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Abstract
XML documents contain substantial redundancy in their structure
part, because each path from the root node to a leaf node is
explicitly represented and typically large sets of such path
instances belong to a path class, i.e., the nodes of the path instances
are labeled by the same sequence of element (or attribute) names.
To save storage space and I/O cost, we want to get rid of this
structural redundancy to the extent possible. While all known
methods for the physical representation (storage) of XML
documents proceed from the root via the element/attribute
hierarchy (internal nodes) down to the leaves (values), we follow
an upside-down approach which explicitly stores the values and
only reconstructs the internal nodes, if needed. The cornerstones
for such a solution are suitable node labels and a path synopsis
which efficiently represents all path classes of an XML document.
As a solution, we propose a compact internal storage format for
native XML database systems where the inner structure of the
stored documents is virtualized. Because this elementless storage
format provides an efficient reconstruction of a document using its
path synopsis, all processing properties are preserved and the
semantics of navigational and declarative operations of XML
languages remains unchanged. Adjusted indexes support the full
spectrum of so-called content-and-structure single path queries.
Apart from greatly reduced storage consumption, our approach
demonstrates its superiority, compared to competing methods, not
only for a substantial fraction of those queries, but also for storing,

reconstructing, and navigating XML documents.1
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1. Motivation
XML models semi-structured data and is becoming the standard for
data exchange in many (Web) applications. Because the dramatical-
ly growing volumes thereby incurred have to be saved for a long
time (for legal and other reasons) and messages are data, too, data-
base systems are a proven technology to persistently store and con-
veniently manage such data. To avoid conversion, not only messag-
es but also conventional DB data are increasingly kept in native
XML format, often resulting in collections of huge XML docu-
ments. Furthermore, XML’s flexibility, i.e., the ability to change

1 Financial support by the Research Center (CM)2 of the University of
Kaiserslautern is acknowledged (http://cmcm.uni-kl.de).
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the data mapping (freedom of cardinality determination, handling
of varying or non-existing structures, etc.) without too much impact
to applications [25], is also a driving factor to enable heterogeneous
data stores and to facilitate data integration. For these reasons,
XML databases currently get more and more momentum if data
flexibility in various forms is a key requirement of the application.

As XML documents permeate information systems and databases
with increasing pace, they are also increasingly used in a collabor-
ative or even competitive way [26]. The challenge for database sys-
tem development is to provide adequate and fine-grained manage-
ment for these documents enabling efficient and concurrent read
and write operations. In essence, this objective postulates the de-
sign and management of highly dynamic XML documents. There-
fore, effective and storage-saving internal formats for document
representation are urgently needed, too, primarily to reduce I/O and
to enable caching of larger document fragments in memory. 

Currently available relational or object-relational database manage-
ment systems ((O)RDBMSs) only manage structured data well.
There is no effective and straightforward way for handling XML
data. A “brute-force” mapping uses “long fields” or CLOBs where
content- and structure-based XML document search as well as se-
lective and direct access to single XML document nodes (elements
or attributes) is not possible. Alternatively, a large variety of differ-
ent storage formats were proposed, which take the structural rich-
ness of XML into account. In the past, the so-called “shredding” ap-
proach created an innumerable number of algorithms mapping
semi-structured XML data to structured relational database tables
and columns, where the individual XML documents are scattered
across multiple relational tables. As an often claimed advantage,
such a proceeding may facilitate query processing; when an XML
query is mapped to SQL, the relational query processing infrastruc-
ture (compiler, optimizer, code generator) can be directly used for
query evaluation. While CLOBs prevent maintenance of dynamic
documents and multi-user read/write access at all, “shredded” map-
pings, in particular, of dynamic XML documents imply substantial
maintenance overhead and cause disastrous transactional perfor-
mance behavior, especially, if relational systems lock entire pages
or even entire tables as their minimal lock granularity. For these
reasons, native and fine-grained XML storage structures addressed
in this paper provide a considerable optimization potential for dy-
namic XML documents and applications in multi-user transactional
environments [17].

No matter which kind of storage structure is chosen, all properties
of the original document have to be preserved [21]. In particular,
when storing an XML document, the round-trip property must be



guaranteed, that is, the database management system (DBMS) must
be able to reconstruct the original, ordered document as delivered
by a client application. 

In recent years, different language models for XML processing—
stream-based (SAX), navigational (DOM), or declarative (XPath,
XQuery)—were standardized [40, 42] and their complex and rich
query expressions have to be efficiently processed on documents of
substantial size in any XML Database Management System (XD-
BMS). Scanning entire documents is certainly an extremely expen-
sive query evaluation strategy and is disastrous in the presence of
multi-user read/write transactions. Therefore, various forms of in-
dexing become a prime issue for XML query processing. Perfor-
mance would be boosted, if entire XML queries or large fractions
thereof could be processed where access to (cached) indexes is suf-
ficient and where document reference is avoided at all—as, for ex-
ample, often achieved in relational DBMSs using B*-tree indexes
and TID references. To approach optimal storage and indexing for
rich-structured XML documents, detailed knowledge about their
characteristics is useful. 

1.1 XML document characteristics
An empirical study [31] gathered about 200,000 XML trees world-
wide, where 99% have less than 8 levels, i. e., less than depth 8,
which should be the primary goal of optimization. Almost all of the
remaining 1% documents range between 8–30. Only a tiny fraction
of the documents gathered has more than 30 levels. To gain some
insight supporting our design idea, we have empirically explored a
variety of XML documents [32]; we can only list a summary of the
results for selected ones (due to page limitations). The document
size is measured in the plain format where the XML document is
stored in its external representation (i. e., as received by the data-
base server from the client) without any compression technique ap-
plied (readable element and attribute names, empty spaces, etc., but
without (internal) node labels). The first 5 rows in Table 1 contain
a representative subset of all documents, called reference docu-
ments, and will be considered in the following. These documents
range from a uniform XML structure of moderate depth (4)—rep-
resenting a relational table—to GB-sized documents of rich XML
structures and larger depths. As the last row entry, treebank is in-
cluded to show an exotic outlier whose optimization is not in the fo-
cus of our approach.

Our goal is to ideally store only the document’s content and to vir-
tualize its structure part—of course, without losing any semantics
of the document under all operations of the various XML language
models. For this purpose, it is helpful to look into the details of typ-
ical document structures, which are summarized in Table 1. The
number of distinct element and attribute names (vocabulary) gives
an indication of the vocabulary size needed to replace the long ex-
ternal names by internal names, so-called VocIDs. All paths from
the root to the leaves having the same sequence of element/attribute
names form a path class. All path classes of an XML document can
be captured in a small main-memory data structure (again with the
exception of treebank). Such a concise description of the docu-
ment’s structure (see Figure 2) is a prerequisite for effective com-
pression of the document’s structure. If we can afford enough mem-
ory, structure virtualization can even be applied to treebank (see
size of path synopsis in Table 1). When comparing them to the num-
ber of path instances, it becomes obvious that huge redundancy is
introduced when all path instances are explicitly stored. In the well-
known dblp document, for example, one of the dominating path
classes /Bib/Paper/Author currently has ~1,000,000 instances. For
our reference documents, the number of path instances per path
class ranges between ~5,000 and ~442,000 in the average (for tree-
bank, it is only ~6). When considering the average depth (Avg.
depth) of them, one immediately gets an impression of the storage
redundancy created by such paths or the entire structural document
part.

All these empirical results confirm that these structure-determining
characteristics are of moderate size and can be kept in main memo-
ry to be used for optimization purposes concerning the design of
XML document representations with virtualized structure (inner
nodes) and search support on them using a variety of indexes.

1.2 Our contribution
The contributions of this paper can be summarized as follows:

• Elementless XML document storage is a novel method for
the virtualization of the inner document nodes. It reduces
storage overhead and response times for storing and
reconstructing XML documents to a much larger extent
than standard vocabulary-based approaches.

