM are written as static Java methods, allowing to imple-
ment virtually any domain-specific functionality. In a graph stylesheet, the developer can
use these functions in visualization rules and edit operations. GEM provides several ba-
sic widgets to visualize application models. Besides simple boxes, ellipses, or arrows,
there are grouping widgets which allow sophisticated layouts. If this is not sufficient, the
stylesheet developer can define his own widgets by implementing a GEM widget interface.

2.3 GEM architecture

Figure 1 gives a high-level overview of the important concepts of our approach and
their interactions. In the center, the complete model graph consisting of the application
graph and the visualization graph is depicted. The two subgraphs are connected via Rep-
resentedBy edges, each connecting an element in the application graph with an element
in the visualization graph that represents this element. Application and visualization ele-
ments can be in n:m relationships, as an application graph element can be represented by
more than one visualization node (and thus appear more than once in the edit pane), and a
single visualization node can represent more than one metadata element.

On the right hand side of the figure, the editor pane and the widgets are depicted. They
are responsible for the display of the visualization graph and observe it for changes. Visu-
alization rules are used to initially create and later update the visualization graph and the
RepresentedBy edges. They can refer to the application graph as well as to the visualiza-
tion graph, but they can modify only the visualization graph. Edit operations can refer to
both subgraphs, but modify only the application graph and never the visualization graph.
To keep the visualization synchronized with the application model, each application of a

Application
Graph Graph

Visualization observe

displayed by

Editor Pane
Widgets

Visualization Rules

Overall graph
refer torefer to

modify

Edit Operationsmodify refer to

refer to

Objects
Rule Application

create

invalidate

represented by
edges

observe

Figure 1: Overview of the stylesheet-based graph visualization and editing approach.

visualization rule is recorded in a rule application object (RAO). Execution of edit opera-
tions can invalidate RAOs, if after the edit operation the premise for the rule application
does no longer hold. Invalidated RAOs are then undone and visualization rules are selec-
tively re-applied, so that after a change of the application model this change is directly
reflected in the visualization model. We will discuss this in greater depth in Section 7.2.

3 Metadata representation

In this section, we will first introduce graphs as the common representation for all meta-
data to be edited with GEM. Graphs are probably the most general data structure, allowing
a lossless representation of virtually any metadata artifact. In general, a graph consists of a
set of nodes N that are connected by a set of edges E. Many variations of graphs exist that
differ in aspects like their support for labels and attributes on nodes and edges, whether
edges are directed or can connect more than two nodes (hypergraphs) etc. Likewise, the
formal definitions differ, e.g., whether edges are seen as independent objects or are only
given as a relation E ⊆ N×N. We have chosen to use directed, attributed, labeled multi-
graphs, since they strike a median point in between the verbose representations that result
from using a very basic graph formalism (e.g., labeled graphs) and the complexity of some
of the more elaborate formalisms. Our Definition 1 is based on [KR90]:

Definition 1 (Directed, attributed multigraph) A directed, attributed multigraph G is a
tuple (N,E,src, tgt,Γ,Σ,attN ,attE). N and E represent the set of nodes and edges, resp. Γ
is the set of attribute identifiers. Σ is the set of attribute values. The mappings src : E →
N and tgt : E →N associate a start and end node with each edge. The mappings attN : N×
(Γ∪ τ)→ Σ ∪⊥ and attE : E× (Γ∪ τ)→ Σ ∪⊥ return the (possibly empty) value of the
given attribute identifier for the given node or edge, respectively. τ is the identifier of a
special attribute representing the type of nodes and edges.

The advantages of this basic graph metamodel is its generality and minimality. Nodes
can represent arbitrary application elements, while edges can be used to represent the re-
lationships between them. Node attributes represent the properties of objects, while edge
attributes can be used to model more refined kinds of relationships, e.g., a position at-
tribute can specify an ordered relationship. Metadata to be edited with GEM first has to be
transformed from its native representation (e.g., SQL DDL statements) to a multigraph ac-
cording to Definition 1 (see Figure 2). The editor does not place any further restrictions on

CREATE SCHEMA HumanResources

CREATE TABLE Department (

ID integer PRIMARY KEY,

name VARCHAR (40),

location VARCHAR (40))

CREATE TABLE Employee (

ID integer PRIMARY KEY,

firstname VARCHAR (50),

lastname VARCHAR (50),

deptID integer

REFERENCES Department);

a) SQL metadata in native representation b) SQL metadata in graph representation

Import

HumanRes:Schema
hasTable hasTable

hasColumn

int:r.Integer

hasColumn

ePK:r.PrimaryKeydPK:r.PrimaryKey eFK:r.ForeignKey

hasType hasType hasType

dept:r.Table
name="Department"

emp:r.Table
name="Employee"

dID:r.Column
name="ID"

dName:r.Column
name="name"

dLoc:r.Column
name="location"

v40:r.Varchar
size=40

eID:r.Column
name="ID"

eFn:r.Column
name="firstname"

eLn:r.Column
name="lastname"

eDpt:r.Column
name="deptID"

v50:r.Varchar
size=50

hasType hasType

pkColumn pkColumn

pkpk

humanRes:r.Schema
name="HumanResources"

referencedUnique

fkColumn

fk

Figure 2: Representing metadata as graphs.

this representation. The graph representation can therefore be customized to the applica-
tions needs, e.g., to ease the definition of stylesheets or to provide round-trip capabilities.
GEM’s primary vehicle for graph import is the Graph Exchange Language [WKR01], an
XML format for the exchange of graphs and type graphs. The research projects PALADIN
[Gö05, GD07] and Caro [Stu06, SD07] provide converters from their internal representa-
tion of models to GXL, enabling the import of, e.g., SQL DDL and XSD. Also, direct
extraction of metadata from the information schema of an RDBMS is supported. The ef-
fort for converting custom models to and from GXL is manageable, since mapping of any
kind of object-oriented representation to and from our graph model is straightforward.

