
University of Kaiserslautern

Department of Computer Science

Databases and Information Systems Group

Prof. Dr.-Ing. Dr. h.c. Theo Härder

Storing, Indexing, and Querying XML Documents in
Native XML Database Management Systems

A Dissertation

by

Dipl.-Inf. Christian Mathis

Supervisor:

Prof. Dr. Theo Härder

April 2009

Abstract

The eXtensible Markup Language was designed as a technique for document representation
and data exchange. With the success of this meta language, the volume of data represented
in XML grew steadily, resulting in large document collections. Keeping such collections se-
rialized as text in files or as BLOBs in relational database management systems is clearly
a bad idea. The process of parsing the relatively verbose XML representation upon access
is too expensive. Furthermore, loading large XML instances into main memory is often
not viable and multi-user access with updates cannot be efficiently supported without de-
dicated access mechanisms to document stubstructures. Therefore, tailored XML database
management systems are required that can compactly encode XML documents, that enable
the transfer of substructures of a document into main memory, and provide for isolation
techniques. The XML Transaction Coordinator (XTC) developed at the University of Kaiser-
slautern is such an XML database management system (XDBMS). XTC is a so-called native
XDBMS, because all its internal structures are tailored to XML storage and processing (in
contrast to systems that map XML to relational tables for storage and processing).

In the past, the development of a declarative, set-based interface to access data stored in a
DBMS (e. g., SQL for relational systems) was a key ingredient for the success of database
systems in general. For XML, the lingua franca for declarative data access is XQuery. There-
fore, the idea of implementing XQuery as the declarative interface of an XDBMSs suggests
itself. In essence, this thesis presents concepts and techniques for the implementation of
an XQuery engine which is tightly coupled with—and embedded into—a native XDBMS.
It describes all stages of the query evaluation process: from parsing over query normaliza-
tion, type checking, query simplification, query rewriting, and plan generation to evaluation
and the final result materialization. Of course, the just sketched “query processing pipeline”
strongly reminds us of relational query processors and, in fact, this work borrows quite some
number of concepts, as we will see. However, the semantically richer XML data model and
the XQuery language pose enough interesting problems to justify a thesis of this extent.

The query processing pipeline can roughly be split up into a logical or system-independent
part and into a physical or system-dependent part. At the logical level, parsing, normaliza-
tion, and type checking are standard problems with standard solutions. Even for XQuery,
elaborative specifications already exist. Therefore, we do not discuss these stages in deeper
detail. Query simplification aims at the removal of semantically irrelevant subexpressions.
Therefore, query simplification can be seen as an “insurance” against badly designed queries
(wherever they might come from). Our implementation of query simplification operates at
a syntactical level only and is just a proof of concept.

For semantic query rewriting, an efficient and expressive internal query representation is
required. For that purpose, we develop the so-called XML Query Graph Model (XQGM), in
which a query is represented as a box-and-arrow diagram. Query rewriting is then imple-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

II Abstract

mented using a rule engine which can be flexibly parameterized by a set of rewriting rules.
The rule engine matches rule pattern definitions against the XQGM and, if a match is found,
fires the rule’s transformation code. The main objectives during rewriting are query unnest-
ing and twig discovery: Typically, XQuery expressions are highly nested and may contain
many correlated subexpressions. Correlated subexpressions imply nested-loops evaluation
semantics, which is disadvantageous in many cases. Therefore, the rewriter tries to get rid
of nested subexpressions. Furthermore, efficient bulk-processing algorithms—the so-called
holistic twig joins—have been developed in the literature. To allow their usage, the rewriter
has to discover twig pattern structures in the XQGM. The rewritten result serves as the start-
ing point for the plan generator.

At the physical level, the database layout (access structures) and the existing query process-
ing algorithms (physical algebra) are of major importance. Both issues will be discussed in
this thesis: The database layout defines how documents are encoded on external memory
and it provides secondary access structures. The encoding developed in this thesis virtual-
izes the inner structure of a document to avoid the storage of redundant XML substructures.
Furthermore, it collects and provides path information, thus, facilitating the creation and
maintenance of path indexes. The indexes developed in this work can answer path queries
with an optional content predicate. Similar to relational indexes, they are optional and can
be adjusted by the database administrator w. r. t. a query workload.

The physical algebra operates on the database layout. It contains all necessary algorithms
to evaluate an XQuery expression. An important algorithm of the physical algebra is the
holistic twig join operator. This algorithm is capable of efficiently matching a path pattern
against a document. Twig join algorithms have been developed in the literature as early
as 2002. In this work, we extend the expressiveness of a well-known algorithm to broaden
its potential use for query processing. We furthermore show how the results obtained from
path index scans can be processed by the algorithm.

For some logical operators (in the XQGM), multiple physical alternative implementations
exist. Among them, the plan generator has to choose the most promising. Because a cost
model and statistics on the stored documents are still missing in the XTC system, we content
ourselves with a heuristics-based plan generator. Finally, the query is evaluated. Evaluation
is purely implemented on logical node references, i. e., actual nodes and subtrees are not
read from external memory until the result is to be materialized.

Because XML is a hot research topic, XTC is not alone. Quite a number of other systems
with a similar focus have been developed, like Tamino, Natix, Timber, MonetDB/XQuery,
IBM DB2 pureXML, or Galax. In the related work sections of this thesis, we will compare
the techniques developed in the XTC system with some of these competitors. As we will
see, among the research projects, XTC is the system with the most intuitive internal query
representation, the richest physical algebra, and the most flexible twig join algorithm.

This thesis concludes with an empirical analysis of the storage and query processing tech-
niques developed in this thesis. All concepts have been implemented in the XTC system
in a way, such that the next big step in query processing can be tackled, namely cost-based
query optimization.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Zusammenfassung

Anfangs wurde die eXtensible Markup Language als Format zur Repräsentation von Doku-
menten und als Datenaustauschformat entworfen. Mit der Zeit und mit dem wachsendem
Erfolg dieser Meta-Sprache wuchs auch das vorhandene Volumen an Daten, die in XML
repräsentiert wurden. Als Folge entstanden große Kollektionen von XML-Dokumenten.
Solche Kollektionen in einfachen Text-Dateien oder in den von relationalen Systemen ange-
botenen BLOBs zu verwalten, ist offensichtlich keine gute Idee. Allein das Parsen der relativ
aufwändigen XML-Repräsentation bei jedem Zugriff auf ein Dokument ist schon zu teuer.
Außerdem ist es oft nicht möglich, sehr große XML-Instanzen in den begrenzten Haupt-
speicher zu laden, und ein effizienter Mehrbenutzerbetrieb mit Änderungsoperationen lässt
sich, ohne den dedizierten Zugriff auf Teile eines Dokuments, auch nur schwer realisieren.
Hier können speziell zugeschnittene XML-Datenbankmanagementsysteme Abhilfe schaf-
fen. Im Allgemeinen erlauben solche Systeme eine kompakte Repräsentation von XML-
Daten auf dem Externspeicher. Außerdem gewähren sie Zugriff auf Substrukturen und
können Isolationstechniken für den Mehrbenutzerbetrieb anbieten. Der XML Transaction
Coordinator (XTC) ist solch ein XML-Datenbankmanagemensystem (XDBMS). Er wurde an
der Technischen Universität Kaiserslautern entwickelt und fällt in die Klasse der sogenan-
nten nativen XDBMSe. Diese zeichnen sich durch speziell zugeschnittene interne Speicher-
und Verarbeitungsstrukturen aus (im Gegensatz zu solchen Systemen, die XML-Daten auf
relationale Tabellen abbilden, um sie zu speichern und zu verarbeiten).

Der Erfolg von Datenbanksystemen im Allgemeinen lässt sich unter anderem auch auf
die Entwicklung einer deklarativen, mengenbasierten Schnittstelle zurückführen (denken
wir zum Beispiel an SQL für relationale Systeme). Die allgemein akzeptierte deklarative
Anfragesprache für XML ist XQuery. Es ist daher naheliegend, XQuery als deklarative
Schnittstelle für ein XML-Datenbanksystem zu implementieren. Im Wesentlichen präsen-
tiert die vorliegende Arbeit Konzepte und Techniken zur Implementierung einer XQuery-
Engine, die eng an ein natives XDBMS angeschlossen ist. Die Arbeit beschreibt alle Phasen
des Anfrageauswertungsprozesses: Angefangen beim Parsen über die Normalisierung,
Typüberprüfung, Anfragevereinfachung, logische Optimierung und Plangenerierung bis
hin zur Ausführung und dem abschließenden Materialisieren des Ergebnisses. Natürlich
erinnert uns die soeben beschriebene “Auswertungs-Pipeline” stark an relationale Anfrage-
prozessoren und, wie wir sehen werden, lassen sich einige Konzepte auch wiederverwen-
den. Auf der anderen Seite sorgen das semantisch reichere XML-Datenmodell und die
XQuery-Anfragesprache für genügend interessante Probleme, die eine Ausarbeitung dieser
Größe rechtfertigen.

Wie im relationalen Fall kann auch hier die Anfrageverarbeitung in einen logischen oder
systemunabhängigen Teil und in einen physischen oder systemabhängigen Teil aufgeteilt
werden. Auf der logischen Ebene stellen das Parsen, die Normalisierung, und die Typüber-
prüfung Standardprobleme dar, für die es – auch für XQuery – Standardlösungen gibt. Da-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

IV Zusammenfassung

her schenken wir diesen Themen im Folgenden weniger Beachtung. Die Anfrageverein-
fachung zielt darauf ab, semantisch nicht relevante Teilanfragen aus einer Anfrage zu ent-
fernen. Die Vereinfachung kann als “Versicherung” gegen ungünstig gestellte Anfragen
gesehen werden (wo immer diese Anfragen auch herkommen mögen). Die in dieser Arbeit
beschriebene Vereinfachungskomponente arbeitet lediglich auf einer syntaktischen Ebene
und stellt eine Proof-of-Concept-Lösung dar.

Für die anschließende logische oder auch algebraische Anfrageoptimierung (engl. “Query
Rewriting”) wird eine effiziente und ausdrucksmächtige interne Anfrage-Repräsentation
benötigt. Dazu wird in dieser Arbeit das sogenannte XML-Anfragegraphmodell (engl,
“XML Query Graph Model” oder kurz XQGM) entwickelt. Eine Anfrage wird in XQGM
als ein Diagramm bestehend aus Rechtecken und Pfeilen dargestellt. Die eigentliche An-
frageoptimierung ist dann mit Hilfe einer Regel-Maschine implementiert, welche durch
eine Menge von Optimierungsregeln konfiguriert werden kann. Wann immer die Regel-
Maschine das in einer Regel definierte Muster in einer XQGM-Instanz findet, führt
sie die zur Regel gehörigen Transformationsanweisung aus, welche die XQGM-Instanz
entsprechend modifiziert. Bei der Optimierung sind die Entschachtelung von Anfragen
und das Auffinden von sogenannten Twigs die hauptsächlichen Ziele: Typischerweise
sind XQuery-Anfragen stark in sich geschachtelt, wobei viele korrelierte Unteranfragen ex-
istieren. Diese korrelierten Unteranfragen implizieren bei der späteren Auswertung eine in
vielen Fällen unerwünschte “Nested-Loops”-Semantik. Deshalb versucht der Optimierer,
solche Teilanfragen umzuschreiben. Darüber hinaus wurden in der Literatur effiziente
Blockauswertungsverfahren, die sogenannten Holistic Twig Joins, entwickelt. Um diese Al-
gorithmen einsetzen zu können, müssen gewisse Pfadmuster (Twigs) in der Anfrage erkannt
werden. Das Ergebnis der Optimierung dient dann als Ausgangspunkt für den Prozess der
Plangenerierung.

Auf der physischen Ebene spielen das Layout der Datenbank (Zugriffsstrukturen) und die
existierenden Algorithmen zur Anfrageauswertung eine übergeordnete Rolle. Beide The-
men werden in dieser Arbeit ausführlich diskutiert: Das Datenbank-Layout definiert, wie
Dokumente auf dem Externspeicher abgelegt werden und welche sekundären Zugriffspfade
angeboten werden. Das Externspeicherabbildungsverfahren, welches hier vorgestellt wird,
virtualisiert die innere Struktur der Dokumente, um so das Abspeichern von redundanten
Teilstrukturen zu vermeiden. Desweiteren sammelt das Verfahren Pfadinformationen und
bietet diese zum Beispiel der Indexierungskomponente zum Erstellen und zur Wartung
von Pfadindexen bereit. Die in dieser Arbeit entwickelten Indexierungsverfahren können
einfache Pfadanfragen mit einem optionalen inhaltsbasierten Prädikat beantworten. Ähn-
lich zu korrespondierenden relationalen Verfahren, sind unsere XML-Indexe optional und
können bei Bedarf vom Datenbank-Administrator zur Optimierung einer Anfragemenge
definiert werden.

Auf dem Datenbank-Layout arbeitet die physische Algebra. Sie beinhaltet alle notwendi-
gen Algorithmen zur Auswertung von XQuery-Anfragen. Ein wichtiger Vertreter ist hier
der Holistic Twig Join, welcher es ermöglicht, ein komplettes Pfadmuster effizient auf einem
Dokument auszuwerten. Die ersten Twig-Algorithmen wurden schon früh (2002) in der Lit-
eratur publiziert. In dieser Arbeit erweitern wir die Ausdrucksmächtigkeit eines bekannten
Twig-Algorithmus, um die Menge seiner Einsatzmöglichkeiten bei der Anfrageauswertung
zu erweitern. Darüber hinaus zeigen wir, wie Pfadindexe effizient mit Twig-Algorithmen
kombiniert werden können.

Für logische Operationen (im XQGM) existieren häufig viele verschiedene physische Imple-
mentierungsmöglichkeiten. Aus ihnen muss der Plangenerator diejenigen aussuchen, die

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Zusammenfassung V

die niedrigsten Auswertungskosten versprechen. Leider fehlen im XTC-System bisher ein
Kostenmodell und eine Statistik-Komponente, sodass wir uns hier mit einer heuristischen
Operatorauswahl begnügen müssen. Zum Schluss wird der generierte Anfrageplan ausge-
führt. Diese Ausführung ist ausschließlich mit Hilfe von Knotenreferenzen implementiert,
das heißt, XML-Knoten und Teilbäume werden erst dann vom Externspeicher gelesen, wenn
das Ergebnis materialisiert wird.

XML ist ein sehr aktives Forschungsthema, weshalb XTC nicht alleine dasteht. Parallel zu
XTC haben sich einige weitere Systeme entwickelt, wie zum Beispiel Tamino, Natix, Timber,
MonetDB/XQuery, IBM DB2 pureXML oder auch Galax. In den Teilkapiteln zu verwandten
Arbeiten werden diese Ansätze mit den in XTC implementierten verglichen. Wie wir se-
hen werden, ist XTC – unter den wissenschaftlich entstandenen Prototypen – dasjenige
System mit der intuitivsten internen Anfragerepräsentation, mit der reichhaltigsten physis-
chen Algebra und mit dem flexibelsten Twig-Algorithmus. Die vorliegende Arbeit schließt
mit einer empirischen Analyse der vorstellten Speicherungs- und Verarbeitungsverfahren.
Alle Konzepte wurden so im XTC-System implementiert, dass der nächste große Schritt in
der XML-Anfrageverarbeitung angegangen werden kann, nämlich die kostenbasierte Opti-
mierung.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

VI Zusammenfassung

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Contents

Abstract I

Zusammenfassung III

Contents XIII

Figures XVII

Listings XX

I Introduction 1

1 Motivation 3

1.1 Objectives . 4

1.2 Outline . 7

1.3 Conventions . 7

2 XML Query Processing on XTC—An Overview 9

2.1 The Query Evaluation Process . 9

2.1.1 Logical and Physical Abstraction . 10

2.1.2 Parsing and Translation . 11

2.1.3 Optimization . 13

2.1.4 Execution and Materialization . 16

2.2 Query Processing by Example . 17

2.2.1 Syntactic Analysis . 17

2.2.2 Normalization . 18

2.2.3 Static Typing . 18

2.2.4 Simplification . 18

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

VIII Contents

2.2.5 XQGM Transformation . 19

2.2.6 Algebraic Rewriting . 22

2.2.7 Plan Generation . 24

2.2.8 Execution and Materialization . 25

2.3 Related Work . 25

2.3.1 Galax . 25

2.3.2 IBM DB2 Pure XML . 27

2.3.3 Timber . 28

2.3.4 Natix . 28

2.3.5 MonetDB/XQuery . 29

2.3.6 Other Systems . 30

2.4 Summary . 30

3 The XML Transaction Coordinator 31

3.1 The taDOM Data Model . 31

3.1.1 The taDOM Tree . 32

3.1.2 Operations on the taDOM Tree . 32

3.1.3 DeweyIDs for Node Identification . 33

3.2 The taDOM Lock Protocol . 35

3.3 XTC’s Architecture . 37

3.3.1 File Services and Propagation . 37

3.3.2 Access Services . 39

3.3.3 Node Services and XML Services . 41

3.3.4 Transaction Services . 41

3.3.5 Interface Services . 42

3.4 Summary . 42

II Logical Aspects of XML Query Processing 43

4 The XML Query Graph Model 45

4.1 The XQGM Syntax . 46

4.1.1 XQGM Components . 46

4.1.2 Identifying Components . 50

4.2 The XQGM Semantics . 51

4.2.1 The Data Model . 52

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Contents IX

4.2.2 Map, Set, Eval and the Logical Algebra 54

4.2.3 The Dynamic Evaluation Environment 55

4.2.4 XQGM Select . 55

4.2.5 XQGM Access . 67

4.2.6 XQGM Set Operators . 69

4.2.7 Tuple Variable References . 70

4.2.8 The XQGM Root Operator . 70

4.2.9 Final Remarks on the XQGM Semantics 71

4.3 Query Translation . 71

4.3.1 Normalization and Static Typing . 72

4.3.2 Simplification . 74

4.3.3 XQGM Transformation . 75

4.4 Related Work . 87

4.5 Summary . 87

5 Query Unnesting and Twig Discovery 91

5.1 Rewriting Methodology . 93

5.2 External Tuple Variable Reference Removal . 94

5.3 Removal of descendant-or-self . 96

5.4 Range Query Detection . 97

5.5 Select Fusion . 99

5.6 Predicate Push-Down . 101

5.7 Query Unnesting . 104

5.7.1 Boolean Split . 105

5.7.2 Multiple Correlated Expression pull-out 108

5.7.3 The Unnesting Rule . 113

5.8 Twig Query Detection . 127

5.8.1 The XQGM Twig Join Operator . 129

5.8.2 The HTJ Discovery Rule Pattern . 134

5.8.3 The HTJ Discovery Transformation Instruction 136

5.8.4 Summary . 141

5.9 Related Work . 142

5.9.1 Galax . 142

5.9.2 IBM DB2 Pure XML . 144

5.9.3 Timber . 146

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

X Contents

5.9.4 Natix . 148

5.9.5 MonetDB/XQuery . 149

5.10 Summary . 150

III Physical Aspects of XML Query Processing 155

6 Document Storage 157

6.1 Desiderata . 158

6.2 Node-Oriented Storage Reconsidered . 159

6.2.1 Storage and Reconstruction . 159

6.2.2 Navigational Operations . 160

6.2.3 Scan/Reconstruction, Modifications, and the Round-Trip Property . . 162

6.2.4 Document and Collection Support . 163

6.2.5 Succinctness . 163

6.2.6 Indexing Support . 165

6.2.7 Summary . 166

6.3 Path-Oriented Document Storage . 166

6.3.1 The Path Synopsis . 168

6.3.2 The Store . 169

6.3.3 Storage and (Subtree) Reconstruction/Scan 171

6.3.4 Navigational Operations . 177

6.3.5 Modifications . 179

6.3.6 Round-Trip Property and Collection Support 182

6.3.7 Succinctness . 183

6.3.8 Indexing Support . 183

6.4 Related Work . 185

6.4.1 Native XML Storage . 185

6.4.2 Shredding . 189

6.5 Summary . 193

7 XML Indexing 195

7.1 Desiderata . 196

7.2 XTC’s Indexing Scheme Reconsidered . 197

7.2.1 The ID-Attribute Index . 197

7.2.2 The Element Index . 197

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Contents XI

7.2.3 Assessment of XTC’s Indexing Scheme 199

7.3 Path Indexing . 200

7.3.1 Query Types Considered . 200

7.3.2 Defining CAS Indexes . 201

7.3.3 Creating CAS Indexes . 202

7.3.4 Unique, Collective, and Generic CAS Indexes 203

7.3.5 CAS Index Maintenance . 204

7.3.6 Answering Point and Range Queries over CAS Indexes 205

7.3.7 CAS Index Applicability . 206

7.3.8 Plain Path Indexes and Plain Content Indexes 207

7.3.9 Dewey-ID Clustering and PCR Clustering 208

7.4 Related Work . 210

7.4.1 Structural Join Indexes and Content Indexes 211

7.4.2 Path Indexes . 212

7.4.3 Content-and-Structure Indexes . 214

7.4.4 Twig Indexes . 215

7.4.5 Indexing in Related Query Processors 216

7.5 Summary . 216

8 The Physical Algebra 217

8.1 An Introduction to the Physical Algebra . 218

8.2 Navigational PPOs . 219

8.2.1 A Single-Node Navigational PPO . 219

8.2.2 A Multi-Node Navigational PPO: NavTree 222

8.3 The Structural Join Operator: Extended StackTree 228

8.4 The Holistic Twig Join Operator: Extended TwigOpt 230

8.4.1 Extended TwigOpt by Example . 231

8.4.2 Twig Mapping . 235

8.4.3 TwigOpt Cursors . 240

8.4.4 TwigOpt Matching . 243

8.4.5 TwigOpt Output Generation . 250

8.5 Index-Based PPOs . 256

8.5.1 Simple Index Mapping . 256

8.5.2 Complex Index Mapping . 260

8.5.3 Index Embedding Considerations . 267

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

XII Contents

8.6 LAL Operators as PAL Operators . 269

8.6.1 Lazy Tuple Generation . 270

8.6.2 The Merge Operator . 270

8.6.3 Value-Based Joins in XQuery . 270

8.6.4 The Remaining Operators . 271

8.7 Related Work . 272

8.7.1 Navigational Primitives . 272

8.7.2 Structural Joins . 272

8.7.3 Holistic Twig Joins . 273

8.7.4 A Glimpse on Physical Algebras in Other XML Query Processors . . . 276

8.8 Summary . 278

IV Experimental Evaluation and Future Research 279

9 Experimental Results 281

9.1 Experimental Setup . 281

9.2 Document Processing . 282

9.2.1 Space Consumption . 282

9.2.2 Storage and Reconstruction . 283

9.2.3 Navigation Performance . 283

9.3 Path Processing Operators and Query Plans . 285

9.3.1 Navigational PPOs . 285

9.3.2 Join-Based PPOs . 290

9.3.3 Index-Based PPOs . 296

9.4 Other Processing Stages . 301

9.5 Summary . 302

10 Conclusion and Future Research 305

10.1 Conclusion . 305

10.2 Future Work . 306

V Appendix 309

References 311

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Contents XIII

A The Sample Document 321

B Queries and Settings 323

XMark . 323

Path Queries on the DBLP Document . 326

Path Queries on the Treebank Document . 326

Additional Path Queries on the XMark Document 326

MemBeR File 1 . 327

MemBeR File 2 . 327

XMark Indexes . 328

C Curriculum Vitae 329

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

XIV Contents

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Figures

2.1 Query evaluation in XTC . 10
2.2 The query optimization strategy in the XTC XQuery processor 13
2.3 Abstract syntax tree for XMark query Q5 . 17
2.4 XMark query Q5 represented in XQGM . 20
2.5 Rewritten XMark query Q5 . 23
2.6 QEP for XMark query Q5 . 24
2.7 The Galax document processing and query evaluation pipeline 26
2.8 The DB2 hybrid XML/XQuery processor . 27

3.1 Document recordStore.xml as taDOM tree . 32
3.2 Operations supported by taDOM . 33
3.3 The taDOM2 compatability and conversion matrixes 37
3.4 Architecture of the XML Transaction Coordinator 38
3.5 Storage of sample document recordStore.xml in a B*-tree 40

4.1 The slim version of XQGM in UML notation 46
4.2 Components of the slim XQGM version . 47
4.3 An XQGM sample instance . 50
4.4 The data model of the XTC XML query processor 52
4.5 Examples of dependent tuple variables . 56
4.6 A tuple generation example . 58
4.7 AST-to-XQGM transformation of two sample queries 86

5.1 Tuple variable reference removal . 95
5.2 Removal of descendant-or-self . 96
5.3 Range query detection . 98
5.4 Select fusion . 100
5.5 Predicate push-down . 102
5.6 Boolean split . 106
5.7 Multiple correlated expression pull-out . 109
5.8 The simplest unnesting scenario . 114
5.9 Unnesting over positional predicate . 116
5.10 Unnesting with group semantics . 117
5.11 The unnesting pattern and the result of the transformation instruction 119
5.12 Twig matching examples . 131
5.13 Twig matching examples continued . 132
5.14 Twig discovery . 135
5.15 Discovered twigs of two sample queries . 136
5.16 A DB2 QGM example . 145

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

XVI Figures

5.17 A TAX example . 147
5.18 A NAL example . 149
5.19 The complete version of XQGM in UML . 151
5.20 Components of the complete XQGM version 153
5.21 A complete rewriting example . 154

6.1 Storage of sample document recordStore.xml in a B*-tree 159
6.2 Path synopsis of the recordStore.xml document 169
6.3 Path-oriented document storage . 169
6.4 The path-oriented document store for document recordStore.xml 170
6.5 Update scenarios for the path-oriented document store 179
6.6 Best-case and worst-case space reduction scenario 183
6.7 A classification of related work on XML storage 184
6.8 DB2 pureXML storage overview . 186
6.9 The node mapping approach . 188
6.10 The XSum schema-based mapping . 188
6.11 MonetDB/XQuery document mapping overview 191
6.12 The Sucxent++ storage scheme . 192

7.1 The ID-attribute index and the element index 197
7.2 A Sample CAS index on recordStore.xml . 202
7.3 A sample plain path index . 207
7.4 The extended element index . 209
7.5 Record formats for DeweyID and PCR clustering 209
7.6 A classification of related work on XML indexing 211
7.7 A sample path index . 213

8.1 A navigational access operation in the XQGM 220
8.2 An output ordering example: An XQGM instance and its physical plan 224
8.3 A filter and output generation example . 228
8.4 A StackTree example . 230
8.5 An example of the extended TwigOpt operator 232
8.6 The physical plan generated for a sample query 236
8.7 The moveCursors function illustrated . 248
8.8 Various XQGM access operators to be mapped to indexes 255
8.9 Various index-based implementations of the sample query 259
8.10 An ancestor tuple builder example . 261
8.11 Structure of an ancestor tuple builder mapping 264
8.12 A sample run on the relaxed ancestor tuple builder 267
8.13 Motivation for a lazy tuple generator . 269
8.14 An XQGM instance with a value-based join . 271

9.1 Space consumption: external vs. node-oriented vs. path-oriented 282
9.2 Storage time: node-oriented vs. path-oriented 283
9.3 Reconstruction time: node-oriented vs. path-oriented 284
9.4 Navigation time: node-oriented vs. path-oriented 284
9.5 Path evaluation benchmark (navigational) . 287
9.6 Effects of context-sequence pruning . 289
9.7 XMark benchmark (navigational) . 289
9.8 STJ. vs. HTJ on the element index . 291
9.9 MemBer benchmark results . 292

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Figures XVII

9.10 STJ vs. HTJ on XMark . 293
9.11 HTJ vs. HTJ on XMark . 295
9.12 Structure of the MemBeR documents . 295
9.13 HTJ vs. HTJ on the MemBeR documents . 295
9.14 Path queries on path indexes . 296
9.15 CAS queries on indexed document . 299
9.16 DeweyID clustering vs. PCR clustering . 300
9.17 Indexing the XMark query set . 301
9.18 Ratio of the various query processing stages . 302

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

XVIII Figures

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Listings

4.1 LAL TUPGEN evaluation . 59
4.2 Functions enqueue, results, and product . 60
4.3 The set function . 62
4.4 LAL SELECT evaluation . 63
4.5 The evaluation of a LAL expression E . 64
4.6 LAL SORT evaluation . 65
4.7 LAL PROJECT evaluation . 66
4.8 The cardinality of a tuple variable . 67
4.9 LAL DOC/COLL evaluation . 68
4.10 LAL STEP evaluation . 69
4.11 LAL TUPACCESS evaluation . 70
4.12 Call-structure expansion of an AST-to-XQGM transformation run 89

5.1 Functions set and setGroup . 113
5.2 The main algorithm of the GROUP_BY operator 125
5.3 The initGroup algorithm . 125
5.4 The newGroup algorithm . 126
5.5 LAL UNNEST evaluation . 128

6.1 The storage content handler . 171
6.2 The startElement method for path-oriented document storage 172
6.3 The endElement method for path-oriented document storage 173
6.4 The characters method for path-oriented document storage 173
6.5 The storeDummyRecord method for path-oriented document storage 174
6.6 The endDocument method for path-oriented document storage 174
6.7 The node reconstruction algorithm . 176
6.8 The parent method . 177
6.9 The first-child (last-child) method . 178
6.10 The previous-sibling (next-sibling) method . 179

8.1 The NavTree operator . 227
8.2 The TwigOptNode class . 237
8.3 The Cursor class . 241
8.4 The TwigOpt main algorithm . 244
8.5 Methods checkSolutionExtension and constraints 245
8.6 The containsAllCursorsOf method . 246
8.7 The moveCursors method . 247
8.8 Methods moveCursorsBottomUp and moveCursorsTopDown 249
8.9 The outputAndPush method . 250
8.10 The outputOneEntry method . 252

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

XX Listings

8.11 The processChildren method . 253
8.12 The outputOneStack method . 254
8.13 The processTuple method . 254
8.14 The processOneElement method . 262
8.15 The ATBinput and ATBcursor classes . 263
8.16 The open method and the processTo method . 265
8.17 The relaxed version of the processOneElement method 266
8.18 The setToFirst method and the forwardTo method 268

9.1 Path queries from the XPathMark benchmark 285
9.2 Queries on the MemBeR document . 291

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Part I

Introduction

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 1 Motivation

We will either find a way, or make one!

Hannibal

At the time of writing, the eXtensible Markup Language (XML) [Bray 06] celebrates
its 11th anniversary. In 1998, XML was designed as a format for large-scale elec-
tronic publishing, where it played its role as a mechanism to structure the content of
text documents in a meaningful way and, therefore, served to separate presentation
from content. However, because of the flexibility of its underlying semi-structured
data model, XML was soon discovered as a general format for electronic data in-
terchange. With its roots, both in the document community and in the data pro-
cessing community, XML rapidly conquered many applications areas in the last
decade. Perhaps XML can nowadays be characterized best by enumerating the op-
erations that can possibly be applied to XML and by the systems that are built on
top of the markup language. For example, XML is stored, shredded, reconstructed,
transformed, queried, retrieved, validated, sent over the wire, navigated, scanned,
modified, standardized, imported, exported, cleansed, summarized, indexed, com-
pressed, shared, sampled, archived, encrypted, linked, etc. Furthermore, XML
serves as the basis for quite diverse software systems like, for example, in the area
of web content management, service-oriented integration, metadata handling, and
healthcare, and has lead to a plethora of government, education, and industry stan-
dards [Cover 05].

The success and attention XML has gained over the last ten years has various rea-
sons. The following often stated XML characteristics are the most crucial key fac-
tors:

• XML is human readable. XML documents are text documents. Everybody can
open an XML document in his favorite editor and read or modify the document’s
contents. This is not the case in many other proprietary formats (for example in
electronic data interchange). Therefore, XML keeps a certain proximity to the
user.

• XML separates content from presentation. In contrast to other markup languages
(such as HTML or Latex), the XML technology allows to model the data first and
to transform this data later into an appropriate representation. Therefore, XML
provides for a certain kind of data independence.

• XML is open, standardized, platform independent, and supported by a large variety of
tools. The combination of these four factors lead to a high acceptance of XML.
Often, it is very simple to build an XML application, because for all imaginable

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4 Chapter 1: Motivation

tasks, appropriate tools exist, for example: to define the structure of an XML doc-
ument (XML Schema), to navigate (DOM), scan (SAX), and query XML (XQuery),
to store XML (XML-enabled database systems), etc. Because XML is open, plat-
form independent, and standardized, everybody can “speak” and “understand”
XML, which is quite important for Business-to-Business (B2B) applications.

• XML is hierarchical, flexible, and extensible. XML defines a semi-structured data
model, representing data as trees. In contrast to previous data models, where
records had to conform to a specific schema, in XML, a schema is optional,
thereby allowing the complete variety from completely unstructured to highly
structured data. For example, in XML it is not necessary to explicitly state that a
particular information is not available (as required in the relational model with
NULL values) the particular subtree is simply missing in the XML tree. Further-
more, because XML is actually a meta-language allowing the specification of all
forms of XML dialects, XML is extensible.

• XML contains data and metadata. Again, in contrast to previous data models where
data and meta data (i. e., data about data) are separated, XML unites them into a
single document, thus facilitating data interchange1.

Despite these positive points, XML has also a downside: Often, the technology has
been criticized as a bandwidth and CPU-time squanderer, because the represen-
tation containing a lot of redundancy is very verbose. Furthermore, there is no
comparable technique as the relational schema normalization theory for XML doc-
uments, there are at most some best practices. Additionally, because schemas are
optional and because the semi-structured data model is complex, data management
(especially data access) becomes a lot more complicated. However, XML is still
young and industries as well as researchers from all over the world are constantly
improving the technology.

1.1 Objectives

All in all, the heavy use of XML in the past decade led to a large volume of XML data
that requires efficient management. At this point, database management systems
(DBMSs) step into the picture. Database management systems arose in the early
1960s to face the problems that file-based data management was suffering from,
for example redundancy and inconsistency. DBMSs were introduced as a software
component between the application and the operating system (file system) to con-
trol data access. Today, after 40 years of research, it is impossible to imagine infor-
mation technology without DBMSs, which provide a long list of appealing features,
in particular: logically centralized data management, data independence, simple
application programming interfaces (APIs), centralized integrity control, transac-
tional data processing, efficient and parallel processing of large data volumes, high
availability and dependability, etc. Furthermore, because DBMSs are generic soft-
ware components, they also conquered a large area of applications.

When large volumes of XML data need to be managed, it is quite natural to marry
XML with the DBMS technology to bring an XML-enabled database management

1Note, this feature is often stated by the phrase “XML is self-descriptive”. In our opinion, this statement
leads into the wrong direction, because it implies that computers can automatically “understand” XML data,
which is obviously not the case.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

1.1 Objectives 5

system (XDBMS) into being that combines the benefits from both worlds. Such a
system can, for example, store and retrieve XML documents, allow users to col-
laboratively share XML documents, control integrity and schema constraints upon
modification, and provide efficient means to access, transform, and query XML. As
for any other DBMS, the following statement also holds from XDBMSs: “Perfor-
mance is not everything, but without performance everything is worth nothing”
[Härder 05a]. One of the most performance-critical component of a DBMS is the
query engine. Often, the performance of the query engine accounts for the perfor-
mance of the DBMS itself. The problem is that bad query evaluation plans, i. e., bad
access strategies, can lead to a disastrous performance behavior of the complete sys-
tem. Therefore, the query engine is a key factor for the overall quality of a DBMS.

Query processing—and especially query processing over XML data—is a complex
task. In computer science, the answer to complexity is abstraction.2 Therefore, it is
quite natural to split up query processing into system-independent problems (log-
ical abstraction level), and into problems that are system-dependent (physical ab-
straction level). Considering XML query processing at the physical level, a plethora
of evaluation algorithms have been proposed by industry and research groups over
the recent years, such as navigational primitives, bulk processing algorithms, and
index structures. However, often, these approaches content themselves with solving
subproblems (e. g., finding matches of a specific subtree structure in the document)
that are important to XML query processing, but they do not reason about the inte-
gration of their proposals into a full-fledged query engine. On the other side, at the
logical level, there is still no commonly agreed logical treatment of XML queries, in
particular, a common logical XML algebra is still missing.

The vision of this thesis is to bring the valuable concepts from both communities,
i. e., from physical and logical parties, together and to integrate them in an XML
query evaluation engine. Therefore, the following fundamental aspects of query
processing shall be developed here and are, therefore, subject of this work:

• Space-efficient storage and indexing for dynamic documents. XML documents may
occur in all imaginable size and complexity ranges, from small document collec-
tions of some kilobytes size, e. g., a bunch of configuration files, to complex struc-
tured multi-gigabyte documents, for example in bioinformatics [UniProt 08].
While small documents are probably best processed by simple scans or naviga-
tions in main memory, large instances forbid such a strategy and require indexed
access to keep query performance in tolerable ranges. However, if a document is
structured, it has to be stored in a space-efficient manner, because query process-
ing frequently requires substructure reconstruction for result generation. There-
fore, succinctness is an important requirement leading to reduced external I/O
and logging costs, too. Finally, an XDBMS is not a read-only system, but supports
dynamic XML documents, requiring efficient means to update documents and to
propagate modifications to secondary index structures.

• Development and integration of efficient XML evaluation algorithms in a physical XML
algebra. The physical algebra of an XML query engine consists of the low-level
evaluation algorithms (operators) that run on top of XML indexes and the doc-
ument store. Often, for a single task there is no one-fits-all solution, but rather,
depending on the queried data, one algorithm performs better than another one.

2“Eine Hauptaufgabe der Informatik ist systematische Abstraktion” (“A principal task of computer science
is systematic abstraction”, H. Wedekind).

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6 Chapter 1: Motivation

Therefore, a physical algebra containing XML-specific operators shall be devel-
oped to support a large variety of different data distributions. Research has al-
ready developed a large number of such algorithms. However, quite often these
approaches are isolated suggestions and do not consider their integration into
an XML algebra. In this work, these proposals shall be re-considered, both on a
theoretical and an empiric level, and, where appropriate, shall be integrated into
the physical algebra such that all operators work hand-in-hand.