• We explore the role of SPLIDs [14] as prefix-based node
labels for query processing and show that they are

Table 1.Characteristics of XML documents considered

Doc. 
name Description Size in

MB
# elem. & 
attr. nodes

# content 
nodes

Max.
depth

Avg. 
depth

# voca-
bulary 
names

# path 
classes

Size [KB]
of path 

synopsis

# path 
instances

Avg. size 
of content 

nodes

Huffman 
com-

pression

line-
item

LineItems from
TPC-H benchmark 32.3 1,022,977 962,801 4 3.45 19 17 0.168 962,801 12.5 70.8 %

uni-
prot

Universal protein 
resource 1,821.0 81,983,492 53,502,972 7 4.53 89 121 1.328 53,502,972 24.0 76.8 %

dblp Computer science 
index 330.0 9,070,558 8,345,289 7 3.39 41 153 1.509 8,345,289 17.0 69.9 %

psd-
7003

DB of protein 
sequences 717.0 22,596,465 17,245,756 8 5.68 70 76 1.002 17,245,756 6.5 74.0 %

nasa Astronomical data 25.8 532,967 359,993 9 6.08 70 73 0.982 371,593 20.9 64.4 %

tree-
bank

English records of
Wall Street Journal 89.5 2,437,667 1,391,845 37 8.44 251 220,894 3,323.0 1,391,846 33.4 75.8 %
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efficiently applicable. Even navigation in virtualized
document hierarchies is much better than the
corresponding operations on physical document
representations. 

• We design tailored indexes for content-and-structure
(CAS) single path queries. Our implementation supports
unique, collective, and generic indexes enabling greater
freedom and flexibility for index selection and allocation
as well as mapping of queries to existing indexes. 

• CAS indexes and virtualized XML documents are
orthogonal. We combine both concepts and show how
CAS queries can be effectively processed without
accessing the documents to be queried and that they
outperform any kind of conventional path operator use
(e. g., binary structural joins or holistic twig joins).

All proposals considered are implemented in our prototype XD-
BMS called XTC (XML Transaction Coordinator), which we used
as a testbed system for the empirical evaluation of benchmarks con-
sisting of navigational and descriptive queries on a variety of large
XML documents [32, 37]. 

In this paper, Section 2 gives a description of the essential concepts
forming our elementless XML storage format. The operations sup-
ported are characterized in Section 3, before we describe the under-
lying index structures and possible generalizations in Section 4.
Our search model for content-and-structure (CAS) single path que-
ries as well as the way how CAS queries are matched to existing in-
dexes are outlined in Section 5. This search model is assessed by
empirical performance measurements, as described in Section 6; it
clearly discloses the potential of our approach for response time im-
provements when navigational or declarative queries are evaluated.
In Section 7, we position our contribution and compare it with the
abundant and competing supply of related work, before we wrap up
with conclusions.

2. Storing XML documents
Space-saving storage formats for XML documents always
embody a performance-increasing measure in disk-based
environments, because the well-known I/O bottleneck will be
relieved in many DB-based application scenarios.

2.1 Applying XML compression
There exists a large body of scientific contributions dealing with
XML compression technologies [34, 38] promising enormous gains
in storage saving and, at the same time, enabling a kind of query
processing (for very simple XPath expressions). However, all these
approaches are coarse-granular, i. e., they are applied to the entire
document (or file) at a time. Furthermore, they directly compress
the plain, i. e., “verbose” representation, assume static and file-
based application scenarios with single-user operations, are often
context-dependent which requires large auxiliary data structures
(vocabularies), and provoke potentially substantial compres-
sion/decompression overhead [38]. Therefore, these methods are
not adequate for dynamic XML structures processed in a multi-user
transactional DBMS context and, in turn, cannot be considered as
storage formats for fine-grained tree-like structures where each tree
node can be addressed and manipulated separately. In our usage
scenario, structure had to be isolated from content in an orthogonal
way. Because the efficiency of compression methods is highly de-

pendent on the content size, we leave content compression out of
consideration. Our reference documents are rather data-centric
where content nodes carry short values or strings (see right-hand
side of Table 1) and not entire papers or books (the document-cen-
tric case) and should be processed by regular DBMS operators. In-
stead of sophisticated block-based or word-based methods—rea-
sonable for long fields—, cost-effective, character-based and con-
text-free compression schemes like Huffman are appropriate and
also accomplish homomorphous transformations guaranteeing that
compressed and non-compressed documents can be processed by
the same operations like indexing, searching, or validating [34]. If
we apply a simple Huffman-based compression, we already gain
considerable compression ratios varying from ~23% to ~35% on all
documents, as listed in column Huffman compression of Table 1.
Note, it also reduces the storage time up to ~15% compared to un-
compressed content, because less I/O is needed to store the docu-
ment on disk.

In our proposal, the major space-saving effect comes from structure
virtualization in XML documents, which is independent of whether
or not content compression is applied to the document.

While all known methods for the physical representation of XML
documents proceed from the root via the internal nodes down to the
leaves, this is reversed by our upside-down approach. We only store
the leaves (content values) explicitly and reconstruct the internal
nodes on demand. The cornerstones for such a solution are suitable
node labels and a path synopsis which efficiently represents all path
classes of the XML document.

2.2 Node labels
Our node identification mechanism rests on a prefix-based labeling
scheme for which a few variations are proposed: OrdPath [35],
DeweyID [14], or DLN [5] are adequate and equivalent for our use
and are superior to other mechanisms, e.g., range-based labeling
schemes. Therefore, we refer to such a scheme (the dot-separated
integer lists in Figure 1) and prefer to use the generic acronym
SPLID (Stable Path Labeling IDentifier) for it. Here, we can only
summarize its abstract properties (please refer to the references for
in-detail information): A SPLID contains the SPLID of its parent as
a prefix. Therefore, the computation of all ancestors (ancestor path
reconstruction) does not require document access (in contrast to
range-based numbering schemes [7]). SPLIDs are immutable, i. e.,
they do not change upon (structural) modifications [35]. Therefore,
they support dynamic documents. Furthermore, they facilitate que-
ry processing, because their lexicographical order represents the
document order (for sorting) and, given two SPLIDs, all XPath axis
relations can be easily deduced. SPLIDs support efficient hierarchi-
cal locking protocols due to cheap ancestor path reconstruction
[16]. Because they lend themselves to prefix compression, SPLIDs
can be efficiently stored. The empirical analysis in [14] obtained ac-
ceptable prefix-compression results ranging in the average from 3
to 6 bytes for a label. Therefore, we think SPLIDs are comparable
to TIDs and can be processed similarly.

2.3 Path synopsis
Our path synopsis (see Figure 2) is an unordered2 structural sum-
mary of all (sub)paths of the document. Each node defines a path
class which typically corresponds to a considerable number of in-
stances in the document. To distinguish path classes, we number
3



them with so-called Path Class References (PCRs) that serve as a
simple and effective path class encoding3. 

The base idea of a path synopsis is similar to that of a DataGuide
which, however, is used as a structure overview for the user, for
storing statistical document information, and, thus, enabling query
optimization [11]. In addition to that, our primary use of a path syn-
opsis is for structure virtualization, hierarchical locking, and em-
powering indexing, compact storage, and query processing. It ob-
tains its full expressiveness by the interplay of PCRs and SPLIDs:
a SPLID delivers all SPLIDs of its ancestor, while a PCR connected
to a SPLID identifies the path class a SPLID-identified node be-
longs to. Thus, we represent a node reference by a SPLID (describ-
ing its unique position in the document) and the PCR of the node.
Therefore, it is easy to reconstruct the specific instance of the path
class it belongs to. Having an index entry (Key, SPLID, PCR), the
entire path instance of the related node can be reconstructed, e.g.,
(Coy, 1.1.1.3.1, 5) enables to directly compute
/Depts/Dept/Mgr/Name/“Coy” without document access. This us-
age of the path synopsis indicates its central role in all structural ref-
erences and operations. To increase its flexibility, we provide in-
dexed access via PCRs and hash access using leaf node names. Ad-
ditional links between vocabulary IDs (VocIDs) and their
occurrences within the path synopsis offer direct entry points for

further navigational steps and matching/searching operations start-
ing at non-leaf nodes. Because order is not important for a path syn-
opsis, evolution of the document—by adding new path classes—
only leads to simple adjustments in a path synopsis and, most im-
portant, leaves the existing PCRs unaffected.