4 Graph transformations

In this section we will describe the basics of our graph transformation formalism that is
the foundation for our graph stylesheet language. While graph transformations have been
a research topic for approximately 40 years, they are still not widely employed outside the
graph community. Only recently has the concept attracted rising interest in the context
of model-driven architecture (MDA), where it is used for model-to-model transformations
(e.g. [CH03]). Two main reasons for this lack of acceptance can be named: First and
foremost, very few graph transformation systems (GTSs, also graph rewrite systems) have
reached a degree of maturity beyond that of research prototypes. A second problem for
the limited acceptance of graph transformation systems as a generic tool for software and
information systems engineering is the diversity of existing approaches, both regarding the
formal semantics of transformation rules and systems, as well as in the different languages
used to describe them. We have no intention to discuss the benefits and drawbacks of
each of the approaches to motivate our formalism, but instead hope that we can let its
clarity and naturalness speak for itself. A common criticism on graph representations and
operations is the issue of computational complexity: many graph problems, in particular
the subgraph isomorphism problem, which is of high relevance for graph transformations,
are known to be NP-complete. However, since most practical scenarios use labeled and
regular graphs, the average case complexity is well within reasonable bounds, as we will
see in our evaluation in Section 7.3.

n2:nextTo

p:Pacman

::=o1:on

n1:nextTo

LHS

f1:Field f2:Field

m:Marble

o2:on

NAC

f2:Field

g:Ghost

o3:on

p:Pacman

o4:on

f1:Field f2:Field

RHS

p.score := p.score + 1

[bindingVar]:<typeTest> node

n2:nextTo

n1:nextTo

[bindingVar]:<typeTest> edge

Figure 3: A simple production rule.

4.1 Production rules

A graph transformation system takes as inputs a host graph representing the input data
to be transformed, and a set of graph transformations rules. It then outputs a new graph or
changes the input graph. To specify an individual graph transformation, we use a syntax
based on production rules (see [Hec06] for an overview). They have a left- and a right-
hand-side (LHS, RHS). As an example, Figure 3 shows a simple production rule that
models a part of a game of Pacman, where the host graph represents the current game state
(labyrinth fields and their connections, the position of Pacman, ghosts, and marbles). The
LHS specifies a graph pattern consisting of pattern nodes and edges (pattern elements),
which has to be found in the host graph for the rule to be applicable. Pattern nodes and
edges can specify a type test, given as the part of an element’s label behind the colon. In
our example rule, the LHS specifies a situation where Pacman p is on a Field f1 that is
next to a Field f2 containing a Marble m. A subgraph of the host graph that matches the
LHS is called an occurrence. Occurrences can be seen as a mapping from the elements
of the graph pattern to those of the host graph. For the scope of this paper, we assume
occurrences to be injective, i.e., an occurrence will never map two pattern elements to the
same host graph element.

The RHS describes how an occurrence is modified by the rule. To indicate correspond-
ing elements on LHS and RHS, binding variables are used. They are essentially an iden-
tifier for pattern elements and form the first part of a rule element’s label in front of the
colon. Elements on the LHS that also occur on the RHS indicate that the element is pre-
served, for example the Field nodes f1 and f2, or the Pacman node p. An element on the
LHS that does not occur on the RHS indicates that the element will be deleted (e.g., the
Marble node m or the on edges o1 and o2), while an element occurring only on the RHS
signals the creation of a new element (e.g., the on edge o4). The part of a RHS element’s
label behind the colon is a type assignment, to indicate the type of new nodes and edges,
or to change the type of preserved elements. In addition to changing node types, a RHS
can modify attributes of nodes and edges by referring to their binding variables (e.g., in-
crementing Pacman’s score attribute). So our example rule will move Pacman from his
current field to a neighbouring field containing a marble. In the process, the marble will
be consumed and Pacman scores a point.

Additional application conditions (ACs) can be specified to limit the applicability of the
rule. These can refer to attributes of LHS elements (pure attribute conditions) or specify
graph patterns that must or must not occur for the rule to be applicable (structural ap-

plication conditions): Positive structural application conditions (PACs) specify additional
structures that have to be fulfilled, while negative structural application conditions (NACs)
specify structures that must not occur. Pattern elements in ACs can also be connected to
the LHS by binding variables. In our Pacman example, the rule is only applicable when
there is no Ghost g on the Field f2 containing the Marble m.

For a more compact presentation of rules, we will use an integrated representation in
the remainder of this paper. Figure 4 shows the rule of Figure 3 in integrated represen-
tation: deleted nodes and edges are indicated by dashed lines, while created elements are
shown with bold lines. Elements of application conditions are grouped and marked with
PAC or NAC, respectively. While the expressiveness of this representation has some limi-
tations, it is sufficient for the compact representation of the rules used in this paper.

n2:nextTo

p:Pacman

o1:on

n1:nextTo

f2:Field

m:Marble

o2:on

g:Ghost

o3:on

p.score := p.score + 1

NAC
o4:on

f1:Field

Figure 4: The production rule of Figure 3 in integrated representation.