• Design of a query rewriting rule set and an internal query representation. Often,
queries can be pre-optimized at a logical level without knowledge of system-
specific details. For example, in most cases it is better to evaluate a predicate
as early as possible to reduce the number of items processed. Furthermore, the
physical XML algebra will contain some very efficient evaluation algorithms that
can, however, only be applied in certain circumstances. In this work, a set of
query rewriting rules will be developed that copes with the discovery of these op-
portunities and with pre-optimization. For the implementation of query rewrit-
ing, a suitable (logical) query representation has to be found that efficiently sup-
ports the restructurings defined by the rule set.

• Definition of the necessary query transformations and their integration into a complete
query evaluation process. To deal with the complexity of query evaluation, a query
typically passes various stages inside a query engine, from its external string rep-
resentation over the logical and the physical representations to its execution and
result construction. Basically, the transitions between these stages are language
transformations which need to be defined in a sound manner and which have to
be integrated resulting in an overall query evaluation process.

Unfortunately, a dissertation can never cover a topic completely. This is especially
true, when dealing with such a complex task as query processing. Therefore, al-
ready at this point, the following important topics left open to future work shall be
stated: 1) the development of a document statistics component to estimate result
cardinalities of query expressions, 2) the development of a cost model, and 3) the
design of a cost-based query optimizer for XML queries. A cost-based query op-
timizer selects the most promising algorithms from the physical algebra to imple-
ment a query. For this selection, the optimizer needs statistical information about
the documents (e. g., how are elements distributed?) and ways to name a price for
an algorithm (depending on the estimated input size). The first information comes
from the statistics component, the second one from the cost model. The develop-
ment of these components would reveal enough material for another thesis of this
extent. Therefore, they are left open to future research. However, this work serves
as a foundation for the development of an XML query engine with a cost-based op-
timizer, because it delivers the basic ingredients: XML storage and index structures,
evaluation algorithms, an internal XML query representation, XML query rewrit-
ing, and a complete query evaluation process.

To empirically assess the solutions developed for each of the presented aspects,
they were implemented in the XML Transaction Coordinator (XTC) [Haustein 06a],
a prototype native XDBMS.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

1.3 Outline 7

1.2 Outline

This dissertation is organized into the five parts 1) Introduction, 2) Logical Aspects
of XML Query Processing, 3) Physical Aspects of XML Query Processing, 4) Experimen-
tal Evaluation and Future Research, and 5) the Appendix. After the motivation and
the outline section you are currently reading, the introduction part presents neces-
sary preliminaries facilitating the comprehension of the following work. Chapter 2
provides an overview over the concepts developed. It summarizes the query eval-
uation process and shows by examples how a query is translated from an external
string representation into an executable program. Because some parts of the query
processor are system-dependent, Chapter 3 presents the the XTC system.

In the second part of this thesis, the logical (system-independent) aspects of XML
query processing are introduced. Chapter 4 presents the syntax and semantics of the
XML query graph model (XQGM)—an internal query representation. Furthermore, it
shows how queries can be transformed from their external string representation into
XQGM. Then, in Chapter 5, the rewriting rules transforming an XQGM instance into
a pre-optimized alternative are discussed. The focus here lies on query unnesting and
the discovery of the so-called holistic twig joins (for which efficient algorithms exist).

The third part of this work deals with physical aspects in XML query processing.
A query processor is built upon basic access primitives, which are either imple-
mented directly on the persistent data store (XML document store) or which are im-
plemented over (XML) indexes. Therefore, Chapter 6 (Document Storage) presents
how XML documents are stored and accessed, whereas Chapter 7 (XML Indexing)
introduces XML index structures. Chapter 8 (The Physical Algebra) then presents a
set of physical XML operators (evaluation algorithms) for XML processing and a
glimpse on how to map logical XQGM instances to this physical algebra.

In the fourth part, Chapter 9 presents experimental results. This dissertation con-
cludes with Chapter 10 summarizing the main contribution and providing direc-
tions future work. Related work will be discussed in each chapter separately.

1.3 Conventions

In this work, XML queries are expressed in the XQuery language. These
queries are, whenever they occur, set in a typewriter font, for example:
doc("sample.xml")/bib/book/author . XQuery functions, when used inside
a query, are also set in a typewriter font. However, when they occur in the main text,
they are type set like all other functions, by using an italic font style and by omitting
braces and arguments, for example: doc. Result values of XQuery expressions are
represented in a typewriter font, e. g., <author>Michael Ende</author> . On
the other hand, when we refer to some XML node, we use an italic font style, e. g.,
“the author node”. The introduction of new term and concepts is also highlighted in
an italic font.

Interface and class definitions are represented inside listings with some Java-like
syntax highlighting. For an example, see Listing 6.1 on Page 171. Algorithms are
either represented in a Java-like pseudocode or in an algorithmic pseudocode (e. g.,
Listing 4.1 on Page 59). Note, in the algorithmic pseudocode, the assignment opera-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8 Chapter 1: Motivation

tor is the left arrow (←), because the equality operator (=) is used for comparisons.
All further notations will be introduced, when they are required.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 2 XML Query Processing on
XTC—An Overview

If you can’t describe what you are
doing as a process, you don’t know
what you’re doing.

W. Edwards Deming

The overall goal in query processing is to translate a declarative query from its ex-
ternal representation as a string into a procedural executable program that can be evalu-
ated on the data store to deliver the answer of the query. Obviously, the semantics of
the query in its external representation and the semantics of the executable program
have to be the same, because otherwise the program would not return a correct re-
sult. The major distinction between these two query representations is the level of
abstraction. The external query representation has a high abstraction level, because
it only takes the logical structure of the database (in our case the logical structure of
one or more XML documents) into account. The executable program however has
a low abstraction level, because it is composed of operators that work on the physi-
cally stored objects of the database. Therefore, the program has to deal with storage
structures, secondary indexes, data distributions, etc. Given these low-level objects,
there is often a plethora of different evaluation alternatives for one and the same
query. Each of these alternatives has its own access characteristics and costs. To
refine the overall goal in query processing from above, for a given external declar-
ative query, query processing has to find the best (or at least a good) procedural
executable program in terms of processing costs.

The intention of this chapter is to introduce the overall process of XML query eval-
uation from the external representation of a query in the XQuery language to the
execution on the data store. The chapter sketches the concepts developed in this
thesis, it provides pointers to the following chapters where specific concepts are
discussed in detail, and it generally facilitates the comprehension of this work.

2.1 The Query Evaluation Process

In the late 1980s and in the 1990s, the DB research community spent substantial ef-
forts on the development of extensible query processors for database systems. The
essential idea behind this movement was to provide for a framework in which new
concepts, such as new language constructs, new data models, or new processing al-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

10 Chapter 2: XML Query Processing on XTC—An Overview

Figure 2.1 Query evaluation in XTC

Component Process Meta−DataAbstraction

XQuery

Abstract Syntax Tree (AST)

Algebraic Rewriting

Plan Generation

Result

Optimizer

Evaluator

Indexes

Statistics

Cost−Model

Lo
gi

ca
l Normalization

Static Typing

Simplification

XML Query Graph Model (XQGM)

Materialization

Execution

P
hy

si
ca

l
Syntactic AnalysisParser

Translator

XQGM Transformation

Query Evaluation Plan (QEP)

gorithms could easily be integrated without the cumbersome task to completely
reimplement large portions of a query processor [Mitschang 95, Kabra 99]. Sys-
tems like EXODUS [Graefe 87], VOLCANO [Graefe 93, Graefe 94], and Starburst
[Mavis K. Lee 88, Haas 89, Pirahesh 92] are some well-known examples from that
time, which all encompass the framework idea. The query processor developed in
this thesis stands in the tradition of these systems. Therefore, many concepts and
terms could be borrowed, and, although the XTC query processor was built from
scratch, it can be seen as a true extension in the sense of the framework idea.

To cope with complexity, query processing is generally split up into a number of
stages. Each stage receives a query representation generated by some preceding
stage (or given as input) and produces a further representation with a lower level of
abstraction but enriched with more specific information on how the query has to be
evaluated over the database. Figure 2.1 depicts all the stages of the query evaluation
process of the XTC query processor.

2.1.1 Logical and Physical Abstraction

The process can roughly be divided into a logical abstraction layer and into a phys-
ical abstraction layer. The logical layer is completely system independent, in the
sense that the query representations and actions at this level could be reused as
they are, to implement a query processor for another XML data source. The aim at
this layer is 1) to find a procedural internal representation such that semantically
equivalent (but syntactically different) queries are mapped onto the same represen-
tation (if possible), and 2) to rewrite the query in a way such that intermediate re-
sults are minimized. Such a representation is a good starting point for the actions at

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.1 The Query Evaluation Process 11

the system-dependent physical abstraction layer below, because, in contrast to the
declarative external query representation, a procedural internal representation con-
tains more information about how the query can be evaluated. Furthermore, map-
ping semantically equivalent queries to the same internal representation makes the
query processor robust. At the physical layer, the query processor considers low-
level issues such as document storage layout, possibly available index structures,
or processing algorithms to generate a program that operates on the database and
efficiently computes the query result.

In total, the query processor consists of the six components, of which five are de-
picted in Figure 2.1: the parser, the translator, the optimizer, the evaluator, and the
metadata component of the XTC system. As the illustration indicates, parser, trans-
lator, optimizer, and evaluator are connected in a series, each component imple-
menting one or more processing stages as introduced above. As we will see, some
functionality can be reused for the implementation of one or the other stage. We
combine this functionality in a sixth infrastructure component, which is not depicted
in Figure 2.1. The logical part of the process starts by a syntactical analysis of the
given query and is finshed with the algebraic rewriting stage. The output of this
stage serves as the input for the physical query evaluation part, which is completed
when the final result is computed.

2.1.2 Parsing and Translation

In the first stage, the parser reads the XQuery expression received as a string and
executes a syntactic analysis. If a syntactic error is detected, e. g., a missing clos-
ing brace, a message containing some information about the error is reported to
the caller of the query processor and the evaluation stops. Otherwise, the parser
constructs the so-called abstract syntax tree (AST) of the query, which is basically a
grammar-oriented tree representation of the query expression. The XQuery gram-
mar is specified by the W3C Recommendation [Boag 04] in the form of EBNF pro-
ductions. Instead of writing the parser by hand, a parser generator [Parr 07] reads
the XQuery grammar and automatically generates the necessary parser code. Be-
cause parsing is a standard technique in compiler construction, this issue will not
be further discussed in the following.

The next four stages are implemented by the query translator, whose task it is to
transform the given AST into an internal representation for the query optimizer.
During this transformation, the query is revised from syntactic sugar and from un-
necessary subexpressions. This is the first step towards a robust query processor.

Normalization is a process defined by the XQuery Formal Semantics Recommenda-
tion1 [Choi 07]. It transforms an XQuery expression to an equivalent expression in
the so-called XQuery Core Language, which is a subset of the original XQuery lan-
guage. XQuery Core has the same expressive power as XQuery, but contains only
a minimal number of language constructs, i. e., normalization basically removes all
syntactic sugar from a query. Therefore, it facilitates the following translation steps,
because a smaller fraction of the XQuery language has to be considered. The nor-
malization process is implemented on the AST by a recursive function that replaces
all subexpressions of an expression with their normalized version. Because this
implementation slightly differs from the recommendation, normalization will be

1Note, in the following, we will refer to this document as the “Formal Semantics”.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

12 Chapter 2: XML Query Processing on XTC—An Overview

further discussed in Section 4.3.1.

In the next stage, the static type of the query is inferred. XQuery is a strongly
typed language, therefore, every XQuery expression returns a typed value from
the XQuery Data Model [Fernández 04]. During static typing, all subexpressions
are annotated with the static type they return. Certain expressions expect a spe-
cific input type. For example, the plus operator (+) expects numeric arguments. If,
however, the static type of the input expression does not match the expected type, a
type error is raised and the evaluation stops. Note, because static typing takes place
at compile time, it solely relies on the query but not on the data that is queried.
Therefore, it is often only possible to infer some supertype of an expression, but not
the specific subtype which will occur later at run time during query evaluation. In
summary, static typing can detect “coarse” typing errors, whereas dynamic typing
errors have to be detected during evaluation. The rules to infer the static type from
a normalized XQuery expression are also defined in the Formal Semantics. Because
the query translator implements these rules without substantial changes, static typ-
ing is not discussed in detail in this work.

Simplification aims at the removal of subexpressions with no effect. Such redun-
dant constructs are sometimes introduced by programs that automatically generate
queries, by users who do so accidentally, and by normalization. Furthermore, for
systems allowing to define XML views, the so-called view expansion, which replaces
a view with its definition in the query, might also introduce redundant subexpres-
sions. Simplification is implemented using the infrastructure component of the query
processor. Basically, this component interprets a query representation (in this case
the AST) as a tree and employs a rule-inference engine to apply tree transforma-
tions, such as expression substitutions, defined by restructuring rules. A rule is spec-
ified by a pattern and a transformation instruction. When a rule matches the tree rep-
resentation, the transformation instruction can be applied to the match, typically
rewriting the tree at that position. Because the infrastructure component is just an
implementational detail, it will not be introduced in detail. Simplification, however,
will be discussed in Section 4.3.2.

The last translation stage is the XQGM transformation. So far, we followed the For-
mal Semantics. In our approach, the Formal Semantics is implemented directly on
the AST. However, now that we leave the path of the Formal Semantics, the AST
is not an appropriate format anymore, because in an AST, subexpressions are only
loosely coupled. This is problematic for the optimizations introduced in this work.
As an example for loose coupling consider resolving the connection between a vari-
able declaration (for example in an in-binding expression) and its references. This
is often complex, because references can occur at any location in the subexpres-
sion of the declaration. Furthermore, an AST is grammar-oriented, meaning that
only XQuery language constructs can be represented. However, often the query
processor considers evaluation strategies beyond of what can be expressed in lan-
guage constructs. All in all, the AST representation lacks two of three properties
postulated in [Mitschang 95] for internal representations, namely efficiency and pro-
cedurality. It can be argued that the third property, flexibility, is present, because the
AST representation could be easily extended. This does, however, not compensate
the other two disadvantages. An internal representation meeting all these require-
ments for relational queries is the so-called query graph model (QGM) introduced in
the Starburst system [Haas 89, Pirahesh 92]. The QGM was designed for flexibility

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.1 The Query Evaluation Process 13

Figure 2.2 The query optimization strategy in the XTC XQuery processor (sketched)

...

XQGM−to−XQGM

XQGM−to−Plan
...

QEP

1:n Mapping

XQGM Operator (Logical)

Physical Operator(s)

Legend

...

S
ea

rc
h

S
pa

ce

Algebraic Rewriting Plan Generation

Phase 1 Phase 2

XQGM−to−XQGM

XQGM−to−Plan

such that new language constructs like, for example, SQL recursion, could easily be
integrated into the query processor. However, as we will see in this work, the QGM
can be extended to support XML query processing. The resulting internal represen-
tation is called XQGM for XML query graph model. The complete XQGM and the
transformation from the AST representation will be discussed in Chapter 4.

2.1.3 Optimization

As we have seen, the Formal Semantics defines three XQuery evaluation stages: nor-
malization, static typing, and dynamic evaluation (the first two were already discussed
above). The semantics of the initial XQGM instance generated by the transforma-
tion stage is very close to the semantics of the dynamic evaluation, i. e., the same
evaluation model is implemented. However, because this evaluation model heavily
relies on nested subexpressions and node-at-a-time navigational methods, it is often
far from being optimal.

Therefore, besides classical algebraic optimizations such as selection push-down and
select fusion to minimize intermediate results and the number of operators required,
the algebraic rewriting stage tries to unnest queries as far as possible to enable bulk
(i. e., set-at-a-time) processing. Unnesting substitutes correlated subexpressions by
joins, i. e., by bulk operators. Like simplification, algebraic rewriting is also imple-
mented using the infrastructure component. The XQGM instance, although being
a graph, is interpreted as a tree structure on which the generic rule engine executes
rule-based transformations. Because a rule transforms an XQGM instance into an-
other XQGM instance, such transformations are called XQGM-to-XQGM transforma-
tions in the following (cf. [Kabra 99]). The left-hand side of Figure 2.2 illustrates the
algebraic rewriting stage. The result of the algebraic rewriting stage is an unnested
and pre-optimized XQGM instance. At this point, the physical optimization of the
query begins and system-specific issues come into play. The algorithmic rewriting
stage will be discussed in Chapter 5.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

14 Chapter 2: XML Query Processing on XTC—An Overview

During plan generation, the optimizer has to find a program, whose evaluation on
the database computes the final result. In the following, we will refer to the compo-
nent of the optimizer responsible for plan generation as the plan generator. The plan
generator has a large set of basic XML processing algorithms at his disposal, which
are called physical operators or just operators. The plan generator can stitch different
(descriptions of) physical operators together to create a query evaluation plan (QEP).
A QEP is then a description of the desired program.

Physical operators can roughly be grouped into 1. navigational, join-based, and
index-based methods for path matching, and 2. into all remaining operators that are
necessary to evaluate selections, projections, grouping, value-based joins, etc. The
operators of the first group, which are also called path processing operators (PPOs),
play a major role in this work, because PPOs access the document (in contrast to the
operators in the second group, which merely operate on the intermediate results
delivered by path operators). Document access can be expensive, therefore these
operators need special attention. The set of all physical operators is called physical
algebra (PAL) throughout this work. This term was introduced in [Graefe 93] and
shall help to distinguish operators from the physical level (algorithms) from opera-
tors on the logical level (XQGM).

Figure 2.2 presents how logical XQGM instances are mapped onto physical opera-
tors, i. e., how plans are generated. Let us consider the upper part of the picture first:
Given an XQGM instance, plan generation is implemented in two stages, the first
one of which also relies on the rule engine of the infrastructure component. Here,
the rules describe logical-to-physical mappings and are called XQGM-to-Plan trans-
formations (similar to [Kabra 99]). Whenever a rule matches, a description of the
physical operators implementing the matched XQGM operator is created (repre-
sented by the black dots) and attached to the matched logical operator. Considering
the relationship between a logical XQGM operator and operators from the physical
algebra, the well known 1:1, 1:n, n:1, and n:m cardinalities apply: As illustrated in
the overview, sometimes there is only one physical alternative for a logical operator
(1:1), sometimes there are more than one alternatives (1:n), and sometimes a group
of logical operators is implemented by a (group of) physical operator(s) (n:1 or n:m).
In the second stage, the plan generator iterates over the XQGM instance and builds
different QEPs from the physical alternatives it finds. Often, the optimizer can cre-
ate a large variety of structurally different but logically equivalent QEPs for a single
XQGM instance. The completeness of all these alternatives is the search space.

From all the different QEPs, the query processor now has to decide, which of them
is the cheapest in terms of processing costs. The answer to this question depends
on a large variety of parameters, such as the optimization goal (e. g., response time,
throughput, main-memory usage, etc.), the structural layout of the document, value
distributions in the document, the current system state (I/O-bound or CPU-bound),
and so on. The applicability of certain physical operators depends on the physical
layout of the database, i. e., on document storage and indexing. To introduce the
physical aspects of XML query processing, storage and indexing are discussed in
Chapters 6 and 7. Then, the physical algebra (with the PPOs) and the plan genera-
tion are shown in Chapter 8.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.1 The Query Evaluation Process 15

On the Role of the Optimizer in this Thesis

As already stated in the introduction, cost-based optimization is not considered in this
work, because the necessary statistical component and an operator cost model are
still missing (indicated by the light grey font color in Figure 2.1). Therefore, the role
of the optimizer in this work is defined as follows:
1. It has to provide means to generate a large variety of possible plans in the search space.

Actually, at the time of writing, the research community does not exactly know
in general, what the best evaluation strategy for a given query over one or more
documents is. Therefore, the query optimizer has to deliver a large variety of
QEPs, to make them accessible for assessment and the development of a cost
model in the future.

2. It has to provide means to find at least one good plan using heuristics. Independent of
the state of current research, the optimizer should at least find one good evalua-
tion alternative to provide for an embedding into a productive system.

3. It has to be extensible to seamlessly integrate cost-based query optimization. A cost-
based optimization is future work. Therefore, the query processor should facili-
tate its integration into the existing heuristics-based optimizer.

To address the first point, the right part of Figure 2.2 comes into play. As the illustra-
tion suggests, the plan generator is able to generate plans for every XQGM instance
possible, i. e., XQGM-to-Plan transformations can be executed after each XQGM-
to-XQGM transformation. In this way, all the physical alternatives for all logical
XQGM instances can be generated, thus completely spanning the search space. In
Chapter 9, where an experimental analysis of different evaluation strategies is de-
scribed, this generation technique is applied.

In general, a true cost-based query optimizer requires some kind of book-keeping
facility to manage alternative XQGMs and QEPs in main memory. In [Graefe 87],
the so-called mesh data structure was proposed for this task. A mesh can efficiently
manage multiple similar graphs (generated during optimization), by storing equal
subgraphs only once. However, because cost-based query processing is out of the
scope of this thesis, there is also no need for such a kind of in-memory XQGM or
QEP management. Both, for heuristics-based optimization as proposed in the sec-
ond point and for the generation of all alternatives, only one XQGM representation
(on which transformations are executed) is sufficient. Nevertheless, to address the
third point, the data structures of XQGM and the physical algebra are designed in a
way to facilitate cost-based query optimization without major changes.

In contrast to the discussed optimization process, which separates the algebraic
rewriting from plan generation, some contributions [Graefe 94, Graefe 93] suggest
to treat logical rewritings (XQGM-to-XQGM) and plan generation rules (XQGM-
to-Plan) equally. This means that the optimizer applies both types of rules in one
unified rewriting process. As a result, the algebraic rewriting stage is not separated
from plan generation anymore. In this way, the cost-based optimization process is
extended to algebraic rewriting and is more directed towards the optimization goal,
because expensive alternatives can be pruned from the search space much earlier.
With XQGM and the physical algebra developed in this work, such an “interleaved”
optimization strategy is also realizable. However, because cost-based optimization
is not considered, this work simplifies the process and keeps the separation between
algebraic rewriting and plan generation intact.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

16 Chapter 2: XML Query Processing on XTC—An Overview

2.1.4 Execution and Materialization

A QEP is a description of a program whose evaluation on the database returns the
query result. The question is now how such a QEP is actually evaluated. The liter-
ature suggests two possibilities: interpretation vs. code generation [Mitschang 95].
In the first approach, a program called Interpreter reads the program description
given by a QEP and issues the necessary algorithms that operate on the access sys-
tem of the database to compute the result. In the second approach, the QEP descrip-
tion is used to generate a code module, which is compiled, loaded, and executed.
Interpretation was suggested as the ideal method for ad-hoc user queries, because
no compilation time is required. However, compiled programs as generated in the
second approach often perform better than interpreted QEPs. To keep query pro-
cessing simple, most systems only support one strategy.

The XTC query processor does not strictly follow either approach, however, it is
logically close to compilation: In contrast to what was introduced above, a QEP is
not a description of a program, but it is the program itself. All necessary algorithms
(operators) from the physical algebra are simply stitched together during plan gen-
eration. The result is an operator tree called PAL tree (for physical algebra tree) in the
following, which is directly executable. Note, because XTC does not distinguish
QEPs from PAL trees, we use these terms as synonyms in the following.

The operators of a PAL tree implement the Open-Next-Close protocol, resulting in
an iterator-like query-execution supporting pipelining. In a first step, the evaluator
calls the open method on the root of the PAL tree. Recursively, the open call is issued
on the child and descendant operators. During open, all operators have the chance
to prepare for evaluation. Some operators can even start to read input data (after
calling the open method on their children). To actually retrieve the result, the eval-
uator repeatedly calls the next method on the root of the operator tree. In each call,
some portion of the result data is computed and returned. When a call to the next
method returns a NULL value, the result is completely computed. Then the evalua-
tor calls the close method, which is also propagated through the tree and signals the
operators to clean their internal data structures. Internally, like open and close, the
next method recursively calls next on child operators to retrieve data, which is then
processed. This evaluation model has several advantages: 1) the evaluator does
not need to explicitely manage data flow and control flow, 2) when no operator in
the tree is a so-called pipeline breaker, the first elements of the result can be already
returned when the rest is still in computation. A pipeline breaker is an operator
that needs to read the complete input of at least one of its child operators, like for
example a sort.

What happens inside the operators during evaluation heavily relies on the salient
features of DeweyIDs. As will be shown in Section 3.1.3, a DeweyID is a node iden-
tification mechanism with embedded “structural knowledge”. This knowledge is
exploited during query processing, thus reducing expensive document access. In
the end, when the execution finishes, the result is a sequence of items that refer-
ence resulting document subtrees via DeweyIDs (similar to the Tuple ID concept in
relational systems). For external representations, these references have to be deref-
erenced, which is the task of the final materialization stage. Basically, materialization
can be implemented either by a scan over the document or by per-DeweyID index
lookups that retrieve the resulting subtrees.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.2 Query Processing by Example 17

After this rather abstract description of the query processor internals, the next sec-
tion illustrates the sketched techniques on a sufficiently complex example.

2.2 Query Processing by Example

Consider the following query that emanates from the XMark benchmark
[Schmidt 02] (Query 5) and returns the number of price elements that have a con-
tent larger than or equal to “40”:

let $auction := doc("auction.xml") return
count(

for $i in $auction/site/closed_auctions/closed_auction
where $i/price/text() >= 40
return $i/price

)

In the following, the transition of this query through the various query processing
stages will be shown.

2.2.1 Syntactic Analysis

The abstract syntax tree produced by the parser for this query consists of roughly
40 nodes. For the sake of brevity, Figure 2.3 does not contain all these nodes, but
only a fragment of the complete AST. As you can see, the representation is quite
straightforward. Every particle from the XQuery grammar corresponds to a node
in the AST. You can also observe the points discussed in Section 2.1.2: the AST is
not very useful as an internal representation for query optimization, because it does
not easily reveal data flow and control flow (and thus lacks procedurality) and the
contained information is only loosely coupled (for example, the variable definitions
and their references are not directly interconnected). The latter point would make

Figure 2.3 Abstract syntax tree for XMark query Q5

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

18 Chapter 2: XML Query Processing on XTC—An Overview

restructurings in query optimization unnecessarily complex.

2.2.2 Normalization

As introduced, normalization translates the AST produced by the parser into a
rewritten AST with the same semantics, but with a reduced set of language con-
structs. Thereby, normalization removes syntactic sugar. The normalized version of
the above query has the following form2:
let $auction := doc(auction.xml)
return count(

for $i in ddo(
for $fs:dot in $auction
return ddo(

for $fs:dot in child::site
return

ddo(
for $fs:dot in child::closed_auctions
return child::closed_auction)))

where fn:data(ddo(
for $fs:dot in $i
return

ddo(for $fs:dot in child::price
return child::text()))) >= fn:data(40)

return
ddo(for $fs:dot in $i

return child::price))

You can easily observe that the normalized variant of the query does not contain
any path expressions, only axis steps (like child::site). Path expressions are
rewritten to for clauses. Furthermore, the normalization process injects the ddo and
fn:data function ensuring correct duplicate-free intermediate results (in case of ddo)
and atomic values for comparisons (in case of fn:data).

2.2.3 Static Typing

Static typing infers the type of all subexpressions in a normalized query. For exam-
ple, in the query above, the static type of the integer literal “40” is trivially integer.
The surrounding fn:data function also delivers type integer, which is then used in
the comparison. The comparison, in turn, is of type boolean, and so on.

Static typing can help to find type errors in XML queries at an early stage. How-
ever, as explained above, some type errors only occur during processing, when the
accessed data does not deliver the expected type. Besides error detection, the type
information generated by the static typing stage can also be used in query simplifi-
cation, as we will see in the next stage.

2.2.4 Simplification

Even in our small example, you can observe that the normalization process is de-
fined in a rather defensive manner, i. e., it injects certain functions blindly, even
when they are not necessarily required. For example, the injected fn:data function
around the integer literal “40” does not have an effect and can be safely omitted. A
further example is the ddo function that is always injected, even when the interme-

2Note, this representation is simplified to facilitate comprehension. Function ddo stands for fn:distinct-doc-
order, and—against the W3C recommendation—the constructs to produce positional information are omitted.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.2 Query Processing by Example 19

diate result will always be in distinct document order. Besides normalization, users
might write XQuery expressions with redundant or unnecessary subexpressions.
Simplification aims at removing this kind of redundancy. An equivalent query for
the above one might look like the following:

let $auction := doc(auction.xml)
return count(

for $i in
for $fs:dot in $auction
return

for $fs:dot in child::site
return

for $fs:dot in child::closed_auctions
return child::closed_auction

where fn:data(
for $fs:dot in $i
return
for $fs:dot in child::price
return child::text()) >= 40

return
for $fs:dot in $i
return child::price)

Essentially, the ddo functions are not necessary and the fn:data function around the
integer literal can be removed3. Currently, the XQuery processor can detect simpli-
fication opportunities in various situations (see Section 4.3.2). Note, however, that
the simplification logic aiming at removing ddo functions is not yet integrated (al-
though this topic has already been discussed in the literature [Fernández 05]). Since
XQuery is a quite flexible and freely composable language, many more situations
than those handled in this work allowing for simplifications might exist. This work
does however not dwell further.

2.2.5 XQGM Transformation

After simplification, the query is transformed into a graph representation that can
express the query’s semantics more naturally than the AST. The graph representa-
tion is called XML Query Graph Model (XQGM) and can capture a large fraction of
the XQuery language. The initial XQGM instance for our sample query is depicted
in Figure 2.4. Note, all logical and physical plans presented in this and the following
chapters are generated by a plan visualization tool developed in [Mathis 08].

An XQGM instance is an operator graph or a box-and-arrow diagram. Every box
is a logical operator which produces data (most operators also consume data). The
produced data flows along the arrows. All operators have a name describing the
functionality of the operator and a unique identifier that follows the name in braces,
e. g., “SELECT(3) ”. In the following, we refer to an operator by its name and its
ID in braces. To highlight an operator, we use a typewriter font and write the oper-
ator name in lower-case letters for better readability, as for example “select (3) ”.
The graphical elements inside an operator specify how the operator processes input
data and how it computes results. For example, select (2) consists of three so-
called tuple variables (depicted as circles) controlling the input data flow, a predicate
describing the selection expression, and a projection specification defining how the
output shall be computed. Tuple variables carry a quantifier (e. g., “F” or “L”) and a
unique identifier to facilitate their distinction. The quantifier and the identifier are

3This is actually possible, because static typing revealed that the argument of the fn:data function is already
an atomic value and therefore does not need atomization.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

20 Chapter 2: XML Query Processing on XTC—An Overview

Figure 2.4 XMark query Q5 represented in XQGM

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.2 Query Processing by Example 21

separated by a colon. For tuple variables, we use the sans-serif font in the text as
well as in the figures, e. g., we write “F:1”, “L:15”, and so on.

XQGM is only a logical query representation. It cannot be executed directly. How-
ever, to illustrate the semantics of the XQGM instance shown, we step through a
“virtual” query execution:
• The query processor calls the topmost select (1) operator, which, in turn, calls

the next select (2) operator below to produce some output. Select (2) has
three tuple variables, one of which carries an “F” specifying for-quantification se-
mantics, and two of which carry an “L” for let-quantification semantics. Basically,
the tuple variables receive the output generated by their subgraphs below and
define how this output is assembled into a stream of tuples. How this actually
works will be sketched below. For now, we just proceed with the subexpression
under tuple variable F:6. Select (3) is called and, in turn, access (5) .

• So far, we only considered control flow. Every operator calls its dependent sub-
operators and awaits data for further processing. Now access (5) is the first
operator that actually produces data. In our example, access (5) is a docu-
ment access operator which delivers the virtual root node [Fernández 04] of the
“auction.xml” document. This node is passed to the select (3) operator which
binds it onto tuple variable F:0 and calls select (6) to produce a result for tuple
variable L:5.

• Select (6) in turn calls access (7) , which is a navigational access operator.
This type of access operator needs a context node as input from which the navi-
gation starts. The context node is delivered by a correlated input edge, depicted as
a dotted arrow. Tuple variable F:0 provides this input by passing the currently
bound virtual root node to access (7) . The result of the navigation on the child
axis and the subsequent name test is a single site node. This node is passed to
select (6) which binds it on tuple variable F:1 and calls select (8) to pro-
duce results for tuple variable L:4.

• Select (8) calls access (9) which delivers the closed_auctions element (ex-
actly one in every XMark document) using the current node at tuple variable
F:1 as correlated input. The closed_auctions element serves as correlated input
for access (10) which returns all closed_auction elements below. These ele-
ments are passed to tuple variable L:3 which collects them all, puts them into
a sequence, and binds this sequence as the current value (which is actually the
semantics of the let quantification).

• The sequence is then passed to the projection specification, which (unnecessarily)
applies the ddo function (note, our simplification process cannot yet remove these
unnecessary calls). A tuple variable may either be referenced via a correlated
edge (dotted arrow) or by a so-called tuple variable reference depicted as a rhomb.
The ddo function is also applied in select (6) and select (3) passing the
sequence of closed_auction elements to tuple variable F:6.

• So far, every for-quantified tuple variable received only a single node as in-
put. For single nodes, the semantics of for and let are the same. This time,
however, tuple variable F:6 receives a sequence of possibly more than one
node. While let passes these nodes as a whole as described above, for it-
erates over the sequence items, just like the corresponding constructs in the
XQuery language. You can further notice that the subtrees below tuple vari-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

22 Chapter 2: XML Query Processing on XTC—An Overview

ables L:11 and L:14 depend on the current node at tuple variable F:6, be-
cause these subgraphs have a correlated input edge starting at F:6. This
means that for every node at F:6, the dependent subtrees are evaluated and
their result sequences are bound to the corresponding tuple variables. In the
following, we will call L:11 and L:14 dependent tuple variables, whereas F:6
is called independent. Obviously, the subtrees below independent tuple vari-
ables have to be evaluated first, because they provide the input for the sub-
trees below dependent tuple variables. Essentially, the subtree below F:6 eval-
uated doc("auction.xml")/site/open_auctions/open_auction . For
every open_auction, the expression below L:11 evaluates the relative path
price/text() and L:14 the relative path price .

• Inside select (3) , the predicate is evaluated for every open_auction element. If
the predicate evaluates to true, the current value at tuple variable L:14 is read by
the projection specification and passed as an intermediate result to select (1) .
In turn, select (1) collects all these intermediate sequences in another se-
quence on which the count function is evaluated to obtain the final result.

The reader familiar with the dynamic evaluation phase specified in the Formal Se-
mantics has noticed that the evaluation model defined there and the XQGM is es-
sentially the same, i. e., an initial XQGM instance acts as specified in the Formal
Semantics. This is meaningful, because it ensures correctness. In a way, you can
regard XQGM as a graphical representation for normalized XQuery expressions.
Interestingly, a large fraction of XQuery can be captured solely by XQGM’s select
and access operators (as we will see in Chapter 4).

2.2.6 Algebraic Rewriting

The proximity of the initial XQGM translation with the Formal Semantics ensures
correctness. However, evaluating the query as depicted in Figure 2.4 and as de-
scribed in the previous section often results in a bad performance, as we will see
in Chapter 9. The problem originates from the large number of nested subexpres-
sions (easily recognizable by the dotted arrows). Every nested subexpression has
to be repeatedly evaluated for every new correlated input, thus imposing a nested-
loop-style query evaluation. The situation is similar to relational queries containing
nested sub-selections. A standard approach for those types of queries is to rewrite
the nested subexpression using a join operator [Mitschang 95]. This is also possible
for XML queries in XQGM: a nested subexpression with a navigating access oper-
ator can be rewritten into a so-called structural join operator. The process for this
kind of restructuring is called unnesting and will be shown in full detail in Chapter
5. Structural joins are binary operators. However, often they can be grouped to-
gether into more complex multiway join operators called twig joins. The completely
rewritten version of our sample query is depicted in Figure 2.5 and contains such a
twig join operator.

At a first glimpse, the rewritten query has not much in common with the original
one. However, its semantics is still the same. First you can observe that the query
does not contain any nested subexpressions, it has been completely unnested (note,
the dotted lines inside twig (28) have a different semantics). As a result, all access
operators are not based on navigation anymore, but access all nodes that match a
certain node test (e. g., all price nodes). The twig operator is a multiway join operator
semantically capturing the structural pattern defined in the query. The nodes in

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.2 Query Processing by Example 23

Figure 2.5 Rewritten XMark query Q5

the structural pattern are connected to the corresponding input tuple variables by
dotted lines, whereas the structure of the twig itself is represented by solid lines.
The C stands for a child relationship (D for descendant, and @for attribute). A twig
operator is capable of finding all structural matches in the given input sequences.
Furthermore, it can directly evaluate

• predicates, e. g., the test expression at node 40;
• projection, e. g., only price nodes delivered by tuple variable F:41 shall be re-

turned;
• output expressions, e. g., the fn:xtc-text function is applied to nodes delivered

for input tuple variable F:42;
• nesting, e. g., the double circle at twig node (40) specifies that the input of its

children shall be nested; and
• some more functionality, as we will see later on.

Note, in XQGM, these capabilities of the twig operator are defined at a logical level
only. This does not necessarily mean that a single algorithm can directly evaluate
them. Rather, it would be possible to implement this algorithm by structural joins,
group-by operators, path indexes, etc. However, as we will see in Chapter 8, a twig

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

24 Chapter 2: XML Query Processing on XTC—An Overview

Figure 2.6 QEP for XMark query Q5

join algorithm that can directly evaluate output expressions, predicates, projections,
and nestings in a single sweep is being developed in this thesis.

The select (1) operator is the same as before. It collects the price sequences gen-
erated by the twig operator, adds them to a sequence and applies the count function.

2.2.7 Plan Generation

Given the result of the rewriting stage, the query processor now has to assemble a
query execution plan (QEP), i. e., it has to map the logical operators onto physical
ones. Section 2.1.3 already sketched how this process is implemented. Here, we
only show the resulting generated plan (see Figure 2.6).

