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XML queries are frequently based on path expressions where their elements are connected
to each other in a tree-pattern structure, called query tree pattern (QTP). Therefore, a key
operation in XML query processing is finding those elements which match the given QTP.
In this paper, we propose a novel method, called S3, which can selectively process the doc-
ument’s nodes. In S3, unlike all previous methods, path expressions are not directly exe-
cuted on the XML document, but first they are evaluated against a guidance structure,
called QueryGuide. Enriched by information extracted from the QueryGuide, a query execu-
tion plan, called SMP, is generated to provide focused pattern matching and avoid docu-
ment access as far as possible. Moreover, our experimental results confirm that S3 and
its optimized version OS3 substantially outperform previous QTP processing methods
w.r.t. response time, I/O overhead, and memory consumption – critical parameters in
any real multi-user environment.

� 2008 Published by Elsevier B.V.
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1. Introduction

XML usage is increasing dramatically. There are many applications such as science, biology, business, and, particularly,
web information systems using XML as their data representation format. This growing trend towards XML confirms the need
of XML database management systems (XDBMSs). Query processing is an essential functionality of any DBMS; this is espe-
cially challenging for XDBMSs, because XML documents combine tree structure with content. Both XPath and XQuery, the
two most popular query languages in the XML domain, are based on path expressions. A so-called query tree pattern
(QTP) specifies a pattern of selection predicates addressing multiple elements in a path expression related by a tree struc-
ture. As a focal point of our discussion, these patterns include the most important query axes parent–child and ancestor–
descendant (P–C or / and A–D or //, for short). To process XML queries, all fragments matching a QTP in the XML document
have to be found, which is an expensive task, especially when huge XML documents are involved.

Consider the following query Q1 addressing a given XML document: Q1://A[.//B]/C//D. Q1’s QTP which is shown in Fig. 1
has two branches, A//B and A/C//D. The elements related to Q1 could be easily found via traditional indexes like B*-trees,
but such an access support to select elements is not enough, because the located elements must satisfy the path conditions,
y Elsevier B.V.
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Otoo. Therefore, the most important issue during query evaluation is to check that all extracted elements meet the given path

expression, before they are composed to the desired query result. This process may become even more complicated and
costly when more than two branches occur in a path expression. The question, how to optimally locate the fragments match-
ing a given QTP (such as that of Q1) in an XML document, attracted many researchers, e.g., see [1,4,10,15,22].

1.1. Our contribution

The key observation to optimize XML query evaluation is to avoid document access as far as possible. For this reason, we
introduce a so-called QueryGuide which is an abstraction of the considered XML document. It is a kind of structural summary
and describes the document structure by its path classes which, given the node number (in the form of a Dewey label) of any
document node, enables the reconstruction of the specific path instance the considered node belongs to. In this way, the Que-
ryGuide serves to especially present the P–C and A–D relationships of the elements in an XML document and to support the
matching process based on the QTP, that is, it guides the query evaluation to enable focused search.

Hence, the interplay of Dewey node labeling and QueryGuide use leads to a new quality of QTP processing which is cap-
tured by the main contributions of our paper:

� The concept SMP (set of match patterns) is introduced to enable focused node comparisons and to facilitate path checking.
� To create an SMP, we use a structure called QueryGuide which acts as a structural summary of the XML document.
� We present some optimization hints for S3 leading to Optimized S3 (OS3).

The remaining parts of our paper are organized as follows: Section 2 provides background information needed for the rest
of paper and gives an overview of the most important related approaches. The concepts of Dewey labels and QueryGuide
which are the cornerstones for S3 are discussed in Section 3. We introduce S3 and its optimized version OS3 in Section 4.
In Section 5, we present the experimental results and conclude our work in Section 6.
U
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2. Basic concepts and related approaches

In this section, we present a simplified logical representation for XML documents based on the standard XPath data model
[2], before we sketch and compare five approaches competing with our novel method proposed.

2.1. Data and QTP model

So far, quite a number of differing approaches to QTP processing on XML documents were developed. To facilitate their
description and classification, we need an appropriate terminology and some important definitions. Also a more formal def-
inition of QTP is given.

Definition 1. An XML tree structure (XTS) X is a tree defined by a tuple (r,NX,E, I,T,V):

� r 2 NX as an auxiliary node is the root of the XML tree.
� NX is a set of XTS nodes.
� E � NX � NX represents relations between nodes (branches of the tree).
� I : NX ? String is a function returning the unique label of the requested node.
� T : NX ? {‘‘root”, ‘‘element”, ‘‘attribute”, ‘‘text”} is a function which returns the type of a node.
� V : NX ? String is a function which returns the value of a node. ‘‘root” is the value assigned for the auxiliary root of the XML

tree (i.e., V(r) = ‘‘root”).
Please cite this article in press as: S.K. Izadi et al., S3: Evaluation of tree-pattern XML queries supported by ..., Data Knowl.
Eng. (2008), doi:10.1016/j.datak.2008.09.001
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Definition 2. A QTP1 is a tree structure defined by the tuple (r00,Q,O,E00,U,V00,C) over an XTS object X:

� r00 2 Q is the root of the QTP.
� Q is a set of query nodes in the QTP defined as follows: Q ¼ fxj9n 2 NX ; TðnÞ ¼ \element" _ TðnÞ ¼ \attribute";

VðnÞ ¼ V 00ðxÞg [ r00.
� O ¼ ^;_;:;� is a set of logical operator nodes in a QTP. (^;_;�) represent the binary AND, OR, and XOR logical operators,

respectively. ð:Þ is the unary NOT operator.
� E00 � (Q [ O) � (Q [ O) represents branches of QTP. All leaves of the QTP are query nodes.
� U : Q � {‘‘A–D”, ‘‘P–C”} indicates a kind of relationship between a query node q and its nearest query node among ancestors

of q. ‘‘P–C” shows a parent–child (/) relationship, while ‘‘A–D” represents an ancestor–descendant (//) relationship
between nodes of the QTP, which has to be satisfied during the matching process over the associated XTS object X.

� V00 : Q ? String returns the value of a node. ‘‘root” is the value assigned to the root of the QTP (V00(r00) = ‘‘root”).
� C : Q � NX ? {true, false} is a Boolean function deciding whether or not a node n 2 NX satisfies the content constraints asso-

ciated with a query node q.
O
ODefinition 3. The potential target nodes (PTN) of a query node q in QTP(r00,Q,O,E00,U,V00,C) defined over the XTS object

X(r,NX,E, I,T,V) are contained in an ordered list of X nodes (PTN,<):

(1) PTNðqÞ ¼ fnjn 2 NX ;VðnÞ ¼ V 00ðqÞ ^ Cðq;nÞg.
(2) "n1,n2 2 NX : n1 < n2 iff n1 is visited earlier than n2 in a pre-order traversal through the X.
RExample 1. Fig. 2a is a simple XML document which is represented as an XML tree structure2 (X1) in Fig. 2b. Now consider
the following XPath query:
1 In t
compet
2 Uppe
docume

Plea
Eng.
Q 2 : ==A==M==B½containsð�; \text5"Þ�:
U
N

C
O

R
R

E
C

T
E
D

P
It is straightforward to see from Fig. 2b that the PTN of query node A is the set {a1,a2,a3,a4} and the PTN of query node M is
the set {m1,m2,m3,m4}, but m3 is the only potential target node of query node B, because b1 and b3 do not satisfy the con-
straint associated with node B in Q2. Obviously, (a3,m3,b2) is the only match for Q2. Hence, in this case, most of the potential
target nodes of Q2 are useless.

This observation motivated many researchers to develop evaluation methods for path expressions accessing nodes as few
as possible.

2.2. Important methods for QTP evaluation

In this section, we take a quick look over some well-known QTP processing methods which have been developed in recent
years. Structural Join is one of the first methods proposed to process XML path expressions [1]. By this method, path expres-
sions are decomposed into several binary P–C or A–D relationships where each binary relationship is separately executed and
its intermediate result is stored for further processing. The final result is formed by combining these intermediate results. For
example, in order to process query Q1 over X1, Q1 is decomposed into its three basic relationships (A//B, A/C, C//D). Their inde-
pendent evaluation delivers three intermediate results, as depicted in Fig. 3a. While the result for the first leg of Q1 is already
complete, the result for the second leg A/C//D has to be derived by combining two intermediate lists. The final result is even-
tually gained by ‘‘intersecting” the result lists of both legs according to the QTP expression. Assume all nodes referenced in
the evaluation have to be located in the physical XML document representation and fetched from external storage. Obvi-
ously, Structural Joins cause substantial overhead even for simple queries like Q1. We can easily infer that more complicated
queries, even on middle-sized documents, would perform much worse and derive huge volumes of intermediate results
which are not needed for the final result. For example, isolated execution of the partial query expression C//D produces many
pairs of c and d elements, e.g., (c1,d1), while it is not guaranteed that for each pair of c and d elements a related pair of a and c
elements could be found in the intermediate result of the partial query expression A/C. Some methods like those proposed in
[8,16] attempt to improve the efficiency of the Structural Join using index structures.