The size of the synopsis obviously depends on the structural com-
plexity of the document. It usually can be stored using a few con-
secutive pages on external memory (see Table 1). For fast access, it
should reside in a small data structure kept in main memory.

2.4 Elementless document storage
The logical representation of XML documents, as visualized in
Figure 1, is frequently used to derive a more or less direct mapping
to a physical representation. A standard approach is to replace all
element and attribute names by space-saving internal identifiers
which are derived from a vocabulary (with VocIDs). Nevertheless,
each inner node at least contains the SPLID and some type indicator
(element, attribute) besides the VocID, represented as a variable-
length entry. Therefore, substantial storage overhead is caused by
such a physical document representation. 

Our goal is to only store the content part of a document and to save
the explicit storage of its structure by virtualizing it as depicted in
Figure 3, where SPLIDs are only shown for some selected leaf val-
ues. This means whenever a reference to the document structure, to
an inner node, or to a path is required or an operation is applied to
them, the desired concept is recomputed. While preserving all doc-
ument properties, this has to be accomplished in such a way as if it
would be physically present.

The key idea is to automatically derive for each value in the leaf
nodes the complete path it belongs to up to the root. As discussed in
Section 2.3, a SPLID together with a PCR allows to evolve the en-
tire document path to the root thereby extracting the related element
names from the path synopsis. Hence, using all leaf nodes and their
SPLIDs, the entire document can be efficiently reconstructed in its
original form, whenever needed for output. It remains to show that
all operations on the virtual document structure such as indexing,
look-up, navigation, etc. are equivalent and more efficient as com-
pared to the operations on the document’s physical structure.

2 Because in the following, we are only interested in the path up to the root
for a given PCR, the relative order among siblings is not relevant, e. g.,
all permutations of elements ID, Name, Age, and Level as children of
Mgr may appear in the document.

3 If a node has an empty value in some path class instance, the respective
node type must carry a PCR to map the empty value to the correct path.
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4711 Coy 835

33 10815 May XML

. . .

1

Figure 1.   XML fragment labeled with SPLIDs

1.1.1.7.11.1.1.1.1 1.1.1.3.1 1.1.1.5.1

1.1.3.1.1.1 1.1.3.1.3.1 1.1.3.1.5.1 1.1.3.5.1.1 1.1.3.5.3.1

Dept
1.1

Mgr
1.1.1

Team
1.1.3

Team
1.1.5

Age
1.1.1.5

Name
1.1.1.3

ID
1.1.1.1

Level
1.1.1.7

Emp
1.1.3.1

Proj
1.1.3.5

Name
1.1.3.1.3

ID
1.1.3.1.1

Age
1.1.3.1.5

352509 Jones
1.1.3.3.1.1 1.1.3.3.3.1 1.1.3.3.5.1

Emp
1.1.3.3

Name
1.1.3.3.3

ID
1.1.3.3.1

Age
1.1.3.3.5

PName
1.1.3.5.1

Rating
1.1.3.5.3

Figure 2.   Path synopsis
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For an XML document, only its content nodes (leaf nodes) are
stored in document order using a container as a set of doubly
chained pages (called document container). The stored node format
is of variable length and is composed of (SPLID, PCR, value). The
value part of a node is materialized up to a parameterized max-val-
size as a string (of a given type). For text nodes, the size may exceed
max-val-size; then it is stored in referenced mode where it is divided
in parts each stored into a single page and reachable via a reference
from its home page. To provide efficient access to the individual
nodes via their SPLIDs, we add a document index using SPLIDs as
separator keys to the document container. The resulting B*-tree and
its split/merge mechanism take care of the storage management in
case of modifications in the XML document. 

The conceptual physical representation of a fragment of our XML
example is illustrated in Figure 4. An essential performance aspect
reducing storage overhead and disk accesses is the compact repre-
sentation of the SPLIDs within a page. Because all SPLIDs of leaf
nodes begin and end with a division value ’1’, we drop both enclos-
ing ’1’s from each stored SPLID and add them when reconstructing
the original SPLID. For the remaining divisions of a SPLID, we ap-
ply prefix compression. 

Is all this optimization effort worth it? To answer this question, we
implemented various storage schemes and measured the space sav-
ing for a large collection of documents [15]. Again, here we present
only the results for the reference documents which cover the repre-
sentative spectrum of achievable savings. Figure 5 illustrates the
storage consumption of the different approaches and compares it to
the plain format (100%). Because all nodes are stored as variable-
length records, some administrative overhead (admin) is needed for
type descriptors, byte alignment, etc. The full approach (uncom-

pressed structure and content) labels all nodes with SPLIDs and
uses VocIDs (2 bytes) instead of element and attribute names. As
opposed to full, pc applies prefix compression to all SPLIDs which
is very effective due to the document order of all nodes (structure
and content) which still carry a VocID. Finally, eless refers to our
elementless storage scheme where only the content nodes (together
with prefix-compressed SPLIDs) are stored in the document con-
tainer (see Figure 4). To reconstruct the related path, a PCR (1 byte)
is added to each content node.

Here, we focus on the relative saving regarding the structure part
only. It is surprising that the full approach does not always achieve
storage space reduction (psd7003); the saving from VocID usage is
compensated by the need for node labels. In general, space saving
of full seems to be less than ~35% compared to plain. However,
storage gain from full to pc and full to eless is substantial. The larg-
est share of this saving is due to prefix compression of the SPLIDs
(darker or blue-colored fractions) which reduces the storage space
needed for node labels in all cases to less than 25% of its original
size. (Note, despite the “obvious length” of SPLIDs, range-based or
sequential labeling schemes would consume more storage, because
they do not qualify for effective compression). Indicative overall
improvement factors (uniprot) are ~47% and ~73%, respectively4.
For our reference documents, these factors range from ~40% to
~52% for pc and from ~70% to ~80% for eless, respectively. To the
best advantage, our novel optimization step (from pc to eless) ac-
counts for ~50% to ~58%.

3. Processing documents
The gain provided by elementless XML storage structures
should not be compensated neither by loss of functionality nor
by performance penalties caused by ponderous operations.
Therefore, we will show how XML processing is performed on
elementless structures and what kind of performance
characteristics can be anticipated.

3.1 Storing elementless documents
The combined use of B*-tree, SPLIDs, and path synopsis enables
the straightforward creation of the document index: Assume, a
client sends an XML document which arrives in document order.

Figure 3.   Document represented as Elementless Storage (only nodes below the dashed line are physically stored)
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NameID Age
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1.1.5.11.3.1
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PName Rating
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1234 Abel 540
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AgeNameID Level
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Figure 4.   Stored XML document 
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4 This translates to 465 and 731 Mbytes savings for the structure part. To
avoid overloading of the result representation, we do not show the effect
of content compression which would reduce the content part (white
fraction of the bars) by 23% – 35%.
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In an analysis phase, essential characteristics including the path
synopsis can be determined. Initial loading of the document
container is performed in document order thereby assigning (and
compressing) the SPLIDs and the PCRs to the value nodes
(Figure 4). Hence, the document index can be built bottom up [12].