You can observe that the resulting QEP is quite similar to the original XQGM
instance. Also here, every operator has a unique ID. However, the QEP con-
tains more low-level details (represented using the tableau technique, similar to
[Mitschang 95]). In this overview, only some highlights of the representation shall
be discussed: In the QEP, almost all access operators are implemented by scans over

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.3 Related Work 25

the so-called element index. Only one input operator (4) is different. It directly re-
trieves the root element from the document and applies the site name test. You can
also observe that, because price elements are required twice, the result of the scan
operator is shared using a split operator. The twig operator itself is represented in-
side the area surrounded by a dotted line. We will not delve into the semantics
of every twig node, but only state that it is possible to infer for which logical twig
node the physical one was generated (for example, in “TwigOptNode (5) for 38”, the
physical twig node 5 was generated for the logical twig node 38 in Figure 2.5). In
the physical projection operator (3), the count function is finally applied. The com-
plete physical algebra of the XQuery processor implemented in XTC has more than
60 operators.

2.2.8 Execution and Materialization

Finally, the generated QEP can be evaluated on the database. Therefore, every oper-
ator implements an iterator-like protocol, which defines the following three meth-
ods: open, next, and close. In the opening phase, every operator has the chance to
initialize its internal data structure, while the closing phase is used for clean-up.
The actual result is computed by the next method, which is, as open and close, re-
cursively carried out over the operator tree. Physically, an operator returning an
XML element does not return the element with its complete subtree (materialized),
but rather a node reference to the element (containing a DeweyID). For example,
the twig operator in Figure 2.6 would deliver the following sequence as interme-
diate result to project (13): <[price, 1.3.3], [price, 1.7.3], [price,
1.9.5], ...> . In our example, the count function simply returns the size of this
intermediate result. If we assume that this function would be absent, the result
would have to be converted into an output string or into DOM nodes (depend-
ing on the requirements of the application program). Therefore, materialization
resolves node references by replacing them with the subtrees from the document.
Resolving references at the end of the query process ensures that only those subtrees
are materialized that actually belong to the query result.

2.3 Related Work

Already at this point, we want to start with the discussion of related work. Our
intention is to give an overview over other existing systems, such as Galax, IBM
DB2 pureXML, Timber, Natix, and MonetDB/XQuery. The focus of this thesis lies
on query processing in native XDBMS. However, XML query processing techniques
have also been developed in non-native systems and even “outside” DBMSs. One
example is the Galax system, which shall be discussed first.

2.3.1 Galax

Galax [Fernández 03] is an open source implementation of the XQuery language
written in the functional OCaml language [Leroy 08]. Galax was developed as a ref-
erence implementation of XQuery (in fact, many authors whose names appear on
XQuery-related W3C documents contributed to Galax). The system is close to the
Formal Semantics and its conformance with the standard is very high. In summary,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

26 Chapter 2: XML Query Processing on XTC—An Overview

Figure 2.7 The Galax document processing and query evaluation pipeline [Siméon 04]

Galax supports all features of the XQuery 1.0 Recommendation [Boag 04], XML
Schema support and validation, static type checking, as well as the new XQuery
Update Facility [Chamberlin 07a] and the XQuery scripting extension (XQueryP
[Chamberlin 06]). Figure 2.7 gives an overview over the document processing and
the query processing pipeline of the system according to [Siméon 04].

To query a document, the document has to be fetched into main memory first. The
upper branch in Figure 2.7a describes the necessary actions: The document is parsed
resulting in an XML stream. This stream can be validated against a possibly existing
XML schema resulting in a stream with type-annotated XML nodes. The stream is
then loaded into a main-memory representation (“XQuery Data Model”). Queries
are evaluated on this representation. The lower branch in Figure 2.7a describes how
a result document (represented in the XQuery Data Model) can be serialized to an
XML instance again.

Galax query processing is shown in Figure 2.7b. The processing stages are quite
similar to our approach: A query is first parsed into an abstract syntax tree (AST),
normalized, typed, and simplified. Then, the query is compiled into a logical query
plan. Here, however, Galax does not rely on a query graph model, but on an al-
gebraic representation. This representation is then optimized and a physical plan
is generated. The plan can be executed against the main-memory representation of
the queried document. A problem resulting from the sketched document processing

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.3 Related Work 27

Figure 2.8 The DB2 hybrid XML/XQuery processor [Balmin 06]

approach is the vast main-memory usage. Representing a document of size 30 MB
easily reqires 250 MB in main memory. As a solution for this problem, [Marian 03]
suggest to analyze the query and the document first, to prune unnecessary parts
before evaluation.

Being a native XML database system, XTC naturally does not suffer from these prob-
lems. As we will see, in XTC, every node in an XML document can be fetched from
external storage by its ID. Therefore, only the necessary parts of a documents are
touched (without a prior projection stage). Because in XTC the first four stages, i. e.,
parsing, normalization, static typing, and simplification are quite similar to Galax,
we do not elaborate on these stages (much). The differences between Galax and
XTC begin at the internal query representation and the rewriting stage.

2.3.2 IBM DB2 Pure XML

IBM DB2 Pure XML [IBM 09] is a commercial database system that follows the side-
by-side architecture [Halverson 04] to manage relational data and XML data in a
single system. The product was influenced by various predecessors, i. e., DB2 Viper
[Päßler 06] and SystemRX [Beyer 05]. Essentially, XML documents are stored in a
special native store. Documents can appear as a “value” of a tuple field in a rela-
tional table. Consequently, a single query can be posed simultaneously against the
relational data and against the XML data. The language to express such queries is
an SQL extension called SQL/XML [ISO/IEC 03]. Internally, SQL/XML queries are
handled by a hybrid query processor, which is able to optimize relational queries
and XML together.

Figure 2.8 gives an overview over the hybrid query processor [Balmin 06]. Both
languages—SQL, XQuery, and mixes thereof—are translated into an internal repre-
sentation similar to the one developed in this thesis, namely the query graph model
(QGM). As we have seen, the QGM originally originates from the Starburst System
[Haas 89, Pirahesh 92] and is also utilized by DB2. Clearly, QGM (and the complete
relational evaluation process) existed before XML and XQuery came up. However,
because QGM was designed for extensibility, the integration of the XQuery lan-
guage into this model was possible.

QGM is the basis for the algebraic query rewrite phase and for the generation of a
so-called query evaluation plan (QEP). Algebraic rewriting restructures the query by
removing unnecessary operators and operator merging. The QEP is then assembled
by the optimizer, i. e., the optimizer tries to find the cheapest plan w. r. t. to some

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

28 Chapter 2: XML Query Processing on XTC—An Overview

cost model. From a QEP, the code generator compiles a so-called section. Sections
are stored in the database and can be executed to retrieve the query result.

Obviously, there is a certain proximity between the DB2 approach and this work
and you might wonder, where the differences are. In particular, the integration of
XQuery into the query graph model is also a main goal of this thesis. The general
problem with the commercial DB2 system is that research papers are fairly high-
level and not much information on “the real details” officially reach the research
community. Although some overlap on the general approach to query processing
in DB2 and XTC exists, our work is a first in-detail discussion on how Starburst’s
query graph model can be extended to support XQuery.

2.3.3 Timber

Timber [Jagadish 02a] was one of the first scientific projects on native XML data man-
agement. The authors argue that XML trees should be processed as trees. There-
fore, Timber consequently follows the “tree approach”: The core contribution of the
project is the TAX algebra [Jagadish 02b]—a tree-manipulating algebra for XML—
and the holistic twig join [Bruno 02]—a bulk tree-pattern matching algorithm. Let
us take a look at how queries are processed in Timber. As always, the parser is the
first component in the query processing pipeline. It analyzes an XQuery expression
and generates an equivalent expression in the logical TAX algebra. This expression
is then optimized and mapped onto a physical algebra expression, which can be
executed with the help of the data manager and the index manager.

In Timber, the data manager is responsible for XML document storage and retrieval.
To avoid re-coding of the storage layer, Timber relies on the Shore [Carey 94] storage
manager. To store a document, every XML node is mapped to a record, which is,
in turn, passed to Shore for storage. The index manager also exploits Shore for
index storage. It provides access to quite simple indexes: a value index for attribute
values, an index on numeric element content, a term-based index for text, and an
index providing posting lists of all elements with a certain name. Path indexes are
not available [Jagadish 02a].

A specialty of the Timber approach is the tree-based TAX algebra. Every operator in
this algebra can receive a set of trees as input and can generate a set of trees as out-
put. In TAX, operators are parameterized by so-called pattern trees. These pattern
trees can be matched against XML documents/fragments and, thereby, influence
the result delivered by an operator. The tree-based algebra approach stands in con-
trast to other systems, like Natix, MonetDB (see below), or XTC, which represent
(intermediate) results as streams of (nested) tuples. With Timber, XTC has some
communalities at the physical level. As we will see, XTC extends the tree-matching
operator (i. e., the holistic twig join) idea.

2.3.4 Natix

Natix [Fiebig 02] is also an early scientific project with a focus on native XML data
management (started in 1998). In Natix, XML queries are compiled into the so-
called Natix algebra [May 04], which is an extended relational algebra. As a con-
sequence, the algebra operates on tuples. However, in contrast to relational query
processing, tuples can have complex values, i. e., they can be nested. Similar to

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

2.3 Related Work 29

TAX in the Timber project, the Natix algebra operates at a logical level. Therefore,
it serves as a basis for algebraic query restructuring. For query evaluation, Natix
maps algebra expressions to a physical algebra containing evaluation algorithms.
A specialty in Natix is that these algorithms can be parameterized by programs. For
example, the physical selection operator can be parameterized by a program that
computes the selection predicate. In Natix, these programs are executed on the so-
called Natix virtual machine (NVM). The NVM has some internal state kept in a set
of registers and a fixed set of built-in commands that can modify register values.
Besides the ability to evaluate selection predicates, the instruction set also provides
for access to XML documents, navigational operators, further XML processing func-
tionality, etc. For storage, Natix fragments a document into page-sized subtrees. As
in traditional systems, these pages are handled in a system buffer.

The research around query processing in Natix mainly focuses on algebraic XQuery
treatment [May 04, Brantner 05, May 06b]. Physical operators and index struc-
tures (with the exception of some very special operators to treat existential quan-
tification [Brantner 06a] and group by operations [May 05]) are not in the center
of the research. XTC has some touching points with Natix regarding the inter-
nal algebra. XTC’s algebra is also tuple-based, providing for nested tuples. In
[Mathis 07b, Mathis 07a], we have extended the Natix algebra by a structural join
operator and presented how XPath queries can be unnested utilizing this new op-
erator. This technique will also be applied in Chapter 5, however, then in the con-
text of XQGM and not in the Natix algebra. A small shortcoming of Natix is that,
although always XQuery is the focus of Natix research papers, the system only pro-
vides an XPath front-end [Moerkotte 09].

2.3.5 MonetDB/XQuery

Natix, Timber, (and, as we will see, XTC) are all native XML database systems.4

Their storage and query processing system is tailor-made for tree-based XML data.
MonetDB/XQuery [Boncz 06a] goes a different way. Essentially, MonetDB/XQuery
is—at its core—a relational database system with an XML front-end called Pathfinder
[Boncz 05b]. Therefore, it follows the XOR (“XML over relational”) approach in-
troduced by [Halverson 04]. In Pathfinder, XML documents are decomposed and
stored in relational tables. A query is parsed and translated into relational algebra.
In MonetDB, this algebra is called MonetDB interpreter language [Boncz 99] (or MIL
for short). However, Pathfiner does not depend on MonetDB, any other relational
system can also serve as a back end [Grust 07]. Nevertheless, MIL incorporates
the staircase join operator—a special operator for XML path matching [Grust 03b],
which is similar to a structural join operator and which can speed up this frequent
XML query processing operation. Of course, in a standard relational algebra, this
operator is not available.

Mapping XML documents to relational tables and XML queries to relational alge-
bra is an appealing technique, because large parts of existing infrastructure can
be reused. However, the resulting system is not tailored to XML. The first XML-
enabled systems produced by the commercial database vendors (e. g., IBM, Oracle
[Banerjee 00], and Microsoft [Rys 05]) have also followed the XOR approach. How-
ever, they all left this path and nowadays provide a native XML storage engine.

4For one part of DB2 pureXML, this statement is also true.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

30 Chapter 2: XML Query Processing on XTC—An Overview

2.3.6 Other Systems

The five systems introduced so far are not the end of the rope. Many more scientific
and commercial XML query processors and XML database systems exist, for exam-
ple, Tamino [Schöning 00], as one of the first commercial native systems, or Saxon
[Kay 09], an open-source stand-alone query processor. Further approaches are Ni-
agara [Naughton 01], eXist [Meier 02], LegoDB [Bohannon 02], OrientX [Mang 03],
and Sedna [Grinev 06]. XML in general, XML database systems, and XML query
processing have been hot topics in the scientific community over the last decade.
Furthermore, database vendors have integrated XML support into their commer-
cial systems or even built completely new ones to address the customer need for
DBMS-supported XML management. As reference [XQuery 09] impressively illus-
trates, this development led to a plethora of systems, theories, and approaches to
the topic. The related work section of a dissertation like this can never be “com-
plete” w. r. t. to all these concepts. We chose to introduce the above five approaches
in greater detail, because they are well-known in the community and there are some
touching points between these systems and the XTC query processor. Because we
all are database researchers with the same background, it is also not astonishing that
the efforts and general solutions all point in the same direction. A nice example is
the similarity among the above introduced approaches. You might say that XTC is
yet another solution. However, as you will discover numerous differences during
the related work sections embedded into the following chapters, making this work
worth reading.

2.4 Summary

This chapter sketched the query evaluation process of the query engine developed
in this thesis, with its nine stages of 1) syntactic analysis, 2) normalization, 3) static
typing, 4) simplification, 5) XQGM transformation, 6) algebraic rewriting, 7) plan
generation, 8) execution, and 9) materialization. During processing, a query can be
represented in four different ways: as a string (external representation), as an ab-
stract syntax tree (AST), in XQGM (logical representation), and as a PAL tree (phys-
ical representation). From a scientific point of view, some of these stages and rep-
resentations are more interesting than others, which is also reflected in this work.
Therefore, the explanations mainly focus on XQGM, algebraic rewriting, the physi-
cal algebra, and the various transformations from one representation into the other
(i. e., XQGM transformation and plan generation). The related work section gave an
overview over Galax, DB2 pureXML, Timber, Natix, and MonetDB/XQuery, which
we consider close to the XTC approach. After outlining important preliminaries of
this work in the next chapter, the main contribution starts in Chapter 4 introducing
the XML query graph model.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 3 The XML Transaction
Coordinator

In the beginning there was nothing, and
it exploded.

Terry Pratchett

The query processing concepts developed here are implemented in a native XML
database system: the XML Transaction Coordinator (XTC). Generally, query pro-
cessing deals with both, system-independent problems (logical abstraction) and
with system-dependent problems (physical abstraction). This is also the case for
the present work. To address the system-dependent part of the query processor,
selected internals of the XML Transaction Coordinator shall be introduced.

XTC is a native XDBMS. Here, the term “native” denotes that the system is specially
optimized for XML data management, from storage layout over synchronization
concepts to external interfaces. In summary, XTC allows to store, process, and re-
trieve XML data in a multi-user environment supporting collaborative XML sharing
via ACID transactions and fine-grained node locking. At the external client inter-
face, the database server provides for: storage, reconstruction, and deletion of single
documents and whole document collections managed in a virtual directory struc-
ture; primitives for ACID transactions, such as “begin transaction”, “commit”, and
“abort”; primitives to influence multi-user synchronization (for example, to con-
trol the isolation level); DOM and SAX interfaces; access to the XML repository via
HTTP, FTP, and a driver package; and, finally, system monitoring services.

The following introduction is split into a conceptual part, where the internal XML
data model and the locking protocol are introduced, and into an architectural part,
where implementation-specific details are discussed.

3.1 The taDOM Data Model

The taDOM data model [Haustein 03] serves as a logical internal representation for
XML documents in XTC. Basically, taDOM is an extension of the DOM data model
[DOM 04] and was developed to support synchronization of concurrent DOM-
based multi-user access over XML documents, therefore the name taDOM for trans-
actional DOM. Synchronization is implemented by a pessimistic hierarchical locking
protocol which is introduced in the next section.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

32 Chapter 3: The XML Transaction Coordinator

Figure 3.1 Snippet from a sample recordStore.xml document as taDOM tree (the original XML document can
be found in the Appendix)

genre

Legend:

Text Node

Element String Node

Attribute

DeweyID

Attribute Root

1.3.3.9

tracks

track track

lengthno

...

9 468

title

lengthno
1 401

title

’’Islands of Souls’’ "When the Angels Fall"

1.3.11.3.1.3

1.3.11.3.1.3.1 1.3.11.3.1.5.1

1.3.11.3.1.5

1.3.11.3.1

1.3.11.3

1.3.11

1.3.11.19.11.3.11.3.3

1.3.11.19.1.3
1.3.11.3.3.3

1.3.11.3.3.3.1 1.3.11.19.1.3.1
1.3.11.19.1.5.1

1.3.11.19.1.5

1.3.11.19.3

1.3.11.19.3.3

1.3.11.19.3.3.1

1.3.11.19

title artist year

’’The Soul Cages’’ ’’Sting’’ 1998
id

’’Pop’’"cd_100"

......
vinyl

recordStore

cd cd

1.3.1.3.1 1.3.3.3.1

1.3.1.3

1.3.1 1.3.3

1.3.3.3 1.3.5.3

1.3.5

1.3.5.3.1

1.3.7.3

1.3.7

1.3

1.3.7.3.1 1.3.9.3.1

1.3.9.3

1.3.9

1.5

1

1.7

3.1.1 The taDOM Tree

Figure 3.1 depicts a snippet from a sample recordStore.xml document modeled in
taDOM. The data model is a tree consisting of nodes of the following five types:
element, attribute, and text (as in the DOM), and additionally string and attribute root.
Further node types (such as processing instructions, comments, etc.) are not supported
in the data model and, therefore, XTC cannot store them1.

As indicated in the illustration, attributes are not directly attached to their contain-
ing element nodes, but dangle below an attribute root. Similarly, text nodes do
not contain their content directly, but have a string node below that wraps the con-
tent. These structural features facilitate transaction parallelism in the hierarchical
lock protocol: If a transaction only needs access to particular attributes, they can
be protected by individual node locks, thereby allowing concurrent access to the
remaining (unlocked) attributes. However, when the transaction needs access to
all attributes, a single lock on the attribute root is sufficient. The optimization for
text nodes addresses navigations over elements with mixed content. Suppose a
transaction navigates over the children of such an element to find a particular child
element. The content of a passed text node (stored in string node) is not relevant
for this transaction, therefore it is sufficient to only lock the text node. Another
transaction can then even modify the string node below such a locked text node.

3.1.2 Operations on the taDOM Tree

As an internal data structure, the taDOM tree supports various kinds of naviga-
tion and modification primitives that resemble the methods of the external DOM
interface and that, in fact, serve for their implementation. However, in contrast to
classical DOM, XTC protects taDOM access primitives by ACID transactions. Fig-
ure 3.2 depicts possible taDOM operations. All operations, except getNode, require
at least a (context) node as parameter. Navigational primitives allow to 1) jump into
the tree by providing a node ID (getNode, see below), 2) to traverse the taDOM tree,

1However, these node types are straightforward extensions to taDOM and, because XTC is a research project,
this limitation is not too critical.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

3.1 The taDOM Data Model 33

Figure 3.2 Operations supported by taDOM (according to [Haustein 06a])

getValue (node)

setValue (node, value)

renameAttribute (node, attributeName, new AttributeName)

appendChild (node, newNode)

prependChild (node, newNode)

insertBefore (node, newNode)

insertAfter (node, newNode)

deleteNode (node, newNode)

getParentNode (node)

getPrevSibling (node)

getNextSibling (node)

getFirstChild (node)

getLastChild (node)

getFragmentNodes (node)

getAttribute (node, attributeName)

getAttributes (node)

setAttribute(node, attributeName, attributeValue)

Base Operations on taDOM Trees

Read/Write Node ValuesNavigational Structural Modifications

getNode (nodeID)

or 3) to access all descendants of a particular node (getFragmentNodes). The second
group provides primitives to alter node values and to rename attributes. A node
value is defined as the element name for elements and the content for string, at-
tribute, and text nodes. Methods on the node value are undefined for the attribute
root. The last group of operators allows to insert new nodes and attributes to the
document.

Section 3.3 presents how documents are stored on external memory. In fact, only the
nodes of the taDOM tree are stored, and all edges, i. e., parent, first-child, last-child,
next-sibling, and previous-sibling are virtual. Crucial to this storage mapping is a
suitable node identification mechanism that encodes structural relationships among
nodes and that allows to address single nodes in the document directly. XTC imple-
ments a variant of the DeweyID node labeling scheme [Haustein 05b, Härder 05b]
for that purpose. This variant is an adaption of the OrdPath numbering scheme
introduced by [O’Neil 04].

3.1.3 DeweyIDs for Node Identification

A DeweyID is a sequence of dot-separated integers also called divisions. Initially,
DeweyIDs are assigned during document storage and only odd division values are
used as divisions. Even division values are required as a kind of overflow mecha-
nism when new nodes are inserted (see discussion below). The DeweyID of the root
of the document is set to “1”. All other DeweyIDs are computed as follows: The pre-
fix of the DeweyID of a particular node n is the DeweyID of its parent node. As a
suffix, n attaches one further division value depending on the position of n among
the children under the n’s parent: The first child attaches 3 as a suffix division, the
next child 3 + 2 = 5, the next one 5 + 2 = 7, and so on, i. e., the suffix division of a
node is obtained by adding 2 to the suffix division of its preceding sibling. For ex-
ample, the DeweyID of the year element is composed of the DeweyID of the record
element (1.3.3) as the prefix and the suffix division of the preceding artist element
(5) plus 2, i. e., 1.3.3.7. Attributes, attribute root nodes, and string nodes get a special

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

34 Chapter 3: The XML Transaction Coordinator

treatment. For the attribute root node and for string nodes, always “1” is attached
as last division, because these node types cannot have any siblings. DeweyIDs have
many salient features that not only facilitate persistent XML storage but that are also
central to XML query processing, as we will see throughout this work:

1. A DeweyID contains the DeweyID of its parent node. Transitively, given a
DeweyID, all its ancestor DeweyIDs can be computed without access to the doc-
ument. For example, the ancestors of 1.3.3.9.3.1 are 1.3.3.9.3, 1.3.3.9, 1.3.3, 1.3, and
1.

2. The number of divisions in a DeweyID is equal to its level in the tree plus one
(by definition, the level of the root node is 0).

3. Given two DeweyIDs, the structural relationships of their corresponding nodes
can be calculated without access to the document. In particular, all XPath axis
relationships [Berglund 04] can be inferred. For example, DeweyIDs 1.3.3.3 and
1.3.3.7 are siblings, because they have the same parent (1.3.3). Furthermore, given
two DeweyIDs, their least common ancestor (LCA) can be computed. The LCA is
simply the DeweyID resulting from the longest common prefix of the two nodes.

4. Sorting nodes by their DeweyID in lexicographical order results in the document
order.

5. DeweyIDs support document modifications without violating the 4 points above
and without reassigning DeweyIDs to any other nodes. This point requires a
little bit more explanation: Deletions and updates to node names or content
do not affect the above features. Insertions of new nodes require the creation
of new DeweyIDs. Depending of the position, where the new node has to
be inserted, this process might become quite complicated (but not inefficient)
[Haustein 05b, Härder 05b]. Therefore, we only sketch the simple cases. At-
tributes are not ordered. Therefore, a new attribute is simply appended to the
appropriate attribute root and its DeweyID is computed as sketched above. Ap-
pending a text/string node to an empty element is also trivial. Inserting a node
a between two adjacent existing nodes h and l results in a DeweyID computed
as follows: The prefix of the new DeweyID is the prefix of h’s parent. The suffix
division is h’s suffix division incremented by 1, thus an even division value is cre-
ated. Because in this state, between h and a there is no free suffix division left for
further insertions, the even division value is only used as an overflow mechanism
and the actual new DeweyID is obtained by adding 3 as a further suffix division.
For example, insertion of a node between DeweyIDs 1.3.3.5 and 1.3.3.7 results
in the new DeweyID 1.3.3.6.3 (note, 1.3.3.6 would not leave “space” for further
insertions). Reconsidering the above features 1 to 4, you recognize that the first
two are violated. There is however a simple workaround: just skip odd division
values. For example, the parent of 1.3.3.6.3 is 1.3.3 and its level is 3 (simply don’t
count even division values).

A conclusion you can even draw from the small example in Figure 3.1 is that
DeweyIDs tend to get long. However, there is quite a large body of work on
how to efficiently encode/compress DeweyIDs for small memory consumption
[Haustein 05b, Härder 05b]. Furthermore, as we will see in the following discus-
sion, DeweyIDs lend themselves for prefix compression. Empirical evaluations
in [Härder 05b] have shown that, for a wide range of real-world documents, a
DeweyID only requires around 3 to 5 bytes in average on external memory.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

3.2 The taDOM Lock Protocol 35

In the literature, quite a large number of alternative node identification schemes
have been proposed (see [Haustein 06a] for an overview). An often occurring al-
ternative solution to DeweyIDs is the so-called range-based node labeling scheme,
which shall briefly be introduced. In the range-based scheme, the XML tree is tra-
versed in pre-order. Every time a node is visited, a label consisting of a pair of inte-
gers (r, l) is generated. The first component r is the relative position of the node in
document order. The second component can be calculated by r+s+1, where s is the
number of nodes in the subtree of r. Thus, r and s span a range. Given the ranges
of two nodes u and v, it is possible to decide the descendant (ancestor) relationship
between them: if the range of v is contained in the range of u, v is a descendant of u.
Similarly, the preceding and following relationships can be decided. However, parent,
child, and the sibling relationships cannot be inferred, because level information is
missing. Therefore, the range-based scheme is extended to (r, l, level). Compared
to the DeweyID scheme, range-based node identification has two substantial draw-
backs: 1) it is not insert-friendly, because even when gaps are left, insertions might
provoke relabeling; and 2) it does not reveal the IDs of ancestor nodes (thus, ex-
pensive document access operations are required, when the ancestor ID need to be
computed).

3.2 The taDOM Lock Protocol

Multi-user access to a taDOM tree is isolated by a family of pessimistic hierarchical
lock protocols called taDOM2, taDOM2+, taDOM3, and taDOM3+ [Haustein 06a].
Each lock protocol is tailored to the operations supported by a particular DOM ver-
sion. For example, taDOM2 provides only appropriate locking mechanisms to syn-
chronize access via DOM Version 2 operations. Therefore, taDOM protocols are
only sufficient to protect multi-user access in the case of navigational DOM opera-
tions. Indexed access, i. e., jumps into the document based on some kind of index
structure (e. g., as introduced in Chapter 7), cannot be synchronized, due to the
phantom problem. To alleviate this situation, [Haustein 05a] introduces the concept
of value-based axis locks, which is only sufficient for a certain type of index struc-
ture (i. e., element indexes). In some cases, the taDOM2 or taDOM3 lock protocols
fail to satisfy certain lock requests without access to the document (i. e., when lock
conversion is required). Due to high I/O costs, however, access to the document
is prohibitively expensive, as various performance tests revealed [Haustein 06b].
Therefore, the “+” variants of the taDOM protocols introduced new lock types to
alleviate this situation. For brevity, only the basic taDOM2 protocol is introduced in
the following. Please refer to [Haustein 06a] for a full description of all protocols.

In taDOM2, access to a particular node has to be protected by a node lock. To acquire
a node lock, a lock request carrying a transaction identifier, the DeweyID of the
node to be locked, and a lock mode, is issued to the lock manager component of
the XDBMS. The lock manager then decides whether the lock request is in conflict
with existing locks of other transactions or not. If the lock conflicts, the requesting
transaction is blocked until the conflict is resolved. Otherwise, the lock is granted
and the requesting transaction can proceed. Because taDOM is a hierarchical lock
protocol, the lock manager does not only lock the requested node, but also has to
protect its ancestor path by placing appropriate locks on each ancestor node starting
from the root. Because DeweyIDs easily allow to compute the ancestor path, this

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

36 Chapter 3: The XML Transaction Coordinator

operation is possible without document access.

In summary, taDOM2 supports eight lock modes:

• Intention Read (IR) signals a read lock (NR, LR, or SR) in the locked node’s subtree.
Furthermore, an IR lock requires the parent node also to be locked in IR mode.

• Node Read (NR) locks the given context node in read mode. Concurrent read
access to the node’s subtree is allowed. A NR lock requires an IR lock on its
ancestor nodes.

• Level Read (LR) locks the given context node and all its children. As for NR,
ancestors have to be protected by IR.

• Subtree Read (SR) protects the context node and all its descendants. Again, IR is
required on ancestors.

• Intention Exclusive (IX) signals an SX lock on at least one of the node’s grand
children or in at least one subtree below a grand child, i. e., the IX lock does
not protect direct children (this is actually the task of the CX lock). An IX lock
requires IX locks on all ancestors.

• Child Exclusive (CX) signals at least one SX lock on a child. The distinction into
IX and CX is necessary to decide, if an LR lock can be allowed on a node (i. e.,
LR and IX are compatible, because the SX lock protects grand children and their
subtrees, while LR and CX are not compatible, because at least one child is locked
in SX).

• Subtree Update (SU) signals lock conversion at a later point in time into an SR lock
(downgrade) or into an SX lock (upgrade). SU requires IR on all ancestors. These
locks are upgraded into IX and CX, when the SU shall be upgraded to SX. In case
of a downgrade, the IR locks are sufficient.

• Subtree Exclusive (SX) locks the context node and the complete subtree below for
modification. An SX lock requires CX on its parent and IX on the remaining
ancestors.

Figure 3.3a shows the lock compatability matrix of the taDOM2 lock protocol, based
on which the lock manager decides whether a lock request (column header) is in
conflict with an existing lock from another transaction (row header). For example, if
transaction T1 holds an SR lock on a particular node, for which another transaction
T2 requests an LR lock, this request is granted by the lock manager. However, if
T2 requests an SX lock on the same node, the lock manager blocks transaction T2

until T1 releases the SR lock, because subtree read and subtree modification are in
conflict.

Generally, the lock manager only keeps exactly one lock per node and transaction.
Therefore, if a transaction requests a new lock on a node already locked by the same
transaction, the former lock has to be converted to isolate the new node access.
Therefore, taDOM2 defines the lock conversion matrix depicted in Figure 3.3b. The
column header identifies the already existing lock, whereas the row header identi-
fies the new lock request from the same transaction on the same node. A specialty
are those combinations leading to locks with a lock mode occurring as subscript,
e. g., the combination LR-CX, which results in a CX

NR
lock. In these cases, the re-

sulting lock distribution actually consists of multiple locks, where the main lock
mode is applied to the locked node, and the lock mode written in the subscript is
applied to all its children. In the example, a CX lock is registered for the requested

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

3.3 XTC’s Architecture 37

Figure 3.3 a) Compatability matrix and b) conversion matrix of the taDOM2 lock protocol

– IR NR LR SR IX CX SU SX
IR + + + + + + + - -
NR + + + + + + + - -
LR + + + + + + - - -
SR + + + + + - - - -
IX + + + + - + + - -
CX + + + - - + + - -
SU + + + + + - - - -
SX + - - - - - - - -

– IR NR LR SR IX CX SU SX

IR IR IR NR LR SR IX CX SU SX
NR NR NR NR LR SR IX CX SU SX
LR LR LR LR LR SR IX

NR
CX

NR
SU SX

SR SR SR SR SR SR IX
SR

CX
SR

SR SX
IX IX IX IX IX

NR
IX

SR
IX CX SX SX

CX CX CX CX CX
NR

CX
SR

CX CX SX SX
SU SU SU SU SU SU SX SX SU SX
SX SX SX SX SX SX SX SX SX SX

node, and a set of NR locks is put on its children. To satisfy this lock request, all
the children of the particular node have to be retrieved from the document—a very
costly operation. To handle this situation efficiently, the taDOM2+ protocol intro-
duces new lock modes avoiding document access [Haustein 06a].

Node locks protect the direct access to a node, its subtree, and its ancestor path.
However, they do not protect sibling relationships and the first/last child property.
For example, if a transaction T1 navigates from a node to its sibling, another trans-
action T2 is not allowed to insert another node between the two navigated nodes.
Furthermore, if a transaction T1 accessed the first child of a particular node, another
transaction T2 is not allowed to delete this first child. If these situations would not
be synchronized correctly, the actions of transaction T1 would not be repeatable.
To synchronize these access patterns, the taDOM protocol introduces the so-called
edge locks that protect the edges during navigation. The edge lock protocol is imple-
mented by a classical RUX lock protocol, where the locks are called edge read (ER),
edge update (EU), and edge exclusive (EX). The compatability and conversion matrices
for this protocol are omitted here for brevity.

In summary, taDOM provides a logical data model and a tailored family of lock
protocols that allow to synchronize multi-user DOM access to XML documents. To
keep this overview short, only the basic principles of the taDOM lock protocols
were introduced here. For further concepts like, for example, consistency levels, lock
depth, and the completeness and correctness of the taDOM protocols, please refer to
[Haustein 06a].

3.3 XTC’s Architecture

Internally, the architecture of XTC follows the classical five-layer approach intro-
duced by [Härder 83] (see Figure 3.4). In the following discussion, we will strive
through the system in a bottom-up fashion, thereby sketching the major concepts at
each of the five layers (L1 to L5). In particular, we will introduce how XML docu-
ments as taDOM trees are stored on external memory.

3.3.1 File Services and Propagation

The two bottom-most layers L1 and L2 are standard DBMS components. They con-
trol the buffered flow of fixed-size blocks from external memory to main memory.
All data, (e. g., documents, metadata, etc.) are stored in a set of so-called container

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

38 Chapter 3: The XML Transaction Coordinator

Figure 3.4 Architecture of the XML Transaction Coordinator (according to [Haustein 06a])

Transaction Protocol

File System

Container Files Container Protocols Temporary Files

Objects: Container files and blocks

F
ile

 S
er

vi
ce

s

Objects: XML documents

X
M

L
S

vc

Transaction Services

Objects: XML records, DeweyIDs

A
cc

es
s

S
vcOperations: load record, store records, reconstruct subtree, etc.

Interface Services

Objects: XML nodes, DeweyIDs

Operations: taDOM operations, SAX scan

N
od

e
S

vc

Objects: data pages

Operations: allocate page, release page, read page, write page

P
ro

pa
ga

tio
n

L2

L3

L4

L5

L1
Operations: read block, write block, allocate block, release block

Operations: load XML document, store XML document, execute XPath

I/O Manager

Node Manager

E/A−ManagerBuffer Manager

Deadlock Detector
Record Manager Index Services Catalog Manager

E/A−Manager

XPath Processor XML Manager

HTTP Agent FTP Agent DOM RMI SAX RMI API RMI

Lock Manager

Transaction Manager

I/O Manager

files, which are plain random access files managed by the file system. A container
consists of a sequence of sequentially arranged fixed size blocks. The first block in a
container is called index block. It stores the two parameters size and extend. The size
parameter denotes the block size which is assigned for each container separately
when the database system is installed. Hence, XTC can support multiple contain-
ers with different block sizes. For access, size allows to identify the byte position of
block borders in the container. The second parameter (extend) denotes the number
of new blocks to be appended, when the container is full and needs to be extended.
The remaining blocks in a container store the actual data. Inside each block, the first
four bytes store the so-called block number, which uniquely identifies a block in the
XTC system. A block number consists of a one byte container identifier, and a three
byte block identifier, which is simply the sequential block number relative in the con-
tainer. The remaining portion of a block is playload data. All in all, XTC supports
up to 255 containers and (assuming 32 KB block size) can address a maximum of 512
GB per container. At the file-services layer (L1), a designated I/O manager controls
access to container files and is responsible to transfer data stored in its container file
into main memory. Basic operations are readBlock, writeBlock, allocateBlock, release-
Block, and so on. To write a block, the I/O manager first stores the current block
under the writing position as a before-image in the specially reserved container block

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

3.3 XTC’s Architecture 39

(blockNo 1). Then, the actual data block is written. The before image ensures block
consistency, when the server crashes during a write operation.

Propagation layer (L2) implements the system buffers. Each buffer manager in this
layer has a single designated I/O manager to access the blocks from a specific con-
tainer. A buffer manager controls a fixed-size array of so-called buffer frames, each
of which can hold a page. The buffer frame size is equal to the block size and, there-
fore, each buffer frame can provide exactly one block as a data page. To identify
pages, the block number is reused as a page number. The page number therefore
allows to uniquely identify the responsible buffer manager and, in turn, the I/O
manager. If the next higher system layer requests access to a page (via the page
number), the buffer manager either returns the page from the buffer or instructs the
I/O manager to load the corresponding block, depending on whether the page is
already in the buffer or not. If a new page is transferred to the buffer, but the buffer
is full, a victim has to be chosen for displacement. If this victim was modified, the
I/O manager writes it back to external memory. Currently, XTC supports LRD-V2
and LRU [Effelsberg 84] as displacement strategies. A strategy can be configured
for each buffer separately during system startup. To synchronize multi-user access
to the buffer, a fix/unfix mechanism is implemented on the buffer pages.

3.3.2 Access Services

The access services layer (L3) provides the internal record interface and actually im-
plements 1) the mapping from XML documents and collections as taDOM trees to
the pages provided by L2; 2) the taDOM access methods from the previous section;
and 3) the document scan methods for SAX scans. Furthermore, L3 manages meta-
data on the stored documents. The three components responsible for these tasks are
the index devices, the catalog manager, and the record manager.