Another often referenced QTP processing method is TwigStack [4]. It is a two-phase algorithm which does not decompose
a query into its basic relationships. Instead, partial solutions for each leg (root-to-leaf path) in the QTP are found in the first
phase of the algorithm. For example, Fig. 3b shows two intermediate sets which are produced if each leg of Q1 is separately
executed over X1. It is worth noting that, in this phase, TwigStack is not able to check P–C relationships. As a consequence,
some false positive results may occur in an intermediate result set like (a2,c3,d2) for A/C//D (a2 is not the parent of c3). Such
false positives have to be removed prior to the subsequent phase of the algorithm to limit useless processing. TwigStack pro-
duces final matches in its second phase by merging single path results together using a merge-join algorithm. In order to
his paper, we focus on QTPs which only contain logical AND connectors and do not consider predicates, because we want to compare our method with
ing ones based on the number of input nodes.
r-case letters identify given query nodes and QueryGuides (explained in Section 3.2), whereas lower-case letters are used for their elements in the XML
nt. To preserve readability, we use q (lower-case letter) for the generic query node.
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c1

d1 c2 m1 m2

c3

a1 a2 a3

d2

b2b1

m3

m4

d3

c4

text1 text2
b3

a4

c5

b4

m5

a5

<x>
<c><d>text1</d></c>
<a><c>text2</c></a>
<a>

<m><b>text3</b></m>
<m><c><d>text4</d></c></m>

</a>
<a>

<m><b>text5</b></m>
<c><m><d>text6</d></m></c>

</a>
<c><a><b>text7</b></a></c>
<a><m><b>text8</b></m></a>

</x>

text3 text5 text7 text8

text4 text6

Fig. 2. (a) A simple XML document; (b) XTS representation of the document (X1).

A//B: (a2, b1), (a3, b2), (a4, b3), (a5, b4)

A/C: (a1, c2), (a2, c3), (a3, c4)

C//D: (c1, d1), (c3, d2), (c4, d3)
A/C//D: (a3, c4, d3)

A[.//B]/C//D: (a3, b2, c4, d3)

PTN(A) = {a1, a2, a3, a4, a5}; PTN(B) = {b1, b2, b3, b4}; PTN(C) = {c1, c2, c3, c4, c5}; PTN(D) = {c1, c2, c3}

A//B: (a2, b1), (a3, b2)

A/C//D: (a2, c3, d2), (a3, c4, d3)
A[.//B]/C//D: (a3, b2, c4, d3)

a3

b1 b2 c1 c3 c4

d1 d2 d3

A-List:

B-List: C-List:

D-List:

b3 b4

Fig. 3. Processing of Q1 over X1 (a) Structural Join; (b) TwigStack, TJFast; (c) TwigList.
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Rdecrease the cost of the merging phase, TwigStack outputs only those single path results in the first phase which have a

chance to be joined with other path results to form a complete match. Comparing Fig. 3a and b clearly indicates that the
amount of intermediate results derived by TwigStack is usually much lower than that of Structural Join. To improve TwigStack,
index use was proposed [6,7,15]. TwigStackList [18] tries to solve the problem of false positives in intermediate TwigStack
results by a look-ahead approach, whereas TwigOptimal [10] tries to achieve better performance by jumping during the eval-
uation process over non-qualified elements in the indexes.

Inspired by TwigStack, the TJFast [19] algorithm varies the idea of processing an entire leg of the QTP at a time. Hence, also
running in two phases, TJFast only accesses potential target nodes of QTP leaves thereby minimizing its I/O requirements in
the first processing phase. To achieve this improvement, TJFast uses a refined version of the Dewey labeling method (see also
Section 3.1), which encodes the complete ancestor path in the label of each node. Furthermore, TJFast uses a finite state
transducer (FST) to compute the complete path of a document node from its label. Thus, TJFast can easily produce partial
results of individual root-to-leaf paths of the query only by accessing the potential target nodes of QTP leaves. TJFast derives
the complete paths of the nodes accessed by translating their labels and subsequently produces the possible solutions for
each leg of the QTP. These intermediate results are then merged together to form the query result. This second phase of
the algorithm coincides with that of TwigStack.

Twig2Stack [5] and its refined version, TwigList [22], are two other QTP processing methods, which primarily aim at the
elimination of the merge cost in the second phase of TwigStack or TJFast. By these methods, intermediate results found while
accessing the referenced nodes of the document are kept in such a way that subsequent merging is avoided and final
matches are ready to be output only by applying a simple enumeration function. But these methods suffer from a severe
weakness: they have to load the entire document into main memory in the worst case. TwigList tries to solve this problem
by offering an external version which maintains intermediate results on external storage instead of main memory. In fact,
Please cite this article in press as: S.K. Izadi et al., S3: Evaluation of tree-pattern XML queries supported by ..., Data Knowl.
Eng. (2008), doi:10.1016/j.datak.2008.09.001
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Table 1
Comparison of XML path expression processing methods

Aspect Structural Join TwigStack TJFast Twig2Stack TwigList Our method

# of PTNs All All Leaves All All Leaves
# of elements 	# of index accesses Minimum
Intermediate results Large 	# of results Insignificant

S.K. Izadi et al. / Data & Knowledge Engineering xxx (2008) xxx–xxx 5

DATAK 1139 No. of Pages 20, Model 3G

30 September 2008 Disk Used
ARTICLE IN PRESS
C
T
E
D

P
R

O
O

F

the main difference between both methods is that TwigList has only changed the complicated stacks used in Twig2Stack to
simpler list structures. Thus, because of this simpler mapping, TwigList can be suitably represented on external storage.
Fig. 3c sketches the state of the lists used in TwigList when Q1 is executed over X1 prior to enumerating the final result, which
is easily produced by traversing these chained lists. However, it is clear from Fig. 3c that TwigList has to load all d and b ele-
ments into its D-List and B-List, while only d3 and b2 are useful in our evaluation example.

In a nutshell, to identify the optimal method for practical applications, the above mentioned algorithms will be compared
with our own proposal where the following three parameters play the major role: number of PTN sets that need to be ac-
cessed, number of elements which have to be read, and amount of intermediate results produced. Table 1 qualitatively com-
pares these three parameters.3 Note, all methods except TJFast and our own method have to access all PTNs related to the
QTP nodes. We will show that the number of elements which have to be read is minimal in our method, even when com-
pared to TJFast. Structural Join produces the maximum amount of intermediate results, which are insignificant for our meth-
od. Also none of the above listed query processing methods exploits the full potential of path indexes or summaries guiding
the query execution. Exploiting more expressive node labeling based on the Dewey labeling method and a so-called Query-
Guide, we can avoid document access for the query evaluation to the extent possible.

3. Key ingredients for the evaluation of XML path expressions

The power of our method is founded upon two key concepts: DeweyIDs and QueryGuide. In this section, we introduce
these two concepts.

3.1. Node labeling

An intensive comparison of labeling schemes and their empirical evaluation [12] led us to use a prefix-based scheme for
the labeling of tree nodes derived from the concept of Dewey order encoding. Dewey labeling was first used in libraries to
make items easier to find on the shelves [9]. Dewey labels in the XML database domain consist of a sequence of so-called
divisions (separated by dots in the human readable format) and represent the path from the document’s root to the labeled
node and the local order w.r.t. the parent node; in addition, optional sparse numbering facilitates node insertions and dele-
tions [12]. If node u is the nth child of node t in a given XTS object, then:
3 Com
minima

4 In f
5 The t

Plea
Eng.
DeweyðuÞ ¼ DeweyðtÞ þ 0:0 þ f ðnÞ:
N
C

O
R

R
E

The Dewey label of the document’s actual root is always set to 1. f(n) is used to assign order-preserving values to the child
labels. Hence, as shown by this construction principle, the label of each node contains the labels of all its ancestors. Fig. 4
represents X1 which is labeled by the Dewey order encoding scheme (text nodes are not shown). In this example, f(n) is
set to 2n � 1 for simplicity.4

Refining this idea, several similar labeling schemes were proposed which differ in some aspects such as overflow tech-
nique for dynamically inserted nodes, attribute node labeling, or encoding mechanism. Examples of such schemes are DLNs
[3] or OrdPaths [21] developed for the Microsoft SQL ServerTM. Although similar to them, our mechanism is characterized by
some distinguishing features and a label is denoted DeweyID [12]; it refines the Dewey order mapping with a dist parameter
used to increment division values to leave gaps in the numbering space between consecutive labels – a kind of adjustment to
expected update frequencies – and introduces an overflow mechanism when gaps for new insertions are in short supply. Any
prefix-based scheme is appropriate for our document storage and QTP processing method and embodies the key to efficiency
for other internal XML processing tasks5 [14].

