
Optimizing Maintenance of Constraint-based
Database Caches

Joachim Klein Susanne Braun

Databases and Information Systems, Department of Computer Science,
University of Kaiserslautern, P. O. Box 3049, 67653 Kaiserslautern, Germany

jklein@cs.uni-kl.de s braun@cs.uni-kl.de

Abstract. Caching data reduces user-perceived latency and often en-
hances availability in case of server crashes or network failures. DB
caching aims at local processing of declarative queries in a DBMS-managed
cache close to the application. Query evaluation must produce the same
results as if done at the remote database backend, which implies that
all data records needed to process such a query must be present and
controlled by the cache, i. e., to achieve “predicate-specific” loading and
unloading of such record sets. Hence, cache maintenance must be based
on cache constraints such that “predicate completeness” of the caching
units currently present can be guaranteed at any point in time. We ex-
plore how cache groups can be maintained to provide the data currently
needed. Moreover, we design and optimize loading and unloading algo-
rithms for sets of records keeping the caching units complete, before we
empirically identify the costs involved in cache maintenance.

1 Motivation

Caching data in wide-area networks close to the application removes workload
from the server DBMS and, in turn, enhances server scalability, reduces user-
perceived latency and often enhances data availability in case of server crashes
or network failures. Simpler forms of caching, e. g., Web caching, keep a set
of individual objects in the cache and deliver—upon an ID-based request—the
object, if present, to the user [3]. In contrast to Web caching, DB caching is
much more ambitious and aims at declarative, i. e., SQL query evaluation in the
cache which is typically allocated near by an application server at the edge of the
Internet. If the cache holds enough data to evaluate a query, it can save response
time for the client request, typically issued by a transaction program running
under control of the application server. If only a partial or no query result can be
derived, the remaining query predicates have to be sent to the backend database
to complete query evaluation and to return the result back to the cache.

Hence, DB caching substantially enhances the usability of cached data and is
a promising solution for various important and performance-critical applications.
However, local query evaluation must produce the same answer as if done at the
remote DB backend, which implies that all data records needed to process a
specific predicate must be present and controlled by the cache. In contrast to

conventional caching, the cache manager has, at any point in time, to guarantee
“predicate-specific” loading or unloading of such record sets. The simplest way to
accomplish such a “completeness” is to cache the whole contents of frequently
visited tables by full-table caching [13]. Because this static solution does not
allow to respond to the actual query workload, more flexible approaches are
needed. Some of them are based on materialized views, but limited to them,
i. e., they only support single-table queries [2,4,6,9,10,11]. In contrast, constraint-
based DB caching uses specific cache constraints, by which the cache manager can
guarantee completeness, freshness, and correctness of cache contents and support
multi-table queries. These constraints equip the cache manager with “semantic”
knowledge to take care of “predicate completeness” and achieve effective cache
maintenance—prerequisites for correct and efficient query evaluation. So far,
some vendors provide DB caches based on similar implementation ideas [1,10,14].

Approaches to semantic caching [8] or view caching [2] control record sets
in single tables, whereas DB caching supports cache consistency and predicate
completeness across multiple tables. Because contribution [7] defining its basics
only deals with query evaluation at a logical level, both performance aspects and
cache maintenance were not considered so far. Hence, we complement this work
by a DB-based SQL implementation and an empirical study of novel algorithms
for loading and unloading groups of cache tables. For this reason, Sect. 2 briefly
repeats the cornerstones of DB caching, whereas Sect. 3 explains the key prob-
lems, sketches the measurement environment, and outlines results achieved by
known algorithms. The performance weaknesses observed lead the new mainte-
nance algorithms introduced in Sect. 4 and Sect. 5. After the presentation of our
performance gains for the maintenance tasks, we conclude the paper in Sect. 6.

2 Constraint-based Database Caching

Constraint-based DB caching (CbDBC) maintains a set of cache tables forming
a cache group, where specific constraints control its content. Valid states of the
cache are accomplished when all cache constraints are satisfied. But, they are
continuously challenged, because existing cache data has to be updated (due to
modifications in the backend), unreferenced cache records have to be removed
to save needless overhead for consistency preservation, and new records enter
the cache due to locality-of-reference demands. Using the cache constraints, the
cache manager is able to decide which data has to be kept and which queries can
be answered. A complete description of the concepts of CbDBC can be found in
[7]. Here, we briefly repeat the most important concepts for comprehension.