Like layers L1 and L2, the functionality of the index services can also be considered
standard in many DBMS. To store records as key-value pairs, the component im-
plements a doubly-linked list, a B-tree [Bayer 72], and a B*-tree [Wedekind 74] on the
buffered pages of layer L2 using page numbers (i. e., block numbers) as page links.
All indexes support prefix compression [Wagner 73] and duplicates on the keys as
well as variable key and variable value lengths. Algorithms to access and main-
tain these index structures are well-known [Härder 01] and, therefore, not further
discussed here.

The record manager stores a document (taDOM tree) in a B*-tree index, which is
called document index or alternatively document store in the following. Every B*-
tree record corresponds to a taDOM tree node, where the node’s DeweyID serves
as the record key. Therefore, this storage strategy is called node-oriented storage in
the following. Obviously, indexed access to nodes via their DeweyIDs is possible.
The record value consists of a one-byte descriptor containing information about
the stored node (e. g., its type) followed by the actual payload data which, in turn,
depends on the node type:

• Attribute root nodes and string nodes are virtual, i. e., they are not stored at all,
because they were only introduced to facilitate transaction parallelism and do
not further carry any semantics.

• For text nodes, the payload contains the content of the string node below (en-
coded in byte representation). If the content of a text node is larger than a page,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

40 Chapter 3: The XML Transaction Coordinator

Figure 3.5 Storage of sample document recordStore.xml in a B*-tree

...

T
E
T
E
E
A
A
E

...

E
E
A
E
T
E
T
E

recordStore
cd
id "cd_100"
title
"The Soul Cages"
artist
"Sting"
year

1998
genre
"Pop"
tracks
track
no 1
length 401
title

"The Soul Cages"
track
no 9
length 468
title
"When the Angels Fall"
vinyl
...

T
E
A
A
E
T
E
E

1
1.3
1.3.1.3
1.3.3
1.3.3.3
1.3.5
1.3.5.3
1.3.7

1.3.7.3
1.3.9
1.3.9.3
1.3.11
1.3.11.3
1.3.11.3.1.3
1.3.11.3.1.5
1.3.11.3.3

1.3.11.17.3.3
1.3.11.19
1.3.11.19.1.3
1.3.11.19.1.5
1.3.11.19.3
1.3.11.19.3.3
1.5
1.5.1.3

Key Desc Value Key Desc Value Key Desc Value

1.3.7.3

1 1.3.11.17.3.3

the content is distributed over a set of chained pages and referenced from the
corresponding record.

• For elements, the payload is a so-called vocabulary ID or vocID for short. To com-
press element (and also attribute) names, the record manager administrates a vo-
cabulary containing all the names occurring in one or more documents. A vocID
then is an integer uniquely identifying an element or attribute name.

• For attributes, the payload contains both, a vocID and the content of the attribute
(encoded in byte representation).

Figure 3.5 illustrates the storage layout for our sample document (vocIDs and de-
scriptors omitted). As you can easily observe, the records in the leaf pages of the
B*-tree are stored in document order (due to the implied ordering of DeweyIDs),
and, because the DeweyID of two consecutive records often only vary in a few suf-
fix divisions, prefix compression can heavily reduce storage space. Therefore, all
documents are stored in a B*-tree index with prefix compression [Bayer 77].

As part of the internal record interface, the record manager has to provide all ac-
cess methods defined for the taDOM tree as well as the necessary infrastructure for
SAX processing. Because this tree is internally stored in a B*-tree, the record man-
ager translates all access methods to appropriate index access methods. To support
various other characteristic access patterns, XTC additionally allows to create sec-
ondary index structures on the stored document, namely the so-called element index
and the ID index. Because these issues will be discussed in Chapter 6 and Chapter
7, we omit their discussion here.

The third component in the access services layer is the catalog manager, which keeps
track of per-document or per-collection metadata. Therefore, the manager stores
information about the location of a particular document (referenced to by a unique
document ID) and its secondary indexes on external memory.

To summarize, the record manager, the catalog manager, and the index services to-
gether implement the internal record interface of the XDBMS. Basically, records are
byte-encoded taDOM tree nodes. In the next higher level (L4), which implements
the external record interface, these records are transformed to XML nodes.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

3.3 XTC’s Architecture 41

3.3.3 Node Services and XML Services

The interface provided by the node manager on Level L4 is very similar to the inter-
face of access services interface on level L3. Therefore, both record manager and
node manager support the same operations on the taDOM tree. In fact, for most op-
erations, the node manager just calls the corresponding implementation methods in
the record manager. Additionally, however, the node manager has two tasks: First,
it has to decode internal records received from the internal record interface and cre-
ate external XML nodes with readable node names and content. And second, it has
to request locks from the lock manager in the transaction services package to pro-
tect access to the taDOM tree for multi-user processing. Which locks are actually
requested is beyond the scope of this introduction. However, because the taDOM
lock protocols are tailored to the specified taDOM access methods (Figure 3.2), it
should be intuitively clear that for every operation there is a suitable lock request.

At the last Level (L5), the XML manager and the XPath processor implement the set-
based interface to the XTC system. The XML manager allows to store and recon-
struct documents and to evaluate XPath queries using the XPath processor. Note,
the XPath processor is a quite simple implementation of a small subset of the XPath
1.0 Recommendation [Clark 99]. Throughout this work, it is replaced by an XQuery
processor. Therefore, the XPath processor will not be introduced in more detail.

Besides document storage and reconstruction, the XML manager provides a virtual
directory structure for the management of all XML documents and collections in
the database. The virtual directory structure has the same functionality as a file
system directory structure. It is possible to create and remove directories, store doc-
uments in directories, and change/rename directories and documents. Technically,
the virtual directory structure is a view on the so-called master document. This XML
document keeps track of the per-database metadata information, such as, which
containers exist, where documents are stored (external memory address), and how
they are organized in the virtual directory structure.

3.3.4 Transaction Services

As indicated in Figure 3.4, the transaction services are connected to all five system lay-
ers. In summary, it is their responsibility to synchronize transactions (i. e., lock man-
ager and deadlock detector) and to keep log information for recovery in case of system
crashes and rollback operations (transaction manager). The lock manager receives
lock requests from the node manager and checks, whether the current lock request
is in conflict with existing locks from other transactions. If so, the requesting trans-
action is blocked. Otherwise, the lock is granted and the transaction can proceed. To
assess the possible concurrency provided by different lock strategies (e. g., taDOM2
vs. taDOM2+ vs. other strategies proposed in the literature), [Haustein 06b] intro-
duced the concept of meta-synchronization. For a lock protocol L, the lock manager
“translates” the lock requests from the node manager to the appropriate set of lock
supported by protocol L. Currently, the lock manager of the system supports 12
different lock protocols.

When objects are locked for multi-user access, deadlocks may occur. Therefore, the
deadlock detector records transaction dependabilities in a wait-for graph. When a
deadlock is detected, the detector chooses a transaction for rollback and restart.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

42 Chapter 3: The XML Transaction Coordinator

As the last component in the transaction services package, the transaction manager
(together with the buffer manager), implements the Non-Atomic/Steal/No-Force
[Härder 01] variant for page propagation (non-atomic), page replacement (steal),
and end-of-transaction handling (no-force). During normal run time, the buffer
manager and the transaction manager write the necessary log information into the
container protocols and in the transaction log. Based on this information, the neces-
sary undo and redo recovery can be implemented. A detailed description of the
components in this package is beyond the scope of this introduction.

3.3.5 Interface Services

The interface services provide the necessary mechanisms to connect to the XTC server
from the outside world. Because XDBMS are frequently used in web applications,
XTC directly provides access via the HTTP and the FTP protocol, thereby exposing
the virtual directory structure. To support DOM and SAX access, as well as calls to
the XPath processor, XTC contains a driver package (similar to the Java Database
Connectivity; JDBC) allowing to connect to the system via Remote Method Invoca-
tion (RMI). In contrast to many other XDBMS, XTC provides a “native” DOM inter-
face, in which all DOM calls are executed inside the system (as opposed to shipping
the complete document to the client). A similar functionality is not possible for the
SAX parser, because the application logic of the client program cannot run inside the
server. Therefore, XTC splits the document into fixed-size chunks of nodes, which
are sent to the client to implement the SAX parser. The last component, API RMI is
responsible for all other calls to the system, e. g., to store or reconstruct documents
or to show monitoring information.

3.4 Summary

This chapter introduced the necessary system-specific preliminaries for this thesis
from the XTC system. XTC is almost a full-fledged native XML database system.
It provides the necessary interfaces for a meaningful embedding into Java applica-
tions and it is able to synchronize DOM and SAX access. Obviously, XTC is still not
complete, because a declarative interface to the XML data is missing. The design
and implementation of such an interface in the form of an XQuery evaluation en-
gine will now be presented. We take a top-down approach and start with the logical
aspects in the next part.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Part II

Logical Aspects of XML Query
Processing

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 4 The XML Query Graph
Model

A smart model is a good model.

Tyra Banks

In general, queries can be represented in various ways, for example as strings, as
abstract syntax trees, or as algebraic expressions. Every form has its right of ex-
istence, i. e., the string representation exists for application programs and ad-hoc
queries, syntax trees for parsing, and algebraic expressions for formal treatment.
Basically, all these forms are simply different syntactical shapes of one and the same
semantic thing—namely the query. And all these shapes serve a special purpose.
Another syntactical shape introduced in this chapter is the XML query graph model
(XQGM). The purpose of the XQGM is to serve as a logical internal representation
for XML queries. The XQGM is logical, because it hides low-level details about how
a query is actually evaluated. Nevertheless, it has precise semantics and can capture
a substantial fragment of the XQuery language. The separation between a logical
and physical view of a query makes sense, because it introduces another level of
abstraction and therefore reduces complexity at each level. The XQGM is further-
more internal, because it is designed for the needs of the XML query processor fre-
quently requiring functionality for searching, restructuring, and mapping queries or
subqueries.

The idea of a query graph model for internal query representation is not new.
First publications arose from the Starburst system as early as 1988 [Mavis K. Lee 88,
Haas 89, Pirahesh 92]. In this context, the QGM there was developed to capture re-
lational queries. XQGM proposed in this work can be seen as an extension to the
original model to integrate support for XML queries. Although this point is not ex-
ploited here, XQGM can conceptually capture relational and XML at the same time,
i. e., its expressive power is not restricted to only one query language. Additionally,
further XML query languages might also be translated to XQGM. In practice, mixes
of relational and XML queries might occur, e. g., expressed in the SQL/XML query
language. These queries could then be compiled into one XQGM representation
and optimized “together”. This idea is also followed by major database vendors
[Beyer 06, Liu 08]. Although these systems follow a similar approach as this work,
their publications remain quite shallow. This work presents the first in-detail pre-
sentation on how XML queries can be represented in a Query Graph Model.

The rest of this chapter is organized as follows: First, a slim version of the XQGM
syntax and its semantics is introduced. Albeit being slim, this version contains

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

46 Chapter 4: The XML Query Graph Model

Figure 4.1 The slim version of XQGM in UML notation

enough operators to capture all supported constructs of the XQuery language. In
the second part, the necessary transformation steps, starting from the AST repre-
sentation generated by the parser and resulting in the XQGM representation, are
presented. In the following chapter, the slim version is then extended to full size,
i. e., new operators are introduced to capture the semantics generated by various
query rewritings.

4.1 The XQGM Syntax

Purely introducing syntax without at least some glimpse at the semantics is a lit-
tle bit cumbersome. To facilitate comprehension, we will, therefore, give a short
informal description about the meaning of the syntactic components. The formal
description of the semantics will then be presented in the next section.

4.1.1 XQGM Components

An XQGM instance is a box-and-arrow diagram, where boxes are operators for data
manipulation and arrows indicate the data flow. Inside each operator box, the op-
erator semantics is also represented by a box-and-arrow diagram. In the following,
we will use the term component for any box. Sample instances of XQGM have been
shown in Figure 2.4 and 2.5 on Pages 20 and 23 (in this chapter, only the components
of the first example are introduced; others follow in Chapter 5). Figure 4.1 clarifies
the relationship between the various graphical components. They are summarized
in Figure 4.2 and introduced in the following (note, a complete example illustrating

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.1 The XQGM Syntax 47

Figure 4.2 Components of the slim XQGM version

the components can be found in Figure 4.3):

• Operators: An operator is either an access operator, a select operator, a set operator,
a root operator, or a tuple variable reference. The first three components are repre-
sented by boxes in XQGM and carry the operator’s type (e. g., ACCESS, SELECT,
or UNION, INTERSECTION, DIFFERENCE) and a unique identifier enclosed in
braces in the upper part. A special type of access operator is the document access,
which is depicted in a darker shade (not represented in Figure 4.1 for simplic-
ity). A tuple variable reference is a rhomb that can optionally contain an integer
number, the string “cp”, or the string “cs”. A tuple variable reference has no type
information and no identifier. The root operator is represented as a double circle
with the word “out” inside.

Informal semantics: Generally, operators produce streams of tuples and most op-
erators also consume streams of tuples. Thus, as we will also show in the fol-
lowing, the query processor is tuple-based. But first, let us discuss the various
operator types. The semantics of the set-based operators directly emerges from the
corresponding constructs in the XQuery language and requires no further expla-
nation. Access operators retrieve XML nodes from documents: a document access

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

48 Chapter 4: The XML Query Graph Model

returns the virtual root node of a document referenced by its name; all other access
operators return elements, attributes, and so on. The select operator is responsible
for combining the input of several input operators, and, for that purpose, applies
predicates, sorting, and projection. Despite its name, a select operator can also
perform joins and sorting1. The root operator “loops” its input “through”. It just
serves as a hitch to clarify where the output of the query is delivered. Finally, a
tuple variable reference allows to peek into the internal state of some select opera-
tor and to fetch a field of the operator’s current tuple. Thereby, a tuple variable
reference can provide a so-called correlated input to a subexpression. This subex-
pression is then called a correlated subexpression. For an example, see Figure 2.4
on Page 20. Select (15) has a tuple variable reference as input, which peeks
into the current input tuple of select (2) . The notation inside a tuple variable
reference (i. e., none, an integer, “cp”, or “cs”) specifies which field of the tuple
will be accessed. None implies the first field (at position 0), an integer i implies
the ith field, and “cp” or “cs” imply some special fields containing information
about the current context position or the context size.

• Specifications and Predicates: Internally, an operator can consist of 1) an op-
tional projection specification, 2) an optional sorting specification, 3) an optional
predicate, and 4) a list of zero or more tuple variables. Graphically, these compo-
nents are placed inside the operator box, where tuple variables are represented
as circles and the other components are represented as boxes. A tuple variable
circle contains a quantifier followed by a colon followed by a unique identifier.
Quantifiers are F for for, L for let, E for exists, and A for for all. The specification
and predicate boxes contain a name indicating the component, i. e., PROJ_SPEC,
SORT_SPEC, or PREDICATE. Access operators furthermore contain a graphical
description about what they deliver. This description is either depicted by an
oval (see first component in Figure 4.2 inside the “Miscellaneous Components”
column), in case of an ordinary access operator or by a contained select operator
(with a literal for the document name), in case of a document access (see Figure
2.4 on Page 20).

Projection specifications, sorting specifications, and predicates all contain expres-
sions—either one or more, in case of projection and sorting specification, or ex-
actly one, in case of a predicate. An expression cannot exist alone in XQGM;
likewise predicates and specifications cannot exist alone. Whenever multiple ex-
pressions inside a projection specification occur, their is output combined, which
indicated by an oval containing the string “out” (cf. the second component inside
“Misc.”). Similarly, in projection specifications, expressions are combined by an
oval containing the string “sort”. The input edges to this component carry an
ordering number and a sorting direction (e. g., “descendant”). Finally, the func-
tionality to apply a ddo function or to generate positional information is built into
the projection specification. The presence of these modifiers is signaled by oval
compontents containing the strings “ddo;”, “cp;”, or “cs;” inside the projection
specification.

Informal semantics: Inside an operator, the tuple variables are responsible to re-
trieve input tuples and to produce an operator-internal tuple stream (by combin-
ing the input). The quantification mode defines how the internal stream is as-
sembled: F leads to an iteration over the input, L groups the input, and E and A
are required to express existential and all quantification. Access operators have no

1We chose the term “select” to conform to the terminology in the original Starburst work [Haas 89]

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.1 The XQGM Syntax 49

tuple variables, because they receive no input but directly access the document
(for example, by evaluating an axis step). However the internal tuple stream is
generated, it can be filtered by a predicate, sorted by the sorting specification, and
projected by the projection specification. The sorting specification and the pro-
jection specification can contain multiple expressions that are evaluated over the
internal tuple stream. For sorting, the multiple expressions correspond to multi-
ple sorting dimensions. In a projection specification, every expression generates
a field in the output tuple. A special kind of output expression is signaled by an
output modifier containing any combination of “ddo”, “cp”, and “cs”. If either cp
or cs is defined there, the projected output tuple stream delivered by the operator
is extended with a special field containing 1) the current context position (i. e., the
position index of the tuple in the stream), or 2) the current context size (i. e., the
size of the tuple stream), or both. If ddo is defined, the tuple stream is freed from
duplicates and sorted in document order (note, this is only possible, if all tuples
in the stream contain exactly one node).

• Expressions: The set of expressions emerges from the expressions defined by
the XQuery language, i. e., there are Boolean expressions, arithmetic expressions, con-
structors, and so on. An expression can be composed of other expressions. When-
ever this happens, an expression edge is drawn as an arrow from the child expres-
sion representation to its containing parent expression representation. Note, tu-
ple variable references are also expressions. The following graphical elements
are used to display expressions: the octagon for a function call, the hexagon for
a constructor, the box for a literal or a node test, an oval containing the string
“SEQ” for a sequence, an oval containing the string “to” for a range expression,
or an oval containing an arithmetic/Boolean/comparison operator in case of an
arithmetic/Boolean/comparison expression.

Informal semantics: The semantics of expressions is imported for the Formal Se-
mantics without change. The only problem is that XQuery expressions operate
on items (and item sequences), whereas XQGM operators operate on tuples (and
tuple sequences). To translate from one model into the other, tuple variable ref-
erences (which select exactly one item from a tuple as explained above) are also
expressions (see Figure 4.1).

• Tuple Variables: The skeletal structure of an XQGM is build upon operators
and tuple variables. Between operators and tuple variables, three relations exist:
1) operators contain zero or more tuple variables (represented as circles inside
the operator boxes); 2) a tuple variable contains exactly one (input) operator; this
relationship is expressed by an input edge represented as an arrow pointing from
the operator box to the tuple variable circle; and 3) a tuple variable can serve as
correlated input to an operator (modeled by the “correlates” association in Fig-
ure 4.1); a correlation is represented by a correlated input edge which is an arrow
with a dotted line from the tuple variable circle to the operator box. The last edge
type is a reference edge which is an arrow pointing from a tuple variable to the
corresponding tuple variable reference (no matter whether the reference occurs
as an operator or whether it is contained in an expression).

Informal semantics: Tuple variables have already been discussed above. They re-
ceive and combine the operator’s input and can deliver tuples to correlated tuple
variable references.

Figure 4.3 contains another example to clarify the syntax of the various components.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

50 Chapter 4: The XML Query Graph Model

Figure 4.3 An XQGM sample instance

4.1.2 Identifying Components

During rewriting and for the definition of the XQGM semantics, a notation to iden-
tify the components inside an XQGM instance is required. To save space, this no-
tation shall not be introduced formally, but only by example. A formal description
should not be necessary, because the notation is quite straightforward and easy to
understand:
• Literals: The types in Figure 4.1 are the literals of the notation and refer to the

component types of an XQGM instance. We can therefore write operator, con-
structor, or predicate. Note, the notation is case-insensitive, i. e., “PREDICATE”
and “predicate” would refer to the same type of component.

• Dots: Let S be an operator. Then we can reference components inside S using the
“dot” notation. For example, when S is a select operator, S.predicate references
the predicate. The notation also works the other way around. Suppose P is the
predicate of a select operator. Then P.select (or, more generic, P.operator) reveals
the containing operator.

• Arrows: If two components are connected by an edge, we use the “arrow” nota-
tion. Let T be a tuple variable and O be an operator. Then we write:

– T → O, when O is the input operator of T (following the input edge).

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 51

– O
p
→ T , when T is the containing tuple variable of O (following the input

edge in reverse direction).
– T ⇀ O, when O is a correlated operator (following the correlation edge).
– O

p
⇀ T , when T is the correlated input (following the correlation edge in

reverse direction).

Furthermore, let E be an expression, then we can write E → expression to nav-
igate the contained expressions along the expression edge, and E

p
→ expression

to navigate from an expression to its parent. Finally, let R be a tuple variable
reference and let V be a tuple variable, we can write R→ V and V

p
→ R.

• Brackets: If the dot or the arrow notation is ambiguous, because multiple compo-
nents of the same type exist, we use the bracket notation to identify the desired
component. For example, if a projection specification P contains multiple ex-
pressions, P .expression[3] references the third one. Note, where necessary, XQGM
reveals the order of the graphical components using an integer ordinal number2.
Furthermore, tuple variables are ordered by their IDs. For example, in Figure 4.3,
F:4 precedes L:7 .

• Question Marks: We can express an existential condition over the structure of an
instance using the “?” notation. For example, S.predicate? yields true, if operator
S has a predicate, and false otherwise.

• Patterns: We allow to specify patterns on the XQGM operators using braces and
the well-known pattern cardinalities zero-or-one (?), one-or-more (+), and zero-
or-more (*). For example, given operator O1, we can specify the pattern O1(

p
→

T.O)∗ (where T are tuple variables and O are operators) to retrieve all operators
up to the XQGM root operator.

4.2 The XQGM Semantics

The semantics of XQGM has to be defined in a precise way, because otherwise we
will not be able to capture the semantics of an XML query expression without loss.
For that purpose, although XQGM is a logical query representation, an evaluation
model has to be developed to clarify how each of the operators in XQGM can be
evaluated. In the following, we will first define the data model on which the evalu-
ation model can operate. A data model is essential, because without it, it is impos-
sible to define the behavior of the XQGM operators. The data model will, for exam-
ple, formally introduce the above mentioned tuples. Then, as another preparation
step, we consider the dynamic evaluation environment of the evaluation model.
This environment is required to capture a global evaluation context. Finally, the
actual XQGM operators are then considered. The problem here is that XQGM is a
graphical representation and we need to “attach” semantics to each of the graphical
components. We will not do so directly, because this would actually not be possi-
ble in a proper way. Rather, an XQGM instance is mapped onto a logical algebra
expression (consisting of lower level operators expressing the XQGM semantics).

2This is necessary, because the layout algorithm of the program used to render the XQGM instances ignores
the correct component order.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

52 Chapter 4: The XML Query Graph Model

Figure 4.4 The data model of the XTC XML query processor

4.2.1 The Data Model

The data model introduced in this section defines the objects on which the log-
ical evaluation model operates. Later on, this data model is then reused to im-
plement the operators in the physical algebra of the query processor (see Chapter
8). We already know an XML query data model, namely the XQuery Data Model
[Fernández 04]. To summarize, this model defines: atomic values, nodes, items (the
union of atomic values and nodes), and sequences (ordered lists of items). Unfor-
tunately, this data model is too restrictive for the logical and physical XML oper-
ators developed in this work: Intrinsically, XML data is complex and the opera-
tors should be able to consume and produce complex data. However, sequences
as defined in the XQuery data model, are “flat” structures. In a sense, support for
“multi-dimensional” data is missing, i. e., the data model lacks the concept of tuples
to incorporate complex structures.

Therefore, the definition of the XTC query processing data model subsumes the
XQuery data model and adds the tuple concept. The structure of the resulting data
model is depicted in Figure 4.4. Tuples are the most generic type in the data model.
Every data model component is a tuple. Note, in contrast to the relational algebra,
the fields of a tuple are not named and can therefore not be referenced by name.
Rather, the relative position of a field is used, as we will see in the following. As
in the XQuery data model, items are either nodes or atomic values with the corre-
sponding subtypes to represent elements, attributes, and so on. Tuple sequences are
also modeled as items and, in turn, contain an ordered list of tuples. This means that
sequences can contain tuples containing sequences, and so on. Thus, complex nest-
ings/values are supported. A tuple sequence containing exactly one tuple is said
to be singleton. A singleton tuple sequence is equal to the contained tuple. Like-
wise a tuple with exactly one item is called singleton and a singleton tuple is equal
to the contained item. As a result, a tuple sequence can naturally act as an XQuery
sequence, namely when the tuple sequence contains singleton tuples only or when

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 53

it is empty (as empty sequence). The overview in Figure 4.4 does not contain all types
defined by the XQuery data model and, in fact, XTC does not implement all these
types. However, this type hierarchy can easily be extended to do so.

Besides the base relationship between the introduced data types, the operations de-
fined on their instances have to be shown, too. Because the data model is derived
from the XQuery data model, we naturally also borrow the definition of the operator
semantics from there. For brevity, an in-detail definition of the complete semantics
is omitted here. Only the most relevant operations and those for which a different
notation was chosen shall be highlighted.

Operations on Tuple Sequences

• Creation: The creation of an empty tuple sequence is indicated by braces: ()

• Iteration: Let S be a tuple sequence, then we can write: “for Tuple t ∈ S do . . . end”
to iterate over the tuples in S.

• Append: Let S be a tuple sequence and t be a tuple. Then we write S + t to add t
after the last tuple in S. Furthermore, let S1 and S2 be two tuple sequences, then
we write S1+S2 to express the concatenation of S2 after the last tuple in S1. Note,
in both cases, the order of the tuples is maintained inside the sequences.

• Boolean Value: The Boolean value of a tuple sequence is false, if the tuple sequence
is empty. If the tuple sequence is singleton, the Boolean value is the Boolean
value of the contained tuple. Otherwise, the Boolean value is true. Let S be a
tuple sequence. Then we write S? in the following to indicate the Boolean value
of S.

• Tuple Access: Let S be a tuple sequence and let i be an integer, then we can access
the tuple at position i using the bracket notation S[i].

• Size: Let S be a tuple sequence, then |S| is the notation to deliver the number of
tuples in S.

Operations on Tuples

• Creation: The creation of an empty tuple of size x is indicated using the bracket
notation [x]. The fields of the resulting tuples are undefined. Tuples with un-
defined fields are never passed between XQGM operators. Rather, they appear
“inside” XQGM operators during tuple construction. If we want to specify a de-
fault value v, we use the notation [x, v] resulting in a tuple with x fields of value
v.

• Append: Let t be a tuple with the first undefined field at position x and let i be an
item. Then t + i results in a tuple, where item i is placed at field x. Furthermore,
let t1 and t2 be two tuples where the first undefined field in tuple t1 is at field x.
Then t1 + t2 is the concatenation of both tuples, where the first field of t2 is placed
at field x. As with sequences, the relative order of tuple fields is maintained.

• Boolean Value: The Boolean value of a tuple t is expressed by t?, where the result
of this operation is the Boolean value of the item at the first field.

• Field Access: Let t be a tuple and x be an integer, then we can access the item at
field x using the bracket notation: t[x].

• Size: The size of a tuple (i. e., the number of fields) can be calculated by |t|.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

54 Chapter 4: The XML Query Graph Model

• Copy: Function copy clones a tuple t (undefined fields are cloned to undefined
fields).

Operations on Nodes and Atomic Values

The operations on nodes directly emerge from the XQuery semantics. Therefore,
they are not further introduced. Similarly, we do not explicitly state all operations
on atomic values (such as comparisons, arithmetic operations, etc.). However, in the
following, we use the generic navigate function as a notation for axis evaluations.
The function takes a node n and an axis a as parameters and returns all nodes in
document order that are reachable from n on a. Furthermore, we assume a generic
function op that takes an expression and a list of items and evaluates this expression.
For example, op(+, 1, 2) yields the value 3, because the operation is “+” and the
arguments are the atomic integer values 1 and 2.

4.2.2 Map, Set, Eval and the Logical Algebra

To define the semantics of the XQGM operators, they are translated into an alge-
braic notation called LAL for Logical ALgebra. The translation is defined by a pair of
functions called map and set. Translation is necessary because an XQGM operator is
a graphical notation which can become quite complex and, therefore, hard to define
properly. For an example, take a look at the select operator in Figure 4.3. In a way,
the translation distributes the semantics of an XQGM operator over a set of much
simpler algebraic ones. LAL operators will be introduced as required during the
discussion of the map and set functions for every XQGM operator.

In general, LAL operators carry a name in capital letters, a list of parameters in square
brackets, and a list of arguments in braces, e. g. SELECT [predicate](input). A parame-
ter can be considered as a part of the operator’s definition that influences evaluation.
Often, it will be a simple expression, for example, a selection predicate as in the pre-
vious example. Arguments, on the other hand, are used to declare input operators.
Thus, a LAL expression itself forms a tree of operators. Naturally, LAL operators
work on the same data model as the XQGM.

For an XQGM operator X, a LAL operator L is produced by the map function:

map : X → L

Besides operators, the logical algebra needs expressions, for example, to handle an
XQGM selection predicate or an XML constructor (see Figure 4.1). For this purpose,
we introduce LAL expressions, i. e., for each XQGM expression there is a corre-
sponding LAL expression. An XQGM expression E can be transformed into a LAL
expression X using the set function:

set : E → X

Functions map and set are responsible to create LAL operators and expressions. The
semantics of a LAL operator is defined by the eval function, which will be presented
as an algorithm in the following. The result of the eval function is a tuple sequence.
Applying the eval function to the root operator of the algebra tree delivers the final
result. Therefore, to define the semantics of the XQGM, we only need to define the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 55

eval function on every algebraic operator. Formally, on a LAL operator L, the eval
function returns a tuple sequence S:

eval : L→ S

4.2.3 The Dynamic Evaluation Environment

Similar to the Formal Semantics, an evaluation environment keeping track of con-
text information is defined. This information is required for the evaluation of cor-
related edges. For XQGM, the dynamic evaluation environment is kept rather sim-
plistic: In the following, C will refer to the XQGM evaluation context. C manages
a set of mappings from tuple variables T to values of the data model v. Let T be
a tuple variable and let v be a value. Then C(T) ← v assigns value v to the tuple
variable stored in context C . A value can be read from the context using notation
C(T), where T is a tuple variable.

4.2.4 XQGM Select

The select operator occurs frequently in XQGM instances. Therefore, it is the first
operator to be discussed: A select operator S with a projection specification X =
S.projectionSpecification , a sorting specification U = S.sortingSpecification , a predi-
cate F = S.predicate , and n tuple variables T1 = S.tupvar [1], . . . , Tn = S.tupvar [n] is
mapped to LAL operators as follows:

map(S) =

DDOCPCS [X.ddo?,X.cp?,X.cs?](

PROJECT [set(X.expression [1]),...,set(X.expression[n])](

SORT [U.modifiers,set(U.expression [1]),...,set(U.expression [n])](

SELECT [set(F.expression)](

TUPGEN [T1,...,Tn](

map(T1 → operator 1),

. . . ,

map(Tn → operatorn))))))

In case, any of the set components (X, U , F , and Ti) is not defined in the select op-
erator, the corresponding LAL operator is simply not generated, e. g., if an XQGM
select does not have a predicate F , the algebraic select operator would be miss-
ing. The given mapping essentially means that from the tuple variables, a tuple
sequence is generated by TUPGEN which is filtered by a SELECT operator, then
sorted by the SORT operator, projected by PROJECT, and finally modified by the
DDOCPCS operator. Note, the DDOCPCS operator is responsible to establish the
distinct document order (ddo), the context position (cp), or the context size (cs). All
these operators will be introduced in detail below.

Now, the set and eval functions of the five operators required to map an XQGM select
operator shall be discussed. We will start with the innermost TUPGEN operator.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

56 Chapter 4: The XML Query Graph Model

Figure 4.5 Examples of dependent tuple variables

TUPGEN

TUPGEN is the tuple generator. Basically, it reads tuples from the input opera-
tors and generates a sequence of output tuples (this sequence was referred to as
“operator-internal tuple stream” in Section 4.1.1). An analogy to this operator in
the relational algebra is the Cartesian product. You can observe this correspondence
in the above semantics of the XQGM select operator (essentially an XQGM select
is a join, and a join is a Cartesian product followed by a selection). However,
here the “Cartesian product” is ordered. As stated above, if an XQGM select op-
erator does not have any tuple variables, the tuple generator is not required and,
therefore, not generated by the map function. Furthermore, the arguments of the
TUPGEN operator are the mapped input operators of the various tuple variables
(map(Ti → operatori) for all Ti). Therefore, a tuple variable has no influence on the
input of a TUPGEN operator (because the argument’s results are simply passed to
the tuple generator as input). However, tuple variables have influence on the way
how the output of TUPGEN is generated. Therefore, they are passed as parameters.

Tuple variables define how input data is processed and combined. In summary, we
said that the set of tuple variables is ordered by their IDs, that every tuple variable
has some input and a quantifier, and that it can serve as the starting point for ref-
erences and correlated subexpressions (via the correlation edge). However, we did
not yet pose any further restrictions on tuple variables, thus, allowing to define very
complex interdependencies between them. Some examples are depicted in Figure
4.5 and will be discussed below. The problem with complex interdependencies is
that they make the evaluation process (i. e., the eval method) unnecessary hard to
specify. For XQuery, rather simplistic dependencies are quite sufficient. In the fol-
lowing, we will define what kind of dependencies are supported by the evaluation
model (note, of course, we may only rely on the supported settings, when XQuery
expressions are translated into the XQGM):

Let T1 and T2 be two tuple variables of the same select operator S. Then, we say that
T2 depends on T1, if T1 has a correlated edge into the subtree of T2 (i. e., if the path
T1 ⇀ O(

p
→ T.O)∗

p
→ T2 exists, where T are tuple variables and O are operators).

We furthermore define that a tuple variable T2 is dependent, if it depends on a tuple
variable T1 of the same operator S. If no such T1 exists, T2 is independent.

The above definition states that a dependent tuple variable contains a correlated
subexpression. Figure 4.5a presents an abstract XQGM with such a situation. De-
pendent tuple variable L:7 depends on the independent tuple variable F:4. In the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 57

remaining examples depicted in Figure 4.5, the fact that a tuple variable depends
on another tuple variable is represented by a solid arrow, like in Figure 4.5b.

So far, tuple variables can carry arbitrary quantifiers and can depend on each other
in plentiful ways, thereby inducing complexity into the tuple generation process.
As mentioned above, this complexity is not required. We therefore restrict the way
how tuple variables can depend on each other by the following conditions:
1. Let T1, . . . , Tn be the dependent tuple variables of one and the same select op-

erator S. Then they all have to depend on one and the same independent tuple
variable T (of S).

2. Let S be an operator and let T be the independent tuple variable (as in 1). Then
T is the first tuple variable among all tuple variables in S, and T is either for-
quantified or let-quantified.

A counter example for the first condition is shown in Figure 4.5c, where essentially
two independent tuple variables exist, on which dependent tuple variables depend.
A correct example is shown in Figure 4.5d, where all dependent tuple variables
depend on the first one, which is for-quantified. The two requirements above ensure
that tuple variables can be evaluated in a simple and meaningful way (from left to
right). The proposed restrictions immediately become clear, when the semantics
of correlated subexpressions are introduced. Until then, however, we simply take
them as syntactical constraints.

Just like the relational Cartesian product, the TUPGEN operator combines several
input streams to one output stream by creating tuples. The data model (cf. Section
4.2.1) defines tuples with positional access (i. e., tuple fields carry no name). Hence,
for stream combination, the TUPGEN operator has to be aware of positional tuple
information and, in particular, the cardinality (number of fields) of the input tuples
is required. Therefore, we design XQGM operators in a way such that they always
deliver a homogeneous output stream, where all tuples have the same number of
fields (i. e., the same cardinality). As a consequence, the size of a tuple generated by
any XQGM operator can be calculated from an XQGM instance (how this actually is
accomplished will be shown, when projection specifications are discussed on Page
65). To express cardinality, we extend the notation introduced in 4.1:

Let O be an XQGM operator. Then the cardinality (number of fields) of the tuples
generated by O is written as |O|. Likewise, let T be the tuple variable containing O,
then the cardinality of T is |T | = |O|. Finally, let M = T1, . . . , Tn be the set of tuple
variables of one and the same select operator S, then |M | = |T1| + · · · + |Tn| is the
cardinality of the set of tuple variables.

TUPGEN can be seen as the “heart” of XQGM, because it defines the tuple flow at
the very bottom. Depending on the tuple variable configuration, the algorithm can
get quite complex. Therefore, before the algorithm itself is shown in pseudocode,
we look at a small synthetic example: Figure 4.6 shows an operator with four tuple
variables, of which the second and the third depend on tuple variable one. As input,
we assume the values in the boxes below each operator. Among the first three input
boxes, the values partly depend on each other via a correlation. We assume that
the positions of the values inside the boxes express the correlation, e. g., the value 1
corresponds to sequence <3, 4, 5> and to the empty sequence () . Note, the last
box is not correlated. Integer 2 corresponds to sequence <7, 8, 9> , and so on.

During evaluation, the TUPGEN operator first evaluates the tuple variable, on

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

58 Chapter 4: The XML Query Graph Model

Figure 4.6 A tuple generation example

which the other ones depend, i. e., F:4. Because this tuple variable is for-quantified,
it starts an iteration over the received result sequence (<1, 2, 3>). In each step,
the current value is written into an evaluation context C (defined previously). This
context keeps track of correlated values (and is, therefore, similar to the dynamic
evaluation context in XQuery). With the written value (e. g., 1), the other tuple vari-
ables are evaluated, each returning a result sequence: <4, 5, 6> in case of L:7, ()
in case of E:8, and sequence <’a’, ’b’> in case of F:93. These intermediate results
are then treated according to the quantifier of their corresponding tuple variables.
For for and let, essentially nothing happens. In case of the existential quantification
at tuple variable E:8, the returned value is interpreted. In the example, we have
an empty tuple sequence, which is interpreted as false (as in the Formal Semantics
for empty item sequences). Now, the ordered product of all these intermediate val-
ues is computed by combining the input tuples into a stream of output tuples. In
our example, we get for the first iteration the two tuples [1, <4,5,6>, false,
’a’] and [1, <4,5,6>, false, ’b’] . In the next iteration, value 2 is written
into the context at tuple variable F:4, and the tuples [2, <7,8,9>, true, ’a’]
and [2, <7,8,9>, true, ’b’] are produced, etc. Note, in this example, the
cardinality of each tuple variable is one, and the cardinality of all tuple variables
is four, which is why the TUPGEN algorithm will always return tuples of that size
(even, if any input tuple variable does not contribute any value).