3.2 Navigational operations

Navigational operations, such as in DOM, can easily be carried out
on documents stored in an elementless manner, such as the one in
Figure 4. The five navigational primitives parent (p), first child
(fc), last child (lc), previous sibling (ps), and next sibling (ns) re-
quire only a single top-down traversal of the document index (typ-
ically of height  2 and 1– 60 leaf pages of 16 KB for moderately
sized documents) and a single access to the path synopsis. There-
fore, if the index as well as the path synopsis are already present in
memory, only a single physical page reference suffices to execute
any navigational operation.

Figure 6 contains the algorithm5 to carry out a navigation originat-
ing at a given context node cn. The algorithm relies on several func-
tions that are briefly discussed in the following: Given a SPLID,
function anc(int level) calculates the SPLID of the ancestor node re-
siding at the given level. Applied to an XML node, the function
pcr() returns its PCR. Functions splid(), level(), and parent() are
self-explanatory. The constructor Node(SPLID id, PCR p) creates a
new XML node instance. Thereby, the constructor queries the
structural summary to infer the node’s name using id and p. Index
look-up function lookupMinPrefix(SPLID id) traverses the docu-
ment index and returns the node with the smallest SPLID (in docu-
ment order) having prefix id. Likewise, lookupMaxPrefix(SPLID
id) returns the node with the largest SPLID having id as prefix. For
example in Figure 4, the former method using id = 1.1.3 returns a
node with SPLID 1.1.3.1.1.1, whereas the latter method returns a
node with SPLID 1.1.3.5.3.1. Note, both methods only need a sin-
gle top-down traversal. Similarly, lookupMinPrefixLeft(SPLID id)
and lookupMaxPrefixRight(SPLID id) traverse the tree and search
for the min/max node having the given prefix id. If found, they re-
turn the left/right neighbor node. For example, lookupMinPrefix-

Left(1.1.3) returns the node with SPLID 1.1.1.7.1. These two func-
tions also require only a single top-down document index traversal.

A context node’s parent and PCR can directly be computed from
the SPLID and the PCR in cn. During node construction (line 04),
an access to the path synopsis is necessary to derive the parent’s
node name. The first/last child of a context node cn is calculated in
a similar way: For first (last) child the node n with the smallest
(largest) SPLID having the SPLID of cn as prefix is retrieved via an
index look-up (lines 07 and 14). In the subtree rooted at cn, n is the
leftmost (rightmost) descendant leaf node. If cn itself is a leaf node
(indicated by cn = n in lines 08 and 15), no child node exists. There-
fore, the result is null. Otherwise, starting from n, the SPLID of the
first (last) child can be calculated by cutting off all divisions up to
cn’s level increased by one. For example, for the evaluation of the
first child on context node cn = 1.1.3, n is 1.1.3.1.1.1 and, because
the first child has to reside at level 4, the resulting node is 1.1.3.1.

The navigation algorithm for previous sibling and next sibling is
similar to first child and last child. For previous sibling (next sib-
ling), n (lines 21 and 27) is stored in the left-hand (right-hand)
neighbor record of the leftmost (rightmost) descendant node in the
subtree rooted at the cn node. This time, the level of the sibling is
equal to the level of the context node (lines 22 and 28). A final ac-
tion has to check whether the calculated node actually is a sibling
(lines 23 and 29), because it may also be a node in a completely dif-
ferent subtree which happens to share cn’s level. As an example,
consider the evaluation of previous sibling on context node
cn = 1.1.3, n is 1.1.1.7.1 and, because the previous sibling has to re-
side at level 3, the resulting node is 1.1.1.

5 To keep the presentation simple, documents containing attributes are not
considered. The algorithm’s extension is, however, straightforward.

Figure 5.   Storage consumption of XML documents
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Input: ContextNode cn, DocumentIndex I, Direction dir
Output: ResultNode rn
01 switch (dir)
02
03 case ’p’:
04  rn = Node (cn.splid().anc(cn.level()-1), cn.pcr());
05
06 case ’fc’:
07  Node n = I.lookupMinPrefix (cn.splid());
08  if (n == cn) 
09   rn = null;
10  else 
11   rn = Node (n.splid().anc(cn.level()+1), n.pcr());
12
13 case ’lc’:
14  Node n = I.lookupMaxPrefix (cn.splid());
15  if (n == cn) 
16    rn = null;
17  else 
18    rn = Node (n.splid().anc(cn.level()+1), n.pcr());
19
20 case ’ps’:
21   Node n = I.lookupMinPrefixLeft (cn.splid());
22   rn = Node (n.splid().anc(cn.level()), n.pcr());
23   if (rn.parent() != cn.parent())
24     rn = null;
25
26 case ’ns’:
27   Node n = I.lookupMaxPrefixRight (cn.splid());
28   rn = Node (n.splid().anc(cn.level()), n.pcr());
29   if (rn.parent() != cn.parent())
30     rn = null;
31 end switch;
32 return rn;

Figure 6.   Navigation algorithm
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3.3 Modifying elementless XML documents
No matter what kind of language model is used for document mod-
ification, it has to be translated into node- or record-at-a-time oper-
ations, for which the corresponding DOM operations provide an ap-
propriate example. 

The lion’s share of the overhead caused by updates of nodes (names
or values) or by insertions/deletions of subtrees in the XML docu-
ment is carried by two valuable structural features: B*-trees and
SPLIDs. B*-trees enable logarithmic access time under arbitrary
scalability and their split mechanism takes care of storage manage-
ment and dynamic reorganization. In turn, SPLIDs provide immu-
table node labeling such that all modification operations can be per-
formed locally. 

Referring to Figure 4, a context node cn can be determined either
by navigation, via references from secondary indexes, or via the
document index. To delete cn’s descendants (subtree deletion), all
records whose SPLID starts with cn’s SPLID have to be deleted.
For example, in Figure 1, the deletion of the Mgr node (1.1.1) re-
sults in a deletion of all records in Figure 4 that start with 1.1.1. All
records to be removed are stored consecutively. Compared to the pc
storage format, fewer records and smaller ranges have to be deleted.

During the insertion of subtree s, we assign existing PCRs to the
values of those paths in s that conform to the path synopsis; for all
other paths, new PCRs have to be generated and the path synopsis
is updated accordingly. As before, insertion affects smaller set of
consecutive records, compared to pc.

In pc, for inner node n, the stored document contains a physical re-
cord. In eless format, n is a virtual node. Therefore, all PCRs of leaf
nodes in n’s subtree (determined by n’s SPLID) have to be updated
(additionally, the path synopsis has to be altered, if renaming intro-
duces new paths to the document). Therefore, compared to pc, re-
naming of an inner node [40] is the only critical operation in the
eless format.

4. Indexing XML documents
So far, researchers have designed content [29], path [11, 33] or hy-
brid indexes [21, 22, 36] with the tree structure of the natively
stored XML documents in mind. So the indexes typically delivered
node labels for index matches, which then had to be resolved or ver-
ified on the document structure. For example, separate matches on
a content index (for the value part) and a path index (for the struc-
ture part) had to be algorithmically checked whether pairs of match-
es can be verified on the XML document (for example, by using
merge joins). Concerning the evaluation of simple path expressions
with content predicates (like //Team/Proj/[Rating=5]), hybrid in-
dexes seem to be most valuable. However, the so far proposed
structures exhibit several drawbacks. For example, IndexFabric
[36], based on Patricia tries, stores the entire path (in some encoded
form) with each indexed value, contains substantial redundancy,
and may need complex path checking in case of descendant axis
use. FLUX [22] carries a path signature with each index reference,
which is constructed as a Bloom filter [4]. When a value qualifies,
the related signature is assumed to deliver almost precise path infor-
mation. However, because false positives may occur, it has to be
checked against existing paths in the document which can make
XPath query evaluation expensive (see Section 6.2).