4.2 Operational semantics

The operational semantics of graph transformation systems varies for the different ap-
proaches proposed in the literature. The original mode of application of a set of production
rules is similar to that known from formal languages: As long as production rules are ap-
plicable, the system randomly chooses both a rule and an occurrence, and applies the
rule. This non-deterministic rule application often makes it difficult for the author of a
graph grammar to ensure that the rules do exactly what is intended. Very often, rules have
to be applied in a certain sequence or to specific regions of a host graph. A number of
approaches have been introduced to control the application of rules more precisely (see
[BFG95] for an overview). It should be noted that none of them increases the expressive
power of a GTS as a whole, but can considerably reduce the number and complexity of
individual rules.

Rule layering is a concept that was first introduced by AGG [Tae99], a graph transfor-
mation system implemented in Java. Layers define a partial order among rules: A layer
contains a number of rules which are applied non-deterministically as described above,
until no more rules of the layer are applicable. Rule application then continues with the
rules from the next layer. Within a layer, the formal properties of non-deterministic graph
grammars hold, while the ordering gives a basic degree of control over the application
of rules. In GEM, the visualization of application graphs is performed using a restricted
layering approach, where each layer contains exactly one rule (see Section 5.1).

While layering is sufficient for simple sequential application of rules, complex opera-
tions cannot be expressed as easily. We wanted to be able to specify complex operations in
a natural way, so we chose the three basic control structures introduced by Göttler [Gö88]
due to their limited complexity and minimality for the definition of edit operations: Se-

quential application (SAPP) applies the contained rules (or nested control structures) once
in the given sequence. Case application (CAPP) will apply the first applicable rule of a
given ordered list of rules. While applicable (WAPP) will apply a contained rule (or nested
control structure) repeatedly, until it is no longer applicable .

5 Graph stylesheets

With the basics on graph transformations introduced in the previous section, we now
present GEM’s graph stylesheet language. As described earlier, a graph stylesheet con-
sists of visualization rules and edit operations: Visualization rules describe what kind of
visualization model elements should be produced for which structures (subgraphs) of the
application model. All visualization rules together create the complete visualization graph
for the application model. The semantics of stylesheet application is non-destructive, i.e.,
application model subgraphs are not replaced by their visualization model counterparts,
but instead application and visualization model coexist in one common graph. All vi-
sualization model elements are connected by special RepresentedBy edges to all those
(possibly many) application model elements they represent. In conjunction with the cur-
rently selected widgets, an edit rule can use the RepresentedBy edges to determine the
affected application model elements and apply the appropriate changes.

5.1 Visualization rules

As previously mentioned, visualization rules follow a restricted layering approach,
where each rule is applied until no further occurrences exist, after which processing con-
tinues with the next rule. Since the visualization of large graphs requires a large number
of rule applications, some restrictions have been defined to allow an optimized process-
ing, and also help to make the visualization rules “safe”: First, visualization rules must
not modify, delete or create any elements outside the visualization model. Further, vi-
sualization rules may only create new elements in the visualization model and may not
overwrite attribute values. These restrictions are needed to allow for the selective updating
described in Section 7.2. Visualization rules may only be applied once per occurrence.
This is enforced by an implicitly created (negative) application condition that corresponds
to the newly created elements on the RHS. Moreover, negative application conditions must
not refer to elements that could have been created by a previous application of the same
rule. That way, we assure that the sequence in which a visualization rule is applied to its
occurrences does not change the outcome of the stylesheet. It also allows optimizing the
search for occurrences, as we do not have to recompute them after each rule application.

To illustrate the basic use of visualization rules, we defined a default stylesheet shown
in Figure 5, which visualizes any application graph in a 1:1 fashion. The XML representa-
tion of the stylesheet was omitted due to space constraints. The stylesheet consists of two
rules: displayNodes visualizes the application model nodes: Each one is represented by a
Box widget, carrying the node’s type attribute as label. To connect application and visual-
ization model, we add a RepresentedBy edge between the application model node and the

v1:vis.Boxn1:*
e1:RepresentedBy

n1.type != vis.box

v1.label := n1.type

displayNodes displayEdges

v1:vis.Boxn1:*
e1:RepresentedBy

v2:vis.Boxn2:*
e2:RepresentedBy

e0:* e3:Arrow

e3.label := e0.type

Figure 5: Visualization rules for a generic labeled digraph, integrated graphical syntax.

addEdge(String edgetype):

v1:vis.Boxn1:*

v2:vis.Boxn2:*
e2:RepresentedBy

newEdge:@edgetype

v1.selected == 0 AND v2.selected == 1

e1:RepresentedBy

Figure 6: A simple edit operation (integrated representation)

visualization model Box node. Due to the layered application of visualization rules, the
displayNodes rule will be applied on all graph nodes. To make sure that we do not create
boxes for other boxes, we add an attribute condition indicating that the node n1 must not be
of type vis.Box. The second visualization rule displayEdges looks for two nodes which are
connected by an arbitrary edge. For each such pair of nodes, a new Arrow edge is created
between their Box nodes, taking the type of the connecting edge as label. Note that we can
omit tests to guarantee that n1 and n2 are actually application model elements, since the
first rule already makes sure that only application model nodes will have RepresentedBy
edges to box nodes. This simple stylesheet will already reproduce the graph’s structure
and typing. In Section 6 we will demonstrate how a more complex set of visualization
rules can be used for a customized representation of proprietary metadata.