With the previous definitions and the example in mind, we can now look at the
algorithm. Listing 4.1 presents the evaluation of the TUPGEN operator. It consists
of the top level eval function which, in turn, rests on the three helpers results, enqueue,
and product shown in Listing 4.2. Before going into details, we can sketch these three
functions as follows: results is responsible to evaluate exactly one input operator of
TUPGEN to a tuple sequence; the produced tuple sequences are then enqueued into
a set S of tuple sequences, before the ordered Cartesian product is computed by the
product function.

The eval function first constructs three arrays T , O, and S. T contains all tuple vari-
ables, O all operators, and S is a list of tuple sequences that will carry intermediate
results. At the beginning, S is initialized with an array of empty tuple sequences
(lines 4–6). The main algorithm itself distinguishes two cases: T contains depen-

3In case of F:9, the complete input sequence is delivered, because the tuple variable is independent of F:4.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 59

Listing 4.1 eval(TUPGEN [T1,...,Tn](O1, . . . , On))

Input: Parameters: Tuple Variables T1, . . . , Tn; Arguments: Operators O1, . . . , On

Output: Tuple Sequence R
begin1

TupleVariables T ← T1, . . . , Tn; // the tuple variable array2
Operators O ← O1, . . . , On; // the operator array3
for Ti ∈ T do4

Si ← (); // temporary tuple sequence5
end6
TupleSequences S ← S1, . . . , Sn; // array for temporary tuple sequences7
if a tuple variable depends on T1 then8

S1 ← eval(O1); //evaluate operator O1 to temporary sequence S19
if S1 is empty then10

return ();11
else12

if T1 is ‘for’ then13
for Tuple t ∈ S1 do14

S ← enqueue(t, S, T); // receive input from other operators and write into S15
R← R + product(t, S, T); // create the “product” over the intermediate results in S16
clear(S);17

end18

end19
if T1 is ‘let’ then20

S ← enqueue(S1, S, T);21
R← R + product (S1, S, T);22
clear(S);23

end24
if T1 is ‘exists’ or T1 is ‘all’ then25

raise error(“Unsupported quantification”);26
end27

end28

else29
S ← enqueue(NULL, O, T);30
R← R + product(NULL, S, T);31

end32
return R;33

end34

dent tuple variables or not. The first case in treated in lines 8–29; the second case is
treated in the rest of the code. We start the discussion with the first problem. If T
contains dependent tuple variables, the first tuple variable T1 defines the correlated
input (according to the requirement posed above). In a first step, the input operator
O1 of T1 is evaluated (via a recursive call of the eval function on the input operator),
returning a sequence of tuples. In lines 10–12, if this tuple sequence is empty, the al-
gorithm also returns an empty sequence (because no input to evaluate a dependent
tuple variable has been found).

If the tuple sequence is not empty, the type of T1 determines the further actions.
If T1 is for-quantified, the evaluation algorithm needs to iterate over the input se-
quence of T1. This happens in lines 14–18. For every tuple, the enqueue function
is called, which evaluates the remaining input operators and puts their results into
the intermediate result sequences S2, . . . , Sn (inside S). In the next step, the tuples
in the intermediate result are combined by the product function and appended to
the result sequence R. After all combinations out of the current sequences in S are
computed, their values are not required anymore and can be deleted (by the clear
function). A let-bound tuple variable can also provide correlated input. However,
to evaluate let, no iteration is necessary (see lines 20–24). Tuple sequence S1 is used

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

60 Chapter 4: The XML Query Graph Model

Listing 4.2 Functions enqueue, results, and product

a) Function: enqueue

Input: Tuple t, TupleSequences S, TupleVariables T
Output: TupleSequences S
begin1

if t is not NULL then // context tuple given2
C(T1)← t; // store context3

end4
for Oi ∈ O2, . . . , On do // remaining operators5

Si ← results(Oi, Ti);6
if Si is empty then // pad empty tuple7

Si ← Si + [|Ti|, ()];8
end9

end10
return S;11

end12

b) Function: results

Input: Operator O, TupleVariable T
Output: TupleSequence S
begin1

if T is ‘for’ or T is ‘let’ then2
S ← eval(O);3

end4
if T is ‘exists’ then // check one5

TupleSequence K ← eval(O);6
S = S + K?; // Boolean value7

end8
if T is ‘all’ then // check all9

TupleSequence K ← eval(O);10
for Tuple t in K do11

if not t? then12
S ← S+FALSE;13
return S;14

end15

end16
S ← S+TRUE;17

end18
return S;19

end20

c) Function: product

Input: Tuple t, TupleSequences S,
TupleVariables T

Output: TupleSequence R
begin1

if |S| = 1 then //→ done2
R← S1;3
return R;4

end5
TupleSequence I ← (); // intermed. seq.6
TupleSequence R← (); // result seq.7
if T1 is ’for’ then8

if a tuple variable depends on T1 then9
I ← I + t;10

else11
I ← I + S1;12

end13
for Tuple t ∈ I do14

Tuple n← [|T |];15
n← n + t;16
R← R + n;17

end18

else if T1 is ’let’ then19
Tuple n← [|T |];20
n← n + S1;21
R← R + n;22

end23
// now R contains ‘unfinished tuples’24
for Si ∈ S2, . . . , Sn do25

I ← ();26
if Ti is ‘for’ or Ti is ‘exists’ or Ti is ’all’27
then

for Tuple t ∈ R do28
for Tuple n ∈ Si do29

Tuple c← copy(t);30
c← c + n;31
I ← I + c;32

end33

end34

end35
if Ti is ‘let’ then36

for Tuple t ∈ R do37
t← t + Si;38
I ← I + t;39

end40

end41
R = I ;42

end43
return R;44

end45

“as a whole” by passing it to the enqueue function. The rest remains the same as
before. Finally, exists and all cannot serve correlated inputs. Therefore, they result
in an exception.

In the second case, when all tuple variables are independent, the evaluation be-
comes very simple (lines 29–32): All remaining intermediate results are computed
by the enqueue function. Then, these intermediate results are combined by the prod-
uct function to obtain the final result in R.

Functions enqueue and product are depicted in Listings 4.2a and 4.2c. The first func-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 61

tion fills up the intermediate tuple sequences for the input operators that have not
been evaluated in the eval function (i. e., S2, . . . , Sn). If a non-NULL tuple is passed,
enqueue is called for a tuple variable set with dependent variables. Then it is neces-
sary to put the passed tuple into the dynamic evaluation context C for later ref-
erence by correlated operators (lines 2–4). After that, each input operator Oi is
evaluated using the results function and the resulting sequence is stored in the cor-
responding Si. It could happen that such an intermediate result is empty. In this
situation, we have to remember that the tuple generator has to produce a correct re-
sult cardinality. Assume that Oi delivers an empty tuple, but the cardinality |Ti| on
that input is larger than 1. Then it is not sufficient to just keep the empty sequence.
Rather, a tuple with |Ti| empty sequences needs to be generated. This happens in
line 8, where the bracket notation is used to create the tuple.

Function enqueue does not call eval directly on the input operators. Rather, the results
function is used. This function is a small wrapper that ensures the correct semantics
for tuple variables with all and exists quantifiers. On simple for and let quantifica-
tion, results calls the eval function directly on the input operator (cf. Listing 4.2b,
lines 2–4). When the quantifier is an exists, the Boolean value (using the “?” nota-
tion) is computed on the resulting intermediate sequence (lines 5–8). As a result, the
Boolean value is kept (and the intermediate sequence is discarded). Similarly, on an
all quantification, the Boolean value for every tuple in the intermediate sequence is
evaluated. If at least one of them evaluates to false, the FALSEliteral is used. Other-
wise, the TRUEliteral is written into the intermediate result sequence. This behavior
is also described in the example shown in Figure 4.6.

After the intermediate result sequences have been evaluated, they can be combined
into the final result. This is the task of product. Obeying the tuple variable’s quanti-
fiers, this methods computes an ordered Cartesian product on the intermediate result
in a nested loops fashion. In the trivial case that only one tuple variable is defined,
the algorithm presented in Listing 4.2c directly delivers its corresponding interme-
diate tuple sequence (lines 2–5). Otherwise, two tuple sequence are initialized (I
and R), the last one of which will carry the final result. If the first tuple variable T1 is
for quantified, I is either initialized with the context tuple t, or with the first interme-
diate result sequence S1 depending on the existence of dependent tuple variables.
Then, a list of “unfinished tuples” is stored in R (lines 14–18). The same is done in
case of a let quantification. Here, however, the complete intermediate sequence S1

is written into the “unfinished tuple”.

After initialization, the unfinished tuples are filled up with the values generated for
the remaining tuple variables in S2 to Sn. Tuple variables with for, all, and exists
quantification result in an iteration and a production of new tuples (by a call to the
copy function) using the unfinished tuples in R as a template (lines 27–35). Note,
in case of all and exists, the corresponding intermediate tuple sequence contains
only one Boolean value (generated in the results function). If the tuple variable
is let-quantified (lines 36–41), the current sequence Si is appended to the current
unfinished tuple t.

SELECT

The LAL select operator is used to “implement” the predicate testing semantics
in the XQGM select operator. As presented in the mapping on Page 55, a select

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

62 Chapter 4: The XML Query Graph Model

Listing 4.3 The set function

Input: XQGM Expression E
Output: LAL Expression R
begin1

if E is tuple variable reference then2
TupleVariable Tk ← (E → tupvar); // dereference tuple variable reference3
// calculate relative access position for tuple generated by TUPGEN4
Integer j ← 0; // index for tuple access position5
for Ti ∈ T1, . . . , Tk do6

j ← j + |Ti|; // add up tuple sizes7
end8
if C.cp? then // tuple variable reference for context position access9

j ← j + 1; // use relative index 110
if C.cs? then // tuple variable reference for context size access11

j ← j + 2; // use relative index 212
if not C.pos? and not C.cs? then // tuple variable reference for normal access13

j ← j + C.pos ; // use position directly14
end15
return LalTupleAccess(j); // new tuple access expression16

end17
LALExpressions L← (); // initialize array of child LAL expressions18
for Expression e ∈ (E → expression) do19

L← L + set(e); // recursively convert child expression and append to LAL children20
end21
return expr(E, L); // create the resulting LAL expression22

end23

operator is parameterized with the converted XQGM predicate F :

SELECT [set(F.expression)](. . .)

If no such predicate exists, the LAL select operator is simply not generated. Before
the eval function of the select operator is presented, we have to take a look at the
parameter conversion defined by the set function.

Let F be an XQGM select predicate. Then the set function is called with F.expression
as parameter. A predicate is a graphical representation of a simple XQGM expression
(see Figure 4.1), e. g., a Boolean expression, an arithmetic expression, a comparison
expression, and so on. As we will see, the semantics of expressions is directly “im-
ported” from the Formal Semantics without change into XQGM. This means that
XQGM expressions operate on plain items (rather than on tuples). However, as in-
troduced with the TUPGEN operator, items do not flow between operators, but tu-
ples (containing items). As explained before, to translate between the tuple stream
of LAL operators and the item stream of expressions, we need to project the rele-
vant information from input tuple streams. The link here are tuple variable references,
which are also modeled as expressions (again, see Figure 4.1). Tuple variable refer-
ences project exactly one field of a tuple, the position of which has to be calculated
on the set T of tuple variables. This calculation is one task of the set function. The
other one is to translate XQGM expressions into LAL expressions (which can be set
as parameters to LAL operators).

Figure 4.1 suggests that expressions contain other expressions. For example, the
comparison predicate expression in select (2) of Figure 4.3 contains a literal
(“Michael Ende”) and a function call (fn:data), which in turn contains a tuple vari-
able reference. For the following discussion, we disregard specific types and take
a generic view: Let E be an XQGM expression, then E → expression returns all its

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 63

Listing 4.4 eval(SELECT[E](O))

Input: Parameter: Expression E, Argument: Operator O
Output: Tuple Sequence R
begin1

TupleSequence S ← eval(O);2
for Tuple t ∈ S do3

if E(t)? then4
R← R + t;5

end6

end7
return R;8

end9

child expressions by navigating the expression edges (as introduced in the notation on
Page 46). For example, if E is a comparison, E → expression returns the literal and
the function call. Furthermore, we introduce a notation to construct a LAL expres-
sion R: Let L = L1, . . . , Ln be LAL expressions and let E be an XQGM expression.
Then expr(E,L) constructs a LAL expression for E on L1, . . . , Ln (as children).

With these preliminaries, the set function has the form depicted in Listing 4.3. As
stated above, it translates tuple variable references to tuple access positions (lines
2–17) and it converts XQGM expressions to LAL expressions (lines 19–39). A tuple
variable reference has three different functionalities: It can access context position
information (depicted by the string “cp” inside a rhomb), context size information
(“cs” inside a rhomb), or a relative position (depicted as an integer inside a rhomb
or a blank rhomb, if that integer has the value 0). Remember that the input is gener-
ated by TUPGEN. We can therefore compute the relative position j of the referenced
tuple variable Tk (line 9–12) as a basis to compute the access position. Positional in-
formation is generated by the DDOCPCS operator, which will be introduced below.
Here, we only state that, if DDOCPCS receives an input tuple t, it can attach the
tuple’s context position as a new field and its context size as another new field.
Therefore, to reference cp, we have to add 1 to j (line 10) and, otherwise, if cs is
referenced (line 12), 2. If no context information is referenced, the integer inside the
reference is simply added (line 14). With the correct access position, the LAL tuple
access expression can then be instantiated and added to the list of child expressions
(line 16).

If the passed expression is not a tuple variable reference, an empty array of LAL
expressions is initialized (line 18). It will carry the translated child expressions. For
each child expression of E, set recursively calls itself on the child and the result is
written to the array of converted children. Finally, the current expression is con-
verted and returned (line 39). Note, the method does nothing else than keeping the
structure of an expression and converting tuple variable references to access posi-
tions.

With the converted parameter, we can now specify the semantics of the select op-
erator. The pseudocode is shown in Listing 4.4. For each returned tuple generated
by the eval function on the input operator, predicate expression E is evaluated (no-
tation E(t), see below). If the Boolean value (“?”) of the returned result is true,
the tuple belongs to the final result, otherwise it is discarded. Note that the select
operator does not alter the order of the input sequence.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

64 Chapter 4: The XML Query Graph Model

Listing 4.5 The evaluation of expression E on tuple t: E(t)

Input: Parameter: Expression E, Tuple t
Output: Item i
begin1

Items I ← (); // initialize array of items for intermediate results2
for LalExpression C ∈ E.expression do // for each child expression E consists of3

if not C is LalTupleAccess then4
I ← I + C(t); // recursive evaluation on child expression5

else6
I ← I + t[C.j]; // access tuple at position j defined by C7

end8

end9
return op(E, I[1], . . . , I[n]);10

end11

The last piece missing now is the evaluation of the predicate expression E with
a tuple t. As before, we abstract from specific expression types. We assume that
the semantics of an expression E is captured by a generic op function that takes an
expression E and items v1, . . . , vn for evaluation. For example, for the arithmetic
expression “1 + 3” we can write op(+, 1, 3) and can rely on the Formal Semantics
for the definition of the semantics of op. Furthermore, we assume that E.expression
provides access to the LAL child expressions of E and that, for a LAL tuple ac-
cess operator C (as introduced in the set function), notation C.j returns the access
position. The algorithm presented in Listing 4.5 then defines how expressions are
evaluated. Note, the algorithm is structurally similar to the set function, i. e., it re-
cursively descends down the expression and evaluates the tuple access operator at
the very bottom.

In the following, the set function and the evaluation of expressions on tuples E(t)
will be reused to evaluate the SORT and the PROJECT operator.

SORT

The LAL sort operator defines the semantics of an XQGM sort specification. As
presented, if U is a sort specification, it is mapped as

SORT [U.modifiers,set(U.expression[1]),...,set(U.expression[n])](. . .)

Interestingly, XQuery ordering semantics is defined on tuples. As already men-
tioned, the XQuery data model does not support tuples. Therefore, the XQuery
recommendation does not specify the semantics of the order by clause formally. In
XQGM however tuples are supported. Therefore, we can define the XQGM order-
ing semantics properly.

The sort operator is parameterized with the ordering modifiers from the sorting
specification (U.modifiers) and a set of sorting expressions that are immediately
translated by the set function from above. Ordering modifiers directly emerge from
the XQuery language, and for every translated expression, there is exactly one of
these modifiers. Sample modifiers are ascending, descending empty greatest, and so
on. Furthermore, the order among the sort expressions is significant, i. e., the first
expression acts as the primary sort criterion and the last expression acts as the last
sort criterion. In the following, we only show how tuples are “prepared” for sorting
and not how they are actually sorted (w. r. t. the sorting specification). This means,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 65

Listing 4.6 eval(SORT[M,E1,...,En)](O))

Input: Parameter: Modifiers M, Expressions E1, . . . , En, Arguments: Operator O
Output: TupleSequence R
begin1

TupleSequence S ← eval(O);2
Integer i← |S[1]|; // retrieve tuple cardinality3
for Tuple t ∈ S do4

for Expression E ∈ E1, . . . , En do5
Item v ← E(t); // evaluate sorting expression on t6
t← t + v; // append to tuple7

end8
R← R + t;9

end10
return sort(M, R, i + 1); // sort the prepared tuple sequence, where relevant fields start at i + 111

end12

we hide the actual sorting behind the sort function, which takes the sorting mod-
ifiers M , the prepared tuple stream R, and the start index of the tuple fields i, on
which sorting is based as input. The resulting algorithm is presented in Listing 4.6.

PROJECT and DDOCPCS

In contrast to a relational projection, which simply retains certain fields from input
tuples, the XQGM projection specification allows to compute expressions over in-
put tuples. This is necessary, for example, to construct new elements, as shown in
operator select (1) (Figure 4.3 on Page 50). As the previous ones, this operator
also relies on the set function to convert input expressions:

PROJECT [set(X.expression[1]),...,set(X.expression [n])](. . .)

The straightforward evaluation of a projection is shown in Listing 4.7a. For every
input tuple t, all expressions are evaluated. Each evaluation returns an item which
is written into a new tuple n. The cardinality of the resulting tuples therefore corre-
sponds to the number of expressions.

Another operator that depends on the XQGM projection specification is DDOCPCS.
The DDOCPCS operator can: 1) reorder a sequence of nodes into distinct document
order; 2) attach a context position (cp) information to a tuple; and 3) attach a context
size (cs) information to a tuple. The first property is required to implement the ddo
function, the latter two to evaluate positional predicates. Projection specification X
signals the presence of any of these functions. During the creation of a DDOCPCS
operator, they are passed as parameters

DDOCPCS [X.ddo?,X.cp?,X.cs?](. . .)

Figure 4.7b presents the straightforward implementation of the DDOCPCS operator.
When a reordering in document order is required, the ddo function is called. For
brevity, its semantics is not formally introduced here. We simply state that this
function interprets input sequence S as an item sequence (i. e., a tuple sequence
with singleton tuples), where each item is a node. If a non-node item is found, ddo
raises an error. The context position and the context size are added to each tuple of
the sequence by counting (the current position is kept in i and the size derived from
|S|).

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

66 Chapter 4: The XML Query Graph Model

Listing 4.7 eval(PROJECT [E1,...,En](O)) and eval(DDOCPCSddo,cp,cs(O))

a) eval(PROJECT [E1,...,En](O))

Input: Parameter: Expressions E1, . . . , En, Arguments: Operator O
Output: TupleSequence R
begin1

Expressions E ← E1, . . . , En;2
TupleSequence S ← eval(O);3
for Tuple t ∈ S do4

Tuple n← [|E|]; // create empty tuples of size |E|5
for Expression C ∈ E do6

n← n + C(t); // evaluate expression and append to tuple7
end8
R← R + t;9

end10
return R;11

end12

b) eval(DDOCPCS [ddo,cp,cs](O))

Input: Parameter: Boolean ddo, Boolean cp, Boolean cs, Arguments: Operator O
Output: TupleSequence R
begin1

TupleSequence S ← eval(O);2
if ddo then3

S ← ddo(S); // apply distinct document order to sequence S4
end5
if cp or cs then6

Integer i← 0;7
for Tuple t ∈ S do8

i← i + 1;9
if cp then10

t← t + i; // append current position to tuple t11
end12
if cs then13

t← t + |S|; // append size of S to tuple t14
end15
R← R + t;16

end17

else18
R← S;19

end20
return R;21

end22

With the discussion of the TUPGEN, SELECT, SORT, PROJECT, and DDOCPCS op-
erators, we are nearly finished with the definition of the semantics of the XQGM
select operator. However, one piece is still missing: the calculation of |T |, i. e., the
calculation of the cardinality of a tuple variable. This information is for example
required in the set function (Listing 4.3 on Page 62) or in the enqueue function of
the tuple generator (Listing 4.1a on Page 60). Listing 4.8 presents the algorithm to
calculate the tuple variable cardinality. Basically, the cardinality is the number of
expressions in the projection specification of the input operator plus one additional
tuple per positional context information.

Final Remarks on XQGM Select

You may have noticed that it took quite some effort to define the semantics of the
XQGM select operator, which probably surprised you. However, when we take a
look at the expressiveness of the operator, we see that it can already capture a large

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 67

Listing 4.8 The Cardinality of a tuple variable: |T |

Input: Tuple Variable T
Output: Integer c
begin1

// get projection specification of input operator2
ProjectionSpecification P ← (T → operator .projectionSpecification);3
c← |P.expression|; // add the number of expressions4
if P.cp? then5

c← c + 1; // add one in case of context position6
end7
if P.cs? then8

c← c + 1; // add one in case of context size9
end10
return c;11

end12

fraction of the XQuery language. We can translate for and let clauses, existential
and all quantification, predicates, all kinds of simple expressions, sorting, and the
provision of context information for correlated subqueries into this one operator.

4.2.5 XQGM Access

XQGM access operators retrieve XML nodes from a document. These nodes then
serve as input for further XQGM operators. Therefore, access operators are always
located at the bottom of an XQGM instance and are analogous to access operators
in the relational QGM. We distinguish two types of access operators: 1) operators to
retrieve the document node(s) (i. e., the virtual root node(s)) of a document or a doc-
ument collection, in the following called document access operators, and 2) operators
to evaluate a step expression, in the following called node access operators.

Document/Collection Access

Document/collection access operators are represented in XQGM by a box with a
darker shaded color. The box contains an oval with the string “document” in case
of a single document being accessed, or the string “collection” when multiple docu-
ments have to be delivered. For an example, see access (5) in Figure 2.4 on Page
20. As you can see, the operator contains a select operator with a projection specifi-
cation and a simple string literal. The literal is a URI addressing the document(s) to
be accessed. The operator does not contain any other XQGM components.

A document access operator A is mapped onto LAL operators as follows:

map(A) =

DOC [set(A.select .projectionSpecification .literal)]() : A.document?

COLL[set(A.select .projectionSpecificaition .literal)]() : A.collection?

This means that a document access operator is either translated to a LAL DOC op-
erator or to a LAL COLL operator, depending on the type of access. As parameter,
the literal contained in the select operator is passed (after being converted to a LAL
expression by the set function).

Obviously, only allowing a select operator to define the URI literal restricts XQGM
w. r. t. XQuery. In XQuery, the URI can be computed by a full featured nested ex-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

68 Chapter 4: The XML Query Graph Model

Listing 4.9 eval(DOC [U]()) and eval(COLL[U]())

a) eval(DOC [U]())

Input: Parameter: String U , Arguments: none
Output: TupleSequence R
begin1

R← R + DocumentNode(resolve(U)); // create new document node for resolved document2
return R;3

end4

b) eval(COLL[U]())

Input: Parameter: String U , Arguments: none
Output: TupleSequence R
begin1

for Document D ∈ resolve(U) do2
DocumentNode n← DocumentNode(D);3
R← R + n;4

end5
return R;6

end7

pression. The URI could even be computed from the contents of another XML doc-
ument. XQGM does not support this feature, however, the modification to do so
is straightforward: document and collection access methods could be handled like
any other XQuery function, returning the requested document node(s). Therefore,
handling document access operators as presented is not a “real” restriction. The
decision for the current implementation emerged from the need to know the docu-
ments being accessed by a query before the query is evaluated. This is essential for
plan generation.

As before, we present the evaluation function for the DOC and the COLL operators
(see Listing 4.9). The algorithms depend on the resolve function which returns the
(or all) document(s) for a given URI. From these documents, the required document
nodes can then be constructed.

Node Access

Node access operators evaluate step expressions, i. e., an axis step without a pred-
icate. Therefore, they specify an axis and a node test. In our example in Figure 2.4
on Page 20, you can find various access operators as leaves of the XQGM instance.
The axis is specified in an oval component, whereas the node test is represented in
a box attached with an arrow. Despite the arrow, we write A.axis and A.test in an
access operator A to refer to these components. As you can also observe, every axis
step needs a correlated input edge. This edge defines the context under which the
access is evaluated, i. e., “where the navigation starts”.

An access operator A is mapped to the LAL STEP operator as follows:

map(A) = SELECT [set(A.test)](STEP
[A.axis,A

p
⇀tupvar]

())

This means that a STEP operator is parameterized by an axis and the tuple variable
providing the correlated input. The operator simply returns the nodes reachable
on the axis for a given correlated input node. The node test is then applied in the
following SELECT operator. Essentially, the STEP operator is a tuple generator.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.2 The XQGM Semantics 69

Listing 4.10 eval(STEP [a,T]())

Input: Parameters: Axis a, Tuple Variable T , Arguments: none
Output: TupleSequence R
begin1

Tuple t← C(T); // read correlated input from context2
if |t| 6= 1 or t[1] is no node then3

raise error("Singleton tuple containing node expected");4
end5
Node n← t[1]; // get correlated node6
return navigate(a, n); // navigate on axis a and return result nodes7

end8

In the following, we will not formally define how all nodes for a given axis are
found or how a node test is evaluated. These semantics are sufficiently specified in
the Formal Semantics and they can be “imported” here, similar to the semantics of
simple expressions. However, we specify the algorithm for the STEP operator (see
Listing 4.10).

As already mentioned, a node access operator is always a dependent subexpression
with a correlated input edge. In the presented algorithm, the first action is to re-
trieve the current correlated input value from the context (remember, the TUPGEN
operator analyzes its tuple variables to call them in the right order and to place a tu-
ple into the dynamic evaluation context C). If the retrieved tuple actually contains
a single node (checked in lines 3–6), the algorithm issues the navigate function with
the desired axis and returns the resulting tuple sequence of nodes. In the following
SELECT operator, the node test is then applied to these generated nodes.

4.2.6 XQGM Set Operators

XQuery knows three types of set operators: union, intersect, and difference (except).
Likewise, XQGM contains a corresponding SET operator. In XQGM, this operator is
a box that carries the type of set operation as name and only contains tuple variables
(without further specification or predicate components). A set operator S is mapped
as follows:

map(S) =

UNION [](map(T1 → operator 1), . . . ,map(Tn → operatorn)) : S.union?

INTERSECT [](map(T1 → operator 1),map(T2 → operator 2)) : S.intersect?

EXCEPT [](map(T1 → operator 1),map(T2 → operator 2)) : S.except?

Depending on the type, a UNION, an INTERSECT, or an EXCEPT operator is gener-
ated. All these operators do not carry any parameters, and only the first one (union)
can operate on more than two input arguments. For their definition, we again rely
on the Formal Semantics. There, a set-based operator works on node sequences only
(i. e., no sequences with atomic values are allowed). As a consequence, the results
produced by input arguments in our logical algebra have to be tuple sequences,
where each tuple is singleton and carries a node. In the following, we assume the
functions union, intersect, and except to capture the XQuery semantics.

The UNION operator is evaluated as follows:

eval(UNION [](O1, . . . , On)) = union(union(. . . (union(eval(O1), eval(O2)), . . . , eval(On))))

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

70 Chapter 4: The XML Query Graph Model

Listing 4.11 eval(TUPACCESS [T,E]())

Input: Parameters: Tuple Variable T , LalTupleAccess E, Arguments: none
Output: TupleSequence R
begin1

Tuple t← C(T); // read correlated input from context2
Item i← t[E.j]; // access tuple at position j3
R← R + i;4
return R;5

end6

The n-way union is broken down to binary union operators, which are effectively
evaluated using the above introduced union function. Similarly, we can define the
evaluation of the other two operators

eval(INTERSECT [](O1, . . . , On)) = intersect(eval(O1), eval(O2))

eval(EXCEPT [](O1, . . . , On)) = except(eval(O1), eval(O2))

4.2.7 Tuple Variable References

As we have already seen during the discussion of the SELECT logical operator, tuple
variable references (represented as rhombs) are used in expressions to project items
out of tuples. During mapping they are translated to positional access operators
(see Page 61) by the map function. This means, tuple variable references “act as
expressions”.

However, as the diagram in Figure 4.1 on Page 46 suggests, tuple variable references
can also act as operators. Therefore, we have to define the map and eval functions
on them. Let R be a tuple variable reference, then R can be mapped as:

map(R) = TUPACCESS [R→T,set(R)]()

A tuple variable reference is mapped onto a so-called TUPACCESS operator and
two parameters, of which the first one is the tuple variable referenced and the sec-
ond one is computed by the set function on the tuple variable reference. As shown
in Listing 4.3, set returns a LalTupleAccess expression for a simple tuple variable ref-
erence. The information, which tuple variable is referenced, is essential to retrieve
the current value of this tuple variable from the dynamic evaluation context, as
shown in the eval function for the TUPACCESS operator in Listing 4.11. After the
correlated value is fetched (line 2), the tuple access position encoded in the LalTu-
pleAccess expression is used to retrieve the referenced item. This item is then written
into a result sequence and returned.

4.2.8 The XQGM Root Operator

The root operator has a no further semantics in XQGM. It merely acts as a marker
for the root of the XQGM graph and contains exactly one tuple variable, which in
turn contains the XQGM instance. Therefore, during mapping, the call to the map

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.3 Query Translation 71

function is just passed to the contained XQGM operator: Let R be the root operator
and let T be the contained tuple variable, then

map(R) = map(R.T → operator)

A definition of the eval function is not required.

4.2.9 Final Remarks on the XQGM Semantics

XQuery is a Turing complete [Kepser 04] (and functional) language. What makes
it Turing complete is the existence of (user-defined) recursive functions. Further-
more, the language also supports some features emerging rather from program-
ming languages than from query languages, for example, the if-then-else statement,
type casts and switch statements, recursive functions, and the like. The crucial ques-
tion is now, which of the language constructs introduced by XQuery are expressible
by XQGM and which are not. In this work, the set of these language constructs
can be divided into three partitions. The first partition is completely supported
by the XQGM semantics introduced above. These are, for example, FLWOR ex-
pressions, document and collection access, path expressions with predicates, fil-
ter expressions, range and sequence expressions, quantified expressions, function
calls, node constructors, variable references, and Boolean/arithmetic/comparison
expressions. The second partition of language constructs is yet not supported by
the introduced XQGM semantics (and the support for them is not aspired in this
work for reasons of brevity). However, these constructs are considered to be eas-
ily integrable as for example, type-based and schema-based expressions. The third
group of language constructs does not easily fit with XQGM, because the underly-
ing processing model is intrinsically different. These are, for example, user-defined
recursive functions and the if-then-else statement. Because this work is primarily
concerned with query processing aspects of XML management and not with pro-
gramming language aspects, the omission of the third group of language constructs
in XQGM can be tolerated. Its integration is left open for future work.

4.3 Query Translation

After having defined an internal representation for XML queries, the question now
arises how queries in external representation can be translated into XQGM. In this
section, an answer to this question is given. The responsible component of the query
processor is the translator, which was introduced in the overview of Section 2.1.2 and
in Figure 2.1 on Page 10. As presented, query translation is implemented in four
stages: 1) syntactic sugar is removed from a query during normalization (resulting
in a XQuery Core Language representation), 2) the static type is inferred during
static typing, 3) subexpressions without effect are removed in simplification, and 4) an
XQGM instance is created during XQGM transformation. All these stages operate on
the abstract syntax tree generated by the parser (the first three stages rewriting the
AST, while the last one transforms it). Note, because parsing and the creation of
an AST are standard problems for which appropriate tools exist, we do not delve
further into this topic. In the following, we will only briefly consider the first three
stages, before the AST-to-XQGM translation is discussed in full detail.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

72 Chapter 4: The XML Query Graph Model

4.3.1 Normalization and Static Typing

For XQuery, normalization and static typing are standardized and rigorously de-
scribed in the Formal Semantics. Both stages have their right of existence: by re-
moving syntactic sugar, normalization deflates the grammar, i. e., the number of
language constructs required while still preserving the same expressive power. Op-
erating on a reduced grammar obviously simplifies the following three stages. Static
typing is beneficial, because 1) type errors can be detected at an early stage, and
2) the type information generated can be exploited in the simplification stage. With
the Formal Semantics, it is simple to implement normalization and static typing, be-
cause the contained inference rules can be realized as a recursive function over the
abstract syntax tree. Therefore, we do not discuss normalization and static typing
in detail, but only summarize the major points:

1. Expressions that belong to the core language remain untouched. For example,
these are literals, parenthesized expressions, function calls, etc.

2. Path expressions are normalized to cascades of for/let expressions. A path predi-
cate (in square brackets) is normalized into an if-then-else expression. The result-
ing normalized expression makes the intuitive evaluation model for path expres-
sions [Berglund 04] explicit.

3. Normalization ensures the correct binding of dynamic context variables fs:dot
(context item), fs:position (context position), and fs:last (context size) in every con-
text switch. Because a context switch takes place when a path step, a filter expres-
sion, or a predicate have to be evaluated, normalization hooks in at exactly these
expressions.

4. When a step expression has a positional predicate (such as //book/author[2])
or an fn:last() function call, normalization makes the selection of the correct ele-
ment in the filtered subsequence explicit. This happens by introducing an appro-
priately parameterized fn:subsequence function. Furthermore, if the step expres-
sion has a reverse axis, the reordering of the subsequence is also made explicit.

5. Some axes are expressed by means of other axes.

6. Abbreviated syntax is made explicit, i. e., “@”, “..”, and the omitted “child::” be-
fore axis steps are resolved/inserted.

7. Arithmetic/Boolean operations are mapped onto special internal functions, for
example, a “+” is normalized to function fs:plus. Comparison operators with ex-
istential semantics are made explicit by using quantifiers and value comparisons.
The arguments of these operators are wrapped into special conversion functions
to ensure correct input types.

8. Direct node constructors are replaced with computed constructors.

9. FLWOR expressions with multiple variable bindings are normalized into cas-
cades of for/let clauses (each for/let clause having only one variable binding).
A where clause is replaced by an if-then-else expression. Likewise, quantified ex-
pressions with multiple bindings are normalized to cascades.

The Formal Semantics sometimes “over-normalizes” certain language constructs,
for example, a simple where clause is normalized to an if-then-else construct. This
is justified to simplify the definition of the XQuery semantics (which is the actual
task of the document). For query evaluation, however, this “over-normalization”
often inflates the query disproportionately by making many things explicit that

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.3 Query Translation 73

also could be handled implicitly with a much smaller query representation. For
example, during the normalization of Boolean operators, the fn:boolean function is
wrapped around the operator’s arguments to ensure that they return a Boolean
value. The interpretation of the argument’s result as a Boolean value, however,
can also be implicitly handled by the Boolean operator itself (thereby removing the
need for fn:boolean). In this style, the normalization process deviates from the sug-
gestions of the Formal Semantics. The following gives a brief overview over the
changes to [Choi 07]:

• Functions fn:convert-operand, fn:convert-simple-operand, fn:boolean, and fs:apply-
ordering-mode are not generated during normalization. The semantics of the
first three functions is embedded into the appropriate operators, e. g., into
Boolean/arithmetic/comparison operators. The fourth function is not generated,
because we always assume an ordered query evaluation in this work.

• Function calls to fn:position and fn:last are translated to variable references
fs:position and fs:last.

• No positional information (i. e., bindings to the XQuery internal context vari-
ables fs:position and fs:last) is generated for relative path expressions of the form
RelativePathExpr/ StepExpr and for axis-step or filter expressions of the
forms Axis::NodeTest[Predicates] and Expr[Predicates] . Positional
information is necessary to evaluate positional predicates, for example, as in
//book/author[2] . Normally, the normalization process makes sure that the
necessary positional information (in this case on the sequence of book nodes) is
available. We drop this requirement and the necessary normalization overhead
and implicitly assume that the query processor delivers positional information
whenever required. Furthermore, we omit the explicit generation of reverse po-
sitional information and the selection of the item using fn:subsequence in case a
numeric predicate or the fn:last positional predicate is applied to an axis step
with reverse order.

• Path predicates are translated to where clauses instead of if-then-else expressions.

• Where clauses in FLWOR expressions are not normalized to if-then-else expres-
sions.

• No axes are normalized into other axes.

• Function fs:item-sequence-to-node-sequence is omitted during the normalization of
constructors. This functionality is embedded into the result generation process.
Namespace attributes are not supported in constructors.

• Existential comparisons are not made explicit, i. e., no quantified expressions are
generated during normalization.

• The usage of the fs:* methods for comparison/arithmetics/Boolean expressions
is omitted. Rather, these expressions remain untouched.

The described omission of certain normalization particles requires an adjustment in
the static typing implementation, which is however straightforward and not shown
here.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

74 Chapter 4: The XML Query Graph Model

4.3.2 Simplification

A normalized query might still contain certain subexpressions that have no effect on
the query result. For example, often the ddo function is applied to node sequences
that are guaranteed to be duplicate-free and in the correct order. Such subexpres-
sions might exist, because sometimes users introduce them, because queries are au-
tomatically composed by programs or because the normalization process injected
them. Although not being harmful to the semantics of a query, they may have an
impact on the evaluation performance. In the above example, sorting an already or-
dered list still has a best-case cost of O(n), where n is the size of that list. Therefore,
these redundant subexpressions should be removed, if possible.