Each cache table corresponds to a backend table and contains, at any point
in time, a subset of the related records in the backend table. For ease of manage-
ment, cache tables have identical columns and column types as the respective
backend tables, however, without adopting the conventional primary/foreign key
semantics. Instead, cache table columns can be controlled by unique (U) and non-
unique constraints (NU, for arbitrary value distributions). Those columns gain
their constraining effect by the value-completeness property.

Definition 1 (Value completeness). A value v is value complete (or complete
for short) in a column S.c if and only if all records of σc=vSB are in S.

Here, S is the cache table, SB its corresponding backend table, and S.c
a column c of S. Completeness of a value in a NU column requires loading
of multiple records, in general, whereas appearance of a value in a U column
automatically makes it value complete. Apparently, value completeness supports
the evaluation of equality predicates on the related columns.

A further mechanism enables the evaluation of equi-joins in the cache. A
so-called referential cache constraint (RCC) links a source column S.a to a tar-
get column T.b (S and T not necessarily different) and enforces for a value v
appearing in S.a value completeness in T.b. Therefore, values in S.a are called
control values for T.b.

Definition 2 (Referential cache constraint, RCC). A referential cache
constraint S.a→ T.b from a source column S.a to a target column T.b is satisfied
if and only if all values v in S.a are value complete in T.b.

Only records frequently referenced by queries, i. e., those having high locality
in the cache, are beneficial for caching. Therefore, we have designed a special
filling mechanism based on a so-called filling column, e. g., T1.a in Fig. 1a. For
filling control, we define for it a fill table ftab(T1), an RCC ftab(T1).id→ T1.a,
and a set cand(T1) which contains the desired candidate values eligible to initiate
cache filling.1 Upon a query reference of value v listed in cand(T1), e. g., by
Q = σa=vT1, it is inserted into ftab(T1).id, if not already present, and, hence,
called fill value. Via the related RCC, such a value implies value completeness
of v in T1.a and, therefore, loading of all records σa=vT1B into T1. To satisfy
all cache constraints, RCCs emanating from T1 may trigger additional load
operations. As a consequence of v’s completeness, values—so far not present in
their source columns (e. g., T1.a and T1.b)—may have entered T1 and, in turn,
imply completeness in their target columns. The newly inserted records in those
target tables may again trigger—via outgoing RCCs (e. g., T2.a)—further load
operations, until all cache constraints are satisfied again. An example of a cache
group together with its constituting components is shown in Fig. 1a.

3 Cache Loading and Unloading

To describe cache loading in detail, we need some further terminology. For any
RCC S.a → T.b defined in a cache group, the set of records to be (recursively)
cached due to the existence of v in S.a, is called closure of v in S.a. Refer
to Fig. 1b: Loading a record with value T1.a = ‘Jim’ to T1 implies to satisfy
T1.a→ T2.b, which adds records (‘p4711’,‘Jim’, ...; ‘p4810’, ‘Jim’, ...) to T2. In
turn, these records insert new values ‘p4711’ and ‘p4810’ to T2.a, which enforce
satisfaction of RCC T2.a→ T3.a. Hence, the new values have to be made value
1 In contrast, DBCache [1] uses the cache key concept, which implies caching of any

value referenced in the related column.

Fig. 1. Cache group: constraint specification (a), load effect of value ‘Jim’ (b).

complete in T3.a, for which the example in Fig. 1b assumes that the records
(‘p4810’,111,...; ’p4810’, 222,...) have to be inserted into T3. Note, the closure
of ‘Jim’ in T1.a contains the records in T2 controlled by ‘Jim’ and, in turn, all
dependent closures recursively emanating from control values included, e. g., the
closure of ‘p4810’ in T2.a contains records in T3, as illustrated in Fig. 1b.