Existing DeweyIDs are immutable, that is, they allow the assignment of new IDs without the need to reorganize the IDs of
nodes present. Comparison of two DeweyIDs allows ordering of the respective nodes in document order. Furthermore,
DeweyIDs easily provide the labels of all ancestors. For example, the ancestor IDs of node d2 with DeweyID 1.5.3.1.1 are
1.5.3.1, 1.5.3, 1.5, and 1.
 U

pared to all methods, the maximum intermediate results denoted as large are produced by the Structural Join. The term insignificant means that they are
l w.r.t. the other methods and that the volume is marginal in most realistic cases.
act, the labels used in Fig. 4 consist of two parts: the first part is named CID (to be explained in Section 3.2) and the second part is the DeweyID.
erm SPLIDs (Stable Path Labeling IDentifiers) is used in [24] as a synonym for labels constructed according to any prefix-based scheme.
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Fig. 4. X1 labeled by Dewey order encoding.
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tential target nodes for each query node in a given QTP by accessing only the labels of potential target nodes of the QTP
leaves. This is the main idea, which is also used in TJFast to reduce I/O cost. We will show in the next section how we
can minimize I/O cost by using DeweyIDs in conjunction with our document summarizer, called QueryGuide.

3.2. Summarization of XML documents

Querying huge amounts of data is an expensive task. Indexes like B*-trees are solutions facilitating this process. Because of
the mixture of structure and content in a tree-based data model – such as that for XML documents – it is obvious that tra-
ditional indexes cannot satisfy all needs of efficient query processing. Traditional methods can only index values of an XML
document, but not paths to elements. Therefore, it is reasonable to additionally capture (or summarize) the structure of XML
documents in a specific path index to facilitate evaluation of XML queries.

The idea of structure summarization is not a completely new idea. DataGuide [11] is a structural summary proposed for
semi-structured documents. Its main purpose was to provide a structural overview to facilitate the formulation of meaning-
ful queries and to store statistical document information to be used for query optimization. Furthermore, similar structures
called path synopses were used to virtualize the structure part of documents [13]. In contrast, our goal of employing a struc-
ture summarizer is more than only accessing nodes faster or avoiding the explicit storage of the inner document nodes.
Structural summaries or path indexes contain an abstraction of XML documents which can help us to have a more efficient
query evaluation method for complicated XML queries where the QTPs may have more than one branch.

The QueryGuide is our data structure developed to summarize the XML document structure. During the evaluation of XML
queries, a QueryGuide not only enables more focused access to document nodes which leads to I/O minimization, but also
provides execution plans to process the referenced nodes in a more efficient way. Some simple definitions facilitate the
introduction of the QueryGuide concept:

Definition 4. Considering an XTS object X and a node n, n 2 NX, a traversal path of node n is P(n) consisting of all ancestors of
node n(a1 � a2 � � � aj � n) ordered by the P–C relationship. With regard to the traversal path of node n, PS(n) is the relevant path
string of node n represented as /V(a1)/V(a2)/� � �/V(aj)/V(n).

Definition 5. Two traversal paths P(n) and P(m) are path equivalent (P(n) 
 P(m)), if PS(n) = PS(m). Also, nodes n and m are
path equivalent if their traversal paths are path equivalent.

Example 2. Consider the two nodes c2 and c4 labeled by DeweyIDs 1.3.1 and 1.7.3 in Fig. 4. They are path equivalent as they
have the same traversal path string ‘‘/x/a/c”. Now consider node c3 with DeweyID 1.5.3.1. This node is not path equivalent to
c2 and, thus, to c4, because the path string of c3 is not the same as the path string of c2 (‘‘/x/a/c” – ‘‘/x/a/m/c”).

Predefinition 1. A Structural Summary is an XTS object S which is defined over an XTS object X, represented by SX.

Definition 6. In order to distinguish between traversal paths in a Structural Summary and its related XTS object, we refer to
paths in a Structural Summary as path classes and paths in an XTS object as path instances. Also, nodes in the Structural Sum-
mary are referred to as class nodes which have a unique CID (Class ID) label and nodes in an XTS object are referred to as
instance nodes.

Definition 7. Consider Structural Summary SX and its XTS object X, the instance node set of a class node m, m 2 NS, is
INS(m) = {njn 2 NX, P(n) 
 P(m)}.

Example 3. In Fig. 5a, the instance node set of node M with CID 6 (M6) is the set {m1,m2,m3,m5} and that of node M with CID
10 (M10) is the set {m4}.
Please cite this article in press as: S.K. Izadi et al., S3: Evaluation of tree-pattern XML queries supported by ..., Data Knowl.
Eng. (2008), doi:10.1016/j.datak.2008.09.001
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Fig. 5. QueryGuide for X1 in Fig. 4: (a) Structural Summary (S1); (b) reference section.
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ODefinition 8. Considering an XML object X and its related Structural Summary SX, the label of a given node n, n 2 NX, is the

pair (c,d) where d is the DeweyID of n in X and c is the CID of node m, m 2 NS, such that n 2 INS(m).

Example 4. The CID of node m4 in Fig. 4 is set to 10, because m4 is path equivalent to node M10 in the Structural Summary of
Fig. 5a (PS(m4) = PS(M10) = ‘‘/x/a/c/m”).

With respect to Definition 8, we are able to illustrate one of the greatest advantages of our labeling method: For a given
node with label (c,d), the whole label and also the names of all of its ancestors could be extracted on the fly without access-
ing any other nodes. For example, consider node m4 in Fig. 4 with label (10, 1.7.3.1). A quick look to the Structural Summary of
Fig. 5a shows that the ancestors of m4 are x(1,1), a(4,1.7), and c(5,1.7.3).

Definition 9. The Structural Summary SX is an XTS object defined over an XTS object X such that:

� "n 2 NX, T(n) – ‘‘text” then $m 2 NS, n 2 INS(m).
� if n,n0 2 NS and P(n) 
 P(n0) then n = n0.
O
R

R
E
C

T
ELemma 1. Considering an XML object X and its related Structural Summary SX, if n1,n2 2 NX and n1 is ancestor of n2, then their

related nodes in SX also have the same relationship.

Proof. n1 is ancestor of n2, thus PS(n2) = PS(n1) + rest. If s1,s2 2 NS, n1 2 INS(s1) and n2 2 INS(s2), then P(n1) 
 P(s1) and
P(n2) 
 P(s2). In consequence, PS(s2) = PS(s1) + rest and, because each path in S is unique, s1 is also the ancestor of s2. h

Use and maintenance of a Structural Summary should only marginally burden the query evaluation process. Read access to
a Structural Summary is very fast, because it is a small and, typically, memory-resident object. If a new node or path instance
is inserted into the document, we have to check whether the corresponding path class is present in the Structural Summary;
otherwise, it has to be added. Such updates mostly occur when a new document is built, which means that most mainte-
nance costs incur during document creation.6 Hence, later document updates only require changes of the Structural Summary
in exceptional cases, because they usually do not create new path classes.

Definition 10. A QueryGuide is a data structure which is defined by the tuple (SX, RF) where SX is a Structural Summary
defined over an XTS object X and RF is a reference function which returns a list of DeweyIDs associated to the class nodes of
SX : RF(c) = {dj$n 2 NX, $m 2 NS, I(n) = (c,d), I(m) = c}.

Example 5. Fig. 5b shows the reference section of a QueryGuide which is used to implement the RF function.
RF(6) = {1.5.1,1.5.3,1.7.1,1.11.1} is the set of DeweyIDs of the nodes m1, m2, m3, and m5, respectively (see Fig. 4).
C
U
N4. S3: the proposed QTP processing method

In this section, we attempt to demonstrate how the previously introduced concepts, DeweyIDs and QueryGuide, can be
combined to provide an enhanced QTP processing method called S3. To the best of our knowledge, S3 is the first QTP process-
ing method that exploits structural information of XML documents prior to performing QTP matching. Our method has two
main steps. In the first step, the QTP is executed against the Structural Summary of the document which leads to a set of MPs
(Match Patterns). The above set (henceforth referred to as SMP) is used as an execution plan to provide focused document
6 Indeed, the CID numbering in Fig. 5a is obtained, if the Structural Summary is derived during the node-wise creation of X1 (see Fig. 4) in document order.

Please cite this article in press as: S.K. Izadi et al., S3: Evaluation of tree-pattern XML queries supported by ..., Data Knowl.
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Faccess and facilitate the matching process in the second phase of S3. Fig. 6 illustrates the interplay of the components when
the S3 method is applied.