Simplification is implemented by means of AST-based restructuring rules. Every
such rule carries a pattern and a transformation instruction. A pattern can express
structural and content-based predicates. Whenever a pattern matches the AST in-
stance, the transformation instruction (which is a series of rewriting commands)
is applied at the position of the match, thereby transforming the AST. In practical
systems, the simplification component of a query processor can be seen as an “insur-
ance” against badly designed (yet semantically correct) queries. The simplification
component has to be able to detect a large range of simplification opportunities. In
this work, the simplification component is merely a proof-of-concept implementa-
tion that can detect the following simplification opportunities:

• fn:data: This rule removes unnecessary calls to the function fn:data. This func-
tion implements the so-called atomization, where XML nodes are converted into
atomic values. The normalization process frequently injects fn:data functions
around arguments for comparison/arithmetic operations to ensure atomic val-
ues. When the input (to the function) is, however, already given as atomic val-
ues, atomization has no effect and is, therefore, not necessary. This circumstance
is checked in the pattern of the rule, where the static type (previously deduced
during the static typing stage) is checked for any atomic type. When the pattern
matches, the transformation instruction then exchanges the fn:data function with
its argument expression (note, fn:data has always exactly one argument).

• for-at: XQuery allows to specify a loop counter in for loops. The loop counter
is defined with the at keyword and, during evaluation, binds the current recur-
rence value to a variable. The variable can be referenced in the return expression
of the for statement, for example: for $i at $p in (1, 2, 3) return $i

* $p . If the variable for the loop counter is not referenced in the return expres-
sion, it can be removed.

• let: A let clause binds the sequence-valued result of an expression to a variable.
If this variable is referenced once or not at all and if the let clause has no other
tasks (like a where clause or an order by clause), the let clause is not necessary. In
case the variable is referenced once, the variable reference can be replaced by the
let expression, e. g., in let $p := (1, 2, 3) return min($p) is equal to
min((1, 2, 3)) . If the defined variable is not referenced at all, the complete
let clause can be replaced by the return expression.

• order by: An order by clause sorts a tuple stream generated by a cascade of for/let
clauses. It can consist of one or more order specifications which, in turn, contain
single XQuery expressions. These expressions are evaluated over the input tuple
stream, where the link between the expression and the tuple stream is established

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.3 Query Translation 75

by variable references. Thus, if an order specification does not contain a variable
reference, it can safely be removed without altering query semantics.

• some/every: Similar to for and let, XQuery quantifications specify a variable bind-
ing. If the defined variable is not contained in the satisfies expression of the quan-
tification, then the variable binding can be removed.

• typeswitch: A typeswitch expression has a switch expression, multiple case clauses,
and a default clause. Case clauses and the default clause contain a variable binding
and switch expressions. Due to static typing, the type of the switch expression is
known in advance. If it is possible to uniquely identify the clause that will always
be chosen by the typeswitch during evaluation, there is an opportunity to remove
the typeswitch. This is exactly the case, when either the switch type is a subtype of
(is equal to) exactly one of the types defined among the clauses, or if none of the
case clauses matches (then, the default clause is activated). As a second restriction,
the case expression may only have exactly one reference to the variable defined by
the case clause. If a clause has been identified as the winner, the variable reference
in the case expression is substituted with the switch expression, resulting in an
intermediate expression E. Then the complete typeswitch is substituted with E.

The normalized, typed, and simplified query in AST representation is now ready to
be transformed into an XQGM instance.

4.3.3 XQGM Transformation

XQGM transformation is the process of translating the AST representation gener-
ated by the parser to the XQGM representation, whose syntax and semantics was
introduced in the previous sections. After a query is transformed, the query proces-
sor discards the AST representation and, further on, solely works on the generated
XQGM instance. XQGM transformation is defined by means of a recursive function
over the AST. Every time the function is applied, a specific part of XQGM is con-
structed. To define the process, we follow the (syntactic) style of the normalization
process defined in the Formal Semantics. Specifically, we will show the transforma-
tion rules for for/let clauses, step expressions, variable references, plain expressions
and function calls as well as quantified expressions and set expressions. However,
before, we have to clarify the meaning of the translation environment and of some no-
tations. The chapter will conclude with two examples illustrating the transformation
process.

The XQGM Transformation Environment

The XQGM transformation environment is a context under which the AST-to-XQGM
mapping takes place. In the following, we refer to this context as transEnv (simi-
lar to the statEnv and dynEnv in the Formal Semantics). The transEnv context has
various context components that can be addressed using a dot notation, e. g., the
transEnv.posVars component keeps track of the positional variables defined in a
query. Components can be read and modified. Internally, they organize the data
they store in different ways: 1) as plain atomic values, 2) as lists, or 3) as a map. The
notations to read and write data from/to context components will be introduced
below. The following components exist:

• Component transEnv.cp() stores a Boolean value that signals the requirement
to generate the context position (cp) information within the projection specifi-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

76 Chapter 4: The XML Query Graph Model

cation. The notation to assign a value to this component looks as follows:
transEnv.cs()←true.

• Component transEnv.cs() stores a Boolean value that signals the requirement to
generate the context size (cs) information. The notation is analogous to the one
above.

• Component transEnv.ddo() is also a Boolean and signals the generation of a ddo
output modifier within the projection specification.

• Component transEnv.posVars() is a list of strings that keeps track of po-
sitional variables found in a query. A new list entry can be appended
with the + notation, as in transEnv.posVars() + “VarName”. Notation
transEnv.posVars().contains(“VarName”) returns true, if the list contains the given
string, and false otherwise.

• Component transEnv.vars() maps from a string to a tuple variable. The map-
ping keeps track of XQuery variable names and the tuple variables they are
logically assigned to during the translation. To add a mapping, the notation
transEnv.posVars(“VarName”) + T can be used, where T is a tuple variable.

At the beginning of the transformation process, the mapping is empty having un-
defined components. The first assignment to a component also defines it. Some-
times it is necessary to memorize and re-establish the state of the transformation
environment. Therefore, we define a function memento which copies the complete
environment (with all components).

Transformation Notations

Besides the above introduced notations to modify the transformation environment,
some means to define the recursive transformation function are required. As al-
ready stated, the function operates on the AST representation. To present the trans-
formation here, we consider the AST as a string. Over this string, we try to match
certain patterns consisting of terminals and non-terminals from the XQuery gram-
mar. Thereby, a non-terminal is used as a placeholder to denote any subexpression
of a certain type (i. e., an AST subtree), which we do not want to qualify in more
detail. Non-terminals are written using a slanted font shape. For example, the fol-
lowing object may occur in one of the following mapping rules: Expr1 + Expr2. Here,
the subscripts are used to distinguish two non-terminals of the same type. The pat-
tern essentially refers to an additive expression (terminal), whose arguments (non-
terminal) are two general XQuery expressions. We thereby adopt the definition of
patterns from the Formal Semantics.

Similar to normalization rules, a transformation rule has the following form:

transEnv ⊢ [Object]Role
Arguments

==

Mapped Object

This rule reads as follows: Given the current transformation environment transEnv,
an Object (for example, a for clause) is transformed to a Mapped Object, where the
transformation is executed under a Role and is parameterized by the given Argu-
ments. The application of the rule, given a certain environment, is notated using the
turnstile (⊢). Because this environment is always assumed, the prefix “transEnv⊢”

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.3 Query Translation 77

will be omitted in the following. The object to be mapped is described by the pat-
terns from above. Whenever a pattern matches a query (AST), the rule is applied.
Sometimes, transformations require arguments. These are passed as subscripts to
the square brackets. Furthermore, one and the same pattern may be transformed
with different intentions. These intentions are signaled by the Role superscript,
which may also be empty (for the default transformation). Finally, the Mapped Ob-
ject is an XQGM construction specification. The construction specification is given
by means of an algorithm in pseudocode similar to the specifications in the XQGM
semantics section.

In the construction specification, the XQGM types introduced in Figure 4.1 on
Page 46 can be instantiated in two ways: either by a constructor-like notation,
such as SelectOperator(), or by using the dot/arrow notation together with a pair
of braces where the arguments go. For example, let S be a select operator, then
S.ProjectionSpecification () creates (and directly adds) its projection specification, if
it not already exists. Note, we do not formally define, which component receives
which arguments during instantiation. The construction specification should be suf-
ficiently descriptive in this point. A component can be added to another component
using a +. For example, let S be a select operator and let T be a tuple variable, then
S + T adds the tuple variable to the select operator. With these preliminaries, the
XQGM transformation rules can now be specified.

For/Let Clauses

A for/let clause is translated into a XQGM select operator with at least two tuple
variables and a projection specification. The first tuple variable contains the bind-
ing expression, the second one contains the return expression. The projection spec-
ification, in turn, references one of the two tuple variables to generate some output.
Further tuple variables can be necessary for the transformation of the where and the
order by clauses. The following rule defines the construction process:

2

6

4

for $VarName1 at $VarName2 in Expr1
where Expr2
order by Spec1, . . . , Specn
return Expr3

3

7

5
(T1)

==

begin1
Environment C ← memento(transEnv); // copy the context2
Operator S ← SelectOperator(); // create a select operator3

Operator B ← [$VarName1 at $VarName2 in Expr1]binding
S ; // translate binding expression4

TupleVariable T ← S.TupleVariable(“F”,B); // create for-quantified tuple variable with input B5
transEnv.vars(VarName1)← T ; // register tuple variable in context6
if defined(VarName2) then7

transEnv.vars(VarName2)← T ; // register tuple variable in context8
transEnv.posVars() + VarName2; // store positional variable9

end10
if defined(Expr2) then11

S ← [Expr2]where
S ; // transform where clause12

end13
if defined(Spec1) then14

S ← [Spec1, . . . , Specn]order by
S ; // transform order by15

end16
S ← [Expr3]return

S ; // transform return clause17
transEnv← memento(C); // re-establish context18
return S;19

end20

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

78 Chapter 4: The XML Query Graph Model

Let us take a look at the construction specification: During transformation, the
environment may be altered while the subexpression of the for/let expression is
transformed. Afterwards, however, the transformation environment has to yield
the same state as before. Therefore, the current state of the environment is memo-
rized in variable C . Then, for each for/let expression, a select operator is created.
At this state, the select operator is nothing but an empty box that will be filled
during the transformation of the subexpressions. To do so, the “box” is passed as
an argument to these transformation calls. The first subexpression is the binding
expression, which returns an operator upon transformation. Note, the role of this
transformation is set to “binding”, and the argument is the select operator S. The re-
turned operator is “wrapped” inside a tuple variable T having a for quantification.
The mapping between the binding variable name (VarName1) and the tuple vari-
able is kept in the environment. If a positional variable is defined, the mapping for
this variable to the same tuple variable (which produces the context information)
is kept in the environment. The occurrence of a positional variable is recorded in
transEnv.posVars. These mappings are required for the transformation of correlated
subexpressions (referencing tuple variables and access operators). After the context
is written, the subexpression can been transformed. Note, the where clause and the
order by clause are not necessarily specified. As mentioned above, the select oper-
ator is passed as an argument. The transformation of the subexpressions triggers
the insertion of more tuple variables and specifications to S, if necessary. After the
return clause has been transformed, the environment is re-established and the select
operator is returned.

Above, we stated that after creation, the select operator is “nothing but an empty
box”. This is not exactly true, because during the instantiation of any operator some
environment-dependent initializations take place. For the sake of simplicity how-
ever, these issues are discussed initially here. The following construction algorithm
instantiates an operator S. The algorithm is executed every time an operator (except
a tuple variable reference) is created, for example, via SelectOperator(), AccessOpera-
tor(), and the like.

begin1
ProjectionSpecification P ← S.ProjectionSpecification();2
if transEnv.cp() then3

P.cp ← true ;4
transEnv.cp()← false ;5

end6
if transEnv.cs() then7

P.cs ← true ;8
transEnv.cs()← false ;9

end10
if transEnv.ddo() then11

P.ddo ← true ;12
transEnv.ddo()← false ;13

end14

end15

In the first step, a projection specification is created (if it not already exists). Because
tuple variable references do not carry a projection specification, this algorithm is
not executed for them. In the remaining lines, the context position (“cp”), context
size (“cs”), and distinct document order (“ddo”) information is read from the en-
vironment and, if set to true, passed on as an output modifier to the projection
specification. Note, this information may have been set during previous translation

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.3 Query Translation 79

rules (as we will see in the following).

After the translation of the for clause, we proceed with the subexpressions. A binding
expression is transformed as follows:

[$VarName1 at $VarName2 in Expr1]binding
SelectOperator S (T2)

==

begin1
if defined(VarName2) then2

statEnv.cp()← true; // make context position available3
end4
Operator B ← [Expr1]; // transform the binding expression5
if defined(VarName2) then6

statEnv.cp()← false; // restore previous state7
end8
return B;9

end10

If the binding expression contains a positional variable (VarName2), this circum-
stance is recorded in the cp component of the environment. Then the subexpression
itself is transformed into an XQGM operator (embedding the results in the passed
select operator S). As before, the state of the environment has to be re-established.
We do so by assigning the value false to the cp component. Finally, the operator is
returned. Remember that this operator will be wrapped inside a for-quantified tuple
variable.

A where clause results in an XQGM predicate. This is shown by the following trans-
formation rule:

[Expr]where
SelectOperator S (T3)

==

begin1
Operator P ← [Expr]S ; // transform where expression2
S ← S.Predicate(P); // set P as predicate into select3
return S;4

end5

The transformed expression is set as a predicate into operator S.

An order by clause results in a new sorting specification inside select operator S and
is transformed as follows:

[Spec1, . . . , Specn]order by
SelectOperator S (T4)

==

begin1
SortingSpecification X ← S.SortingSpecification(); // create the sorting specification2
foreach OrderSpec Speci in Spec1, . . . , Specn do3

Operator O ← [Speci]S ;4
X + O; // add the transformed operator to the sorting specification5
X.modifier i ← Speci.modifier // set the order modifier6

end7
return S;8

end9

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

80 Chapter 4: The XML Query Graph Model

First, a sorting specification is created inside the select operator. Then, all the or-
der specs are transformed and added step-by-step to the specification. Modifiers,
such as “ascendent”, “descendant”, “empty greatest”, etc., are also written into the
sorting specification.

Finally, a return clause creates the projection specification inside the select operator:

[Expr]return
SelectOperator S (T5)

==

begin1
ProjectionSpecification P ← S.ProjectionSpecification();2
Operator R← [Expr]S ;3
P + R; // add the return operator to the projection specification4
return S;5

end6

As you may have observed, the translation of an expression given a role, as for ex-
ample [Expr]return

SelectOperator S contains a recursive call to the transformation function
without a role, but passing parameter S: [Expr]S . What happens now, if the expres-
sion to be transformed is a for clause? Then, the above rule (without argument S)
does not apply. We have to define the correct rule explicitly. Let Expr0 be a for clause
as shown in rule T1, then the following transformation applies:

[Expr0]SelectOperator S (T6)

==

begin1
Operator O ← [Expr0];2
TupleVariable T ← S.TupleVariable(“L”,O);3
return TupleVariableRef (T);4

end5

The for clause is translated as before, but the result is wrapped inside a tuple variable
which, in turn, is embedded into operator S. Then, a reference to this tuple variable
is returned to make the result of the translated for expression available. Note, the
quantifier of the tuple variable is set to L, despite of the for semantics of the expres-
sion. The rationale is that the for semantics is assured by the transformation during
[Expr0] (i. e., in the select operator “below”).

The let clause is treated exactly like to for clause with two exceptions: 1. instead of
the F-quantification, an L-quantification is used, and 2. because a let clause cannot
define a positional variable (using at), the corresponding part is not required. We
do not separately enlist the transformation rules for let here.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.3 Query Translation 81

Step Expressions

For step expressions, we need the following two transformation rules:

[Axis :: NodeTest] (T7)

==

begin1
TupleVariable T ← transEnv.vars(“fs:dot”);2
AccessOperator O ← AccessOperator(Axis, NodeTest, T);3
return O;4

end5

[Axis :: NodeTest]SelectOperator S (T8)

==

begin1
AccessOperator O ← [Axis :: NodeTest];2
TupleVariable T ← S.TupleVariable(“L”,O);3
return TupleVariableRef (T);4

end5

If the expression is translated without an argument, the tuple variable delivering
the input for fs:dot is first retrieved from the environment. Note, the normalization
process makes sure that this variable is always correctly bound and the translation
process makes sure that there is a tuple variable already defined for this variable
name (see Rule T1, Line 6). The returned tuple variable belongs to some select
operator previously created. It serves as the correlated input for the access operator,
which is newly created here.

If the expression is translated “under” some given select operator S (second case),
the transformation actions from the first rule are first executed. Then a let-quantified
tuple variable is added to S receiving the input of the step expression. The result is
then a tuple variable reference to actually access this input.

Variable References

Variable references can occur almost everywhere in an XQuery expression. During
translation, they are mapped onto tuple variable references by the two rules in the
following:

[$VarName] (T9)

==

begin1
TupleVariable T ← transEnv.vars(VarName);2
if defined(transEnv.posVars(VarName)) then3

return TupleVariableRef (T, “cp”);4
end5
return TupleVariableRef (T);6

end7

In the first case, a variable reference is translated independently, i. e., without an
operator as an argument. First, the translation environment is queried to return the
tuple variable, whose input returns the referenced values. This tuple variable has to

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

82 Chapter 4: The XML Query Graph Model

be defined by rule T1 before. There are two possibilities: the variable is a positional
variable (generated for some at construct in a for expression) or not. In the first
case (lines 3 to 5), a special tuple variable reference addressing the context position
(“cp”) has to be instantiated. In the latter case, an ordinary reference is sufficient.
Note, addressing the context position is only possible, because of the interplay of
rules T1 (which puts the variable name into transEnv.posVars()), T2 (which manifests
the need to produce positional information in the environment), the initialization
algorithm for operators (which actually configures the projection specification to
produce positional information), and rule T9.

If a variable reference is translated under an operator S, the first action is also the
retrieval of the responsible tuple variable from the environment. However, in this
case, the situation could occur that the variable is a positional one, i. e., fs:position or
fs:last. In the XQuery normalization process, these variables are properly defined.
However, because we chose to handle them implicitly by the omission to generate
them (as described in Section 4.3.1), they are not bound and the “responsible” tuple
variable, therefore, is undefined.

[$VarName]SelectOperator S (T10)

==

begin1
TupleVariable T ← transEnv.vars(VarName);2
if ¬ defined(T) then3

TupleVariable F ← S.TupleVariable[1];4
ProjectionSpecification O ← (F → Operator.ProjectionSpecification());5
if VarName = “fs:position” then6

P.cp← true;7
return TupleVariableRef (F, “cp”);8

end9
if VarName = “fs:last” then10

P.cs← true;11
return TupleVariableRef (F, “cs”);12

end13
end14
if T.Operator 6= S then15

TupleVariableRef R← TupleVariableRef (T);16
TupleVariable N ← S.TupleVariable(“L”, R);17
return TupleVariableRef (N);18

end19
return TupleVariableRef (T);20

end21

Undefined tuple variables are no problem. We simply have to make sure that the
required positional context information is actually generated. This happens in lines
3 to 14. In line 4, the first4 tuple variable of the passed select operator is retrieved
and then (in line 5) the projection specification P of its input operator. If this specifi-
cation does not exist, it is created. Depending on the variable name (only fs:position
and fs:last are possible), the cp or cs output modifier is set in P . Then, a tuple vari-
able reference, either addressing “cp” or “cs”, is returned. A further case arises,
when the referenced tuple variable is not contained in operator S passed as the ar-
gument (i. e., when T.Operator 6= S, as checked in line 15). Then, the tuple variable
reference has to be embedded (using tuple variable) into S, i. e., the tuple variable
reference is treated as an ordinary XQGM operator, similar to the access operator in

4Note, here the brackets are used to choose the first component, and not as an indicator for transformation.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.3 Query Translation 83

rule T8. Finally, in all other cases (i. e., when the tuple variable referenced belongs
to S), a simple tuple variable reference can be returned.

Simple Expressions

Under the name “simple expression”, all XQuery expressions are subsumed that do
not produce any variable bindings and that are no set-based expressions, such as
Boolean/arithmetic/comparison expressions, constructors, literals, functions, and
sequence expressions. For them, a corresponding concept exists in XQGM, as you
can observe in Figure 4.1 on Page 46. Technically, we do not transform these expres-
sions into “something else”, but keep them as they are: as XQuery expressions. This
means that they are just imported into XQGM. The following two rules implement
these considerations:

[SExpr] (T11)

==

begin1
Operator S ← SelectOperator();2
foreach Operand O in operands(SExpr) do3

O ← [O]S ;4
end5
ProjectionSpecification P ← S.ProjectionSpecification();6
P ← P + SExpr; // add SExpr as output expression7
return S;8

end9

We do not want to provide rules for every type of expression. Instead, we take
a generic view, where a simple expression (referenced as SExpr) has a number
of operands that are, in turn, simple expressions or variable references. These
operands are revealed by the operands function. With these preliminaries, the above
rule reads as follows: first, a select operator is created. This is necessary, because,
obviously, the object to be transformed is a standalone expression, such as 1 + 3. As
stated above, an expression cannot stand alone in XQGM, which is why the select
operatore is required. In the second step, the operands of the simple expression are
transformed (passing the new select operator as an argument). Finally, the trans-
formed expression is written into the newly created projection specification of the
select operator, which is then returned.

In case an operator S is already given (e. g., as above, or when an expression is
translated for example to an XQGM predicate), the transformation is even simpler.
You can see that the expression itself is not transformed:

[SExpr]SelectOperator S (T12)

==

begin1
foreach Operand O in operands(SExpr) do2

O ← [O]S ;3
end4
return SExpr;5

end6

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

84 Chapter 4: The XML Query Graph Model

Function Calls

So far, we classified function calls as simple expressions. However, the transforma-
tion of functions doc, collection, and ddo is specialized, which is why a separate rule
is required. For the following rule, we do not distinguish between the version with
and without the S subscript; if the subscript is missing, it is simply not passed in
subsequent recursive calls. The rule has the following form:

[FunctionCall]SelectOperatorS (T13)

==

begin1
if FunctionCall is fn:doc then2

Argument X ← first(arguments(FunctionCall)); // get the argument3
DocumentAccessOperator A← DocumentAccessOperator([X]);4
return A;5

end6
if FunctionCall is fn:collection then7

Argument X ← first(arguments(FunctionCall)); // get the argument8
CollectionAccessOperator A← CollectionAccessOperator([X]);9
return A;10

end11
if FunctionCall is fn:ddo then12

transEnv.ddo()← true ;13
return [first(arguments(FunctionCall))]S ;14

end15
// translate as SExpr16

end17

If the function call is a doc or collection function, the first argument is retrieved
(which is a literal containing the URI of the document or collection), transformed,
and passed to the constructor of a document or collection access operator. This op-
erator is then returned. In case, the function call is a ddo function, the corresponding
environment information transEnv.ddo() is set and the first argument is transformed
and returned. In all other cases, the function call is transformed as explained above
in rule T11 and T12.

Set Expressions

Set expression combine several sequences produced by their subexpressions into
one. XQuery set expressions are transformed into corresponding XQGM set expres-
sions. The transformation process is quite straightforward:

[SetExpr] (T14)

==

begin1
SetOperator S ← SetOperator(typeOf (SetExpr));2
foreach Operand X in operands(SExpr) do3

TupleVariable T ← S.TupleVariable([X], “L”);4
end5
return S;6

end7

We assume a generic set expression SetExpr, where the type of the expression (i. e.,
union, intersect, except) can be deduced using the typeOf function. The subexpres-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.3 Query Translation 85

sions are separately transformed and attached to the set expressions using let-
quantified tuple variables. In case, an operator is passed, the transformation takes
the same form as rule T6 for for expressions. Therefore, we do not repeat this trans-
formation rule.

Quantified Expressions

The last expression type we need to transform are quantified expressions. In a sense,
quantified expressions are similar to for/let expressions, because they also bind vari-
ables. Therefore, their transformation looks alike.

[some $VarName in Expr1 satisfies Expr2] (T15)

==

begin1
Environment C ← memento(transEnv);2
Operator S1 ← SelectOperator();3

Operator B ← [$VarName in Expr1]binding
S1

;4
TupleVariable T1 ← S1.TupleVariable(“F”, B);5
transEnv(VarName)← T1;6
Operator X ← [Expr2];7
TupleVariable T2 ← S1.TupleVariable(“E”, X);8
S ← S1.Predicate(TupleVariableRef (T2));9
ProjectionSpecification P1 ← S1.ProjectionSpecification();10
P1 ← P1 + BooleanLiteral(true);11
Operator S2 ← SelectOperator();12
TupleVariable T3 ← S2.TupleVariable(“L”, S1);13
ProjectionSpecification P2 ← S2.ProjectionSpecification();14
P2 ← P2 + fn : boolean(TupleVariableRef (T3));15
transEnv← memento(C);16
return S2;17

end18

The steps in lines 1 to 6 are very similar to the corresponding lines in rule T1 (only
the variable names are somewhat different): The rule saves the environment, creates
a select operator, transforms the binding expression, generates a tuple variable for
the result, embeds the tuple variable into the select operator, and registers the vari-
able name with the tuple variable in the environment. Then the satisfies expression
is transformed and a second tuple variable T2 is embedded into S1. The quantifica-
tion mode of T2 depends on the type of quantification. Rule T15 is responsible for
the exists quantification, therefore the mode is “E”. We do not explicitly show the
algorithm for the all quantification, because its structure is the same, with the only
difference that T2’s mode is “A” for all. A predicate, which is inserted into S1 at line
9 is responsible to check the Boolean value generated by T2 during execution. This
predicate is a simple tuple variable reference.

A satisfies expression returns a Boolean value, therefore, the corresponding XQGM
expression also has to return a Boolean value. To meet this requirement, a simple
“static” Boolean literal with the value true is given to select operator S1 as projection
specification (lines 10 and 11). Now, with this translation, the satisfies expression
either returns the value true or the empty sequence. The latter is the case when the
predicate set in line 9 never evaluates to true. Therefore, a second select operator S2

is necessary, which is simply wrapped around S1 using a let-bound tuple variable
and an fn:boolean function as projection specification. This is accomplished in lines
12 to 15. Finally, the context is restored and the second (outer) select operator is

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

86 Chapter 4: The XML Query Graph Model

returned. The rule for quantified expressions “under” a select operator, i. e., when
S is passed has the same form as T6. Therefore, we do not repeat it here.

Examples

To facilitate the comprehension of the transformation process, we look at two sim-
ple examples. The first one is dedicated to the for clause; the second one is a quan-
tified expression to illustrate rule T15. For each example, we provide the query, the
XQGM result, and a short description of the rules that have been applied. Consider
query

for $i in (1, 2, 3)
where $i > 2
order by $i descending
return

for $j in (4, 5, 6)
return $i * $j

The result of this rather synthetic query is <12, 15, 18> . The corresponding
XQGM instance is shown in Figure 4.7a. The overview in Listing 4.12 at the end

Figure 4.7 AST-to-XQGM transformation of two sample queries

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

4.5 Related Work 87

of this chapter “expands” the call structure of the recursive transformation process,
where each call to a transformation rule is represented by a begin/end block, thus
forming a tree structure. Behind each begin keyword, the called rule and a short
version of the pattern on which the transformation takes place is indicated. Some
simple transformations are not shown, such as the transformation of literals. You
can trace the creation process by identifying the corresponding actions in the above
introduced transformation rules.

For query some $i in (1, 2, 3) satisfies ($i < 2) , we do not present
a detailed overview, because mainly rule T15 is involved. The correspondences
between the query, the XQGM in Figure 4.7b, and the rule should be obvious.

4.4 Related Work

For relational query processing, a commonly agreed-on algebra exists, i. e., the re-
lational algebra. This is, even after a decade of research on the topic, not true for
XML query processing. One of the first attempts to develop an XML algebra was to
position the Formal Semantics as one [Fernández 00]. Because the Formal Seman-
tics rather describes a functional language and not an algebra, the proposal was not
accepted as an algebra by the research community (however, it was accepted as the
formal semantics of the language). After this first attempt, two major approaches
emerged: tuple-based algebras and tree-based algebras. Tuple-based algebras are su-
perior in number. The main reason is probably that they are (extensions of) the
relational algebra and, therefore, easily integrate with abundant relational query
processors. On the other side, the tree-based approach provides operators that ma-
nipulate trees (instead of tuples). Therefore, the tree-based approach follows more
the style of XML.

In the related work section of the next chapter, we will consider the logical query
representations of the five systems introduced in Section 2.3 in more detail. We will
see that DB2, Natix, and MonetDB/XQuery employ tuple-based algebras (as XTC
does). Timber has a tree-based algebra, and Galax contains operators of both types,
i. e., tuple operators and tree operators. We will discuss these approaches in the
next chapter, because there we can also directly summarize the various rewriting
strategies suggested.

4.5 Summary

In this section, we have seen how XQuery expression can be transformed into an
internal XML query representation called XML Query Graph Model. First, we in-
troduced the XQGM syntax. The semantics was defined indirectly by a mapping to
a logical algebra (LAL). For every XQGM operator, we have seen the transforma-
tion to its corresponding LAL expression and how the semantics of this expression
was defined by several algorithms. Then we described the normalization, static
typing, and simplification stages, followed by the necessary transformation rules to
map an XQuery (represented as an abstract syntax tree) into XQGM. With the 15
rules shown, it is possible to transform a large part of the XQuery language into
XQGM, including FLWOR expressions, path expressions, functions, literals, quanti-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

88 Chapter 4: The XML Query Graph Model

fied expressions, etc. Missing features are user-defined functions, type expressions,
the if-then-else statement, and everything concerning the so-called prologue, e. g.,
module definitions, schema imports, etc. These missing features are more or less
programming language constructs, which is why we leave their integration into
XQGM to future work.

Regarding the XQGM semantics introduced in Section 4.2, one issue is still open: on
Page 57, we demanded that 1) dependent tuple variables of one and the same select
operator S shall depend on one and the same tuple variable T , which 2) has to be the
first tuple variable in S, and which is for-quantified or let-quantified. This restriction
simplified the definition of the TUPGEN operator which is responsible to generate
a stream of tuples out of the input operators of a selection. By an examination of all
15 transformation rules, you can observe that 1) a correlated operator has to access
transEnv.vars() to find the tuple variable providing the correlated input; 2) the tuple
variables written into transEnv.vars() are either for-quantified or let-quantified; and,
3) the tuple variables written into transEnv.vars() are the first tuple variables gener-
ated for an operator. These four points guarantee that the first tuple variable T in an
operator S is referenced and that T is for-quantified or let-quantified (i. e., the second
requirement from above is fulfilled). The first requirement follows because, accord-
ing to these observations, only one tuple variable per operator can have correlated
edges.

In the next chapter, we will see how queries can be rewritten from their internal
representation into a pre-optimized alternative. This alternative will be the starting
point for the plan generator to assemble a query evaluation plan. During rewriting,
query unnesting and twig discovery are of major concern.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Listing 4.12 Call-structure expansion of an AST-to-XQGM transformation run

begin T1: [for . . .]
1. store environment (currently empty)
2. create SELECT 1 (named S1 in the following) and translate binding expression→ T2:
begin T2: [$i in . . .]binding

S1

1. transform sequence expression as simple expression→ T11
begin T11: [1, 2, 3]

1. create SELECT 2 (named S2 in the following)
2. transform each operand (not shown, because operands are simple literals)
3. create the projection specification of SELECT 2
4. add transformed sequence expression to projection specification and return S2

end
2. return S2

end
4. create for-quantified tuple variable F:0 with S2 as input and register F:0 for $i in environment
7. translate where expression→ T3
begin T3: [where . . .]where

S1

1. transform comparison expression as simple expression→ T12
begin T12: [$i > 2]S1

1. transform each operand; transformation of variable reference $i→ T10
begin T10: [$i]S1

1. get tuple variable for $i from environment: F:0
2. tuple variable is defined and operator of tuple variable (SELECT 1) equals S1

3. therefore, just return tuple variable reference to F:0
end
2. return comparison expression

end
2. set comparison expression as predicate into S1

3. because the returned expression is no tuple variable reference: return S1

end
8. transform order by→ T4
begin T4: [order by . . .]S1

1. create the sorting specification in S1

2. transform the order specification, which is just a variable reference: [$i]S1
(not shown)

3. add returned tuple variable reference to sorting specification
4. set the ‘descendant’ modifier and return S1

end
9. transform return→ T5
begin T5: [for . . .]return

S1

1. create projection specification in S1 and transform return expression “under” S1

begin T6: [for . . .]S1

1. transform for clause without S1 as argument→ T1
begin T1: [for . . .]return

S1

1. store environment (currently maps $i to tuple variable F:0)
2. create SELECT 3 (named S3 in the following)
3. transform the binding expression to SELECT 4 as above (the result is named S4)
4. create for-quantified tuple variable F:1 with S4 as input
5. register F:1 for variable name $j in environment
9. transform return as simple expression→ T5
begin T5: [$i ∗ $j]return

S3

1. create projection specification in S3

2. transform return expression “under” S3

begin T12: [$i ∗ $j]S3

1. transform $i→ T10
begin T10: [$i]S2

1. get tuple variable for $i from environment: F:0 (which is defined)
3. operator of tuple variable (S1) does not equal S2

4. create tuple variable reference R to F:0
5. create let-quantified tuple variable L:2, add R, and return R

end
2. transform $j → T10 (not shown) and return multiplication expression

end
3. add returned expression to projection specification of S3 and return S3

end
10. re-establish environment (only maps $i to tuple variable F:0 again) and return S3

end
2. add transformed for clause with new let-quantified tuple variable (L:3) to S1

3. return tuple variable reference to new tuple variable
end
3. add returned tuple variable reference to projection specification of S1 and return S1

end
10. re-establish environment (now empty again) and return S1

end

90 Chapter 4: The XML Query Graph Model

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 5 Query Unnesting and
Twig Discovery

Never send a human to do a machine’s
job.

Agent Smith

Let us take the time and look back at the previous chapter. What was achieved? Ba-
sically, 1) XQGM—an internal query representation—has been developed, together
with a mapping from XQuery into XQGM, and 2) the semantics of XQGM has been
defined by a logical algebra (LAL), and 3) a mapping from XQGM into LAL was
given. In a way, the previous chapter has already presented a complete1 XQuery
processor: We could implement the LAL operators as they are and call them “phys-
ical algebra”. We could implement the XQGM-to-LAL mapping and call it “plan
generation”. Thereby, we would have defined the complete query evaluation pro-
cess, from a query in its external string representation to its evaluation based on
the physical algebra. This thesis could be done at this point. From the number of
following pages however, you might guess that this is not the case. The sketched
approach to a “complete” XQuery processor has several drawbacks:
1. Often, the generated XQGM instances contain many correlated subexpressions

(i. e., many dotted edges). Consider the XQGM instance in Figure 2.4 on Page
20. This simple query already contains eight nested subexpressions. Generally,
a nested subexpression is produced for every variable reference in the normal-
ized XQuery statement. Because normalization introduces a variable reference
to fs:dot for every axis step and, because axis steps occur frequently, the num-
ber of correlated subexpressions is naturally high. At a logical level, this is no
problem. But if we take a glimpse at the way how nested subexpressions can
be (and will be) physically evaluated in the above sketched query processor (see
also Chapter 8), the problem becomes clear: For example, consider select (15)
in Figure 2.4. For every incoming closed_auction node, access (16) calculat-
ing child::price is evaluated. This item-at-a-time evaluation mode implies a cer-
tain amount of overhead, because the document (or an index) has to be opened
(closed) in every step, before (after) the required nodes can be read. If many
nodes are processed, this overhead adds up to costs that cannot be neglected and
that influence the evaluation performance.

2. Operators may generate unnecessary large intermediate results. For an example,
consider again the query in Figure 2.4. Operator select (2) contains a predi-

1... to the extent XQuery is supported.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

92 Chapter 5: Query Unnesting and Twig Discovery

cate on the input generated by access (14) . All operators “in between” have
to pass the generated text nodes. If the predicate would be pushed down from
select (2) to access (14) , only text nodes fulfilling the predicate would be
passed. Note, during plan generation, this predicate push-down would also facil-
itate the application of a content index to implement access (14) , because the
necessary information to “detect” content-index applicability is now available in
a single operator (and not distributed over multiple operators).

Besides late predicate evaluation, a suboptimal sequential operator arrangement
also leads to unnecessary large intermediate results. In Figure 2.4, all paths are
evaluated top-down, e. g., site → closed_auctions → closed_auction (in the subtree
below L:5). Depending on the document, a “reverse” evaluation (closed_auction
→ closed_auctions → site) could lead to a much smaller size of intermediate re-
sults (if we assume that the number of site elements is high and the number of
closed_auction elements is low). Although the decision about operator ordering
is a physical issue (and has to be discussed during plan generation), a suitable
treatment at the logical level would be beneficial to clarify the rewriting seman-
tics.

3. The higher the number of operators in an XQGM instance, the higher the num-
ber of intermediate results that have to be passed. Therefore, for a given query,
the number of operators should be reduced to a minimum to avoid the over-
head resulting from passing intermediate results. In the initial XQGM instance,
there are already opportunities to remove operators. For example, in Figure 2.4,
select (15) receives one input from a tuple variable reference, which is then
passed on via a correlated edge to access (16) . This is not really necessary,
because the input from the tuple variable reference could be directly given to
the access operator, thereby making select (15) unnecessary (assuming that
the access operators returns nodes in distinct document order). But also during
restructuring, opportunities to remove operators arise.

4. In Chapter 8, a set of XML evaluation algorithms will be introduced that pro-
vide for efficient bulk path matching. Besides these algorithms, the research
community has also developed many techniques to find paths in XML docu-
ments. A query processor should be able to make use of these algorithms and
techniques. As a prerequisite it needs to “discover” opportunities to do so.
As an example, consider again Figure 2.4: the information that path site/
closed_auctions/closed_auction has to be matched, is “encoded” into
six operators. Investigating that large number of operators, for example, to test
the applicability of a path index, is obviously cumbersome and leads to a high
complexity in plan generation.