5.2 Edit operations

For metadata manipulation, a stylesheet defines a set of edit operations. An edit oper-
ation consists of a number of production rules (edit rules) and a control flow specification
using the control flow constructs (WAPP, CAPP, SAPP) from Section 4.2. A user modify-
ing the graph through an edit operation in general wants the operation to be applied on a
specific set of elements (e.g., a specific table or column) at a time. To indicate the place of
rule application, the user selects the appropriate widgets in the editor pane. Their selection
state is propagated to the underlying visualization graph, where it can be referred to by
edit rules. Besides selecting the widgets of affected elements, often user input is needed
for the rule, e.g., the name of a new table or element. Edit operations can therefore specify
user parameters. When the edit operation is activated, the user can enter the appropriate
information.

Figure 6 shows a very basic edit operation with only one edit rule that adds an edge
between two nodes selected by the user. The rule specifies a user parameter edgetype,
which is used in the created part to set the type attribute of the new edge. Note the reference

to the selected state of the visualization model nodes: A selected value < 0 indicates that
the element is not selected, while values ≥ 0 indicate the sequence of selection. So the
rule adds the edge pointing from the node selected first to the node selected second. Also
note that the edit rule does not add an Arrow edge between the two Box nodes representing
the application model nodes, as updating the visualization model is left to the visualization
rules. The method for updating will be explained in Section 7.2.

6 Example scenario

The development of GEM was initiated by the practical needs in the projects PALADIN
[Gö05] and Caro [Stu06] of our group. To demonstrate GEM’s usefulness as a generic
metadata editor, we will present a stylesheet that displays arbitrary models represented
in the internal representation of the PALADIN metamodel architecture and allows the
editing of semantic correspondences between these elements. We will use a simplified
version of the stylesheet to illustrate GEM’s customizability beyond the basic examples
shown so far. A first step to integrate GEM with PALADIN was to provide a serialization
of models given in PALADIN’s internal object-oriented representation to GXL graphs.
Objects and values of atomic fields map naturally to GXL nodes and their attributes, while
values of complex fields themselves map to nodes. An object’s class is stored as the type
label. References between objects and complex fields are mapped to edges. Since many
multi-valued references are ordered, we use a position attribute on edges to preserve the
ordering. This very basic mapping is already able to provide full round-trip capability, i.e.,
PALADIN models can be losslessly reconstructed from the GXL representation.

PALADIN uses a Core metamodel to capture common aspects of different actual meta-
models. Elements of concrete metamodels inherit from the Core elements. This allowed
us to start with a single set of rules that uniformly displays arbitrary schemas (e.g., SQL or
XML Schema models), since it is sufficient to refer to the common base classes. For ex-
ample, SQL tables and columns as well as XML elements and attributes are all subclasses
of the Core class Feature. In addition, concrete relationships like hasColumn (between
table and column) or subelement (between an element and its subelements and attributes)
are derived from the Core relationship content. So only two visualization rules were suf-
ficient to display any PALADIN model. A more elaborate version of the stylesheet can
easily provide metamodel-specific representations of schemas. In the current GEM proto-
type, node type inheritance is implemented via a user-defined function subclassOf which
takes the full-qualified names of two node types A and B as input, and returns true if A
is the same class or a subclass of B, or false otherwise. We use this function in the rule’s
application conditions.

Figure 7 shows the displayFeatures rule to create properly labeled widgets for PAL-
ADIN Features. Unlike in the default stylesheets’ displayNodes rule, a Group node instead
of a plain Box is created for each Feature node. A Group can contain other widgets and
display them in a hierarchical fashion. By using two application conditions we make sure
that the node is a subclass of Feature and no subclass of Match (matches are displayed by
a separate rule). The Group’s label is created by concatenating the Feature’s actual type
(e.g., Column, Table, etc.) and the name attribute common to all PALADIN classes.

displayFeatures

v1:vis.Group

subclassOf(f1.type,"Core.Feature") AND

NOT (subclassOf(f1.type,"Match.Match"))

v1.label:=concat(n1.type,":",n1.name)

e1:RepresentedBy

displayContentEdges

v1:vis.Groupf1:*
e1:RepresentedBy

v2:vis.Group
e2:RepresentedBy

e3:content a:grouped

displayMatches

v1:vis.Groupf1:*
e1:RepresentedBy

v2:vis.Group
e2:RepresentedBy

f:from a1:Arrow

v3:vis.Boxm:Match
e1:RepresentedBy

t:to a2:Arrow

v3.label := toString(m.confidence)

v3.icon := "icons/Match.gif"

f2:*

f1:*

f2:*

Figure 7: The visualization rules for PALADIN models and semantic correspondences.

addMatch(float confidence)

v1:vis.Group
e1:RepresentedBy

v2:vis. Group
e2:RepresentedBy

subclassOf(n1.type,"Core.Feature") AND subclassOf(n2.type,"Core.Feature")

AND v1.selected == 0 AND v2.selected == 1

m.confidence := @confidence

t:to

f:from

n1:*

n2:*

m:match.Match

Figure 8: An edit rule to add a match between two PALADIN model elements

The displayContentEdges rule is based on the displayEdges rule and searches for pairs
of nodes that are already represented by a Group widget and connected by a content edge.
We can directly refer to the content edge type in the stylesheet, since we decided for our
model serialization to only create edges for base references, i.e., there are no distinct edges
for references that are derived from content, like hasColumn. For each content edge, a new
grouped edge is created that indicates membership of its target node in the source group.