4.1. Execution plan extraction

Processing document nodes without considering their position in the document not only leads to more costly I/Os, but
also increases the number of nodes whose processing is useless and avoidable. This point motivates us to propose a solution
which reduces document accesses as much as possible. In order to achieve this goal, we have to formulate the following two
strategies:

1. Processing a QTP by only accessing the potential target nodes of its leaves. This is possible by using the pair of (CID, Dewe-
yID) for the labeling of document nodes (more details in Section 4.2).

2. Providing focused document access by executing a QTP against the Structural Summary of the related document.

The idea behind executing QTPs against a Structural Summary is to find the subset of potential target nodes (of QTP leaves)
whose participation in the final result definitely needs closer inspection. In other words, we attempt to remove those ele-
ments from the matching process that are not needed for the final result. These nodes are categorized into two groups: nodes
not satisfying any leg of the given QTP and nodes satisfying one of the QTP legs, but without a related node matching the QTP
together.

For example, consider QTP Q1 (Fig. 1) and XTS object X1 (Fig. 4). To evaluate Q1, all previously introduced QTP processing
methods have to process all members of PTN(D), although d1 has no a element as an ancestor and, therefore, cannot satisfy
the D-leg (//A/C/D) of Q1. Furthermore, d2 cannot satisfy the D-leg, because c3 is not a child of a2. On the other hand, all mem-
bers of PTN(B) = {b1,b2,b3,b4} can satisfy the B-leg indeed, but the Structural Summary S1 (Fig. 5a) reveals that b elements with
CID 13 have no d elements as counterparts to match Q1. Thus, we can exclude b elements with CID 13 (e.g., b3) from further
processing in the matching phase. Moreover, a closer look at X1 (Fig. 4) indicates that b4 has not any counterpart element d,
too, and b1 has d2 as its counterpart, but d2 cannot satisfy the D-leg of Q1 to produce a match. This observations about b ele-
ments with CID 7 and b elements with CID 11 cannot be obtained by only using the Structural Summary S1, because B7 and D11

indeed match Q1 but sufficient information in this step is missing about nodes which are referenced by B7 and D11. Thus,
these nodes should be processed in the matching phase. Execution of Q1 against S1 results in a single match
(A4,B7,C5,D11) and confirms that we can exclude b elements with CID 3 or 9 and also b elements with CID 13 from any further
processing steps.

Hence, to provide optimized document access in S3, prior to processing a query on a given document, the QTP is executed
against the Structural Summary of this document. The execution result is organized as a structure called SMP.

Definition 11. Considering an XTS object X and a QTP QTP, n 2 NX matches q 2 QQTP(n M q), if n could satisfy the related path
expression from the QTP root to the query node q.

Definition 12. Considering an XTS object X and a QTP QTP, the tuple M(n1,n2, . . . ,nc) matches QTP(M M QTP), if:

� jQQTPj = c.
� ni 2 NX, 1 6 i 6 c.
� "qi 2 QQTP, 1 6 i 6 c, ni M qi.
� "qi,qj,qk 2 QQTP, if qk is a common ancestor of qi and qj, then nk is also a common ancestor of ni and nj.
U

Definition 13. Considering an XTS object X and a QTP QTP, execution of QTP against X results in a so-called Query Result
QR = {m1,m2, . . . ,mr}:

� jmij = jQQTPj, 1 6 i 6 r.
� "mi 2 QR, 1 6 i 6 r, mi M QTP.
Please cite this article in press as: S.K. Izadi et al., S3: Evaluation of tree-pattern XML queries supported by ..., Data Knowl.
Eng. (2008), doi:10.1016/j.datak.2008.09.001

Original text:
Inserted Text
PTN(D), 

Original text:
Inserted Text
can not 

Original text:
Inserted Text
D-leg (//A/C/D) 

Original text:
Inserted Text
can not 

Original text:
Inserted Text
D-leg, 

Original text:
Inserted Text
PTN(

Original text:
Inserted Text
B-leg 

Original text:
Inserted Text
(a)) 

Original text:
Inserted Text
(e.g. 

Original text:
Inserted Text
can not 

Original text:
Inserted Text
D-Leg 

Original text:
Inserted Text
can not 

Original text:
Inserted Text
QTP, 

Original text:
Inserted Text
QTP, 

Original text:
Inserted Text
,…,

Original text:
Inserted Text
QTP (

Original text:
Inserted Text
QTP), 

Original text:
Inserted Text
,…,

Original text:
Inserted Text
QTP.



R
O

O
F

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

procedure S3(Q as QTP, Doc as XTS)
1: let SMP be the execution result of Q 

against the structural summary of Doc;
2: for each MPi∈ SMP do

3: matcher[i] = createMatcher(Q, MPi, Doc);

4: end for
5: while (true) do
6: min = nextMatch();
7:  if (min = null)
8: break;
9: else

10: complete min w.r.t. its related MP and output it;
11: end while;

function nextMatch()
12: if no matcher is available return null;
13: min = the minimum matcher[i].head 
14: minIndex = index of the minimum matcher[i].head;
15: matcher[minIndex].getNext();
16: if (matcher[minIndex].head = null)
17: remove matcher[i];
18: return min;

function createMatcher(Q as QTP, MP as MP, Doc as XTS)
19:  let lf be list of Q’s leaves obtained by an  in-order walk;
20: ls = stream(MP, lf [1], Doc);
21: rs = stream(MP, lf[2], Doc); 
22: let jpl be the level of MP(Q.NCA(lf[0], lf[1]));
23: matcher = new QTPMatcher(ls, rs , jpl);
24: for i = 3 to size of lf do
25: rs = stream(MP, lf[i], Doc); 
26: let jpl be the level of MP(Q.NCA(lf[i-1], lf[i]));
27: matcher = new QTPMatcher(matcher, rs , jpl);
28: end for
29: return matcher;

function stream(MP as MP, lf as QTPNode, Doc as XTS)
30: let QG be the QueryGuide of Doc;
31: let cid be the CID of that MP’s member which is related to lf;
32:  return new NodeStream(QG, cid);

Fig. 7. Pseudo-code of the S3 algorithm.

S.K. Izadi et al. / Data & Knowledge Engineering xxx (2008) xxx–xxx 9

DATAK 1139 No. of Pages 20, Model 3G

30 September 2008 Disk Used
ARTICLE IN PRESS
E
C

T
E
D

PWe refer to the Query Result as SMP if it is derived from the Structural Summary of a document. In this case, each member
of the SMP is also called MP. It is worth noting that, in this step, any QTP processing method could be used to execute the
given QTP against the Structural Summary which is a small object and, therefore, SMP construction has only insignificant cost.
Based on the Structural Summary definition, we can claim that no potential final match is discarded by the execution of QTP
against the document’s Structural Summary, if the matching process uses the resulting SMP as its input. In other words:

Theorem 1. For each final match of a given query tree pattern QTP against an XML object X with Structural Summary S, exactly
one MP could be found that has the same sequence of CIDs as the sequence of CIDs of that match.

Proof. Consider a final match M(n1,n2, . . . ,nm) and CM(c1,c2, . . . ,cm) such that M M QTP and ci = CID(ni). As a consequence, we
could construct the tuple MP(s1,s2, . . . ,sm) such that si 2 NS, 1 6 i 6m and ci = CID(si). It is clear that CID(ni) = CID(si) and,
based on Definition 8, we can conclude that ni 2 INS(si) and P(ni) 
 P(si). Because PS(ni) match the qi 2 QQTP, P(si) can match
qi, too. Thus, we can derive that si M qi. On the other hand, consider that qi,qj,qk 2 QQTP, qk is a common ancestor for qi and qj,
because MP M QTP, then nk is also a common ancestor for ni and nj and based on Lemma 1, sk is also a common ancestor for si

and sj. Hence, all criteria of Definition 12 are met and we can conclude that MP M QTP. It is straightforward to see that if
another match pattern MP0 is found then MP = MP0. h
U
N

C
O

R
R4.2. Matching process

The matching process is fed by the SMP which is created in the first step of the algorithm. Each MP of the SMP is used to
produce a subset of the final matches, precisely those matches whose CIDs match the selected MP. Theorem 1 demonstrates
that it is possible to classify the final matches of a given QTP into some categories and each category would belong to one of
the MPs in the SMP. As a consequence, each category of results could be produced by extracting only those nodes from the
reference section of the QueryGuide which have the same CIDs as the Structural Summary nodes of the related MP.7 It is worth
noting that it is not necessary to extract all of these nodes, because we can derive label and name of all ancestors of any node
using its label together with the Structural Summary (Section 3.2). Thus, the matching process could be performed by only
extracting those nodes which are related to the leaves of the given QTP. This means that, during the entire matching process,
we only need to access the selected subset of nodes which are related to the leaves of the QTP.