Of special importance is the loading/unloading effect of a fill value, because
it initiates cache loading or is subject to cache removal. The respective set
of records is, therefore, called caching unit (CU). A fill value (e. g. ‘Jim’ for
the filling column T1.a) is managed by the id column of its fill table ftab(T1)
which is the source column of a special RCC ftab(T1).id→ T1.a. Hence, insert-
ing/removing ‘Jim’ to/from ftab(T1).id implies loading/unloading of an entire
caching unit CUT1(‘Jim’).

The set of records addressed by the CUT1(‘Jim’) is not necessarily the actual
set to be considered by the cache manager for load/unload actions. Constraints
of different CUs in a cache group may interfere and may refer to the same
records such that record sets belong to more than one CU. Assume loading of
CUT1(‘Joe’) causes the insertion of record (‘p4810’,‘Joe’,...) into T2. Because
value ‘p4810’ in T2.a is already present and, in turn, T3.a is already value
complete for ‘p4810’, no further loading of T3 is necessary. On the other hand,
the closure of ‘p4810’ must not be removed in case CUT1(‘Jim’) is unloaded by
the cache manager. Hence, when loading/unloading a caching unit, only records
exclusively addressed by this CU—also denoted by CU difference—are subject
to cache maintenance. This requirement ensuring correct query evaluation in the
cache adds quite some complexity to cache management.

3.1 Key Problems

The structure of a cache group can be considered as a directed graph with cache
tables as nodes and RCCs as edges (see Fig. 1a). Handling of cycles in such graphs
is the main problem and, for that reason, considered separately in Sect. 3.1. To

Fig. 2. Separation of a cache group in atomic zones.

gain a directed acyclic graph (DAG), we isolate cycles in so-called atomic zones
(AZ) to manage them separately. Hence, in the simplest case, every cache table
is a single atomic zone (trivial atomic zone). Otherwise, tables belonging to a
cycle are assigned to the same atomic zone (non-trivial atomic zone). Fig. 2
shows a cache group example with segmentation into atomic zones.

Separation into atomic zones allows us to consider cache group maintenance
in the resulting DAG from a higher level of abstraction [5]. Each atomic zone
has to be loaded in a single atomic step, i. e., under transaction protection, to
guarantee consistent results of concurrent queries. Reconsider Fig. 2: When a
caching unit CUnew is loaded, top-down filling, i. e., AZ1 before AZ2 and AZ3,
would imply all affected atomic zones had to be locked till loading of CUnew

is finished, because use of AZ1, when related AZ2 and AZ3 are unavailable,
would risk inconsistent query results. In contrast, a bottom-up approach allows
to consistently access AZ2 or AZ3 for records in CUnew (e. g., when evaluation
of a query predicate is confined by the atomic zone), although loading of the
corresponding AZ1 is not finished.

The reversed sequence can be used during unloading. After having removed
its fill value from ftab(T1), AZ1 can be “cleaned” before AZ2 and AZ3 (within
three transactions).

Cycles. By encapsulating cycles in atomic zones, we are now ready to consider
their specific problems. An RCC cycle is said to be homogeneous2, if it involves
only a single column per table, for example, T2.c → T3.a, T3.a → T2.c in
Fig. 2. Loading of a homogeneous cycle is safe, because it stops after the first
pass through the cycle is finished [7].

Unloading, however, may be complicated in homogeneous cycles due to an
interdependency of records, as shown in the following example.

Example 3.1. [Dependencies in homogeneous cycles]
Fig. 3 represents a homogeneous cycle where ‘Jim’ should be deleted from AZ3.
If we now try to find out whether or not ‘Jim’ can be removed from the cycle, we
have to resolve the cyclic dependency in T1.a→ T2.a→ T3.a→ T4.a→ T1.a.
A standard solution is to mark records to identify those already visited. However,
records cannot only be involved in an internal dependency within the cycle, but
2 Heterogeneous cycles may provoke recursive loading and are, therefore, not recom-

mended in [7].