The problem of path reconstruction gets more performance critical,
when index access methods have to be integrated as operators in a
physical XML algebra. The important question is: What is the result
of an index access, e. g., an index scan, and how can this result serve
as input for further physical operators, such as a holistic twig join?
Consider a query //Team[Proj/Rating=5] on our sample document.
Then, the index structures sketched above can only provide a se-
quence of Rating nodes as an answer. To obtain the requested se-
quence of Team nodes, however, they need to reconstruct their an-
cestor path which requires expensive accesses to the document. The
same is true, if an index access is used to deliver a sequence of in-
termediate result nodes which are input to further operators. As
above, for the evaluation of query //Team[Proj/Rating=5]/Emp, the
evaluation of the inner path on an index has to return all Team nodes
to compute the structural join with nodes of name Emp.

We want to get rid of path traversals, because we don’t have a phys-
ical structure part anymore. On the other hand, we have excellent
mechanisms—SPLIDs and path synopsis—to quickly reconstruct
any ancestor path of a document. Therefore, we can redesign index-
ing of XML documents for XPath query expressions anew.

4.1 Query types considered
Besides the use of stream-based and navigational languages such as
SAX and DOM [40], a number of declarative query languages have
been proposed for semi-structured data, e. g., XQuery [42]. To be
processed, the operations of all these high-level languages have to
be translated into sequences of record-at-a-time navigational oper-
ations or, when using secondary indexes, set-at-a-time operations
(based on node reference lists), which then refer to physical docu-
ment structures (see Figure 4). While we have discussed above how
navigational processing is achieved on elementless structures, we
have to show the viability for more complex (inner) operations.

XPath [41] is a query language that specifies the syntax for path ex-
pressions over XML data. Because most of the referenced, declara-
tive XML query languages are essentially based on XPath predi-
cates, optimization of such predicate evaluation is vital for the per-
formance of all these languages. Furthermore, when using suitable
indexes, we immediately have to cope with set-at-a-time opera-
tions. Hence, we have to show how such operations are executed
when referring to our elementless structures.

At the same time, we want to design a new effective and efficient
index mechanism for the broad class of content-and-structure
(CAS) single path queries which includes equality predicates and
range predicates built upon comparison operators  = {=, <, , >,
, } on the values of content nodes or attribute nodes of an XML
document (leaf nodes).

Exploring such XPath expressions, we can characterize and evalu-
ate the set of queries to be answered by means of index support. In
turn, such powerful index-based operations evaluating single path
classes could be used to generate the input of even more complex
operations such as structural joins or holistic twig joins [1, 19].

Definition 1: A simple XPath query expression (XPQ) [22] is for-
mally denoted by p[T], where p = e1t1e2t2...ek is a path and T is a
content comparison predicate. Path p consists of descendant (//)
and child (/) edges ei, as well as element and attribute nodes tests
or wildcards ti. Edge ek of path p refers to a node the value of which
7



can be compared. Comparison predicate T is of the form C = [tk
vi] for a simple comparison or R = [vi tk vj] for a range
comparison, where  is suitably chosen from {<, , >, } and tk is
an indexable element/attribute or an indexable type (e. g., Integer,
String, ID, etc.) and vi, vj appropriate range boundaries.

Examples Q1 = //Dept//Mgr/[Age  35] and Q2 = //Team//[1  In-
teger  25] are XPQ expressions on the document in Figure 1.

Note, each XPQ expression has two parts to be matched: a structure
part (path predicate) and a content part (value predicate). To evalu-
ate an XPQ on a given data set, we have to determine all matching
path instances (possibly of several path classes) and check the relat-
ed values using the C or R predicate. If no indexes are present, the
only search strategy involves a scan over the entire document.
When accessing a node, its value can be checked by the predicate
part; if a node match occurs, the related PCR is used for fast recon-
struction of its path to enable the test of the path predicate. Even
when matching indexes are found, a document scan may be the best
choice, if either the structure or the value part (or both) have low se-
lectivities. Often, however, path and predicate selectivities enable
highly efficient index support, as discussed in the following. 

4.2 Defining and creating CAS indexes
To answer XPQ expressions, we provide a hybrid index structure.
Therefore, we index all values (of a certain type) in our novel CAS
indexes. Because every search tree enables checking of all -based
value predicates, B*-trees are the best choice for our base index
structure. To overcome the sketched implications for path recon-
struction, the records contained in a CAS index consist not only of
a key (of a given content type, e. g., Integer, String, etc.) and a value
(the occurrences of this key in the document, e. g., a list of node la-
bels) but also of a path class reference (PCR) which denotes the an-
cestor path to the indexed value (see Figure 7). During the evalua-
tion of an XPQ expression Q on a CAS index, we can then easily
decide, if an indexed value matches the structural part of Q. CAS
indexes are defined as follows:

Definition 2: A CAS index on an XML document D is formally de-
noted as ID(p, T), where the index path predicate p is a simple
XPath query expression with an empty comparison predicate Q
(i. e., p is only a structural query), and T is the indexed content type
(e. g., Integer, String, etc.)6. Leaf node n of D is contained in ID(p,
T) as a key if 

• C1) its parent element is contained in the result of the
evaluation of p against D, and if 

• C2) n matches the content type of the index definition.

The keys n in ID are ordered in ascending order w. r. t. T, while the
values (occurrences of n in D) are in document order for one and
the same key. Each value carries a PCR.

For example, I0 = I(/Depts/Dept/Mgr/Level, [Integer]) indexes all
values of Level in the related path class, that is, for each value vi oc-
curring for Level, a node reference list is maintained (in document
order) which stores the SPLIDs for the nodes (records) having vi as
a value. Some sample entries (SPLIDs) in the indexes shown in
Figure 7b and c refer to the document leaves (Figure 7a). The at-
tached PCRs enable the reconstruction of the related path instances
by means of the path synopsis.

An index ID(p, T) is created as follows: First, its index path p is
evaluated7 against document D’s path synopsis, resulting in a list P
of PCRs that match p. Then, D is scanned in document order. For
each value vi, we check whether its PCR is contained in P (C1 in
Definition 2) and whether its type matches T (C2). If so, vi belongs
to index I. I may also be created during document storage on the fly.
The correctness of this process—i. e., every indexed content value
is on path p and the ordering complies with Definition 2—is assured
by the path synopsis’ consistency and by visiting the indexed nodes
in document order (i. e., stable sorting of content values is suffi-
cient).

6 Note, subscript D and type T are omitted where non-ambiguous.
7 The evaluation of a structure query on a path synopsis is not formally

defined here. However, it should be intuitively clear.

Figure 7.   Document search model
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As an example for CAS index creation, consider the index defini-
tion I(//Age) (Figure 7). The evaluation of the query //Age on the
path synopsis in Figure 2 returns the two PCRs 6 and 12. During in-
dex creation, all leaf nodes having either PCR 6 or 12 are included
in I, e.g., nodes 1.1.1.5.1, 1.1.3.1.5.1, ... .

Depending on the structure of the path synopsis and the given index
path predicate p, we can partition the possible indexes into the three
classes unique, collective and generic. These classes will be dis-
cussed in the next section.

4.3 Unique, collective, and generic indexes
Whenever every record R in a CAS index I refers to the same PCR,
i. e., when I‘s path predicate corresponds to exactly one path class
and therefore exactly qualifies R‘s ancestor path up to the root, we
call the corresponding CAS index a unique CAS index (UCI). In this
case, the PCR does not need to be stored together with each record,
but only once for the whole index (see Figure 7c). A UCI can be
used to precisely answer single path queries only on its index path.
For example, UCI for Rating is equivalent to I(//Rating),
I(//Proj/Rating), ..., I(/Depts/Dept/Team/Proj/Rating), because the
same set of values qualifies in any case.