Fig. 7 depicts the pseudo-code of S3 algorithm. Execution of a given QTP Q against the Structural Summary of an XML doc-
ument Doc results in an SMP object (line 1), and after that a QTPMatcher object is created for each MP of the resulting SMP by
use of procedure createMatcher (lines 2–4). In fact, each returned QTPMatcher is a chain of QTPMatcher objects. Using function
createMatcher, first an ordered list of QTP leaves is created by a pre-order walk through Q (as a result, the order of the ex-
tracted leaves is the same as the left-to-right order of leaves when Q is printed as a tree). Then for the first two leaves of Q, a
QTPMatcher is constructed (lines 20–23). For each leaf (lf[1], lf[2]), a NodeStream object (see lines 1–4 in Fig. 8) is created
7 Henceforth, we refer to a member of a given MP MP, which is related to a given QTP node q, as MP(q).

Please cite this article in press as: S.K. Izadi et al., S3: Evaluation of tree-pattern XML queries supported by ..., Data Knowl.
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class NodeStream implements InputStream
constructor(QG as QueryGuide, cid as CID)
1: let stream be a stream of sorted DeweyIDs of QG.RF(cid)
2: let this.head be the current node of stream

procedure getNext()
3: advance stream to the next node;
4: let head be the current node of stream;

class QTPMatcher implements InputStream
constructor(ls, rs as MatcherInputStream, jpl as integer)
5: let this.resultQueue be an empty queue of matches
6: this.jpl = jpl;
7: this.ls = ls;
8: this.rs = rs;
9. let this.lastJoinedNode be the QTP node related to rs;

procedure getNext()
10: if (!resultQueue.empty)
11:  head = resultQueue.dequeue();
12: return;
13: end if;
14: lKey = getLast(ls.head);
15: lList = advance(ls);
16: rKey = rs.head;
17: rList = advance(rs);
18: while(!ls.finished() and !rs.finished())

19:   if (lKey.prefix(jpl) = rKey.prefix(jpl))
20: for each combination of lList and rList produce a match, 

then sort them w.r.t. this.lastJoinedNode and add them 
to the resultQueue;

21: break;
22:  elseif (lKey.prefix(jpl) < rKey.prefix(jpl))
23:      lKey = getLast(ls.head); 
24: lList = advance(ls);
25:   else
26:    rKey = rs.head; 
27: rList = advance(rs);
28:   endif
29:  end while 
30: head = resultQueue.dequeue();

function advance(s as MatcherInputStream)
31: let list be an empty list of matches
32: list.add(s.head);
33: s.getNext();
34: while (!s.finished and list.head.prefix(jpl) = s.head.prefix(jpl))
35: list.add(s.head);
36: s.getNext();
37: end while;

function getLast()
38: return DeweyID in head which belongs to lastJoinedNode

Fig. 8. Pseudo-code of the NodeStream and QTPMatcher classes.
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that MP’s member which is related to the given QTP leaf (MP(lf[1]),MP(lf[2])). The last important parameter to construct the
QTPMatcher is the join point level of the above QTP leaves which is used in the matching process (procedure getNext in Fig. 8)
to satisfy the last criterion of Definition 12. In order to show that QTPMatcher works correctly, we now focus on QTPs having
only two leaves.

Lemma 2. Outputs of procedure getNext of class QTPMatcher (see Fig. 8) are candidates to produce matches related to the
associated MP of QTPMatcher for QTPs having only two leaves.

Proof. In order to find the matches of a given QTP Q with two leaves (l1, l2) based on a given MP MP, the related DeweyIDs of
ls and rs should be compared. The pair (d1,d2) is a candidate to produce a match, if d1 and d2 have proper ancestors to match
Q. As depicted in function stream (see lines 30–32 in Fig. 7), ls is a stream of nodes having the same CID as that of MP(l1).
Thus, all nodes of ls including d1 match the leg of Q which is related to l1. The same story is also true for d2 and l2. The remain-
ing point w.r.t. Definition 12 is to prove that d1 and d2 have common ancestors that match the common ancestors of l1 and l2.

Assume that jp is the nearest common ancestor (NCA) of l1 and l2, then jpl is the level of MP(jp). With respect to lines 19–
20 in Fig. 8, d1 and d2 have a common ancestor c at the jpl level of the document. It is clear that c matches query node jp. It is
also straightforward to show that all other common ancestors of l1 and l2 have a common match in the document, which is
one of the nodes in the path from the document root to node c. As a consequence, the outputs of procedure getNext can be
extended to full matches which are able to satisfy Definition 12. h

Theorem 2. Procedure getNext of class QTPMatcher (see Fig. 8) computes all possible matches related to the associated MP of QTP-
Matcher for QTPs having only two leaves.

Proof. Based on Lemma 2, consider that the pair (d1,d2) is a candidate to produce a full match. Also assume that (d1,d3) and
(d4,d2) are two other candidates. With respect to line 19, d1,d2,d3,d4 have a common ancestor at the jpl level of the docu-
ment. Thus, (d4,d3) is also a candidate. We can derive from this simple example that all node combinations of ls and rs having
DeweyIDs with the same prefix up to the jpl level are candidates for producing complete matches. A closer look at procedure
getNext shows that, if the sets of nodes having DeweyIDs with the same prefix up to the jpl level are replaced by their prefixes
(see function advance), then getNext would be a simple merge-join algorithm for two sorted sets, which in conjunction with
line 20 can produce all required matches. h

Example 6. Consider QTP Q1 (Fig. 1) and XTS object X1 (Fig. 2). Execution of Q1 against S1, as the Structural Summary of X1 (see
Fig. 5), results in a single MP(A4,B7,C5,D11). Thus, only one QTPMatcher is needed to be created with {1.5.1.1,1.7.1.1,1.11.1.1}
Please cite this article in press as: S.K. Izadi et al., S3: Evaluation of tree-pattern XML queries supported by ..., Data Knowl.
Eng. (2008), doi:10.1016/j.datak.2008.09.001
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as its left stream related to B7, {1.7.3.1.1} as its right stream related to D11 and A4 as the join point. Since A4 is in the second
level of S1, the extracted DeweyIDs should be compared based on their prefix of length 2. As a consequence, it is clear that the
only candidate in this example is (1.7.1.1,1.7.3.1.1). It is not difficult to complete this candidate to form a full match. Because
A and C are ancestors of B in Q1 and A4 and C5 are at the second and third level of S1, the full match could be formed as fol-
lowing: (1.7,1.7.1.1,1.7.3,1.7.3.1.1).

The matching process for QTPs having more than two leaves is the same as introduced for QTPs having two leaves, but it is
performed recursively. For the first two leaves of a given QTP, a QTPMatcher, assume matcher1, is created (lines 20–23 in
Fig. 7). Then for the third leaf, a new QTPMatcher, assume matcher2, is created based on matcher1 as the left input and the
NodeStream object of the third leaf, assume ns3 as the right input (lines 24–28 in Fig. 7). matcher2 joins partial matches of
matcher1 with nodes which are maintained by ns3. The determination of the join point and node comparisons in QTPMatchers
like matcher2 are based on the last query node which has been added to the left input of QTPMatcher (here, matcher1), as char-
acterized by the use of function getLast (lines 14 and 23 in Fig. 8).

Lemma 3. Consider lm, ln, lk be three leaves of a given QTP Q, and lm < ln < lk holds for a pre-order traversal through Q. Then
NCA(lm, lk)8 is ancestor or self of NCA(lm, ln) and NCA(ln, lk).

Proof. NCA(lm, lk) and NCA(lm, ln) are both ancestors of lm. As a result, one of them is ancestor or self of the other. If NCA(lm, ln)
is ancestor of NCA(lm, lk), then ln would be visited before or after NCA(lm, lk) and all descendants of NCA(lm, lk) (obvious prop-
erty of a pre-order traversal). Thus, ln would be visited before lm or after lk and both of them are in contradiction to the
assumptions of Lemma 3. h

Lemma 4. Outputs of procedure getNext of class QTPMatcher (see Fig. 8) are candidates to produce matches related to the asso-
ciated MP of QTPMatcher.

Proof. Lemma 2 is a special case of this lemma for QTPs having two leaves. For QTPs with more than two leaves, assume that
MP is the associated MP of a QTPMatcher and l1, l2, . . . , lm be the leaves of the given QTP Q, and l1 < l2 <� � �< lm holds for a pre-
order traversal through Q. Assume (d1,d2, . . . ,dn) is a candidate w.r.t. (l1, l2, . . . , ln). If there exists a dn+1 which satisfies line 19
in Fig. 8, then the following two facts can be derived:

� Regarding the above assumption, dn and dn+1 have the same prefixes w.r.t. MP NCA(ln, ln+1). Therefore, w.r.t. Lemma 2
(dn,dn+1) is a candidate for (ln, ln+1). On the other hand, for each i < n, NCA(ln, ln+1) is a descendant or self of NCA(li, ln+1)
(Lemma 3) and, therefore, MP(NCA(li, ln+1)) is self of MP(NCA(ln, ln+1)) or it is placed at higher levels of the corresponding
Structural Summary. As a consequence, because dn and dn+1 have the same prefixes w.r.t. MP(NCA(ln, ln+1)), they also have
the same prefixes w.r.t. MP(NCA(li, ln+1)) for each i < n.