The third rule displayMatches creates the representation for Match nodes and their to
and from edges that indicate which two features the match connects. It searches for pairs
of nodes that are already represented by a Group each and are connected by a Match node.
The Match node itself is represented by a newly created Box, which is distinguished from
other boxes representing schema elements by adding an icon. The Match node’s con-
fidence attribute is set as a label. The to and from edges are represented by unlabeled
Arrows. Note how both Arrows now point into the direction of the to edge, so that the
match’s direction can be determined visually without edge labels.

To create new matches, an addMatch (Figure 8) edit rule has been defined. Like the cre-
ateEdge rule, it refers to the selection state of the visualization elements and adds a Match
node whose from edge points to the node selected first, and whose to edge points to the
node selected second. The match’s confidence is queried from the user via a user param-
eter. Figure 9 shows a schema matching session with GEM using only this simply style-
sheet. The result of a somewhat more elaborate stylesheet for editing entity-relationship
models is shown in Figure 10.

Figure 9: A schema matching session. Figure 10: An ER-modeling session.

7 Implementation and performance

In this section, we discuss the most interesting aspects of our GEM prototype. Also,
we give results on GEM performance for different sized application models. The GEM
prototype was developed as part of a diploma theses [Jö07] in our group. For the display of
graphs we use the JGraph2 library. It also provides the basic user interaction functionality,
like automatic layout, moving and resizing nodes, rerouting edges etc.

7.1 Using a relational database for graph transformations

As previously mentioned, the graph transformation engine used by GEM has been built
in-house taking advantage of the features of relational database systems. The main ratio-
nale behind a custom implementation was the insufficient performance or maturity of the
few existing publicly available graph transformation engines.

For each graph loaded into GEM, a new schema with four relations is created, to store
nodes, edges, node attributes and edge attributes. The schema definition is straightfor-
ward, with the exception of the Edge table, which is denormalized. Besides the edge
information, it also contains the complete information for nodes (their id, type and current
selection status) to improve query performance by reducing the number of joins needed.
A separate Node table is still needed to represent unconnected nodes.

Query generation For each production rule of a stylesheet, an SQL query based on the
rule’s LHS (which corresponds to the union of the elements in the preserved and deleted
sets when shown in our integrated representation) and application conditions is generated,
as well as a number of DELETE, INSERT, and UPDATE statements for the RHS. To
illustrate query generation, the query generated for the displayEdges rule of the default
stylesheet from Figure 5 is shown in Figure 11.

For each edge in the LHS, a reference to the Edge relation is added to the FROM clause

2http://www.jgraph.com

1 SELECT e0.id AS e0, e1.id AS e1, e2.id AS e2, e1.dest AS v1, e0.src AS n1, e2.src AS n2, e2.dest AS v2
2 FROM EDGE e0, EDGE e1, EDGE e2
3 WHERE e1.edgetype = ’vis:RepresentedBy’ AND e1.desttype = ’vis:Box’ AND
4 e2.edgetype = ’vis:RepresentedBy’ AND e2.desttype = ’vis:Box’ AND
5 e0.src = e1.src AND e2.src = e0.dest AND
6 NOT e1.dest IN (e0.src, e2.src, e2.dest) AND NOT e0.src IN (e2.src, e2.dest) AND
7 NOT e2.src IN (e2.dest) AND NOT e0.id IN (e1.id, e2.id) AND NOT e1.id IN (e2.id) AND
8 NOT EXISTS (SELECT * FROM EDGE e3
9 WHERE e3.edgetype = ’vis:Arrow’ AND e3.src = e1.dest AND e3.dest = e2.dest AND NOT e3.id IN (e0.id))

Figure 11: The query generated for the LHS of the displayEdges rule of Figure 5

(line 2), and the edge’s ID is added to the SELECT clause (line 1). If the edge specifies
a type test, an appropriate predicate is added to the WHERE clause (lines 3, 4). For each
node in the LHS, the query generator determines its in- and outbound edges. If at least
one such edge exists, the node’s ID is already available in this edge’s reference to the edge
relation. Then simply a reference to the corresponding src or dest column is added to
the SELECT clause. If the pattern node has several connecting edges in the LHS (i.e., its
ID occurs in several edge relation references), we have to make sure that all edges refer to
the same host graph node. So the IDs of source and target nodes of edges connecting to the
same node are tested for equality in the WHERE clause (line 5). Only if the pattern node
is isolated (i.e., not connected via edges to other elements of the LHS), a reference to the
Node relation is added to the FROM clause, as well as a type test predicate to the WHERE
and the node ID to the SELECT clause (not in this example). As discussed in Section 4.1,
we are by default looking for subgraphs of the host graph that are isomorphic to the rule’s
pattern graph, i.e., we have to make sure that no single host graph element matches several
rule elements. So for each node and edge, we conjunctively add an isomorphic predicate
to the WHERE clause that ascertains that its ID is not the same as the IDs of one of the
other pattern elements (lines 6–7 and 9). For structural application conditions, conditional
subqueries are generated in the WHERE clause. For example, lines 8–9 show the implicit
negative application condition generated based on the rule’s created part. The algorithm
to create the subquery is the same as the one for the main query, just with a simplified
SELECT clause, and with outer references for those elements that have been identified
with LHS elements (line 9). For each node and edge attribute occurring in an application
condition, a join with the Node or Edge relation reference and the NodeAttribute
or EdgeAttribute relation is added to the FROM clause (not in this example). An join
condition and the application condition itself are conjunctively added to the WHERE clause.