Fig. 3. Internal vs. external dependencies within an homogeneous cycle.

also in an external dependency. Such a dependency would exist if value ‘Jim’
would be present in S.b. Then, due to the RCC S.b→ T2.a in Fig. 3, value ‘Jim’
would be kept in T2.a and no records would be deletable in this example. But,
a table in a cycle may have no matching records. For example, if records such
as (‘Jim’, ’18/337’) would not exist in T4B , the cycle is broken for this specific
value. Assume a broken cycle for ‘Jim’ in T4.a and simultaneously the existence
of ‘Jim’ in S.b, then only (‘Jim’, ’Agent’) could be deleted from T1.

Due to the illustrated problems, contribution [7] recommends deletion of the
complete cache content, which implies that caching units with high locality
would be reloaded immediately. Therefore, selective unloading, executed as an
asynchronous thread, can save refill work and provide more flexible options to
maintain the cache content. Sect. 5 provides concepts for proper unloading of
caching units and describes some implementation details used in our prototype
ACCache.

3.2 Measurements

The main objective of our empirical experiments is to gain some estimates for
the maintenance of some basic cache group structures. In all measurements, we
have stepwise increased the amount of records to be loaded or deleted, where the
given number corresponds to the size of the CU difference caused by the related
fill value. In all cases, we have distributed the affected records as uniformly as
possible across the cache tables involved.

Important cache group types. We have previously argued that the lengths of RCC
chains and homogeneous cycles are interesting for practical cache management.
Using this directive, we have measured the maintenance costs of some basic cache
groups, as illustrated in Fig. 4.

Data generator. To provide suitable data distributions and cache group contents,
a data generator—tailor-made for our experiments—analyses the specific cache
group and generates records corresponding to a CU difference of a given size
and assigns them uniformly to the backend DB tables involved. All tables have
seven columns; if a column is used in an RCC definition, data type INTEGER is
used, whereas all other columns have data type VARCHAR(300).

Fig. 4. Important cache group types

Measurement environment. For all measurements, we use the ACCache system
[5] based on an existing DBMS in front- and backend (i. e. DB2), which was ex-
tended by the functionality described in Sect. 4 and 5. Applications participating
in a test run are specified by means of three worker nodes: the simulated client
application triggering loading of CUs by sending SQL queries, the ACCache
system, and the backend DBMS. We implemented a tailor-made measurement
environment which enabled controlled test runs: each test run was repeated 6
times with newly generated CU data where the sizes of the CU differences re-
mained stable, but with data of varying content. Hence, all results presented are
average response times of dedicated measurements.

Because we wanted to explore the performance and quality of load methods
separated from network latency, we run the applications in a local-area network
where data transmission costs are marginal. In the Internet, these costs would
be dominated by possibly substantial network delays.

4 Loading of Caching Units

To preserve cache consistency, entire caching units, i. e., all records implied by
the insertion of a fill value, must be loaded at a time. Of course, duplicates are
removed if records—also belonging to other CUs—are already present. Because
SQL insertions are always directed to single tables, records to be loaded are
separately requested for each participating table (which coincides with an atomic
zone in non-cyclic cases) from the backend.

4.1 Direct Loading

The first method directly inserts the records into the cache tables where the
atomic zones are loaded bottom-up. The quite complex details are described in
[5]. In principle, the cache manager requests the data by table-specific predicates,
which reflect the RCC dependencies of the table in the cache group, from the
backend DBMS. For each table involved, the record set delivered is inserted
observing the bottom-up order, thereby dropping duplicate records. While cache
group CG1 in Fig. 4 can be loaded by a simple backend request, i. e.,

Q1: select * from T1B where T1B .a = ‘v’,

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

Ti
m

e
[s

]

Number of loaded records

Direct loading: single table

 single table

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000

Ti
ne

 [s
]

Number of loaded records

Direct loading: chains

with 2 tables
with 3 tables
with 4 tables
with 5 tables

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

Ti
m

e
[s

]

Number of loaded records

Direct loading: trees, 2 outgoing RCCs per table

Height=2, 3 tables
Height=3, 7 tables

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000
Ti

m
e

[s
]

Number of loaded records

Direct loading: homgeneous cycles

with 2 tables
with 3 tables
with 4 tables
with 5 tables

Fig. 5. Results for direct loading: single node, chains, trees, homogeneous cycles