� Since (d1,d2, . . . ,dn) is a candidate for (l1, l2, . . . , ln), for each i < n, di and dn have the same prefixes w.r.t. MP(NCA(li, ln)). On
the other hand, w.r.t. Lemma 3, for each i < n, NCA(li, ln+1) is an ancestor or self of NCA(li, ln) and, therefore, MP(NCA(li, ln+1))
is self of MP(NCA(li, ln)) or it is placed at higher levels of the corresponding Structural Summary. As a result, di and dn have
the same prefixes w.r.t. MP(NCA(li, ln+1)).

Based on the above facts, we can conclude that, for each i 6 n, di and dn+1 have the same prefixes w.r.t. MP(NCA(li, ln+1)). Thus,
(d1,d2, . . . ,dn,dn+1) satisfies Definition 12 and is a candidate to produce a match. h

Theorem 3. Procedure getNext of class QTPMatcher (see Fig. 8) computes all possible matches related to the associated MP of
QTPMatcher.

Proof. Theorem 2 is a special case of this theorem for QTPs having two leaves. Now for QTPs with more than two leaves,
assume that MP is the associated MP of the QTPMatcher and l1, l2, . . . , lm be the leaves of the given QTP Q, and l1 < l2 < � � � < lm
holds for a pre-order traversal through Q. The skeleton of procedure getNext is a merge-join algorithm for two sorted sets.
Procedure getNext is recursive and joins the related stream of li+1 (rs) to the existing results (ls) in the ith recursion. rs is
always a sorted stream of nodes (NodeStream). ls is a stream of partial matches which are sorted based on their last joined
node (li) (see line 20 in Fig. 8). As a result, it is possible to group the members of ls and rs into sets with members having the
same prefix up to their jpl level (level of MPNCA(li, li+1)). Thus, in conjunction with the Cartesian product described in line 20,
all matches related to (l1, l2, . . . , li+1) are produced in the ith recursion of procedure getNext. h

Example 7. Consider Structural Summary S2 and QTP Q3 in Fig. 9. Execution of Q3 against S2 results in a single match
MP(E2,N3,G4,H5,L8). G, H, and L are three leaves of Q3. Hence, three streams of elements corresponding to G4, H5, and L6 have
to be created. Assume that RF(4) = {1.3.5.3,1.5.7.1,1.5.7.5,1.9.5.1}, RF(5) = {1.1.3.5,1.5.7.3,1.5.7.7,1.7.9.11,1.9.5.3}, and
RF(8) = {1.3.7,1.5.11,1.7.3,1.7.5,1.9.3}. The relevant matching process is depicted in Fig. 10, which has two main steps. In
8 Henceforth, we refer to the nearest common ancestor of two given nodes n1,n2 in a tree as NCA(n1,n2).
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Fig. 9. (a) A sample Structural Summary (S2); (b) QTP Q3; (c) QTP Q4.
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Othe first step, two streams related to G and H are joined with each other. The NCA of G and H is N. Therefore, g and h elements

can be joined if they have a common matching ancestor n. N3 is at the third level of S2. As a result, if labels of a pair of g and h
elements have the same prefix with length 3, they have a common n ancestor and can be joined with each other. It is clear
that this pair also has a common e ancestor. In the second step of the match, l elements are joined with pairs of g and h. E2

(related node to NCA of H and L) is at the second level of S2. Therefore, an l element can be joined with a pair of g and h, if the
labels of l and g elements have the same prefix with length 2. This means that they have a common e ancestor. It is straight-
forward that the above l element also has the same common e ancestor with the g element (see Lemma 4).

As illustrated in Fig. 10, the matching process is done by a pipelining strategy (see line 20 in Fig. 8). Each time a join is per-
formed, its results are sent to the next step. Therefore, there is no need to keep the entire intermediate results of each step up
to the end of that step. Intermediate results are discarded as soon as they are processed in the next join step. As a conse-
quence, the matching process is done without consuming a huge amount of memory for storing the intermediate results.

4.3. Optimized S3

In the previous sections, we have shown how S3 uses a QueryGuide to provide focused search as a key factor for I/O reduc-
tion. However, S3 deviates from its goals in some cases. The problem arises when the execution of a given QTP results in an
SMP which contains nodes repeatedly occurring in its diverse MPs. This means that some elements have to be accessed more
than once:

Example 8. Consider QTP Q4 and Structural Summary S2 in Fig. 9. Execution of Q4 against S2 results in the following SMP:
{mp1(E2,G4,H5,K6,L7), mp2(E2,G4,H9,K10,L11), mp3(E2,G4,H12,K13,L14), mp4(E2,G4,H9,K10,L14), mp5(E2,G4,H9,K13,L11),
mp6(E2,G4,H9,K13,L14)}. For each MP, a separate QTPMatcher has to be instantiated and, as a consequence, elements which
are related to G4 (those having CID 4) have to be fetched six times.

To avoid these additional and unnecessary I/Os, we propose an optimized version of our QTP processing method, called
OS3. As depicted in Fig. 11, the idea behind OS3 is to assign MPs having the same nodes to some grouped MPs, called GMPs.
Each GMP is responsible to produce all matches related to its wrapped MPs.

In OS3, after a QTP is executed against a Structural Summary, the resulting SMP is transformed to a grouped SMP (GSMP) by
the calling function groupSMP (line 2). In order to classify MPs by the function groupSMP (lines 32–37), the number of distinct
occurrences of its related nodes in the SMP is counted for each QTP leaf. That leaf having the minimum distinct occurrences
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Fig. 10. Matching process for Q3.
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procedure OS3(Q as QTP, Doc as XTS)
1: let SMP be the execution result of Q against 

the structural summary of Doc;
2: SGMP = groupSMP(Q, SMP);
3: for each GMPi∈ SGMP do

4: matcher[i] = createGroupMatcher(Q, GMPi, Doc);

5: end for
6: let resultQueue be an empty queue of matches
7: while (true) do
8: match = nextMatch(resultQueue);
9:  if (match = null)

10: break;
11: else
12: Output match;
13: end while;

function nextMatch(resultQueue as Queue)
14: if (not resultQueue.empty)
15:  return resultQueue.dequeue();
16: if no matcher is available return null;
17: min = min{matcher[i].head};
18: minIndex = minargi{matcher[i].head};

19: matcher[minIndex].getNext();
20: if (matcher[minIndex].head = null)
21: remove matcher[i];
22: found = false;
23: for each MPj∈ GMPminIndex do

24: if (min matches MPj)

25: complete min w.r.t. MPj to be a full match for Q 
and add it to the resultQueue 

26: found = true;
27: end if;
28: end for;
29: if (not found)
30: return nextMatch(resultQueue);
31: return resultQueue.dequeue();

function groupSMP(Q as QTP, SMP as SMP)
32: let lf be an array of Q’s leaves
33: let lfci be distinct number of different CIDs related to leaf lfi
34: let maxLeaf be the lfmax such that lfcmax be the minmum of lfc

35: classify MPj∈ SMP into lfcmax groups (GMPk ,1 ≤ k ≤ lfcmax) 
such that in each group nodes related to maxLeaf be the same

36: let SGMP be array of GMPk ,1 ≤ k ≤ lfcmax

37: return SGMP

function createGroupMatcher(Q as QTP, GMP as GMP, 
Doc as XTS)

38:  let lf be list of Q’s leaves obtained by in-order walking ;
39: ls = stream(GMP, lf[1], Doc); 
40: rs = stream(GMP, lf[2], Doc); 
41: jpl = highestJoinPint(lf[1], lf[2], GMP);
42: matcher = new QTPMatcher(ls, rs , jpl);
43: for i = 3 to size of lf do
44: rs = stream(GMP, lf[i], Doc); 
45: jpl = highestJoinPint(lf[i-1], lf[i], GMP);
46: matcher = new QTPMatcher(matcher, rs , jpl);
47: end for
48: return matcher;

function highestJoinPoint(lf1, lf2 as QTPNode, GMP as GMP)
49: for each MPi ∈ GMP do

50: let jpi be the level of MP(Q.NCA(lf1, lf2));

51: end for;
52: return min{ jpi};

function stream(GMP as GMP, lf as QTPNode, Doc as XTS)
53: let QG be the QueryGuide of Doc;
54: let cids be set of CIDs related to lf in GMP;
55:  return new GroupedNodeStream(QG, cids);

Fig. 11. Pseudo-code of the OS3 algorithm.
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has the maximum repeated occurrences in the SMP. Therefore, MPs which contain the same nodes w.r.t. the above leaf are
grouped with each other into a separate GMP.