As soon as an index path defines more than one path class, e. g., Age
in Figure 2, indexing such homonyms results in (homogeneous)
collective CAS indexes (CCI). Accessing the collective CAS index
I(//Age) (see Figure 7b) directly delivers the result for XPath pred-
icates (//[Age=35]), (/Depts//[Age=35]), (/Depts/Dept
//[Age=35]), etc. However, XPath predicates (//Mgr/[Age=35]),
(//Emp/[Age=35]) or (//Team/Emp/[Age=35])—also supported by
I(//Age)—require some extra effort to remove false positives. 

In index definition ID(p, T), parameters p and T determine the
index’ focus. We generalize Definition 2 and identify four
different index types:

Definition 3: In a unique CAS index, all entries have the same
PCR, while in a homogeneous collective index, the entries may
have varying PCRs. For the heterogeneous collective CAS
index, we generalize p to where the
pi are paths as in Definition 2. A generic CAS index contains
all values of a certain type (i. e., p = //*).

On our sample data, I(//Rating) is a unique index, I(//Age) is a
homogeneous collective index, I( ) is a hetero-
geneous collective index and I(//*, [Integer]) is a generic index

over integers. While unique indexes are specialized and can
answer queries on a single path class only, the focus widens
over collective to generic indexes. Because unique indexes
contain records with the same PCR, explicit PCR storage could
be omitted to save space. Such a design decision, however,
should be supported by a fixed schema, because an insertion of
Emp/Rating in our sample document would turn the unique
index I(//Rating) into a collective one.

Homogeneous collective indexes are the standard case. They
potentially require some effort to remove false positives. For
example, query //Mgr/[ ] requires removal of Emp/Age
entries in I(//Age).

Depending on the selectivities of the path classes included in
such collective indexes and on the overhead to remove false
positives, it can be beneficial to combine as many path classes
as possible in CAS indexes. The more frequent an index is
accessed, the higher is the locality of reference on the index
pages which, in turn, keeps such pages longer periods of time
in the DB buffer (memory). Therefore, it could be
advantageous to broaden the index use and provide
heterogeneous collective indexes.

Finally, we can design indexes combining all path classes of a given
indexable type, e. g., Integer, String, or Text (where Text implies
the use of IR search techniques). Such generic indexes are not tai-
lored anymore to a particular CAS query, but drastically reduce the
number of indexes needed. In our running example, I(//*, [Integer])
could serve to evaluate such diverse XPath queries as
//[ ], //[ ], or //Mgr/[ ].

To give an impression of the possibilities introduced by CAS index-
es, Figure 8 illustrates the spectrum of tailored indexes for all CAS
index path predicates having at most one descendant relationship.8

Because many of them occur in unique paths or path fragments,
they are identical. Rating and Level refer to unique path classes
which implies that I11: I(//Level) and I15: I(//Rating) are identical
to I12 – I14 and I16 – I19. This is not true for I3: I(//Age), because
it is a CCI where two path classes participate. Nevertheless, if we
distinguish I(//Mgr/Age) and I(//Emp/Age), we get two UCIs which
directly embody their dependent indexes (I5 – I6) and (I8 – I9). It
may also be beneficial to combine unique or collective indexes,
e. g., to I2: I(//Age  //Level) or even to a generic index I1: I(//*,
[Integer]).

p p1 ... pi ... pn   =

//Age //Level
8 Multiple descendant relationships could be easily mapped to them.

Age 35

Rating 3 Level 5 Age 60

Figure 8.   Potential indexes for content (outlined for Integer)
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5. Path evaluation on CAS indexes
Assume we have an XPQ expression Q, a document D, and a set of
indexes J. The two questions arising now are 1.) which set of index-
es in J can be used to evaluate Q, i. e., how is index matching done,
and 2.) how is the evaluation of Q accomplished using an index I,
which is related to the search model? Because the search model is
required to clarify how existing indexes are selected, we start the
discussion with the second point.

5.1 Answering point and range queries
By Definition 1, XPQ Q = p[T] consists of a content predicate T and
a path predicate p. Q is evaluated on index ID as follows:

1. Path p is matched against the path synopsis of document
D, resulting in a set of PCRs P. If P is empty, the result is
also empty, because the document does not contain any
path matching p.

2. For content predicate T, a point access or a range scan
to/over I is issued to deliver all records matching T.

3. For the PCR of each record R delivered by the index
access, the set inclusion in P is checked. If P contains the
PCR, record R belongs to the final result, because its
ancestor path matches path predicate p. Thus, this step
removes false positives.

For an example, assume we have a collective CAS index I(//Age) as
shown in Figure 7 and the query Q = //Dept/Mgr/[Age=35]. Match-
ing path //Dept/Mgr/Age against the document’s path synopsis re-
turns a set P of exactly one PCR: {6}. A point access to index I re-
sults in a sequence of three records, of which only the PCR of the
first one (having SPLID 1.1.1.5.1) is contained in P. Therefore, all
remaining Age nodes (false positives) are filtered out.

This search model can be implemented very efficiently. Because
B*-trees are search trees, they guide the evaluation of the compari-
son predicate  in T. Our implementation interleaves steps 2 and 3,
such that the PCR is immediately matched for each scanned record.
At the beginning of Section 4, we argued that previous indexing ap-
proaches suffer a performance penalty, if they have to generate an-
swers for queries such as //Team/[Proj/Rating=5], where the ances-
tor path has to be re-established from the document to generate a re-
quested node sequence ST. In our proposal, however, the powerful
SPLID + PCR construct allows us to compute ST in main memory,
i. e., without document access. This mechanism also solves the
mentioned problem to deliver the “right” input nodes to further
physical operators (e. g., for query //Team[Proj/Rating=5]/Emp,
which calculates a structural join after the index access).

So far, only the PCR-based evaluation of a query using a CAS index
has been discussed. However, the relationship between the path
predicate of the query and the path predicate of the index is not es-
tablished, yet. Therefore, the question arises whether or not the re-
sult is complete. This matter is discussed in the next section.

5.2 Index matching
The initial task of index-based query processing is to find an appro-
priate set of indexes in J based on which XPQ expression Q can be
evaluated. Let ED(Q) be the result of the Q’s evaluation on docu-
ment D and EI(Q) the result of its evaluation using index , as
outlined in the previous section. Then, there are four possible cases:

1. : The evaluation on the document
and on the index have no common subset. This either
means that the query has no result at all or that the index
is not applicable to answer the query.

2. : The evaluation on the document and the
index returns the same result, i. e., the index is applicable
without removal of false positives. In this case, the PCR
check (Step 3 in Section 5.1) can be omitted.

3. : In this case, the index contains false
positives that make Step 3 necessary.

4. : The index does not contain all nodes to
answer the query, but only a partial result.

The decision of these four cases based on Q and I‘s path predicate
p alone, i. e., without access to the document, is a difficult problem
in the general case. Fortunately, the path synopsis and our PCRs
provide a basis to solve this problem in a simple way: The above re-
sult-set comparison deciding the four cases shown can be replaced
by a PCR-set comparison: ED(Q) is replaced by the evaluation of
Q‘s structure predicate on path synopsis PS, and EI(Q) is replaced
by the evaluation of I‘s path predicate on PS. Both evaluations re-
turn a set of PCRs, based on which the above cases can be decided.

As an example, consider the index I = (//Dept//Age) and the queries
Q1 = //[Age<35] and Q2 = //Emp/[Age<35]. The PCR sets {6,12}
for I and Q1 are equal (case 2) and, therefore, Step 3 can be omitted.
For Q2, the PCR set is {12}. Therefore, Step 3 is required and re-
moves all nodes with PCR 6.

While cases 1 to 3 yield a “positive” result, case 4 signals that the
index alone is not sufficient to evaluate the query. However, when
multiple (not necessarily unique) CAS indexes qualify, e.g.,
I(Depts/Dept/Mgr/Name) and I(//Emp/Name) for query //Name, the
qualified node reference lists of all matching indexes can be merged
to derive the result. If the union of all participating PCR sets in the
qualifying indexes is a superset of the query’s PCR set, the result is
complete (but may contain false positives).