CG2 and CG3 obviously need three load requests. Although CG4 consists of
only a single atomic zone, up to three requests are necessary to load all tables
participating in the cycle. Essentially, the table maintenance cost is caused by
the predicate complexity required to specify the records to be inserted. While
insertion into T1 of CG1 in Fig. 4 is very cheap, the records, e. g., to be inserted
into CG2 have to be evaluated by three queries: filling T1 is similar to Q1 above,
whereas the queries Q2 and Q3 for T2 and T3, respectively, are more complex:

Q2: select * from= T2B where T2B .a in
(select T1B .a from T1B where T1B .a = ‘v’)

Q3: select * from T3B where T3B .a in
(select T2B .c from T2B where T2B .a in

(select T1B .a from T1B where T1B .a = ‘v’)).

In the example, the inherent complexity is needed to determine all join part-
ners for the CU. When inserting records with value T1B .a = ‘v’ into T1 of CG2,
Q2 delivers all join partners needed in T2 for T1 (to satisfy RCC T1.a→ T2.a)
and, in turn, Q3 those in T3 for T2. Apparently, an RCC chain of length n
requires n− 1 joins and one selection.

Measurement results. Our experiments reported in Fig. 5 correspond to the
cache group types sketched in Sect. 3.2 and primarily address scalability of the
load method. In each case, we continuously increased the number k of records
to be loaded up to 3000. Because of the simple selection predicate in CG1 and
the missing need for duplicate elimination, Fig. 5a scales very well and the cost

involved in selecting, comparing, and inserting of data was hardly recognizable
in the entire range explored.

The remaining experiments were coined by the counter-effect of smaller re-
sult sets per table and more load queries with more complex predicates to be
evaluated. When n tables were involved, the load method had to select ∼ k/n
records per table. In Fig. 5b, e. g., the experiments for k = 3000 and chains of
length 2, 3, 4, and 5 were supplied by 1500, 1000, 750, and 600 records per table,
respectively.

While the load times quickly entered a range unacceptable for online trans-
action processing, the existence of cycles augmented this negative performance
impact once more. In summary, if the amount to be loaded is higher than several
hundred records, direct loading cannot be applied. Hence, a new method called
indirect loading was designed to avoid these problems encountered.

4.2 Indirect Loading

Indirect loading reduces the high selection costs of direct loading using so-called
shadow tables. Before making a requested CU available for query evaluation, it
is entirely constructed at the cache side and then merged with the actual cache
content. This proceeding allows arbitrary CU construction asynchronously to
normal cache query processing. Therefore, it implies much simpler predicates
of load queries, because the CU fractions of the participating atomic zones can
be loaded top-down, for which simple selections on single backend tables are
sufficient. For each cache table, a corresponding shadow table (indicated through
a subscripted S) with identical column definitions is created which holds the
collected record of a requested CU (see Fig. 6b).

Fig. 6. New concepts: propagation tables (a), shadow tables (b)

Before these records are merged bottom-up, the preceding top-down work-
ing collection is implemented through a simple recursive algorithm based on
so-called propagation tables (PT). These tables, defined for each RCC, consist
of only a single column and control the propagation of distinct RCC source
values (also denoted as control values) to be loaded to the shadow tables.3 We

3 In Sect. 5, PTs are also used to control propagation of unloading from cache tables.

denote the values propagated trough PTs as propagation values. To load a CU
(see Fig. 6a), its fill value v is inserted into ftab(T1).id. The PT attached to
RCC ftab(T1).id → T1.b obtains value v and trigger value completeness for it
in T1.b. In turn, newly loaded control values in T1 are again propagated along
PTs of outgoing RCCs. As long as propagation values are present in PTs, the
respective records are collected according to the principles described in Sect. 3.
The process stops if all control values are satisfied, i. e. if all propagation val-
ues are processed/consumed. Subsequently, the freshly loaded CU is merged in
bottom-up fashion with the related cache tables thereby eliminating duplicate
records and observing all RCCs.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

Ti
m

e
[s

]

Number of loaded records

Comparison (direct/indirekt): Chain, 3 tables

direct loading
indirect loading

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000

Ti
m

e
[s

]