After the grouping of MPs, a separate QTPMatcher is instantiated for each GMP (lines 3–4). QTPMatchers used for OS3 are
the same as those applied in S3. But the input streams feeding the QTPMatchers and the way to determine join points are
different in OS3. Associated to each leaf in a GMP, more than one CID may exist. For each CID, a (sorted) NodeStream is there-
fore instantiated. Then, a GroupedNodeStream object is used to merge the resulting streams to a single sorted stream of ele-
ments (see Fig. 12). Furthermore, the determination mechanism for join points in S3 is not applicable to OS3, because the
wrapped MPs in a GMP have not necessarily the same join points. For a given GMP, the join point of each pair of QTP leaves
is the join point of a wrapped MP which has the highest level in the Structural Summary among other related join points (see
function highestJoinPoint in Fig. 11).

False positives did not occur during node matching in an S3 evaluation. In OS3, however, these algorithmic changes may
cause false positives. QTPMatcher may produce results consisting of CIDs which match one or more MPs, but do not produce a
full match. This means that, while each element in these results matches its associated QTP leaf, there are at least two leaves
(e.g., lfi and lfj) for which the related elements have no common ancestor to match NCA of lfi and lfj. This problem arises when
the common ancestor of two elements is searched by QTPMatcher at a level which is probably higher than the actually re-
quired level. Furthermore, because NodeStreams maintain elements with different CIDs, QTPMatcher may produce results re-
lated to none of the MPs. Therefore, the QTPMatcher output has to be checked against the related MPs of QTPMatcher (lines
22–30 in Fig. 11). It is worth noticing that the output of a QTPMatcher may match more than one wrapped MP of a given QTP
and, hence, more than one full match will be produced for them. This happens to MPs when their members have the same
CIDs for QTP leaves.

Example 9. Again consider QTP Q4 and Structural Summary S2 in Fig. 9. As described in the previous example, G4 has the
maximum occurrence in the corresponding SMP. As a result, the SMPs have to be grouped based on leaf G. Because all five
MPs have the same node related to leaf G (G4), the resulting SGMP only has one GMP {(E2,G4, (H5,H9,H12), (K6,K10,
K13), (L7,L11,L14))}. This means that OS3 fetches elements with CID 4 only once instead of six times done by S3. The join point
Please cite this article in press as: S.K. Izadi et al., S3: Evaluation of tree-pattern XML queries supported by ..., Data Knowl.
Eng. (2008), doi:10.1016/j.datak.2008.09.001
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class GroupedNodeStream implements InputStream
constructor(QG as QueryGuide, cids as set of CID)

1: for each cidi ∈ cids do

2: stri = new NodeStream(QG, cidi);

3: getNext();

procedure getNext()
4: if (no stream is available)
5: this.head = null;
6: return;
7: end if;
8: min = minargi(stri.head);

9: this.head = strmin.head;

10: strmin.getNext();

11: if (strmin.head = null) remove strmin;

Fig. 12. Pseudo-code of the GroupedNodeStream class.
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Rlevel for leaves G and K is set to 2, because this level is also 2 for all MPs. The minimum join point level for leaves K and L is 3.

(The join point level for these leaves is 3 for mp2, mp4, mp5, and mp6. It is 4 for mp1 and 5 for mp3.) Now assume that
RF(4) = {1.3.5.3,1.9.5.1}, RF(6) = {1.3.7.1.3}, RF(7) = {1.3.7.7.3}, RF(10) = {1.5.3.7}, RF(11) = {1.3.7.9}, RF(13) = {1.9.3.5.9.1}, and
RF(14) = {1.9.3.5.9.3}. For the above GMP, QTPMatcher returns combinations of three elements w.r.t. the leaves of QTP
(G,K,L) as follows: {m1[(4,1.3.5.3), (6,1.3.7.1.3), (7,1.3.7.7.3)], m2[(4,1.3.5.3), (6,1.3.7.1.3), (11,1.3.7.9)], m3[(4,1.9.5.1),(13,
1.9.3.1.5.9.1), (14,1.9.3.5.9.3)]}. These results have to be checked to remove false positives. m1 has proper CIDs to match mp1,
but m1 cannot match mp1, because 1.3.7.1.3 and 1.3.7.7.3 have the same prefix with length 3, but the actual join point level
for leaves K and L in mp1 is 4 (level of H5). The next output of QTPMatcher is m2 which cannot match any MPs. The problem
with m2 is that, while 1.3.7.1.3 and 1.3.7.9 belong to CIDs which cannot match any MPs, they incidentally have the same
prefix with length 3 and, therefore, they are joined by QTPMatcher. The last output of QTPMatcher is m3 which matches both
m3 and m6.

Theorem 4. The method OS3 correctly computes all possible matches for a given QTP Q and an XML document Doc.

Proof. By transforming an SMP to an SGMP, all corresponding MPs are included and no MP is deleted. Therefore, we do not
lose any class of final matches. The related QTPMatcher of a GMP is fed by a sorted stream of elements which include all CIDs
of the corresponding MPs of that GMP. Furthermore, the join point level for each pair of leaves is set to the highest level
among the corresponding MPs. As a result, QTPMatcher returns all required combinations of elements and some false posi-
tives, which are checked and removed (see lines 22–30 in Fig. 11). h
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R5. Experimental results

5.1. Experimental setup

Using our native, Java-based XML database system, called XTC [24], we have implemented the QTP processing methods S3

and OS3 as well as TwigStack [4], TJFast [19], TwigList [22] and its external version E-TwigList [22]. The system configuration
for all performance experiments was setup under Java 1.6.0_03 on a 2x3.2 GHz Pentium IV computer, 1 GB main memory,
2x80 GB hard disks, running GNU/Linux, where the maximum heap size of the Java Virtual Machine was 800 MB.

We want to present an exhaustive performance comparison of the entire spectrum of algorithms considered (see Table 1).
Because the Structural Join [1] is too simplistic and up to two orders of magnitude slower than the best methods present [20],
we have dropped it from our cross-comparison. TwigStack is the first competitive method evaluated. Compared to it, TJFast
aims to reduce I/O cost by processing only potential target nodes of QTP leaves. Moreover, TwigList, a refined version of Twig2-

Stack, attempts to achieve even better performance by eliminating the merging phase needed in TwigStack and TJFast. We
want to show the superiority of our proposals S3 and OS3, which is essentially achieved by the interplay of both concepts
DeweyIDs and QueryGuide. To illustrate the robustness, scalability, and structure insensitivity of the methods, we have cho-
sen a spectrum of different and well-known datasets: DBLP [17], Nasa [23], SwissProt [23], and XMark [25] with scaling fac-
tor 5, whose characteristics are shown in Table 2. Data size refers to the dataset in its plain text format, whereas the number
of nodes as well as the maximum and average depth are computed from the physical representation of these datasets in XTC.
For each dataset, we have specified a set of queries with different features. Single path queries are used to analyze the meth-
od behavior when path join operations are not needed. To explore tree queries having two or more leaves, some of the QTPs
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Table 2
Characteristics of XML datasets used

Aspect DBLP Nasa SwissProt XMark(5)

Data size (MB) 404 23.88 109 558
Nodes (Mio) 31.88 1.22 11.4 23.96
Max/avg depth 8/4.8 10/7.7 7/5.4 14/7.8
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are shallow and some are deeper. Furthermore, different combinations of P–C and A–D relationships are used in our queries.
Table 3 presents the collection of queries used.

We have compared our methods in terms of total execution time, I/O time, and number of elements read:

� Total execution time is the elapsed time between the arrival of the query in XTC and the delivery of the complete result to
the user.

� I/O time is the entire time spent to fetch elements from the document.
� Number of elements read indicates how many elements have to be read in a matching process.

Normally, the number of elements read is large for methods like TwigStack and TwigList, because they read all elements
related to all query nodes. TJFast reads fewer elements, because it processes only elements related to QTP leaves, and we
expect that this number is lower for our methods S3 and especially OS3.