Processing pattern query results Each row in the result set of a pattern query repre-
sents a single occurrence in the host graph. One transformation step selects one of these
occurrences and modifies the host graph appropriately. If the rule is to be applied repeat-
edly, as is the case for visualization rules, in general it would not be possible to continue
with the results obtained from the first issuing of the query, since the modification could
have invalidated previously valid occurrences or created new possible occurrences: (1)
nodes or edges of the occurrence or an application condition could have been deleted, or
(2) new elements could be created so that a negative application condition would now fail.
Also, (3) attribute values could have been modified causing an attribute condition to fail.

However, with the restrictions defined for visualization rules (Section 5.1) none of these
cases can occur: Visualization rules must not delete any elements, eliminating case (1).
Their negative application conditions must not refer to elements possibly created by a pre-
vious application of the same rule, so case (2) is avoided. In addition since attributes once
initialized must not be modified, case (3) cannot occur as well. So for each visualization
rule, its respective query has to be issued only once, instead of reissuing it after applying
the RHS on a single occurrence. Since the actual number of occurrences for a rule depends
on the rule and on the structure of the application graph, we can give no general estimate
on the improvement due to this optimization. However, for most real-world stylesheets
and application graphs, the number of occurrences scales with the size of the graph, which
is several orders of magnitude larger than the number of rules or queries. For each result
tuple, the INSERT, UPDATE, and DELETE statements prepared for the rule’s RHS are
executed, parameterized with the node and edge IDs taken from the result tuple. To set the
type and selected state of the source and target nodes of a new edge, subqueries are used.
Once all tuples of a visualization rule are processed, the query for the next visualization
rule is issued. When all rules are processed, the editor can interpret the visualization graph
and display it to the user.

The statement generation is the same for edit rules. The control flow statements SAPP,
CAPP, and WAPP are interpreted by the editor, who will, depending on the outcome of
rule applications, choose the query for the next rule and move forward in the control flow.
Since the restrictions imposed on visualization rules do not apply for edit rules, the op-
timization described for visualization rule processing can not be applied to a single edit
rule surrounded by a WAPP statement. Instead, the query has to be issued again after one
occurrence is processed. Since edit rules are usually only applied selectively to small parts
of the graph, this does not imply a noticable performance penalty.

7.2 Selective updating of the visualization

As described in Section 2.3, edit rules are not supposed to modify the visualization
graph, but only the application graph. Therefore, once an edit operation applied its changes
on the application model, the visualization rules have to be applied again, so that the repre-
sentation reflects the changes. A naive implementation would simply discard the existing
visualization graph and re-apply the stylesheet on the entire application graph. This is un-
desirable for two reasons: First, the application of a stylesheet is a costly operation which
can take a noticeable amount of time. Second, simply discarding the visualization graph
would also loose all those kinds of information that were not derived from the application
model but result from non-application relevant edit operations (Section 2.1), like moving
or resizing of widgets or adding bends to edges etc. Given the effort needed for a manual
layout, this information has to be maintained as completely as possible even in the pres-
ence of edits. We therefore employ a selective updating of the visualization model, which
only includes the elements that were affected by the edit operation.

In a first step, the effects of visualization rule applications that were possible in the
original application graph, but are no longer applicable in the edited graph, have to be
undone. Afterwards, the new application graph has to be tested to find out if new visu-

alization rule applications are possible. To be able to trace rule applications, we use rule
application objects (RAOs). They contain a reference to the rule and the occurrence used,
as well as information on the nodes, edges and attributes that have been created or set by
the rule application. Following the observer pattern, a RAO registers itself as observer to
certain events on those elements of the application model that are part of its occurrence:
(1) If a deletion event occurs on the nodes and edges of a RAO’s occurrence, the rule is no
longer applicable and is undone using the information in the RAO on created objects and
set attribute values. (2) If an attribute used in an attribute condition changes, the rule has
to be retested for applicability. If it is not applicable, the rule is undone. (3) If the value
for an attribute assignment on the rule’s RHS is derived from one or several attributes in
the LHS, the value has to be recalculated if one of the base attributes changes.

Besides observing existing objects, negative application conditions that were fulfilled
when the rule was first applied might no longer hold after an edit operation. Since these
objects were non-existant, the RAO cannot register itself to any concrete object, but only
to abstract insertion or deletion events of nodes and edges that have the same type as one of
the elements in one of the rule’s NACs. Since NACs can also contain attribute conditions,
the RAO also has to register itself to any modifications of attributes that belong to a node or
edge which has the same type as the node or edge in the NAC and have the same attribute
name. For positive application conditions (PACs), similar considerations hold, but here we
are interested in deletion modification events on nodes, edges, and their attributes.