Number of loaded records

Comparison (direct/indirect): homogeneous cycle, 3 tables

direct loading
indirect loading

Fig. 7. Improvements achieved by indirect loading

Comparison: direct/indirect loading. Fig. 7 measures the performance of direct
and indirect loading for two cache group types. We have empirically compared
again those cache group types (chains and cycles) which achieved worst perfor-
mance with the previous load method. Indirect loading was primarily designed to
solve such performance problems and, indeed, the results are quite clear: In both
cases, the costs involved for indirect loading were often lower than one second
and did not exceed 3 seconds. Note, because CU preparation in shadow tables is
aynchonous, only short locks are necessary for the merging phase. Therefore, the
timings are acceptable, because concurrent queries are not severely hindered.

The performance reached for loading seems to be further improvable: So far,
both methods are executed by the cache DBMS. This means that record selection
needs multiple requests to the backend DBMS and, in turn, is burdened by
multiple latencies between cache and backend. Therefore, the so-called prepared
loading tries to avoid these disadvantages.

4.3 Prepared Loading

This method entirely delegates the collection of CU records to the backend
DBMS. As a prerequisite, the backend DBMS needs to maintain additional meta-
data about the cache groups supplied. The cache manager requests the data for a
new caching unit by sending the corresponding fill value to the backend. The way
the data is collected is similar to indirect loading, but happens at the backend.

A prepared CU is then packaged and transferred to the cache. Cache merging
only has to observe uniqueness of records.

Because the goal of caching is usually to off-load the server DBMS, this
“optimization” partly yields the opposite and requires the server to maintain
cache-sided metadata and to perform extra work. This method, however, may
be very useful in case of cache groups having n atomic zones and high latency
between cache and backend, because only a single data transfer to the cache is
needed instead of n (and even more in the presence of cycles). Effects of latency,
however, are not considered in this paper.

5 Unloading of Caching Units

After having explored various options for cache loading, we consider selective
unloading of cached data. Note, keeping unused data in the cache increases main-
tenance costs to preserve consistency and freshness without bringing benefits in
terms of reduced query response times. Therefore, it is important to control data
references in the cache and to possibly react by removing fill values and their im-
plied CUs whose reference locality degraded. Of course, replacement algorithms
in cache groups are more complicated than those for normal DB buffers.

To unload a fill value together with its CU, the atomic zones involved are
traversed top-down (forward directed unloading), as sketched in Sect. 3.1. The
control values to be deleted are propagated using the same PTs already intro-
duced in Sect. 4.2. Note, because records in a CU may be shared by other CUs,
actually only the CU difference must be removed, which implies checking whether
or not the records considered for replacement exclusively belong to the CU to
be unloaded. In the following, we outline our replacement provisions, before we
describe unloading in a trivial atomic zone and the more complex procedure for
non-trivial atomic zones.

5.1 Replacement Policy

We used as replacement policy the well known LRU-k algorithm, for which we
record the timestamps of the k most recent references to a CU in the related
control table (see [12]). The replacement decision for CUs refers to extra infor-
mation recorded in each control table. The first is a high-water mark concerning
the number of related caching units to be simultaneously present in the cache.
The second characterizes the minimum fill level observed for CU unloading. The
current fill level is approximated by the number of rows in the control table
(the number of CUs actually loaded) divided by the number of candidate values.
When the fill level reaches the high-water mark, a delete daemon has to remove
records to make room in the cache. Such a strategy allows to separately control
the cache space dedicated for each filling column, which enables fine-tuning of
locality support and is much more adaptive compared to a single occupancy
factor assigned to the whole cache group.

Fig. 8. Unloading in trivial atomic zones

5.2 Unloading in Trivial Atomic Zones

Consider the cache group fragment shown in Fig. 8. The given processing se-
quence for atomic zones (see Sect. 3.1) ensures that the related PTs of incoming
RCCs obtain all propagation values if control values were removed from preced-
ing atomic zones. In the example, deletion in T1 is initiated by value v prop-
agated through PT1. Hence, value v defines the starting point for the deletion
process in table T1.