Unique indexes are interesting, because no explicit PCR storage
and no post-processing phase is required for them at all, resulting in
low storage overhead and fast evaluation algorithms. However,
their applicability is restricted only to those cases, when the query
exactly matches the path class represented by the index. For exam-
ple, all queries related to Rating can be answered with the unique
index I(//Rating), e.g., Q = //Proj/Rating, Q = //Team//Rating, etc.

To illustrate the potential of unique and collective indexes, we have
evaluated the synopses for all reference documents. Because the

I J

ED Q  EI Q  =

ED Q  EI Q =

ED Q  EI Q 

ED Q  EI Q 

Table 2. Frequency of unique/collective indexable elements

Doc. name # path 
classes

 # indexable 
elements for 

UCIs

 # indexable 
elements for 

CCIs, 2 elem.

 # indexable 
elements for 

CCIs, >2 elem

lineitem 17 17 0 0

uniprot 121 53 7 10

dblp 153 4 3 25

psd7003 76 42 5 6

nasa 73 32 4 6
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creation of an index is a careful design decision requiring workload
analyses, etc., we can only list the maximum number of indexes to
be created as unique or (homogeneous) collective indexes. As indi-
cated by Table 2, the consideration of UCIs is particularly impor-
tant, because of their high potential numbers and of their simple and
flexible evaluation, even in case of descendant relationships.

6. Quantitative results
In Section 2.4, we have explored storage consumption of different
physical document representations and have identified their saving
potential. Here, we want to focus on the best known storage method
and our novel virtualization technique. Therefore, we will reveal
improvements for various kinds of operations using elementless
document storage (el) as compared to the storage format with pre-
fix-compressed SPLIDs (pc). All performance measurements were
run on an Pentium IV computer (2 x 3.2 GHz CPUs, 1 GB main
memory, 80 GB external memory, Java Sun JDK 1.5.0) as the XD-
BMS server machine. In all experiments, external storage was for-
matted with a page size of 16 KB. XTC used a cold buffer config-
ured with 4 MB. 

6.1 Navigation
In an XDBMS, navigational operations are either directly executed
via a given API (e. g., DOM [40]) or by the implementation of
physical query operators. Because the execution time of single nav-
igational operations is not very expressive, we have designed a
benchmark consisting of two tree walkers. Both walkers T1 and T2
start from the root and apply the operations last_child /
previous_sibling (T1), and first_child / next_sibling (T2). In case of
eless, the root and the inner structure is virtual and has to be com-
puted, while the tree walk is proceeding. Figure 9 shows the sub-
stantial gains for the eless documents over pc documents. In all cas-
es, we achieved improvements of ~40% – 53% for T1, resp. ~30%
– 47%, for T2. These performance gains are due to less I/O opera-
tions and shorter node reconstruction times on the compact eless
documents.

6.2 Index-supported queries
In the following experiments, we refer to a set of given indexes and
want to focus on the speed-up gained by the index use. Because the
anticipated results are strongly dependent on the values and selec-
tivities present, our set of reference documents did not allow for
simple cross-comparisons. To have better control over the values

and their distributions and to enable scalability considerations, we
constructed a benchmark to provide some insight on how the exis-
tence of suitable CAS indexes influences the evaluation perfor-
mance. We used the XMark framework [37] to evaluate point query
Q1 and range query Q2 of Table 4 in seven different scenarios (S1-
S7) where indexes I1 to I7 of Table 3 were exploited. Note, addi-
tionally to the index definitions, Table 3 contains the index sizes for
a 100MB document and the number of indexed PCRs. All tests
were carried out on 4 XMark documents of size 10 MB, 50 MB, 100
MB, and 500 MB. For a direct index comparison, we implemented
the FLUX index [22]. In FLUX, each path to a content node vi is
mapped onto a Bloom filter Fi (with entries of 2 bytes in our imple-
mentation as in [22]) using the value of an MD5 digest on each ele-
ment name contained in the path. Records R(vi, Fi) are stored in the
FLUX index. To evaluate an XPQ p[T] on FLUX, a suitable scan
returns all records R(vi, Fi) that match T. For query path p, a Bloom
filter Fp is computed and matched against the record’s Bloom filter
Fi. False positives are removed by a reconstruction of the ancestor
path from the document. The scenarios for queries Q1 and Q2 are:

S1. No CAS/text index is available. In this case, we rely on
the holistic twig join operator (TwigStack [6]) to evaluate
the structural predicate of the query over the element lists
provided by index I2; the content predicate is evaluated by
a node-at-a-time look-up in the document.

S2. A content index (I3) is available for the document. This
index allows to extend the twig join operator to structure
predicates (because a content node at the leaf level is the
child of its enclosing element). A point query over the
content index returns all SPLIDs in document order,
indicating where the queried content occurs. For a range
query, the resulting SPLIDs are not in document order and
have to be sorted to serve as input for the twig join.

S3. A generic CAS index (I4) is available. The PCR matching
algorithm can be used to remove false positives.

Figure 9.   DOM navigation improvements (eless vs. pc)

 0

 10

20

 30

 G 

T1(lastChild / prevSibling)

db
lp

li
ne

it
em

ps
d7

00
3

na
sa

un
ip

ro
t

db
lp

li
ne

it
em ps

d7
00

3

na
sa

un
ip

ro
t

T2(firstChild / nextSibling)

 40

50

in %
Table 3.Indexes

# Type Size [MB] Definition #PCRs

I1 PathSynopsis 5927 (B summary of all paths 548 (all)

I2 Element 6.39 list of all element nodes —

I3 Content 20.56 all content nodes —

I4 GCI 22.63 //* [String] 548 (all)

I5 CCI 2.15 //item/location [String] 6

I6 UCI 0.21 //asia/item/location [String] 1

I7 FLUX 23.69 //* [String] —

I8 CCI 15.40 //text/bold [String] 33

I9 CCI 16.70 //keyword [String] 99

Table 4.Queries

# Type Query #PCRs

Q1 Point //asia/item/[location=“United States“] 1

Q2 Range //asia/item/[ ] 1

Q3 Range //text/[ ] 33

Q4 Twig //item[location=“United States”] 
//text[ ]

—

“C” location “G” 

“a” bold/keyword “Z” 

“c” bold “h” 
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S4. A collective CAS index (I5) is available. Compared to the
generic index, a collective one is more focused.

S5. A unique CAS (I6) index is available. In this case, no false
positives can occur.

S6. A FLUX index (I7) is available. The removal of false
positives requiring access to the document to re-establish
the ancestor path is omitted here.

S7. A FLUX index (I7) is available. In contrast to S6, false
positives are removed by path reconstruction.

The results for our selected point queries and range queries are
shown in Figure 10 and Figure 11, respectively. S1 shows the worst
performance, because no index was present and the verification of
the content predicate required navigational steps (thus implying ex-
pensive random I/O). In S2, the content access support from I3 re-
sults in quite promising performance improvements for the twig
join. Note, S2 in Figure 11 was deteriorated by an additional sort of
the range result delivered by the content index, because the subse-
quent twig join depends on a sorted input. In S1 and S2, missing or
insufficient index support caused linear response time growth
w. r. t. document sizes.

S3, S4, and S5 exploit CAS indexes and PCR structure matching,
such that joins are not needed anymore. To a large extent, the per-
formance differences can be explained by the varying need to re-
move false positives from the result set, in particular, in case of a
generic index (S3). The range query results in Figure 11 are slightly
influenced by a sort of the index output to return a list of references
in document order. We added this extra requirement to be in accor-
dance with the scenarios S1 and S2, where the twig join delivered a
sorted result. Referring to a UCI, S5 could take advantage of ideal
CAS index support which boosted the query performance in both
cases by up to two orders of magnitude. 