With the exception of operator reordering, the sketched problems will be tackled
in this chapter by the following means: 1) query unnesting will remove correlated
subexpressions, 2) intermediate results will be reduced by predicate push-down, 3) op-
erator fusion will get rid of unnecessary operators, and 4) twig discovery will reveal
opportunities to apply bulk path matching operators. The first three techniques
have also been developed in the relational context [Mitschang 95]. However, for
their applicability in XML, they have to be adapted. Operator reordering is an im-
portant ingredient for cost-based query optimizers, where the cost for different join
orders can be assessed. Because this work does not consider a cost-based optimiza-
tion, operator reordering is left open to future research. The fourth point, twig dis-
covery, accounts for the integration of a certain class of physical operators. You

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.1 Rewriting Methodology 93

might argue that the assumption of certain physical operators at the present logical
level is a design violation, because the logical layer should be oblivious of physical
issues (the same also holds for operator reordering). Technically, this is true. The
issue should be handled at the physical layer during plan generation. However, we
chose to discuss the issue at the logical level, because it is much simpler. Before we
can introduce how XQGM instances are restructured, a methodology to describe
these restructurings is required.

5.1 Rewriting Methodology

Query rewriting is expressed by rewriting rules. A rule consists of a pattern, which
is matched against an XQGM instance, and a transformation instruction (or a restruc-
turing program), which rewrites the XQGM instance at the matched component.
Technically, restructuring is implemented using the infrastructure component of the
query processor. This component basically consists of a rule engine, which can tra-
verse tree structures to match rule patterns. For this purpose, an XQGM instance is
interpreted as a tree (although being a general graph) by ignoring correlated edges.
Whenever a match occurs in the tree, the infrastructure component executes the
rule’s transformation instruction. The transformation instruction leaves the XQGM
in a consistent and correct state, i. e., the result is still an XQGM instance and the
semantics of the query before and after restructuring is the same. Query rewrit-
ing is a deterministic process, i. e., for every input XQGM instance, there is exactly
one rewritten XQGM instance (which is passed to the plan generator). Note, if we
would support operator reordering at this level, this statement would not hold any-
more because, in general, a query can be reordered in many ways. To ensure deter-
minism, only one rule is allowed to match at any time. As a design consequence,
the patterns of the complete rule set have to be pairwise disjoint. Rules can be
chained, i. e., the resulting subexpressions generated by the restructuring program
of a particular rule can serve as input for another rule. Rule chaining requires that
the infrastructure component matches rules bottom to top or subtree first: before a
rule can match at a certain XQGM component C , all rules must have been matched
in the subexpression below C . This guarantees that all rewritings have been applied
to the subexpression.

The rule approach has some advantages over the “hard wired” (search and replace)
alternative: Rules are self-enclosed and more descriptive, i. e., they only define what
to match and how the matched component has to be modified; no further logic, for
example to actually find a match, is required. Furthermore, the rule set can be easily
extended when new optimization opportunities are found. Finally, a rule set can
be seen as a query engine parameter. By altering the rule set (switching rules on
and off), the behavior of the query engine can altered without changing the query
engine itself. This is quite important for scientific projects such as XTC, because
then various rewriting strategies can be tested quite easily.

In the following, a rule set containing nine disjoint rewriting rules will be intro-
duced. According to the four problems sketched at the beginning of this chapter,
these various rules can be categorized as:

1. rules for query unnesting,
2. rules for intermediate result size reduction,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

94 Chapter 5: Query Unnesting and Twig Discovery

3. rules to minimize the number of operators, and
4. rules to facilitate the mapping onto bulk operators.

Some rules might produce XQGM operators that have not been introduced in this
work so far. New XQGM operators will, therefore, be defined “on the way”. The
rule set shown can be seen as a best-effort approach, i. e., many standard cases can
be handled. However, the rule set will not be complete and further optimization
opportunities might exist, which are left open for future work.

Most of the nine rules to be introduced will be shown by example. This decision
was made to keep the size of this chapter reasonable. The first two rules show
how unnecessary tuple variable references and unnecessary descendant-or-self::node()
steps can be removed.

5.2 External Tuple Variable Reference Removal

As we have seen, during the transformation from XQuery AST into XQGM, all vari-
able references are mapped onto tuple variable references. Some of these tuple vari-
able references occur inside the same operator also containing the tuple variable
referenced. For an example, consider the following query and its XQGM represen-
tation in Figure 5.1a:

for $i in doc("auction.xml")//item
where $i/location="United States"
return $i/name

The tuple variable reference in the predicate of select (1) points to tuple variable
L:7. In the following, we will call this type of reference local. On the other hand,
there are also references to tuple variables from “outside”. In Figure 5.1a, the input
of tuple variable F:8 in select (10) is a reference to variable F:4 of select (1) .
In the following, we will call this type of reference external.

Often, external tuple variables are not required, because their correlated input can
be passed on directly to some access operator. The removal of these references is
subject to the first restructuring rule, which is called external tuple variable reference
removal. Figure 5.1 shows an application of this rule to the XQGM of the above
query.

In Figure 5.1a (before the rule application), tuple variable F:4 has two external ref-
erences. Each of these references is input to a for-quantified tuple variable (F:5 and
F:8) which, in turn, serves a correlated input to some access operator (9 and 11). In
this case, both correlated edges can be directly drawn from F:4 to the access oper-
ators, as shown in Figure 5.1b (after the rule application). The two tuple variable
references and the two tuple variables they delivered their input to (F:5 and F:8) are
not required anymore and are removed.

Of course, this rewriting is only possible, when the XQGM instance has a certain
structure. The necessary restrictions are defined in the rule pattern. In Figure 5.1a,
these restrictions are attached to the matched XQGM components for visualization.
In summary, the rule pattern “searches for” a for-quantified tuple variable T with
a stream of singleton tuples as input and one or more external references Ri. The
external references deliver the item at position 0 to a for-quantified tuple variable
Ti, which, in turn, has exactly one correlated edge leading to an access operator

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.2 External Tuple Variable Reference Removal 95

Figure 5.1 Tuple variable reference removal

Ai. The rule’s transformation instruction then rewrites every external reference to
T fulfilling the requirements defined by the pattern. It removes the correlated edge
to reference Ri and inserts an edge to access operator Ai. Then it removes reference
Ri and the containing tuple variable Ti.

With the described rewriting in mind, the restrictions defined by the rule pattern
become clear:
1. T has to be for-quantified because, in case of a let quantification, a complete se-

quence of nodes would be delivered to variable references Ri. Because access
operators require a single node as correlated input (and not a sequence), the di-
rect connection via a correlated edge between T and the access operators would
not be possible. All further quantifications do not allow correlated edges.

2. A let-quantified tuple variable Ti with a correlated access operator cannot occur
(due to the AST-to-XQGM transformation process and the rewriting rules intro-
duced in this chapter). If Ti would have more than one reference (for example,
also a local reference), its removal during rewriting would not be possible.

3. If Ri does not reference position 0 and the input below T would not deliver sin-
gleton tuples, the removal of Ri would not be allowed. Note, this situation can-
not occur after the AST-to-XQGM transformation. However, as a result of other
rewriting rules, this setting might be generated, which is why this restriction is
required.

The rule removes unnecessary operators (i. e., references Ri). Therefore, it belongs

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

96 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.2 Removal of descendant-or-self

to the third category defined on Page 93. However, because it does not alter the
structure of the XQGM instance substantially, it can be classified as a helper rule.
Helper rules simplify the graph. Another approach to get rid of the type of cor-
related edges removed by this rule would be to avoid them during AST-to-XQGM
mapping. This would require a more complex—however possible—mapping pro-
cess.

5.3 Removal of descendant-or-self

The semantics of the double slash operator in XQuery sometimes causes con-
fusion. As an example, consider query doc(“auction.xml”)//item , which
is normalized to doc(“auction.xml”)/descendant-or-self::node()/
child::item , before it is transformed into the XQGM instance shown in Fig-
ure 5.2a. Generally, the query yields the same result as doc(“auction.xml”)/
descendant::item , which is why many XQuery beginners think that “// ”
equals “descendant ”. This is not true, when context information comes
into play, i. e., doc(“auction.xml”)//item[3] is generally not equal to
doc(“auction.xml”)/descendant::item[3] . The first query returns the
third item below any node in the document, while the second query returns the
third item in the whole document. Nevertheless, it is beneficial to avoid the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.4 Range Query Detection 97

descendant-or-self::node() step expression whenever possible, because it
is quite expensive to evaluate. The reason for that is the combination of the axis
and the node test, which is very general and can affect the complete document. The
descendant-or-self removal rule replaces this step expression with a descendant step.

Figure 5.2a shows the initial situation for sample query doc(“auction.xml”)//
item from above. Similarly to the external tuple variable reference removal, the
pattern searches for a for-quantified tuple variable T with exactly one correlated
edge to an access operator A2. The input of T has to be an access operator A1 with
a descendant-or-self axis, a node() test, no predicate, no sorting specification, and no
context information generation (i. e., no “cp” or “cs” in the output specification).
The access operator at the end of the correlated edge (A2) has to have a child axis,
no predicate, and no sorting specification. The node test, however, can be arbitrary.
Finally, tuple variable T ′ which resides in the same operator as T and receives the
input of A2 (L:2 in our example), may not receive any input tuple with context
information (i. e., with “cp” or “cs” set). Note, in our example, A2 is the input of
T ′. These two components are, therefore, directly connected. This is, however,
not necessarily the case, which is why the check for positional information is not
issued on A2, but on the input of T ′. Whether context information is generated or
not can be inferred from the projection specifications in the subtree below T ′. The
transformation instruction replaces the child axis in A2 with the descendant axis and
directly sets the correlated input of A1 to A2. Then, tuple variable T and access
operator A1 can be removed.

As in the previous rule, T has to be for-quantified with exactly one correlated edge
to an access operator. Further references to T are not allowed, because then T
could not be removed during rewriting. The input of T is the XQGM-transformed
descendant-or-self::node() expression (A1). The input may not have any
predicate, sorting, or projection specification generating context information, be-
cause the input would carry additional semantics and would not be removable.
Operator A2 simply has to carry a child axis to capture the second part of the nor-
malized “//” query. Tuple variable T ′ may not receive any positional context infor-
mation. This requirement explains itself with the discussion at the beginning of this
section.

As with the previous rule, the effect of this rewriting rule is to remove unnecessary
operators, in this case, an access operator. Therefore, it also belongs to the third
category on Page 93. Because it also does not alter the structure of the XQGM in-
stance substantially, it can be classified as a helper rule. Compared to the previous
rule, however, it gets rid of a more heavy-weight access operator, thus reducing
I/O during evaluation (if we assume a physical 1:1 implementation of the XQGM
instances).

5.4 Range Query Detection

Chapter 7 will introduce two kinds of content indexes that allow to ef-
ficiently evaluate content-based predicates. Content-based predicates can
be point queries or range queries. A query with a point predicate con-
tains a comparison for equality with some literal as, for example, in
doc(“auction.xml”)//item[location=“United States”] . A range pred-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

98 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.3 Range query detection

icate defines one or two boundaries, between which the desired values
have to reside, for example doc(“auction.xml”)//item[quantity < 5] or
doc(“auction.xml”)//item[quantity[. > 1 and . < 3]] (see Fig-
ure 5.3a for the XQGM instance of this query2). The first predicate has an open
boundary (the range is not limited on one side), while the second one has a closed

2Note, query doc(“auction.xml”)//item[quantity > 1 and quantity < 3] is not an equivalent
version of the query shown in Figure 5.3a, because an item could have multiple quantity children.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.5 Select Fusion 99

boundary (the range is limited on both sides). Detecting range queries with open
boundaries is simple, because they contain just one comparison with a literal (sim-
ilar to the point query). Detecting range queries with a closed boundary is more
complicated: A range is defined using the and Boolean XQuery operator and two
comparisons. The problem is to analyze, whether the boundaries span a range. For
example, predicate quantity[. < 5 and . < 6] does not span a range al-
though the and keyword and two comparisons were used.

The range query detection rule can detect ranges as follows: First, it searches for an
XQuery and expression A and examines its input expressions Ei. If there are not
exactly two input expressions, the rule pattern does not match. Furthermore, the
input expressions have to be comparison expressions based on one of the following
comparison operators: <, <=, >, or >=. Each comparison has to have an fn:data
function Di and a literal Li as input. Based on the literals, the comparison operators,
and the position of the fn:data function, the rule then computes whether a range is
spanned. If not, the rule does not match. The functions Di have to have a tuple
variable reference Ri as input, which either references the same tuple variable Ti or
not. In the first case, the rule matches successfully, because the same input is given
to both data functions Di. In the second case, the rule does not match.

During rewriting, the complete subtree below A inside the predicate is replaced by
a between expression, as shown in Figure 5.3b. A between expression is a new type of
XQGM expression (for which no counterpart in XQuery exists). Thus, it is a subtype
of the Expression type, defined in Figure 4.1 on Page 46. The between expression
receives five parameters:

• two literals, one for the lower boundary and one for the upper boundary,
• one input, referenced as [in] in the graphical representation, and
• two Boolean values minInclusive and maxInclusive specifying whether the low-

er/upper boundary is included in the range or not.

The between expression is a Boolean expression. It checks whether the input item
lies inside the fixed range. The range query detection rule facilitates the mapping
onto physical operators. It, therefore, belongs to category four on Page 93.

5.5 Select Fusion

All of the rewriting rules introduced so far modify select operators. Sometimes, a
select operator is left in a state, where it just has one tuple variable and a projection
specification. For an example, consider select (4) in Figure 5.2b, which is again
depicted in Figure 5.4a for convenience. The only task, this select operator still
has, is to apply the ddo function to the result of the access operator below. In this
case, the projection specification of the select operator can be merged into the access
operator below and the complete select operator can be removed. Note, because the
access operator returns the nodes already in distinct document order, the projection
specification vanishes completely in this example.

The select fusion rule is responsible for this kind of rewriting. It merges projection
specifications and removes select operators. The select operator matched by the rule
pattern must not have any predicate or sorting specification (because, otherwise, the
select operator cannot be removed). Furthermore, the select operator must contain

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

100 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.4 Select fusion

exactly one tuple variable. The projection specification may define the ddo function
and the generation of context information (“cp” and “cs”). However, it may not
have any “complex” expressions. The only expressions allowed are tuple variable
references that simply pass items from the input tuples (i. e., the projection specifi-
cation defines a projection in the classical sense). In the following, we will refer to a
projection specification of that shape as a simple projection specification. On the other
hand, if the projection specification contains also non-reference expressions, we will
call it complex. In our example, there is only one tuple variable reference. However,
in more complex queries, there might be more. Because they all refer to one and the
same tuple variable, they differ in the position they access on an input tuple. As a
further restriction, a position may not occur twice among the tuple variable refer-
ences. Finally, the input operator may be a select operator, an access operator, or
a group by operator. The group by operator will be introduced in Section 5.7, where
the unnesting rule is discussed. For now, we only need to know that the group by
operator also has a projection specification, into which the projection specification
of the select operator can be merged.

The transformation instruction distinguishes between access operators and se-
lect/group by as input operators. In case of an access operator, an existing ddo output

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.6 Predicate Push-Down 101

modifier is ignored, while context information generators are simply copied into
the projection specification of the access operator (which is created, if not already
there). Ignoring ddo is correct, because all access operators deliver their result in
distinct document order. If the input operator is a select or a group by, the “up-
per” projection specification P1 (of the select operator to be removed) is merged
into the “lower” projection specification P2 (of the input operator). First, ddo, “cp”,
and “cs” are copied to P2. Then, output expressions are removed from P2. During
removal, only those output expressions are retained, which are referenced by some
tuple variable reference contained in P1. Note, the reason why the access positions
of the tuple variable references of P1 have to be disjoint, is to avoid copying output
expressions in P2. Every output expression is referenced exactly once. However,
it may happen that the access positions in P1 imply a reordering of output expres-
sions in P2. Then, the output expressions in P2 are reordered accordingly. Finally,
the upper select operator is replaced by its input operator and, thus, removed.

The select fusion rule will never match on an initial XQGM instance. However, as
stated at the beginning of this section, some rules might leave a select operator in
a state allowing the removal of the select operator. Therefore, the rule can also be
classified as a helper rule. It, furthermore, belongs to category three on Page 93.

5.6 Predicate Push-Down

Pushing down predicates is a standard technique in relational query processors.
Also for XML query processing, the concept can be applied. Consider the following
query:

for $i in doc("auction.xml")//item
where $i/location = "United States" and $i/quantity > 2
return $i/name

Figure 5.5a presents the XQGM instance for this query. You can observe that the
predicate is evaluated inside the select operator on the output generated by the two
access operators delivering all location and all quantity nodes below a qualified item
node. In Figure 5.5b, the select predicate is split up and pushed down into the access
operators. In this case, the access operators do not deliver all nodes, but only those
that fulfill the content predicate. The remaining predicate in the original select oper-
ator (and) then only has to check, whether at least one node is returned by an access
operator. During rewriting, a new syntactical construct is introduced into XQGM,
namely, the accessed node reference, depicted as a borderless box containing the string
“node” inside the access predicate (see Figure 5.5b). The semantics of this box is
to refer to the current node accessed by the access operator. Note, because an ac-
cess operator does not carry a tuple variable, a tuple variable reference could not be
used to express this kind of node reference. Therefore, the accessed node referenced
is used to refer to the current node. Besides this component, a new function was in-
troduced: xtc-fn:atomize. The prefix xtc-fn signals that this is not a standard XQuery
function, but a function specific to the XTC system. The xtc-fn:atomize function has
almost the same semantics as the fn:data function: it returns the string value of a
node (i. e., the concatenation of all text nodes in the subtree below a specific node).
The only difference is that fn:data receives and returns sequences of nodes/strings,
while xtc-fn:atomize operates on single items (i. e., node-by-node). The conversion
from fn:data to xtc-fn:atomize was necessary because, before rewriting, the first func-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

102 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.5 Predicate push-down

tion was called after a let-quantified tuple variable collected all intermediate results
returned by the access operator. During rewriting, the fn:data function is “pushed
over” the let-quantified tuple variable, thus no node collection is done on the input
of the function. Therefore, it operates directly on each item. To make this transition
explicit, a new function, the xtc-fn:atomize function, was introduced. This conver-
sion process is called sequence-to-item conversion. Note, not all XQuery functions
can be converted. For example, an aggregation function, like count, requires a let-
quantified tuple variable to collect the intermediate result. Therefore, a predicate

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.6 Predicate Push-Down 103

with a count function cannot be pushed down.

In general, the predicate push-down rule can handle more complicated situations
than in the example above. The rule works as follows: It analyzes expressions with
one or more tuple variable references contained in selection predicates. The refer-
ences may not be positional (i. e., no references to “cp” or “cs”). Furthermore, they
all have to reference let-quantified tuple variables. For every pair of references, their
least common ancestor (LCA) is computed. In our example, the LCA of references
R1 and R2 is the and expression. Then every branch below an LCA operator (in our
example, the two comparison expressions C1 and C2) is matched as follows:

1. The branch is not allowed to contain any other LCA operator. This situation
might occur in case of multiple Boolean operators. Consider the following
counter example: A branch may contain another LCA operator, if the predicate is
nested, as for example green and yellow or orange (where green, yellow, and orange
are tuple variable references). Then the LCA of green and orange is ‘or’, and one
branch rooted at ‘and’ contains another LCA, namely the one between green and
yellow. As a result, every branch has exactly one tuple variable reference.

2. The topmost operator of the branch has to be a Boolean operator. This ensures
that it can be embedded into an existing predicate (somewhere in the subtree
where the branch is pushed down to) using an and operator.

3. All functions in the branch have to be sequence-to-item convertible. This is nec-
essary, because the branch will be “pushed over” a let-quantified tuple variable.

4. A target operator for the branch has to exist. The target operator is an operator in
a subtree below the predicate’s containing select operator, which finally receives
the branch after rewriting.

If all of these criteria are true for at least one branch, the rewriting rule matches.
Otherwise, the predicate cannot be rewritten.

In our example, the two branches did not contain any other LCA, the topmost op-
erators C1 and C2 are Boolean, and the fn:data function is sequence-to-item convert-
ible. The target operators are of course access (9) and access (11) . In general,
finding the target operator might be slightly more complex. For example, consider
the query depicted in Figure 2.4 on Page 20. Here, select (2) contains a predicate
with a tuple variable reference on L:11. This tuple variable, in turn, receives its in-
put from operator select (11) ; select (11) receives input from select (12) ;
and, finally, select (12) receives input from access (14) . Basically, the input
for the predicate is passed across a chain of operators that consists of tuple vari-
ables, operators, projection specifications, and tuple variable references. This chain
is named input chain in the following. The target operator may be any of the op-
erators in the input chain; the deeper in the subtree, the better. The rationale is to
restrict the intermediate result as early as possible. During rewriting, the predicate
push-down pattern examines the input chain from top to bottom to find the target
operator. Let us assume, the current operator in this descent is O. The following
criteria on O influence the selection: 1) If O is not a select operator or not an access
operator, the previous operator in the chain is returned as target operator. 2) If O
has a predicate, the operator is returned as target operator. 3) If O has a complex
projection specification (i. e., a projection specification that does not solely consist of
tuple variable references), the previous operator is returned. 4) If O generates con-
text information (‘cp’ or ‘cs’), the previous operator is returned. If the chain does

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

104 Chapter 5: Query Unnesting and Twig Discovery

not contain a target operator (because already the first operator O had to “return
the previous operator” which does not exist), the fourth criterion from above is not
fulfilled and the branch cannot be rewritten.

If the branches and the target operators are found, the rewriting process can start.
Every branch is detached from its LCA and replaced by a tuple variable reference
corresponding to the one contained in the branch. Depending on the type of target
operator, the following actions are executed: If the target operator already has a
predicate, the branch is attached to that predicate using a Boolean and operator.
Otherwise, a new predicate is created and the branch is added. If the target operator
is a select operator, the tuple variable of the branch is rewritten to the tuple variable,
which belongs to the input chain for that branch. If the target operator is an access
operator, the tuple variable reference is replaced by the above introduced accessed
node reference (“node”).

The predicate push-down rule minimizes intermediate results assuring that predi-
cates are evaluated as early as possible. Therefore, it belongs to the second category
on Page 93. Besides intermediate result size reduction, the rule also facilitates the
mapping onto the physical algebra. As you can see in Figure 5.5, the content pred-
icates now reside inside the access operators. Chapter 7 will introduce efficient
content indexes that can be used for the implementation of these access operators.
Therefore, the rule also belongs to category four. Finally, we want to state that the
application of the predicate push-down rule is not always beneficial, as the follow-
ing example shows: Assume that every item node has exactly one location node and
exactly one quantity node. Then it does not make much difference whether the pred-
icate is pushed down or not (if we further assume that the access operators cannot
be answered by appropriate indexes directly).

5.7 Query Unnesting

We have already discussed that, due to variable references, an XQGM instance can
contain many correlated subexpressions. These subexpressions imply an item-at-a-
time evaluation style, i. e., for every value at a tuple variable with a correlated edge,
the subexpression has to be evaluated. This results in a certain amount of overhead
(for example, to open and close indexes) influencing evaluation performance. To
avoid this overhead, we could try to get rid of the correlated edges. A possible so-
lution would rewrite correlated subexpressions into joins. Joins are bulk operators
that can process larger chunks of data at a time. This strategy is also practiced in
relational systems. Consider the following SQL query (which is a modified version
of Q9 from [Mitschang 95]):

SELECT DISTINCT Q1.name , Q1.profession

FROM EMP Q1

WHERE EXISTS // existential subquery

(SELECT ∗
FROM DEPT Q2

WHERE Q1.dno = Q2.dno // correlated predicate

AND Q2.location = ‘KL’)

The query returns the name and profession of all employees whose department is located
in ‘KL’. The query contains an existential subquery receiving data via a correlated
predicate. Essentially, the subquery is executed for every employee. An alternative

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 105

version of this query, which is based on a join, looks like follows:

SELECT DISTINCT Q1.name , Q1.profession

FROM EMP Q1, DEPT Q2

WHERE Q1.dno = Q2.dno

AND Q2.location = ‘KL’)

This query has no subquery; instead, a join is used and the correlated predicate be-
came the join predicate. For the implementation of the relational join, many efficient
algorithms have been developed. The query optimizer can now pick one to execute
this query. Because this query does not contain any nested subexpression anymore,
we call it unnested. The process of rewriting a query into its unnested form is called
unnesting.

Unnesting is also possible for XML queries, but instead of value-based correlated
subexpressions, we unnest structural correlated subexpressions (or just structural
subexpressions for short). A structural subexpression starts at a tuple variable hav-
ing a correlated edge to an access operator. The access operator receives the current
node at the tuple variable and executes some navigation. Examples for structural
subexpressions can be found quite frequently: in Figure 5.5, where tuple variable
F:4 provides the correlated input for three structural subexpressions (to access op-
erators 9, 11, and 13) or in Figure 2.4 on Page 20, where tuple variable F:8 provides
the input for exactly one structural subexpression. In the following, we consider tu-
ple variables with multiple structural subexpressions first. Queries with this kind of
tuple variables are rewritten to alternative representations, where every tuple vari-
able has at most one correlated edge. Tuple variables with a single correlated edge
will then be discussed at the end of this section.

5.7.1 Boolean Split

The first situation we consider occurs, when Boolean and and or operators are used
on the output of dependent tuple variables. As an example, consider again the
following query:

doc("auction.xml")//item[quantity > 2 and location = "United States"]

We have already seen the initial XQGM for this query in Figure 5.5a, when we con-
sidered predicate push-down. However, now we want to get rid of the multiple
correlated edges at tuple variable F:4. This is the task of the Boolean split rule. An
example is presented in Figure 5.6. The initial XQGM instance is on the left hand
side. Tuple variable F:4 has three correlated edges, and F:4’s select operator has a
Boolean and predicate which is defined over the dependent tuple variables of F:4. In
this situation, the select operator can be rewritten by splitting the select operator and
the Boolean predicate and by using an XQuery intersect operator to merge the split
results. The rationale behind this rewriting is the equation σa∧b(v) = σa(v)∩σb(v): A
selection (σ) with a conjunctive predicate (∧) and the conjunctors a and b over input
v is the same as the intersection of the selection of each conjunctor on input v. Sim-
ilarly, we can rewrite or-based predicates as σa∨b(v) = σa(v) ∪ σb(v) using a union
operator. On the right-hand side of these equations, input v occurs twice. In XQGM,
however, the input operator graph should not be “copied”, because this would im-
ply a repeated evaluation. Therefore, a new operator is added to the XQGM op-
erator set, which allows to split an intermediate result and to send it to multiple
following operators. This operator is called split operator. The only component, a

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

106 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.6 Boolean split

split operator contains, is a for-quantified tuple variable, which signals that each in-
put is directly forwarded to the following operators. As all other XQGM operators,
a split has a unique ID (shown in braces after the operator name). To distinguish
split operators which have been instantiated for and and or predicates, the operator
name furthermore carries the split type (ANDor OR). Due to the simplicity of the
operator’s semantics, we do not give a more detailed definition.

With the split operator, Figure 5.5b reads as follows. The input of the split operator
is evaluated to a sequence of item nodes. This sequence is copied and each copy is

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 107

passed to a select operator. Each select operator filters its input sequence using the
given predicate. The filtered sequences are passed to the intersect operator, which
returns only those item nodes occurring in both input sequences. On these items,
the final child::name step is evaluated.

The pattern of the Boolean split rule searches for a select operator S with a predicate.
The select operator must have three or more tuple variables, of which the first one
(T) is for-quantified and the remaining ones are dependent on that first tuple vari-
able. Furthermore, T must have an input in distinct document order and more than
one correlated edge. The predicate must be an and or an or expression, where more
than one branch of the expression has a tuple variable reference (i. e., a non-constant
input).

During rewriting, the rule first creates a split operator with a for-quantified tuple
variable T ′. The input of T is removed and attached to T ′. Then, a union or intersect
operator is generated, depending on the type of Boolean expression. The original
select operator S is then decomposed as follows: For every branch, the rule

• creates a new select operator Bi with a for-quantified tuple variable Ti receiving
the split operator as input;

• generates a projection specification in each Bi referencing tuple variable Ti;

• generates a predicate in each Bi and injects the predicate; during injection, the
necessary tuple variable is moved from the original select S into the branch Bi;3

• adds the created select branch Bi as input to the set operator.
In the last step, the projection specification or a possibly existing sorting specifica-
tion of the original select operator S have to be handled. Therefore, if 1) S contains
a complex projection specification (i. e., if it contains an expression that does not
simply consist of a reference), or 2) if positional information is generated, or 3) if a
tuple variable other than T is referenced, a new select operator S′ is created with
a for-quantified tuple variable. The set operator is passed as input to this new tu-
ple variable. Furthermore, S′ receives the projection specification and all necessary
tuple variables from S. The same is done for a sorting specification. Note, if de-
pendent tuple variables are transferred, the new tuple variable Tnew is used as the
source for the correlated edge into the subtree of the dependent variable. In our ex-
ample, F:22 serves as input to access (13) , which is the input of dependent tuple
variable L:13. Finally, S is replaced by S′.

In the rewritten XQGM instance, the number of correlated edges is the same as
before. However, now every tuple variable created for a branch (in Bi) has at most
one correlated edge. This was the intention behind the Boolean split rule. Tuple
variable Tnew may still have multiple correlated edges. These are handled in the
next subsection. Note, the input of the split up tuple variable needs to be in distinct
document order, because, in XQuery, the set-based operators are defined to return
their result in distinct document order. If the input would contain duplicates, they
would be falsely removed by the set operators.

Although the rule does not unnest the query, we put it into category one on Page
93. We do so, because the rule substantially simplifies unnesting. In this section, we
used the same example and the same initial XQGM instance as for the discussion

3If the predicate contained a reference to T , no compenents need to be relocated; a reference to Ti is then
sufficient.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

108 Chapter 5: Query Unnesting and Twig Discovery

of the predicate push-down rule. Essentially, both rules match this instance and,
therefore, could rewrite the query, resulting in two different outcomes. If both rules
are contained in a rule set, they are nevertheless disjoint. We just have to make sure
that one rule matches, before the other one does. In fact, the order among the rules
would even be arbitrary.

5.7.2 Multiple Correlated Expression pull-out

In case of Boolean and and or operators, the set-based rewriting provided an ele-
gant opportunity to get rid of multiple correlated edges. Unfortunately, multiple
correlated edges can also occur in other situations, where they have to be handled
as well. Otherwise, the unnesting rule introduced at the end of this section would
not be applicable. As an example, consider the following simple query:

for $i in doc("auction.xml")//item
return <qloc>{$i/quantity}{$i/location}</qloc>

For every item element, this rule creates a new qloc element containing the quantity
and the location of the item. The XQGM of this query is presented in Figure 5.7a. The
tuple variables in the select operator have quite a similar structure to the example
in Figure 5.6a. Tuple variable F:4 has two correlated output expressions into access
operators and two dependent tuple variables. However, this time, not a predicate
is evaluated over the dependent tuple variables, but a complex projection specifica-
tion. It is, therefore, not possible to apply the Boolean split rule, which is why we
need another technique to split up the correlated edges.

The multiple correlated expression pull-out rule (or pull-out rule for short) is a gener-
alization of the Boolean split rule. It can split up the correlated edges of a for-
quantified tuple variable in a select operator S independent of further components
inside S (i. e., independent of predicates, sorting, and projection specifications).
Compared to the Boolean split rule, the logic behind this one is more complicated.
The rule requires the introduction of a new operator to XQGM: the merge operator.
Before we introduce this new operator, let us go back to the example and consider
the rewriting.

On the left hand side, the select operator receives a sequence of item elements. For
every item, the two correlated access operators are evaluated and their results are
collected in two intermediate sequences. These are fed into the ‘SEQ’ operator,
which combines them. The combined result then is wrapped inside a new qloc node,
which is returned. Note, the number of returned qloc nodes is the same as the num-
ber of item elements. Even if neither of the two access operators produces a result,
the projection specification generates an (empty) output element. We have to keep
this behavior in mind during the discussion of the rewriting rule.

The right hand side has a similar structure as the rewriting generated by the Boolean
split rule: the input is given to a split operator whose output is processed in two
branches. The result of the branches is then merged together again. Let us take a
closer look to the branches: In the first branch, an axis step is executed on the given
items. For each item, this step returns a sequence of location nodes (let us assume that
an item has more than one location node). The select operator passes a complex tuple
consisting of the item node and the sequence of location nodes to the merge operator.
The same happens in the second branch with quantity nodes. Finally, the merge
operator has a third input directly originating from the split operator. This input

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 109

Figure 5.7 Multiple correlated expression pull-out

simply passes all item nodes. The merge operator then has the task to merge the three
input sequences into one, where the merge specification defines, which tuples belong
together. In our example, all tuples with the same item (value) belong together and
are merged into one. A merged tuple then has a field containing the item node and
two other fields containing the sequence of location and the sequence of quantity
nodes. From this merged tuple, only the sequences are projected and passed on to
the final select operator. This operator builds the new qloc elements. Note, at this
point, the ‘SEQ’ operator has to receive the same input as before. However, one
issue is still missing: What happens, if an item has neither a location nor a quantity
child? For this case, we define the tuple variable of the merge operator receiving the
input directly from the split operator (i. e., F:15), as outer. This is indicated by the
double circle around F:15. If a tuple variable is outer, a tuple is generated, even if
the other tuple variables do not generate any result. Their values are simply set to
“empty sequence”.

The pattern of the pull-out rule is quite similar to the one of the Boolean split rule. It
searches for a select operator S with three or more tuple variables, of which the first

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

110 Chapter 5: Query Unnesting and Twig Discovery

one (T) is for-quantified and has a duplicate-free input in document order. Again
T must have more than one outgoing correlated edge to access operators, but, in
contrast to Boolean split, not all remaining tuple variables need to depend on T . If
S has a predicate, it may not consist of a Boolean and or or expression to avoid a
collision with the Boolean split operator.

The transformation instruction also resembles the actions of the Boolean split rule:
First, a split operator with a for-quantified tuple variable T ′ is created. The name
of this split operator carries the suffix PROJto signal that this operator was gener-
ated during a multiple correlated expression pull-out (in the following, we will call
this kind of operator a projection split). The input of T is removed and attached to
T ′. Then, a merge operator is instantiated and a for-quantified outer tuple variable is
added, which receives an input from the split operator. In contrast to Boolean split,
the original select operator S is not completely decomposed. Only the tuple vari-
ables are modified. For each dependent tuple variable TD

i , the input expression Ei

is analyzed bottom up, starting at the correlated access operator. Essentially, we are
searching for a tuple variable that roots an XQGM-transformed, already rewritten
relative path expression starting at the correlated access operator. Navigating up
the subtree (at most until TD

i is reached), the rule searches for the largest subexpres-
sion with the following properties: 1) the current subtree has exactly one incoming
edge (and this edge starts at T), 2) no tuple variable in the subtree has a correlated
edge (i. e., the subtree is completely unnested), and 3) the current subtree produces
a sequence of singleton tuples as result. The tuple variable rooting this subtree
T x

i might be equal to TD
i (as in our example), but it does not necessarily have to be

equal. An example containing both “types” of tuple variables is the following query
of the XMark [Schmidt 02] query set (because the corresponding XQGM instance is
quite large, we omit its display here):

let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $a :=

for $t in $auction/site/closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t

return <item person="{$p/name/text()}">{ count($a)}</item>

In XQGM, variable $p is represented by a for-quantified tuple variable (correspond-
ing to T) inside a select operator S, which provides the correlated input for the two
paths $p/name/text() and $p/@id (which we assume are already rewritten, i. e.,
unnested, and which, therefore, do not contain a tuple variable with a correlated
edge). The first path is rooted by a tuple variable T x

1 , which is equal to some TD
i ,

i. e., it belongs to the same operator S as T . This is because, in the XQuery repre-
sentation, path $p/name/text() is evaluated in the return expression of the for
clause, which defined $p . On the other hand, the rooting tuple variable T x

2 for path
$p/@id is not equal to any TD

i in S, because the path is evaluated inside the where
expression of different for clause (namely, of the one defining $t). Obviously, the
pull-out rule can only pull out the two rewritten paths, but not any further subex-
pressions (such as the value-join predicate in the where clause).

With this example in mind, let us come back to the rewriting process. Having found
T x

i , the rule

1. creates a select operator Bi containing a for-quantified tuple variable Ti having
the split operator as input;

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 111

2. detaches the input Ei of tuple variable TD
x and adds a let-quantified tuple variable

to Bi with Ei as input;

3. adjusts the correlated input edge of Ei to Ti;

4. creates a projection specification inside Bi and adds an output expression con-
taining a tuple variable reference to the let-quantified tuple variable;

5. adds a tuple variable reference to Ti to the projection specification;

6. adds another for-quantified tuple variable to the merge operator having Bi as
input;

7. creates a merge specification inside the merge operator (if it not already exists) and
adds a merge group (see below) containing tuple variable references to all posi-
tions providing information generated by the split operator (via tuple variable Ti

in Bi);

8. creates a projection specification inside the merge operator (if it not already ex-
ists) and adds tuple variable references to the positions of information not gener-
ated by the split operator (via the other tuple variable in Bi);

When all correlated expressions are rewritten, the rule checks whether T was refer-
enced in S before the rewriting. If so, it adds another tuple variable reference to the
projection specification of the merge operator referencing the outer tuple variable.
Then, it replaces the input of T with the merge operator and finally, it rewrites select
operator S. For every dependent tuple variable: if T x

i = TD
i , the complete subex-

pression of dependent tuple variable TD
i was pulled out and TD

i can be removed.
Tuple variable references Ri to TD

i (R1 and R2 in our example) have to be rewritten
to T , resulting in references R′i. Note, the positions of these tuple variable references
have to be adjusted to the right values (therefore, the position in R′1 in our example
was modified to 1). If T x

i 6= TD
i for any TD

i in S, only a part of the subexpression
was pulled out. Tuple variable TD

i cannot be removed. However, because the input
of T x

i was removed, the resulting information generated by select Bi (containing
the input of T x

i) is provided using an (external) tuple variable reference to T . This
external tuple variable reference also has to access the “right” position (similar to
the R′i).