To determine the deletable set of records, each record with T1.b = ‘v’ is
to be checked whether or not it is eligible, i. e., whether other control values
do not enforce its presence in the cache. In our example, all records can be
deleted which are not restrained by control values of RCC2. Therefore, if only
the control value 1000 is present in S.a (the source column of RCC2), all records
σ(b=‘v’∧ d6=1000)T1 can be deleted. Thus, deletion within a trivial atomic zone
can be performed with a single delete statement. The following statement Q4
removes all deletable records from AZ1, where all incoming PTs (in our case
PT1 and PT2) are observed.

Q4: delete from T1
where (b in (select CV from PT1) or

d in (select CV from PT2))
and (b not in (select R.a from R) and

d not in (select S.a from S))

As indicated by our cache group examples in Fig. 4, most tables are encap-
sulated in trivial atomic zones. Because unloading of them can be achieved by
considering each atomic zone in isolation (thereby observing the top-down pro-
cessing sequence), this maintenance task remains simple and can be effectively
performed. In rare cases, however, removal of records becomes more complicated
if they are involved in cyclic RCC references. Such a case will be discussed in
the following.

5.3 Unloading in Non-trivial Atomic Zones

We now consider in detail the problems sketched in example 3.1, where we have
differentiated internal from external dependencies. To explain their effects and
to resolve them, we analyze unloading in the homogeneous cycle shown in Fig. 9.

The algorithm proceeds in two phases: global deletion and internal deletion.
We denote the values in columns which form a homogeneous cycle as cycle values.

To resolve their dependencies as fast as possible, the key idea is to initially find
all cycle values whose records are not involved in external dependencies. In Fig. 9,
these are all records having value 1000, because values 2000 and 3000 are assumed
to be externally referenced through R.a = ‘x’ and S.a = ‘j’. After deletion of
all records with cycle value 1000 (in phase global deletion), the atomic zone just
holds records which have no more dependencies (neither internal nor external)
or records which could not be deleted due to an existing external dependency.
Hence, the internal cyclic dependencies are eliminated if this was possible. The
remaining records are deleted within the second phase called internal deletion,
which is also performed in forward direction (similar to trivial atomic zones), but
only analyzes the tables within the non-trivial atomic zone. As a consequence,
the records having value 3000 in T1 and T2 are deleted in our example; the
corresponding record in T3, however, cannot be deleted due to the external
dependency present. Subsequently, we consider the two phases in detail.

Global deletion. Refer to Fig. 9 and assume that the value v needs to be deleted
as indicated. To find the cycle values whose records are globally deletable, a
join between all tables having incoming external RCCs is performed. In our
example, these are the tables T1 and T3. Hence, query Q5 returns the deletable
cycle values:

Q5: select T1.b from T1, T3
where T1.b = T3.a
and T1.a in (select CV from PT1)
and T1.a not in (select R.a from R)
and T3.b not in (select S.a from S)

The example shows that it is sufficient to perform the dependency check via
the control values of incoming external RCCs. Because cyclic internal dependen-
cies cannot be violated, such cyclic dependencies are not observed in this phase.
Hence, this approach exploits the fact that the cycle values can be joined within
an homogeneous cycle. When control values are affected during the deletion of
records which hold the corresponding cycle values (in our example the records

Fig. 9. Unloading in non-trivial atomic zones.

having value 1000), they have to be propagated only along external, outgoing
RCCs (e. g. RCC3 in Fig. 9 using their PTs to continue deletion in subsequent
atomic zones). In Fig. 9, this is necessary for value 11 which is completely re-
moved from T2.a.

Internal deletion. Internal deletion is performed in a similar way as unloading in
trivial atomic zones. Starting at a table with a PT value attached, all incoming
RCCs (external and internal RCCs) are checked to find deletable records. Such
records are removed and all affected control values are propagated along all
outgoing RCCs (using their PTs). The internal deletion ends if there is no PT
anymore holding propagation values for the related AZ. In our example, the
process stops in table T3, because the value 3000 still has external dependencies.