7.3 Performance

In the conceptualization phase for GEM, we evaluated existing graph transformation
systems. The only system that seemed both mature enough and did not depend on legacy
system environments was the AGG system [Tae99]. We evaluated its performance by
measuring the time required for applying a basic stylesheet consisting of two visualization
rules. Our measurements discouraged the use of AGG as GEM’s underlying engine. We
therefore chose to implement our own GTS, building on a relational DBMS to do subgraph
search and transformation. We first implemented a basic version of the DBMS-based GTS
and tested it against the same input schemas using three different underlying database
systems, two open-source systems (Derby and PostgreSQL), and IBM’s DB2. All three
systems scaled nearly linearly with application graph size and number of occurrences,
with the commercial system outperforming its open-source contenders by an approximate
factor of two. For small- to medium-sized graphs, both showed acceptable matching times,
DB2 outperforming AGG by a factor of up to 120. Encouraged by these promising results,
we decided to go for a DBMS-based solution.

While the initial measurements helped us estimate which degree of performance and
scalability to expect, they were no final indication of the actual performance of the editor.
We therefore ran a series of benchmarks of the latest version of GEM against four differ-
ent DBMS (now also including the embedded H2 DBMS), application graphs of different
sizes, and stylesheets of different complexity. The default stylesheet is the same as pre-
sented in Section 5. The PALADIN stylesheet is a slight variation of the stylesheet from
Figure 6, modified to provide a representation that better suits SQL metadata. For a realis-

Stylesheet Graph size DB2 Derby PostgreSQL H2

default 157N/239E 1.4 2.3 2.0 0.7
default 237N/405E 1.7 3.0 1.6 1.0
default 599N/1026E 3.0 4.7 3.5 2.6
default 1068N/2088E 4.7 9.5 7.5 4.6
default 1785N/3723E 8.1 14.2 11.5 7.7

PALADIN 6T/67C 1.3 2.2 1.4 0.4
PALADIN 12T/111C 1.6 2.6 2.0 0.5
PALADIN 25T/294C 3.1 5.4 4.1 1.2
PALADIN 50T/602C 6.6 8.4 8.4 2.2
PALADIN 100T/1071C 9.6 14.6 12.0 3.4

Table 1: Stylesheet application time (in seconds) on different application graph sizes and DBMSs.

tic example scenario, we chose the schema of the open-source OpenExchange groupware
system3, scaled to five different sizes. We ran the benchmarks on a typical desktop envi-
ronment, a 2GHz Core Duo machine with 2GB RAM and locally installed DBMSs. We
repeated each of the individual tests three times and averaged the results.

The first part of Table 1 shows the results of applying the default stylesheet to the
five different graphs using the four DBMSs. We see that all perform adequate for small
and medium sized graphs, with DB2 maintaining its lead over Derby and PostgreSQL. A
pleasant surprise was the H2 database, which – unlike Derby – appears to take consider-
able advantage of the reduced communications overhead of an embedded DBMS. This is
particular obvious both in the significantly higher base response time of the other three
systems and in H2’s better scalability with increasing graph size and occurrence count.
The second part of Table 1 shows the results for the PALADIN stylesheet: H2 extends
its lead, as it apparently benefits from the reduced insert and update load of this style-
sheet, which aggregates metadata and thus creates less nodes and edges for the visualiza-
tion model. While H2’s snappy response times make it the ideal choice for our example
stylesheets, additional experiments (not presented due to space constraints) have shown its
performance to drop considerably once rules (and thus queries) get more complex. This
behavior can be explained with known limitations of H2’s current cost-based optimizer. So
for larger graphs and complex rules, DB2 is usually the better choice, as here its principal
disadvantages and its significant schema setup overhead during graph import are offset.

8 Related Work

The basic principle we follow with our approach is the separation of model and view in
a generic way. This is a pervasive paradigm in computer science. A similar approach to
ours, although limited to displaying and editing XML files, is the XMLmind XML Editor
(XXE)4. It uses Cascading Stylesheets with some proprietary extensions to display XML
files. For editing, the user can insert and delete elements or change attribute values. XXE
makes sure that the resulting document is always valid and corresponds to its DTD or XML

3http://www.open-xchange.com/
4http://www.xmlmind.com/xmleditor

schema definition. For more complex operations it is possible to define element templates,
the equivalent to the edit operations in GraphEdit. Another system that inspired the devel-
opment of GEM are the Graph Stylesheets used in IsaViz5. They are used to style RDF
graphs, but are not able to abstract from the structure of the underlying RDF graph, as they
just provide means to change color, shape and fonts of the nodes. The Eclipse Modeling
Framework (EMF)6 supports the generation of basic editors for object-oriented models.
However, representation is limited to a tree-like structure following the containment re-
lationships among objects. Further, the default editors can only perform atomic editing
operations (creating objects and references between them, setting values of fields etc.).
Any kind of higher-level editing functionality requires complex customizations through
Java code. The Graphical Modeling Framework (GMF)7 builds on EMF and allows the
creation of truly graphical editors. However, the graphical definition models used by GMF
are less expressive than GEM stylesheets. Consequently, the shape of the visualization
graph is largely predetermined by the structure of the underlying EMF application model
and therefore does not allow the degree of abstraction that is possible with GEM. Any
customizations of a generated GMF editor require Java coding.