5.2. Single path queries

Fig. 13 shows the results of our experiments for single path queries on the selected datasets. Because the response time
range is very large, we have chosen a logarithmic scale. Most remarkably, S3 and OS3 are five times faster in the average than
TwigStack and TwigList. To explain these results, we interpret some indicative cases. Consider, e.g., the number of elements to
be read for D1 by TwigStack and TwigList: they have to read four times more elements than S3 which, therefore, gains a factor
of 5. Compared to TJFast, S3 is still more than two times (2.2) faster. Although TJFast and S3 have to read only title elements for
D1, S3 has the advantage to access only those title elements which are children of an article element. In contrast, TJFast has to
read all title elements in DBLP, although most of them are children of other elements. Hence, S3 has to read only one third
(0.36) compared to TJFast. For D2, X1, and X2, however, TJFast and S3 obtain the same results. This kind of behavior can be
explained, e.g., for X1, because all price elements in the XMark dataset match X1; hence, TJFast and S3 have to read the same
number of elements. For N1, however, S3 and OS3 achieve two orders of magnitude performance gain over the other methods,
because N1 is a very selective path query. Here, the competitors, especially TwigStack and TwigList, cannot take advantage of
such situations, because they process the elements without considering their position in the document.
U
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R
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C

Table 3
Queries used in the experiments

Name Query Database Matches

D1 //article/title DBLP 346,554
D2 /dblp/inproceedings/booktitle DBLP 582,679
D3 //inproceedings//title[.//i]//sub DBLP 304
D4 /dblp/inproceedings[title]/author DBLP 1,519,938
D5 //inproceedings[author][.//title]//booktitle DBLP 1,519,938
D6 /dblp/inproceedings[.//cite/label][title]//author DBLP 132,902
D7 //article[.//mdate][.//volume][.//cite]//journal DBLP 13,785
D8 //inproceedings[.//title[//sup/i]//tt][//cite/label]//booktitle DBLP 0
X1 /site/closed_auctions/closed_auction/price XMark 48,756
X2 /site/regions//item/location XMark 108,750
X3 /site//open_auction[.//bidder/personref]//reserve XMark 146,982
X4 //people//person[.//address/zipcode]/profile/education XMark 15,857
X5 //item[location]/description//keyword XMark 136,260
X6 //item[location][.//mailbox/mail//emph]/description//keyword XMark 86,568
X7 //item[location][quantity][//keyword]/name XMark 207,639
X8 //people//person[.//address/zipcode][id]/profile[.//age]/education XMark 7991
N1 //textFile/decription//footnote//para Nasa 16
N2 //revisions[//year][//para]//creator Nasa 1043
N3 //tableHead[./tableLinks/tableLink/title]//fields/field[definition]/name Nasa 103,380
N4 //dataset[reference[//keyword][//description[para][heading]]]/subject Nasa 370
S1 //Features/DOMAIN/Descr SwissProt 47,234
S2 //Entry//PIR[prim_id][sec_id] SwissProt 30,427
S3 //Entry/Features[/DISULFID[from][to]/Descr][/CHAIN[from][to]/Descr] SwissProt 23,437
S4 //Entry[mtype][Mod][Descr]/id SwissProt 150,000
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Fig. 13. Experimental results for single path queries.
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We have continued our tests using several XML tree queries with varying patterns on the same datasets. For shallow que-
ries, the number of query nodes for which the related elements are needed to be processed get closer for methods like TJFast,
S3, and OS3 compared to TwigStack and TwigList. Moreover, some queries with three or more leaves are selected. This type of
queries is more suitable for TwigList which does not rely on expensive merging phases.

Fig. 14a–c depicts our experimental results for tree queries on the DBLP dataset in terms of total execution time, I/O time,
and number of elements read. Again, S3 and OS3 provide a substantial performance advantage: they are four times faster in
the average than TwigStack and TJFast. Moreover, they are three times faster than TwigList. Our experiments for D6, D7, and
D8 illustrate the efficiency of using a Structural Summary in S3 and OS3. Although D6 and D7 are shallow and D8 has many
leaves, S3 and OS3 only have to read about half of the elements than the other methods. For D3, TJFast has a slight gain over
S3 and OS3, because TJFast has lower I/O cost in this case. There are only a few number of sub and i elements in DBLP dataset
which can be indexed using only a few pages, whereas S3 and OS3 have to access more often element indexes than TJFast,
because they only read elements related to a single CID during each access.

Fig. 15 shows our experimental results for the XMark (scale 5) dataset. As depicted in Fig. 15a, OS3 is three times faster
than the other methods. S3 also obtains the same performance except for X5, X6, and X7. Here, S3 is about three times slower
than TJFast for X6 and X7 and it is 1.3 times slower for X5 and has the worst performance among all methods. This low per-
formance for X6 arises, because 162 different MPs related to this query are created by S3, whereas these MPs are grouped into
6 GMPs in OS3. This means that some of the elements are fetched 27 times in S3 and also processed 27 times in 27 different
QTPMatcher executions, while these nodes are fetched and processed only once in OS3. As a result, processing time and I/O
cost for queries like X6 (see Fig. 15a and b) are very high; OS3 can reduce these costs by grouping related MPs into a single
GMP. Also, S3 creates 54 distinct MPs for X7 and 72 distinct MPs for X7. These MPs are grouped in 6 GMPs in OS3. As a con-
sequence, OS3 is about more than two times faster than TJFast for X5, X6, and X7.

Fig. 16 shows our experimental results for Nasa and SwissProt. As depicted in Fig. 16a, S3 and OS3 are, in the average, six
times faster than TJFast and eight times faster than TwigStack and TwigList. For N4 and S2, we achieve with S3 and OS3 about
one order of magnitude performance gain over the other methods. Fig. 16b and c also reflects this behavior in terms of I/O
cost and elements processed for these queries.
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We have also compared the scalability of our methods against TwigStack, TJFast, and TwigList in terms of document size
and memory (maximum heap size of Java Virtual Machine). To analyze scalability concerning the document size, we created
18 XMark datasets with a scaling range from 0.1 to 9. Fig. 17a–c represents the scalability results for X4, X6, and X7, respec-
tively. As can be seen, execution times for TwigStack, TJFast, and TwigList scale in a linear way w.r.t. dataset size, but they
embody sub-linear behavior for S3 and OS3. As an exception, S3 shows linear behavior on X6. As discussed above, S3 has to
fetch some elements 162 times, but still keeps the linear behavior.
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Fig. 18) with 13 different heap sizes from 60 MB to 900 MB. Our results illustrate that TwigList needs substantial memory.
For example, it cannot evaluate D5 for heap sizes under 600 MB. We also implemented the external version of TwigList, called
E-TwigList, which can only evaluate D5 when the maximum heap size provided is more than 200 MB. It is worth noticing that
TwigStack and TJFast should have same behavior in terms of memory size, because they produce the same amount of inter-
mediate results. Because we enabled parallel execution of the matching and merging phases for TJFast, we achieved success-
ful executions for it in all configurations. As depicted in Fig. 18, the execution time decreases when the maximum heap size is
increased. The execution time for TJFast reaches its minimum and gets stable using a heap size of about 300 MB. The effect of
increased memory size available is less for S3 and OS3; they reach their minimum execution time already for 100 MB. This
observation shows that S3 and OS3 need less memory for query evaluation and behave better when the heap size is limited or
when transactions need to share a fixed or limited amount of memory in a real multi-user environments.
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6. Conclusions

In this paper, we reviewed some well-known QTP processing methods. Structural Join as the oldest method decomposes a
QTP into its binary relationships and executes them separately. Its key drawback is the high amount of intermediate results
produced during the matching process. TwigStack as a holistic method processes a QTP as a whole in two phases. During the
first phase, TwigStack produces partial results for each QTP leg, whereas these partial solutions are merged in the subsequent
phase to produce the final result. The main drawback of TwigStack is its expensive merging phase. TJFast, inspired by Twig-
Stack, aims at improvements by reducing I/O. It uses an extension of the Dewey labeling method which enables the mapping
of node labels to their related paths in the document. As a consequence, only potential target nodes of QTP leaves have to be
fetched, but it is still burdened by the expensive merging phase. Twig2Stack and its refined version TwigList evaluate QTPs
without merging in a single phase, but they require more memory than TwigStack and TJFast. In the worst case, they have
to load the entire document into the memory.

To overcome these problems, we proposed our method S3. We emphasized the power of DeweyIDs and QueryGuide and
showed that a Structural Summary enables for a QTP the derivation of an execution plan (SMP) to focus document (element
index) access and reduce I/O cost as much as possible. The resulting SMP also facilitates the matching process. Enriched by
information extracted from each MPs in the SMP, we can produce matches only by comparing DeweyIDs of elements related
to QTP leaves without producing or accessing labels related to the inner QTP nodes. We can produce a full match containing
labels related to all QTP nodes, just before the output of the final result. As a consequence, we produce only an insignificant
amount of intermediate results which need less memory, too. Our scalability experiments limited by the available memory
confirm that our method can also efficiently work in real multi-user XML databases. We also proposed an optimized version
of S3 (OS3) to overcome situations where S3 produces MPs which require repetitive access to some elements. Our scalability
tests concerning document size revealed that OS3 is the only method providing sub-linear behavior in our experiments,
whereas S3 behaves similarly, but exhibiting linear behavior in the worst case.
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