5.4 Measurement Results

Fig. 10 illustrates the times needed to unload specific caching units. In all cache
group types, the unloading process, using SQL statements already prepared, was
very efficient (typically much faster than 200 ms). Only the initial statement
preparation included in the first measurements (selecting 100 records) caused
comparatively high costs. These costs are also included in preceding measure-
ment results (see Fig. 5) where, however, this minor cost factor is insignificant
for the times measured. The execution time consumed to unload a CU within
an homogeneous cycle is similar to that needed to unload chains, which illus-
trates that we are now also able to unload homogeneous cycles with acceptable
performance.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000

Ti
m

e
[m

s]

Number of loaded records

Unloading: single table

 single table

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000

Ti
m

e
[m

s]

Number of loaded records

Unloading: chains

with 2 tables
with 3 tables
with 4 tables
with 5 tables

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000

Ti
m

e
[m

s]

Number of loaded records

Unloading: trees, 2 outgoing RCCs per table

 Height=2, 3 tables
 Height=3, 7 tables

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000

Ti
m

e
[m

s]

Number of loaded records

Unloading: homogeneous cycles

with 2 tables
with 3 tables
with 4 tables
with 5 tables

Fig. 10. Unloading of cache units

6 Conclusion

CbDBC supports declarative query processing close to applications. The cache
constraints to be applied pose particular challenges for cache management and
maintenance. With the help of the methods and algorithms presented, it is now
possible to selectively load and unload caching units efficiently (also in homo-
geneous cycles). Starting from the performance problems caused by direct load-
ing, we introduced a new method called indirect loading, which improves cache
maintenance dramatically. When latency is too high, preparation of caching
units within the backend DBMS could relieve the delays implied by the loading
process. Finally, we presented a novel unloading mechanism, which is also able
to handle unloading of homogeneous cycles. Supported by a variety of empiri-
cal measurements, we confirmed that acceptable maintenance efficiency can be
reached for all important cache group types.

References

1. Altinel, M., Bornhövd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald,
B.: Cache tables: Paving the way for an adaptive database cache. In: VLDB Conf.
(2003), 718–729

2. Amiri, K., Park, S., Tewari, R., Padmanabhan, S.: DBProxy: A dynamic data
cache for web applications. In: ICDE Conf. (2003), 821–831

3. Anton, J., Jacobs, L., Liu, X., Parker, J., Zeng, Z., Zhong, T.: Web caching for
database applications with Oracle Web Cache. In: SIGMOD Conf. (2002), 594–599

4. Bello, R.G., Dias, K., Downing, A., Feenan, J.J., Jr., Finnerty, J.L., Norcott, W.D.,
Sun, H., Witkowski, A., Ziauddin, M.: Materialized views in Oracle. In: VLDB
Conf. (1998), 659–664

5. Bühmann, A., Härder, T., Merker, C.: A middleware-based approach to database
caching. In: ADBIS Conf., LNCS 4152, Springer (2006), 182–199

6. Goldstein, J., Larson, P.: Using materialized views: A practical, scalable solution.
In: SIGMOD Conf. (2001), 331–342

7. Härder, T., Bühmann, A.: Value complete, column complete, predicate complete –
Magic words driving the design of cache groups. The VLDB Journal 17(4) (2008)
805–826

8. Keller, A., Basu, J.: A predicate-based caching scheme for client-server database
architectures. The VLDB Journal 5(1) (1996) 35–47

9. Larson, P., Goldstein, J., Guo, H., Zhou, J.: MTCache: Mid-tier database caching
for SQL server. Data Engineering Bulletin 27(2) (2004) 35–40

10. Larson, P., Goldstein, J., Zhou, J.: MTCache: Transparent mid-tier database
caching in SQL server. In: ICDE Conf. (2004), 177–189

11. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using
views. In: PODS Conf. (1995), 95–104

12. O’Neil, E.J., O’Neil, P.E., Weikum, G.: The lru-k page replacement algorithm for
database disk buffering. In: SIGMOD Conf. (1993), 297–306

13. Oracle Corporation: Internet application server documentation library (2008), URL
http://www.oracle.com/technology/documentation/appserver.html

14. The TimesTen Team: Mid-tier caching: The TimesTen approach. In: SIGMOD
Conf. (2002), 588–593