The idea to implement graph transformations with a relational database system is in
itself not new. Previous implementation attempts have been criticized for severe perfor-
mance deficits: In [VSV05], the authors compare a number of native GTSs (among them
the aforementioned AGG) with an RDBMS implementation. According to their initial
measurements, performance of the DBMS solution was overall far inferior to the native
GTSs. These findings not only conflicted with our observation that even in a prototypical
state, GEM’s graph transformation engine significantly outperforms the AGG system by
several orders of magnitude, but have also since been revised by the authors in [VFV06].

9 Conclusions and Outlook

In this paper, we presented GEM, a visualization tool and editor for arbitrary metadata.
To internally represent the metadata to be visualized and edited, we use a model based
on attributed, typed multigraphs, which is general enough to losslessly represent any kind
of metadata. Visualization of the metadata is customized via user-provided stylesheets,
which allow for a wide variety of different visual representation, like arranging metadata
elements in – possibly nested – tables or in trees. In order to hide details or to focus on
a special aspect of the model, stylesheets can perform aggregations that abstract from the
concrete metadata representation. Also, one can visualize and edit heterogeneous metadata
in an integrated way. Both visualization rules and edit operation are based on the concept
of graph transformations.

Our metadata editor is not only useful for editing schemas and matches, but supports
any data which can be reasonably represented as a graph. In the semantic web community,
visualizing and editing ontologies and RDF data in an adequate and user-friendly manner
is still an open problem. Here, GEM can possibly be of great value, because it allows the

5http://www.w3.org/2001/11/IsaViz/
6http://www.eclipse.org/modeling/emf/
7http://www.eclipse.org/modeling/gmf/

fast creation of domain-specific visualization and editing tools for arbitrary ontologies, and
allows to "‘mix"’ different ontologies within one document. Other possible applications
include networking problems, mind maps, or any other area that uses graphs to represent its
data. The editor’s underlying graph transformation system can also be used independently
to do reasoning on the application graph, or to perform model-to-model transformations.
Some open issues remain: Currently, GEM supports node and edge type inheritance only
by user-defined functions. This is a flexible mechanism and allows the adaptation of the
type model to the respective needs. Introducing type graphs into GEM would make type
inheritance a first class concept, allowing for better consistency checking in application
models. These aspects, and a much more powerful GT language with a more concise
textual syntax are supported by an advanced GT engine developed in the context of the
PALADIN project. We intend to use this engine in future versions of GEM.

References

[BFG95] D. Blostein, H. Fahmy, and A. Grbavec. Practical use of graph rewriting. Technical
Report 95-373, CDN, 1995.

[BHP00] Phillip A. Bernstein, Alon Y. Halevy, and Rachel A. Pottinger. A vision for management
of complex models. SIGMOD Rec., 29(4):55–63, 2000.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation Ap-
proaches. volume OOPSLA03 Workshop on Generative Techniques in the Context of
Model-Driven Architecture, 2003.

[Gö88] Herbert Göttler. Graphgrammatiken in der Softwaretechnik: Theorie und Anwendungen,
volume 178 of Informatik-Fachberichte. Springer-Verlag, Berlin, 1988. Venia Legendi
Thesis (Habilitation).

[Gö05] Jürgen Göres. Towards Dynamic Information Integration. In Data Management in Grids,
number 3836 in LNCS, pages 16–29, 2005.

[GD07] Jürgen Göres and Stefan Dessloch. Towards an Integrated Model for Data, Metadata,
and Operations. In BTW 2007, 2007.

[Hec06] Reiko Heckel. Graph Transformation in a Nutshell. Electr. Notes Theor. Comput. Sci.,
148(1):187–198, 2006.

[Jö07] Thomas Jörg. Entwicklung eines regelbasierten Editors für Graphmodelle (Development
of a Rule-based Editor for Graph Models). Master’s thesis, University of Kaiserslautern,
February 2007. in German.

[KR90] Kreowski and Rozenberg. On structured graph grammars. 1990.
[MRB03] Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Rondo: A Programming Platform

for Generic Model Management. In SIGMOD 2003, 2003.
[SD07] Boris Stumm and Stefan Dessloch. Change Management in Large Information Infras-

tructures – Representing and Analyzing Arbitrary Metadata. In BTW 2007, 2007.
[Stu06] Boris Stumm. Change Management in Large-Scale Enterprise Information Systems. In

EDBT Workshops, pages 86–96, 2006.
[Tae99] Gabriele Taentzer. AGG: A Tool Environment for Algebraic Graph Transformation. In

AGTIVE, pages 481–488, 1999.
[VFV06] Gergely Varró, Katalin Friedl, and Dániel Varró. Implementing a Graph Transformation

Engine in Relational Databases. Software and System Modeling, 5(3):313–341, 2006.
[VSV05] Gergely Varro, Andy Schurr, and Daniel Varro. Benchmarking for Graph Transforma-

tion. In VLHCC 2005, pages 79–88, Washington, DC, USA, 2005.
[WKR01] Andreas Winter, Bernt Kullbach, and Volker Riediger. An Overview of the GXL Graph

Exchange Language. In Software Visualization, pages 324–336, 2001.