For our comparison with FLUX, we considered scenarios S3, S6,
and S7, because the referring indexes contain the same XML val-
ues. In Figure 10 and Figure 11, we see that both indexes perform
nearly equally good during the retrieval of the indexed records (sce-
narios S3 and S6). FLUX performs slightly better, because the bit-
wise Bloom-Filter comparison can be executed a little more effi-
ciently than the PCR set-containment check. However, S6 does not
produce an exact result set (as S3 does), but a superset (containing
false positives due to Bloom filter usage). For example, range query
Q2 on the 500 MB document returns ~29,000 nodes in S6, whereas

the correct number of nodes delivered in S3 is only ~400. There-
fore, ~28600 false positives are removed in S7. This process is very
time consuming; for Q2, it took ~25 seconds.

In contrast to our index proposal, FLUX [22], A(k)-Index [20], or
Kaushik’s CAS Index [21] suffer a performance penalty, when they
have to return inner nodes for the queried path, as sketched in
Section 4. In a second experiment, we want to measure this penalty.
FLUX and A(k) propose to retrieve inner elements by navigation,
whereas Kaushik et. al. propose to use a structural join (with level
restriction). We evaluate query Q3 on index I9, thus generating a se-
quence of keyword nodes. We assume that text nodes are requested
as output and, therefore, we 1.) navigate the document two steps up,
2.) retrieve all text nodes and do a structural join (matching nodes
are grandparents), or 3.) compute them (SPLIDs). The result tim-
ings are plotted in Figure 12 (note, the number of returned elements
scaled linearly with the document size). Navigation and join-based
computation both suffer from document access (navigation even
more, because it generates random I/Os to retrieve ancestor paths).
In all cases. the in-memory, SPLID-based computation is one order
of magnitude faster than the other alternatives.

In a third experiment, we explored the performance behavior when
branches of twig queries are evaluated by CAS index access replac-
ing holistic twig matching. For twig query Q4, scenarios S1 (navi-
gation), S6, and S7 (both FLUX) are left out, because we only want
to focus on the speed-up possible by CAS index usage. As before,
scenario S2’ exploits a text index and extends holistic twig match-
ing on content nodes. In S3’, the evaluation of the left twig branch
(//item/[location=„United States“]) is substituted by an index ac-
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Figure 10.   Point query results
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Figure 11.   Range query results
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cess using I4. Scenario S4’ does it the other way around and substi-
tutes the other branch of Q3 (//text[„c“ < bold <„h“]) by a range
access to I8. Finally in S5’, both branches are substituted by appro-
priate index accesses. As expected, Figure 13 reveals that query
performance increases with the opportunities of using suitable in-
dexes. Considering S2’ with a plain text index as a baseline, S3’ can
only be improved marginally: The substituted predicate does not
cause too much overhead anyway, because it can occur at most once
per item element. In contrast, in S4’ a more complex predicate is
substituted by access to an index range which translates to a larger
performance gain. Substituting both predicates by index accesses
obviously achieves the best performance. Hence, maximum CAS
index use improved our experiment up to an order of magnitude.

7. Related work
XML document storage strategies can be divided into
shredding and native approaches. While native document
stores—like the one presented in this work—are specially
tailored to XML, shredding decomposes documents into
relational tables, thus enabling XML in any RDBMS.

Similar to RDBMS, all native stores (e. g., the ones of SystemRX
[3], Natix [8], eXist [30], and Xindice [39]) define a mapping from
an XML document onto records and pages, where the granule of
XML items stored in a page varies from lists of neighbor nodes
(eXist and this work), over subtrees (Natix, SystemRX) to
complete documents (Xindice). While all stores support navigation
(and, thus, query processing), reconstruction, and modification,
there is—to the best of our knowledge—no other native store that
eliminates the redundant internal structure of a document, while
providing the same external XML processing interfaces. Even the
similar approach in [2], using a structural summary and extent lists
for each path class, loses document order and, thus, expensive
joins are needed to reconstruct the document. This statement also
holds for various XML compression techniques (e. g., [34, 38]),
which also get rid of the internal structure, but, in contrast, only
provide narrow subsets of the mentioned interfaces.

Shredding can also be classified by the granule of XML items used,
where edges [9], nodes [13], and complete paths [43] have been
considered. Additionally, some techniques rely on a schema (Doc-
ument Type Definition [10]) to generate the required tables. Apart
from the XML storage solution, shredding always comes with some
XQuery-to-SQL translation optimized for fast query evaluation.
The “nodes” approach is comparable to our full storage scheme,
where each element is explicitly stored. Path-based shredding is

somewhat similar to our path synopsis use, because each element
“knows” its ancestor path. However, no virtualization techniques
have been proposed so far. Furthermore, other XML processing in-
terfaces (than XQuery) have been widely neglected.

A large variety of XML indexes has been published, which can be
classified in content/element [29], path [20, 33], and hybrid/CAS
[22, 22, 36] indexes. While content and element indexes are invert-
ed lists of content and element nodes, path and hybrid indexes sup-
port the evaluation of simple path/twig queries (with content pred-
icates). In contrast to our work, most indexes do not 1.) provide for
focused index definitions, but index complete documents, leading
to high update costs and large index sizes; 2.) cannot cheaply recon-
struct inner elements and are therefore hard to integrate into a phys-
ical XML algebra; and 3.) do not provide for index maintenance
[28], an issue that was excluded here because of space restrictions.

It is interesting to know that we gained for tree-pattern queries us-
ing the so-called S3 algorithm [18] similar results with up to orders-
of-magnitude improvements, as presented in Section 6,—essential-
ly enabled by the interplay of SPLIDs and path synopsis. In this pa-
per, query evaluation performance was compared for different path
processing and join algorithms. All competitor algorithms were im-
plemented in XTC to provide an identical runtime environment us-
ing a full-fledged XDBMS for accurate cross-comparisons: S3,
Structural Joins, TwigStack, TJFast, Twig2Stack, and TwigList [1, 
6, 19, 27]. Unlike all competitor methods, S3 executed path expres-
sions not directly on the XML document, but first evaluated them
against a path-synopsis-like structure, to avoid access to the docu-
ment to the extent possible. Hence, variations of our idea underly-
ing the S3 algorithm outperformed any kind of conventional path
operator use, achieved stable performance gains and proved their
superiority under different benchmarks and in scalability experi-
ments [18].

8. Conclusions
In this paper, we proposed a physical representation of XML
documents having virtualized inner structure. Key to this
upside-down representation is the use of SPLIDs as node labels
and of a suitable path synopsis which both together enable fast
computation of structure nodes. Compared to optimized
vocabulary-based approaches, our empirical evaluation
revealed substantial savings in storage consumption and
considerable improvements of processing times for storing and
reconstructing XML documents. Even navigation along
virtualized document hierarchies delivered positive results.
Because the document store is aware of paths, index
maintenance detection can be solved in a very efficient way.

Adjusted to this upside-down storage structure, we designed a flex-
ible index mechanism combining content and path indexing. The
CAS index use was generalized such that the same implementation
can serve as a unique, collective, or generic index. A simple algo-
rithm based on path synopsis use achieves very efficient index
matching when a query predicate is to be evaluated. Compared to
the so far prevailing application of structural binary joins or holistic
twig joins for queries involving structure predicates and content
predicates, we achieved dramatic improvements in the order of one
magnitude or even two. This is due to the replacement of joins by
the use of our specific CAS index supported by SPLIDs for the
computation and matching of the document structure. 

Figure 13.   Twig query results
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Future work will focus on a refinement of the CAS evaluation
where we plan to develop effective physical algebra operators. Here
we want to combine the evaluation results of several separately ex-
ecuted CAS queries to enable general holistic twig joins without the
need of join processing. Because optimized use of CAS indexes is
sensitive to many parameters (structure, value selectivities, query
predicate, etc.), an index advisor could be of great help for such
physical algebra operators.
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