As you can observe, the first part of the rewriting is quite similar to the Boolean split
rule. In the second part, however, S is not completely removed as in the Boolean
split rule, but its input at tuple variable T is redefined. Thus, tuple variables are
removed from S and all tuple variable references inside S have to be adjusted to the
new input positions.

An issue so far not discussed is the concept of a merge group. Generally, the merge
specification defines which items in the input tuples have to have the same value.
If the input generated by the split operator consists of singleton tuples (as in our
example), there is exactly one field defining the comparison value in each input
stream. However, if the split input consists of n-ary tuples (as it happens in the
general case), n fields define n comparison values in each input stream. A merge
group allows to define which fields have to be compared in each stream. There-
fore, a merge group is a list of tuple variable references. This list specifies for each
input stream (i. e., for each output generated by a Bi), which position has to be com-
pared. Our example defines only one merge group with tuple variable references to
positions 0, 1, and 1 in tuple variables F:15, F:19, and F:23.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

112 Chapter 5: Query Unnesting and Twig Discovery

After rewriting, the rewritten tuple variables in select operators Bi have at most one
correlated edge as desired. Tuple variable T in the rewritten version may, however,
still have correlated edges. These edges cannot be rewritten (and thus, cannot be
unnested) in the current version of the query processor. Their treatment is left open
for future work. Again, although the rule does not unnest the query, it facilitates
unnesting and is therefore added to the first category on Page 93. At the end of
this section, the merge operator shall be introduced the same way the other XQGM
operators were introduced in Chapter 4.

The Merge Operator

The syntax of the merge operator extends the existing XQGM syntax by the in-
troduction of a merge specification (MERGE_SPEC). A merge specification displays
one or more merge groups. A merge group is a list of tuple variable references.
If n merge groups are defined, then the ith entry of each merge group is attached
to an oval component carrying an equal sign. This component is called group root
in the following. The connections between the group root and the tuple variable
references declares, which values have to be equal during the merge. The projec-
tion specification, the optional sorting specification, and the optional predicate of a
merge operator have the same syntax as in select operators.

To define the semantics of the merge operator, we again need to specify the set, map,
and eval functions. We start with the map function: A merge operator M with a
projection specification X = M.proj_spec, a sorting specification U = M.sort_spec,
a predicate F = M.predicate , a merge specification G = M.merge_spec and n tuple
variables T1, . . . , Tn is mapped to a logical algebra (LAL) expression as follows:

map(M) =

DDOCPCS [X.ddo?,X.cp?,X.cs?](

PROJECT [set(X.expression[1]),...,set(X.expression[n])](

SORT [U.modifiers,set(U.expression[1]),...,set(U.expression[n])](

SELECT [set(F.expression)](

SELECT [set(G.group_root[1],...,G.group_root[n]))](

TUPGEN [T1,...,Tn](

map(T1 → operator1),

. . . ,

map(Tn → operatorn)))))))

The structure of this mapping is almost the same as for the select operator (pre-
sented on Page 55 in Section 4.2.4). The only difference is the extra select operator
handling the group roots. The rationale behind this mapping is the following: Be-
cause all tuple variables are for-quantified, the tuple generator creates the Cartesian
product of all input tuples. The merging specification is a special selection predi-
cate over this Cartesian product. It selects all tuples, whose values on the positions
defined by the merging groups are equal. On the merged stream, the further com-
ponents of the merge operator can be evaluated as in an ordinary select operator.
Note, of course, the Cartesian product can become very large, if the merge operator
would be implemented as suggested by this mapping. However, because we are at
the logical level in this discussion, we do not care about this issue. A physical im-
plementation of the merge operator would exploit the fact that the input of the split
operator is in distinct document order, i. e., every input tuple is unique. Therefore,
it is possible to attach a dynamic tuple identifier TID to each split input tuple and
implement the tuple comparison based on the TID.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 113

Listing 5.1 The a) set function and the b) setGroup function for group roots

a) set

Input: Array of XQGM Group Roots E
Output: LAL Expression R
begin1

R← setGroup(E[1]);2
for i in 2 to |E| do3

R← R ∧ setGroup(E[i]);4
end5
return R;6

end7

b) setGroup

Input: Group Root G
Output: LAL Expression R
begin1

LAL Expression R← set(G.tupvarref [1]) is set(G.tupvarref [2]);2
for i in 3 to |G| do3

R← R ∧ set(G.tupvarref [i]) is set(G.tupvarref [i− 1]);4
end5
return R;6

end7

Because all the logical operators in this mapping are already defined, we do not
need to provide an eval function. Nevertheless, note that the concept of outer tuple
variables has been introduced above. Tuple variables fall into the responsibility of
the TUPGEN operator. Therefore, the eval method of this operator has to be adjusted
to support outer semantics. The necessary modifications to the operator’s code are
straightforward and not explicitly shown here.

The final missing piece is the set function. So far, it is only defined on XQGM expres-
sions (see Listing 4.3 on Page 62). In the above mapping, however, set was applied
to the group roots of the merge specifications. These group roots are no XQGM
expressions. Therefore, to define the input of the inner LAL select operator, the set
function has to be overloaded to generate a LAL expression. Listing 5.1a shows
the overloaded set function. The set function creates a chain of conjunctions based
on the results returned by the setGroup helper function (shown in Figure 5.1b) on
each group root. The setGroup function is based on the XQuery node comparison
operator ‘is’ to express equality.

5.7.3 The Unnesting Rule

The unnesting rule introduced in this section can transform structural subexpres-
sions into structural joins. A structural join is a special operator, for which—similar
to the relational join operator—many efficient evaluation algorithms have been pro-
posed in the literature, e. g., [Al-khalifa 02, Chien 02, Mathis 06a]. Because large
performance differences can be expected between the node-at-a-time processing
style implied by structural subexpressions and the bulk evaluation style of unnested
queries, the unnesting rule is quite important. As stated in the introduction of this
section, the rule can operate on tuple variables having exactly one correlated edge
leading to an access operator. The previous two rules were introduced to dissolve
tuple variables with multiple correlated edges into this simpler form.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

114 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.8 The simplest unnesting scenario

Examples

To illustrate the features of the unnesting rule, we consider more than one example.
Let us start with a simple one. On the left hand side of Figure 5.8a, you can see
a simple select operator with an input of item tuples, for each of which an access
operator is evaluated. The access operator returns the child location elements. The
input to the access operator is given via a correlated edge from tuple variable F:2.
On the right hand side, the correlated edge as well as the tuple variable have been
removed. Because the correlated edge is missing, the access operator does now not
have any “context” anymore: there is no current item node providing the starting
point for the navigation calculated by the access operator. The only thing the access
operator can do, is to return all location elements. To indicate that an access oper-
ator returns all elements fulfilling a certain node test, the oval component carries
the keyword “sequence”. The operator is then called a sequence access operator. The
output of the sequence access operator is the sequence of all location nodes in docu-
ment order. The sequence is given to a new type of operator, namely the structural
join operator. This operator receives two input node sequences and joins them on a
structural predicate, the input nodes have to fulfill. In our example, the structural
predicate defines that the location nodes have to be children of the item nodes. The
projection specification of the structural join specifies that only the location elements
have to be returned. Thus, the operator is actually a structural semi-join operator. The
location elements are given to the original select operator. Note, this operator now
has no “ddo” output modifier anymore. On the left hand side, its task was to en-
sure that the result is in document order and duplicate-free. Because we expect this
property directly from the output of the structural join operator, the “ddo” output
modifier could be removed.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 115

As a second example, consider the following query, whose initial XQGM instance is
shown in Figure 5.9a:

doc("auction.xml")//item/location[2]

For each item, the subtree below L:4 is evaluated. The access operator does not
only produce all child location element of an item, but also the location’s context
position (“cp”). In select (8) , a predicate is evaluated on the generated position.
Only tuples with position 2 qualify. The location elements of the qualified tuples are
passed on to the final select operator, which simply applies output modifier “ddo”.
As an example run, let us assume that item i1 has two location children l1 and l2 and
that item i2 has children l3 and l4. Then, for i1, the access operator returns the two
tuples [l1, 1] and [l2, 2] . Only the second tuple fulfills the positional predicate
and l2 is returned. Similarly, for i2, location l4 is returned.

Unnesting a query with a positional predicate is slightly more complex than the pre-
vious example. Below L:4, some actions (adding the “cp” information and filtering)
are carried out for the group of all the location elements which are the children of a
certain item. The group is induced by the correlated edge, which provides each item
as a kind of group “context”. When the correlated edge is removed, the group infor-
mation is lost, because the join replacing the edge simply delivers pairs of matches,
but no groups. Therefore, to correctly attach the correct context position informa-
tion to each location, grouping is required. Grouping is expressed by the group by
operator in XQGM.

To understand the rewriting in Figure 5.9b, let us consider the above example with
i1 and i2 and their children l1 to l4 again: The structural join operator, which was in-
serted to remove the correlated edge, returns the following tuple stream: [l1, i1],
[l2, i1], [l3, i2], [l4, i2] . In contrast to the structural join operator inserted
during the previous rewriting, this is not a semi-join, because in the projection spec-
ification, both tuple variables are referenced.

On the intermediate result, the task is now to attach the “cp” information. How-
ever, because unnesting destroyed the “for each item” groups, we have to group
the stream again. This happens inside the group by operator. The nesting specifi-
cation NEST_SPECof the group by operator defines, which tuple field(s) induce the
group, i. e., which fields have to have the same value. In our example, this is at po-
sition 1. Thus, all tuples having the same item on the second field form a group:
[<[l1], [l2]>, i1], [<[l3], [l4]>, i2] . The projection specification of the
group by operator contains a function, called xtc-fn:position. The prefix indicates
that this function is an XTC-internal function. It receives a sequence of nodes and
attaches the context position to each node. In our example, the projection specifi-
cation returns the following sequence of tuples: [<[l1, 1], [l2, 2]>], [<[l3,
1], [l4, 2]>] . Note, because the item field was not referenced in the projection
specification, no items are contained in this intermediate result anymore.

The next task is to filter all tuples with context position 2. On the previous in-
termediate result, this is, however, not directly possible, because the tuples are
still grouped. Therefore, they have to be “ungrouped”. This is the task of the
unnesting operator. Similar to the group by operator, the unnest operator contains
a nesting specification, defining the fields that need to be “copied”. Unnesting is
the reverse operator of group by. As an example, consider unnesting intermedi-
ate result [<[l1], [l2]>, i1], [<[l3], [l4]>, i2] . The nesting specification

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

116 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.9 Unnesting over positional predicate

of the unnest operator would contain a reference to position 1 (i. e., to items i1 and
i2), resulting in the unnested sequence [l1, i1], [l2, i1], [l3, i2], [l4, i2] .
The intermediate result generated by the group by operator, however, only contains
groups of location elements, but no items anymore. Therefore, the nesting specifica-
tion of the unnest operator is empty. This leads to the following result, where the
groups are simply “flattened”: [l1, 1], [l2, 2], [l3, 1], [l4, 2] . The re-
mainder of the query is evaluated as before. The sequence is filtered on the position
and locations l2 and l4 are returned.

As a third and last example, consider the following query, whose initial XQGM
instance is shown in Figure 5.10a:

doc("auction.xml")//item[count(location) < 2]

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 117

Figure 5.10 Unnesting with group semantics

On the left hand side, the group of location elements is calculated for each input
item. These groups are then passed to the predicate in the select operator. If the
number of location elements in a particular group is smaller than 2, the item element
is returned. Otherwise, the item element is skipped. Obviously, the location elements
are grouped by the item elements. If we want to get rid of the correlated edge, we
have to consider this group semantics again. A similar situation already occurred
in one of our examples earlier: The multiple correlated expression pull-out pattern
leaves queries in a state, where group semantics have to be regarded. In Figure
5.7b on Page 109, operators select (15) and select (17) have a tuple variable
with a correlated edge. Their projection specification returns information from both
tuple variables, where the intermediate results delivered by one subtree (e. g., the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

118 Chapter 5: Query Unnesting and Twig Discovery

location elements from access (11)) are grouped by the item input.

After the correlated edge has been unnested to a structural join, the grouping op-
erator can reconstruct the necessary groups again. Let us consider the rewriting
in Figure 5.10b and our example scenario with i1, i2, and their children l1 to l4
again. As before, the structural join returns sequence [l1, i1], [l2, i1], [l3,
i2], [l4, i2] . Note, an item has to be passed on, even if it does not have a location
child, because otherwise the count-based predicate would not be evaluated on that
item and the result would be not correct. Therefore, the structural join has to be
outer. Again, this fact is indicated by a double circle around the outer tuple variable
(as in the merge operator).

In the next step, the group by operator nests the location elements, resulting in se-
quence [<[l1], [l2]>, i1], [<[l3], [l4]>, i2] . Note, in contrast to the pre-
vious example, no grouping function is applied and both tuple fields are returned
(items are required as final output). Then, operator select (6) can test the pred-
icate against the first field of each tuple (consisting of a sequence of location el-
ements). If the sequence size is smaller than 2, the first field containing the item
element is returned. In our example, this is never the case.

Finally, let us consider what happens during the application of the unnesting rule
on the example presented in Figure 5.7b on Page 109: In each branch, the unnest-
ing pattern is applied, which introduces a structural join operator. Because of the
group semantics, a group by follows the structural join. Operators select (15) and
select (17) are rewritten to simple projections which are merged into the group
by operator by the select fusion rule.

The Pattern

The pattern of the unnesting rule is sketched in Figure 5.11a (note, dashed com-
ponents and arrows are optional; the double star (**) stands for any set of compo-
nents). It searches for a select operator S with no sorting specification and two tuple
variables, of which the first one (T) is for-quantified and has exactly one correlated
edge to an access operator A. The access operator resides inside a subtree below
dependent tuple variable TD, which also belongs to S. Similar to the pattern of the
multiple correlated expression pull-out rule, this rule examines the subtree below
TD. As above, we are searching for a tuple variable rooting an XQGM-transformed
relative path expression starting at the correlated access operator. Again, navigat-
ing up the subtree (at most until TD is reached), the rule searches for the largest
subexpression with the following properties: the current subtree has exactly one
incoming correlated edge (and this edge starts at T), no tuple variable in the sub-
tree has a correlated edge (i. e., the subtree is already unnested), and the subtree
produces a sequence of singleton tuples as result. The tuple variable rooting this
subtree is called T x. In contrast to the pull-out rule, we demand that T x is equal to
TD. This means that unnesting is only possible over XQuery path expressions.

The Transformation Instruction

The result generated by the transformation instruction is sketched in Figure 5.11b.
As you can see, the correlated edge is rewritten to a structural join, with the orig-
inal input E of T and the rewritten access operator A as input. In contrast to the
nested version, all operators between A and TD now “see” the information gener-
ated by E, because they possibly receive this information now as input. To keep the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 119

Figure 5.11 The unnesting pattern and the result of the transformation instruction

query semantics correct, these operators have to be rewritten. Sometimes more than
one operator is generated for the one to be rewritten (therefore, the dashed boxes
are represented in white color). Finally, also the original select operator S needs
to be rewritten, because now, it only contains a single tuple variable and also the
input generated by E flows over this tuple variable. Sometimes this input has to
be “adjusted” by a grouping operator. After this introduction, we now delve into
the details. The actions necessary are grouped into analysis, structural join creation,
operator path rewriting, and select rewriting.

Analysis

The rule first analyzes the select operator S matched. The result is captured in the
following Boolean flags, which influence the following rewriting process:

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

120 Chapter 5: Query Unnesting and Twig Discovery

• forGeneratesOutput is true, when T is referenced in the projection specifica-
tion, i. e., when the left-most arrow in Figure 5.11a starting at T exists. For an
example, see select (15) in Figure 5.7b on Page 109.

• hasExistentialPredicate is true, when the predicate exists and if it con-
tains a simple tuple variable reference, for example, as select (6) in Figure 5.3
on Page 98.

• hasPredicate is true, when S contains a predicate, as select (18) in Figure
5.6 on Page 106 .

• forReferencedInPredicate is true, when T is referenced in the predicate,
as in select (8) of Figure 5.3 on Page 984. This flag corresponds to the second
arrow starting at T leading into the predicate.

• hasComplexProjSpec is true, when the projection specification does not solely
consist of one simple tuple variable references, as in select (1) of Figure 5.7a
on Page 109.

Structural Join Creation

Based on these settings, let us consider the creation of the structural join operator.
The first input of this operator will be access operator A; the second input will be the
input E of T . We will refer to the first input as left and of the second input as right
in the following. The default type of the structural join operator to be created is full
join. In a full join, both tuple variables are referenced in the projection specification.
Other join types depend on some of the five flags above, as follows:

• If forGeneratesOutput or forReferencedInPredicate is true, the join
type is right outer. In a right outer join, the right input (which originally was
the input of T) will be passed on, even if the left input did not return any results.
The value of the left input is then the empty sequence. This situation occurs in
our third example, shown in Figure 5.10.
This semantics may not lead to a correct result, when forReferencedIn-
Predicate is false and hasExistentialPredicate is true. In case of an
existential predicate on the left input, no tuples may be passed on from the right
input, when the left input does not generate any results. Therefore, in this case,
the join is not right outer. This situation occurs in Figure 5.3b on Page 98. Note,
in this example, a right outer join would not yield a false result, because there is
still the content-based predicate that would filter tuples with empty quantity ele-
ments. Without the content-based predicate, however, the rewriting would not
be correct.

• Else, if forGeneratesOutput and hasExistentialPredicate are true,
forReferencedInPredicate is false, and TA is TD, the join type is right semi.
In this case, the left input is not required for output, because it just serves as
an existential predicate. For this situation, no previously shown example query
exists.

• Else if forGeneratesOutput , forReferencedInPredicate , and
hasPredicate are false, the join type is left semi. In this case, only the
left input is required as output. This is the case in our first example, shown in
Figure 5.8.

4Note, this particular select operator cannot be unnested, because it has no correlated edge. It was referenced
here only to make the meaning of the Boolean flag clear.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 121

Having defined the join type, the structural join can be instantiated. The left input
is access operator A. Therefore, A is detached from its containing tuple variable TA

and is transformed to a sequence access operator. The right input of the structural
join operator is the subtree below T . The structural join operator is set as the input
of tuple variable TA.

Operator Path Rewriting

In the next step, all operators “on the operator path between” tuple variable TA

(which originally contained access operator A) and TD have to be rewritten. As we
will see, the projection specification of A also plays a role in this rewriting. In our
first example (Figure 5.8), there are no operators to rewrite, because TA and TD are
the same variable. Nothing has to be done here. In our second example (Figure
5.9), all operators between F:3 and L:4 have to be rewritten, i. e., select (8) . In
the third example (Figure 5.10), again TA is equal to TD. However, rewriting is nec-
essary here, because the access operator generated positional information, which
needs to be specially handled. In general, the operator chain between TA and TD

describes an unnested, relative path expression (as defined by the pattern above).
Therefore, we have to be able to rewrite any operator that can occur in this already
unnested path expression (e. g., group by, unnesting, select, structural joins, split,
merge, and set-based operators). Note, a repeated application of the unnesting rule
frequently leads to the situation that unnesting is executed over an operator path,
over which unnesting has been applied before. As a result, it also has to be possible
to apply unnesting over our sample results in Figures 5.8b, 5.9b, and 5.10b (because
these are already unnested path expressions). We have to keep this important con-
sideration in mind to correctly define the rewriting semantics.

Rewriting the operator path is executed by an iteration over all operators in a
bottom-to-top manner. Every operator is rewritten separately, resulting in one or
more modified/new operators. The following two Boolean flags are initialized in
each iteration step. Besides the five flags from above, they also influence the opera-
tor’s rewriting:
• If posInfo is true, the previously rewritten operator generates the context posi-

tion information. The flag is initialized with the information from the projection
specification of access operator A. For example, in Figure 5.9a, the flag is set to
true.

• If lastInfo is true, the previously rewritten operator generates the context size
information. Again, projection specification A provides this information initially.
After both positional flags have been initialized, the corresponding information
is deleted from A’s projection specification.

Finally, if flag forwardAxis is true, access operator A evaluated a forward axis.
We now discuss the various rewritings depending on the setting of the introduced
flags.

Case 1: The most simple situation occurs, when the information generated
by T is neither required in the projection specification nor in the predicate,
and when no positional information is required, i. e., forGeneratesOutput ,
forReferencedInPredicate , posInfo , and lastInfo are all false. Then, the
operators do not need to be rewritten at all, because the information generated by
the right input does not influence the operators: they still only “see” the left input.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

122 Chapter 5: Query Unnesting and Twig Discovery

Case 2: A more complex situation arises, when either forGeneratesOutput or
forReferencedInPredicate is true, i. e., when the right output is required in
select S (and still posInfo and lastInfo are false). In this case, the structural join
operator was instantiated as full join or as a right outer join before. The remain-
ing operators have to be rewritten in a way such that they “loop the right input
through”. Basically, this is achieved by adding tuple variable references to the op-
erators. Furthermore, in the case when the structural join operator was instantiated
as right outer, we have to assure that the right input is delivered to TD. If the op-
erator path contains further structural joins, they are also set to right outer. For the
sake of brevity, we do not explicitly provide the semantics of this rewriting here,
because adding tuple variables without altering further operator semantics is quite
straightforward. In the following, we assume a rewriting function produceOutput.
This function is applied in every iteration to an operator on the operator path, re-
sulting in a rewritten representation that delivers the requested output.

Case 3: Finally, we consider the situation, when during the iteration posInfo is
true or lastInfo is true. This means that the current operator to be rewritten is a
select operator and the projection specification of the previous operator generated
positional information (which will be checked in this select operator). An example
for this scenario is shown in Figure 5.9, where select (8) has to be rewritten.
In the example, the unnesting rule created a left-semi structural join with A and T ’s
subtree as input so far (shown in Figure 5.9b). The structural join is directly attached
to tuple variable F:3 (TA), i. e., the operators in the dashed box are not yet there.

The first action rewrites the subtree below TA in a way such that TA receives the
results generated by the right input (if not already the case, due to previous appli-
cations of the unnesting rule). This is again achieved by the produceOutput function,
which is applied to the structural join operator, thereby adding a tuple variable re-
ference (as indicated in Figure 5.9b).

In the next step, the input (structural join operator) of TA is detached, because fur-
ther operators will be inserted at this position. First, a group by operator is created.
It has exactly one for-quantified tuple variable and receives the structural join as
input. Because we group by the right input, the nesting specification of the group
by operator receives a tuple variable reference for each field generated for the right
input in the structural join. In our example, this is just one reference to position 1.
The actual task of the grouping operator here is to reconstruct the context and to
generate the necessary positional information, as explained during the discussion
of the second example. As we have seen, generating positional information is done
by special XTC-specific functions. These are: xtc-fn:position, xtc-fn:reverse-position,
and xtc-fn:last. The input to all these functions is a tuple variable reference to the
field generated by the left input of the structural join. In case posInfo is true, ei-
ther xtc-fn:position or xtc-fn:reverse-position is generated, depending on the value of
forwardAxis . The second function has similar semantics to the first one. The only
difference is that xtc-fn:reverse-position attaches the positional information in reverse
order to the tuples of an input sequence. Thus, the function makes the special “re-
verse semantics” of positional predicates on reverse axes possible. If both, posInfo
and lastInfo are true, the functions are simply chained. The grouping operator
is now complete and the required unnest operator can be instantiated.

The unnest operator does not require a nesting specification, because only nested
results (groups) are passed on from the group by operator. The task of the unnest

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 123

operator is then to get rid of the groups, which automatically happens, when no
nesting specification is given. The projection specification has to reference all nec-
essary fields in the unnested tuple sequence. The number of required tuple variable
references again depends on posInfo and lastInfo . If both are true, three refer-
ences are required, otherwise only two. The first reference refers to the input gener-
ated by the left expression; the remaining ones reference the positional information
generated. The unnest operator is set as input to TA. The rest of the rewriting
is executed in analogy to Case 2, i. e., depending on forGeneratesOutput and
forReferencedInPredicate .

Select Rewriting

Finally, select operator S itself has to be modified to correctly process the in-
put returned from the rewritten subtree. If hasComplexProjSpec is true or
hasPredicate is true and hasExistentialPredicate is false, a grouping op-
erator is required. The rationale lies in the semantics before the rewriting: for ev-
ery input delivered by E, the predicate and the projection specification have been
evaluated. This has also to be true after the rewriting. We have already discussed
this requirement in our third example (see Figure 5.10). To assure group semantics,
the right input is delivered to TD and a group by operator has to be inserted. The
rewriting for input delivery is either already completed (due to the operator path
rewriting) or it has to be achieved. In the latter case, the produceOutput function is
applied to the operator path as before. The new group by operator receives the oper-
ator path as input. It nests by the tuple fields generated for the right input, and also
returns these fields, if forGeneratesOutput or forReferencedInPredicate
is true. The group by operator, in turn, is attached to TD.

In Figure 5.11b, you can observe that now, the information generated by both sub-
trees is delivered by one tuple variable (instead of two as before). Therefore, if
forGeneratesOutput or forReferencedInPredicate is true, all tuple vari-
able references to T have to be rewritten to reference TD. Finally, if an existential
predicate has been rewritten to a semi-join before, the predicate can be deleted. To
finish the transformation instruction of the unnesting rule, tuple variable T is re-
moved.

This unnesting rule belongs to the first and the fourth category of the ones shown
on Page 93: it unnests and, thereby, facilitates the mapping onto physical structural
join operators. To complete this section about unnesting, the three newly introduced
operators have to be embedded into XQGM. These operators are the structural join,
the group by operator, and the unnest operator. We start with the first one.

The Structural Join Operator

Conceptually, the structural join operator is a special type of select operator. The
only extension is the new predicate type, because a structural join has a structural
predicate. Of course, the items referenced by these predicates have to be nodes. On
these nodes, the predicate has to decide the structural relationship of one of the 13
XPath axes. Because this is straightforward, we do not specify structural predicates
in more detail. The map, set, and eval functions do not need to be modified for the
structural join operator, because they are the same as for the select operator.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

124 Chapter 5: Query Unnesting and Twig Discovery

The Group By Operator

Syntactically, a group by operator has exactly one for-quantified tuple variable, a
nesting specification (NEST_SPEC), and a projection specification. The nesting spec-
ification contains a list of tuple variable references. To define the semantics of the
operator, we again need to define the set, map, and eval functions: A group by op-
erator G with a projection specification X = G.projectionSpecification , a nesting
specification N = G.nestingSpecification , and one tuple variables T is mapped to a
logical algebra (LAL) expression as follows:

map(G) =

DDOCPCS [X.ddo?,X.cp?,X.cs?](

PROJECT [set(X.expression[1]),...,set(X.expression[n])](

GROUP_BY [set(N.ref 1),...,set(N.ref
n
])(

SORT [M,set(N.ref 1),...,set(N.ref
n
])(

map(T → operator)))))

Note, we used “ref ” to abbreviate “tuplevariable_reference”. The projection opera-
tor and the DDOCPCS operator are already introduced. They handle the projection
specification. Their input is provided by a LAL GROUP_BY operator, whose se-
mantics will be defined below. The tuple variable references are simply translated
by the set function to LAL tuple access operators, which are given to the group-
ing operator as parameters. Therefore, the set function has the standard semantics
(defined in Listing 4.3 on Page 62).

The semantics of the LAL GROUP_BY operator is given by the algorithm in List-
ing 5.2. The operator only works on inputs sorted on the fields referenced by the
nesting specification (sort-based group-by implementation). This behavior is suffi-
cient in most cases, because, due to the ddo function and the generation of ordered
streams by structural join operators, the input streams are usually ordered. If this is
not the case, a special SORT operator is inserted. The sort operator reorders the tu-
ples such that the values of the tuple variable references given (i. e., ref 1, . . . , ref n)
occur in ascending order. The sort modifier M , therefore, contains n “ascending”
modifiers. Because the group by operator is sort-based, it simply consumes the in-
put tuple stream and collects all tuples with the same value on the fields referenced
by the nesting specification. As soon as this values changes, the group boundary has
been reached and a new group starts.

For the discussion of the algorithm in Listing 5.2, let us assume an example input:
operator O in line 2 of the main algorithm (Listing 5.2) returns the following tuples
in a sequence S: [a, a, b], [a, a, c], [a, b, c], [a, b, d] , and [a, c, x] . We further-
more assume the nesting specification to refer to positions 0 and 1, i. e., the first two
tuple fields are checked for equality. We also call these fields group definition fields.
Obviously, S is not empty, therefore, initGroup is called on the first tuple of sequence
S in line 8. This function is a helper function with a multi-valued return value (re-
turning TupleSequence I and Tuple r). The function is shown in Listing 5.3. Its task
is to initialize a tuple r containing the group definition fields (which always have
the same value for each group) and a sequence I containing the first tuple of the
new group. In our example, initGroup is called with tuple [a, a, b] . At first, local
variables for I and r are defined. Then, another variable q for the first group tuple
is instantiated. Then, the algorithm iterates over all fields of the given tuple. If the
field is referenced in the set of access operators (i. e., in the nesting specification), it
is appended to r (containing the group definition fields), otherwise, it is appended

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.7 Query Unnesting 125

Listing 5.2 The main algorithm of the GROUP_BY operator

eval(GROUP_BY [A1,...,An](O))

Input: Parameters: TupleAccessOperators A← A1, . . . , An, Arguments: Operator O
Output: TupleSequence R
begin1

TupleSequence S ← eval(O);2
if S is empty then3

return ();4
end5
Tuple r; // intermediate result tuple6
TupleSequence I ; // intermediate group tuple sequence7
(I, r)← initGroup(A, S [1]);8
for int i← 2 to |S|+ 1 do // the remaining tuples in the sequence9

if i = |S|+ 1 or newGroup(S[i], S[i− 1]) then10
// finalize current group and init new one11
Tuple x← [|r|+ 1];12
x← x + I ; // set group sequence as first tuple field13
x← x + r; // set group definition fields14
R← R + x; // add to result sequence15
if i 6= |S|+ 1 then16

(I, r)← initGroup(A, S[i]);17
end18

else19
Tuple t← S[i];20
Tuple q ← [|t| − |A|]; // intermediate group tuple21
for int j ← 1 to |t| do22

if A not contains j then23
q ← q + t[j];24

end25

end26
I ← I + q;27

end28

end29
return R;30

end31

to q (the first tuple of the new group). When the iteration is complete, q is added to
the intermediate group sequence I , which, in turn, is returned together with r. The
result of initGroup in our example is r = [a, a] and I =<[b]> .

Listing 5.3 The initGroup algorithm

Input: TupleAccessOperators A, Tuple t
Output: TupleSequence I , Tuple r
begin1

I ← (); // intermediate group tuple sequence2
r ← [|A|]; // intermediate result tuple3
Tuple q ← [|t| − |A|]; // intermediate group tuple4
for int j ← 1 to |t| do // for each index to a tuple field5

if A contains j then6
r ← r + t[j]; // append to intermediate group definition tuple7

else8
q ← q + t[j]; // append to intermediate group tuple9

end10

end11
I ← I + q; // add to intermediate result sequence12
return (I, r); // returned combined result13

end14

The second helper function in Listing 5.4 can detect new groups in the sorted input

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

126 Chapter 5: Query Unnesting and Twig Discovery

streams. It simply compares the values of the group definition fields of the current
tuple with the corresponding fields from the previous tuples. If at least one field
does not match, a new group is detected.

Back in the main algorithm, the remaining tuples from S are consumed. If the end
of the tuples is reached (i = |S| + 1) or if a new group is detected by function
newGroup, the tuple for the current group has to be finalized and, in case of the
existence of subsequent tuples, a new group has to be started. This happens in lines
11 to 17. Note that the grouped field is written to the first position in the resulting
tuple. In our example, the second tuple, [a, a, c] , does not trigger the creation of
a new group, therefore [c] is added to I , resulting in I = <[b], [c]> . Then, the
third input tuple, [a, b, c] triggers a new group, because the second position of this
tuple is different to the previous one. Therefore, combined tuple [<[b], [c]>,
a, a] is written to the result sequence R, I is initialized to <[c]> , and r is [a,
b] . After the fourth tuple has been consumed, the last group is detected, and tuple
[<[c], [d]>, a, b] is written to R. The last group then has the following value:
[<[x]>, a, c] .

Listing 5.4 The newGroup algorithm

Input: TupleAccessOperators A, Tuple t1, Tuple t2
Output: boolean R
begin1

for int j ← 1 to |t| do2
if A contains j and t1[j] 6= t2[j] then3

R← false ;4
return R;5

end6

end7
R← true ;8
return R;9

end10

The Unnest Operator

Syntactically, the XQGM unnest operator has a similar structure as the group-
ing operator: Unnest operator U consists of a single tuple variable T , a nest-
ing specification5 N = U.nestingSpecification , and a projection specification X =
U.projectionSpecification . No other components are allowed. The nesting specifica-
tion can contain at most one tuple variable reference. This reference points to the
field containing the nested value to be unnested. The unnest operator is mapped to
a LAL operator as follows:

map(U) =

DDOCPCS [X.ddo?,X.cp?,X.cs?](

PROJECT [set(X.expression[1]),...,set(X.expression[n])](

UNNEST [set(N.ref)](

map(T → operator))))

The mapping is quite similar to the GROUP_BY mapping and, therefore, does not
need further explanation. In Listing 5.5, the unnesting algorithm is shown. To facil-

5... although this “nesting specification” belongs to an unnest operator, we used the same name as for the
grouping operator here.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.8 Twig Query Detection 127

itate comprehension, we resume the previous example: let O deliver the following
tuple sequence: [<[b], [c]>, a, a] , [<[c], [d]>, a, b] , and [<[x]>, a,
c] to variable S. Furthermore, let the nesting specification point to the first field in
the tuple. The given tuple sequence is not empty. Therefore, the return statement
at line 4 is skipped. If A is undefined and the size of the input tuples is exactly one,
no “real” unnesting is required. We only have to dissolve the groups, as motivated
during the discussion of the second example in Figure 5.9 on Page 116. This hap-
pens in lines 7 to 10. Every sequence in S is simply appended to the result sequence,
which is then returned.

In case, the unnesting position referenced by A is defined, we have to generate
unnested tuples. Before, however, we have to calculate the size of the tuples to be
instantiated. Therefore, we examine the first tuple t and the first sequence I to be
unnested. Variable st stores the input tuple size (in our example 3); variable sg stores
the group tuple size (in our example, this is the size of [b] , i. e., 1); and variable so

stores the output tuple size (in our example, 3). Then, an iteration over all tuples
in sequence S is executed (line 20 to 32). For each tuple, the nested sequence I is
extracted. Then, for each tuple q in this sequence, an output tuple r (of size so) is
generated as follows:

1. all fields before the unnesting position are copied from t to r;
2. all fields of the current group tuple q are copied to r;
3. all fields after the unnesting position are copied from t to r;

If I is an empty sequence, we nevertheless want to generate an unnested tuple.
Therefore, in this case, the positions where the unnested group tuple is stored, is
padded with empty sequences (line 33 to 45).

In our example, the first value of t is [<[b], [c]>, a, a] and I is <[b], [c]> .
For the first q =[b] in I , tuple r =[b, a, a] is generated; for the second q =[c] ,
tuple r =[c, a, a] is generated, and so on. Finally, we receive the following unnested
tuple sequence: [b, a, a], [c, a, a], [c, a, b], [d, a, b] , and [x, a, c] .

With the discussion of the unnest operator, we now finish this section. The next
section shows how opportunities to apply twig pattern matching can be found in a
rewritten and unnested XQGM instance.

5.8 Twig Query Detection

So far, the query unnesting rule(s) introduced before are capable of revealing op-
portunities to apply structural join operators for path evaluation. But what does
a structural join operator actually do? Basically, it finds node matches fulfilling a
certain structural relationship. Because a structural join operates on two input se-
quences at a time, it can only find binary matches. Therefore, to evaluate a path
expression, with, let’s say, four steps, three structural joins are required (and pos-
sibly some more operators for grouping, unnesting, merging, etc.). The approach
to evaluate path queries with structural joins can have some disadvantages: 1) Be-
cause path expression occur frequently in XQuery, an unnested XQGM instance
often has quite many structural join operators and, thus, many intermediate results
are passed; and 2) the intermediate result produced by a structural join may contain
tuples that do not contribute to the final result, because some tuples will probably

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

128 Chapter 5: Query Unnesting and Twig Discovery

Listing 5.5 LAL UNNEST evaluation

eval(UNNEST [A](O))

Input: Parameters: TupleAccessOperator A, Arguments: Operator O
Output: TupleSequence R
begin1

TupleSequence S ← eval(O);2
if S is empty then3

return ();4
end5
if A is undefined and |S[1]| = 1 then6

for int i← 1 to |S| do7
R← R + S[i];8

end9
return R;10

end11
// analyze tuple sizes12
Tuple t← S[1]; // fetch the first tuple13
TupleSequence I ← A(t); // fetch first tuple sequence to be unnested14
int st ← |t|; // input tuple size15
int sg ← |I[1]|; // group tuple size16
int so ← st − 1 + sg ; // output tuple size17
for t in S do18

I ← A(t);19
for Tuple q in I do20

Tuple r ← [so]; // create new unnested tuple of size so21
for int i← 1 to (position of A) -1 do22

r ← r + t[i]; // append original tuple fields residing before unnest field23
end24
for int i← 1 to sg do25

r ← r + q[i]; // append fields of unnested tuple26
end27
for int i← sg + 1 to |t| do28

r ← r + t[i]; // append original tuple fields residing after unnest field29
end30
R← R + r;31

end32
if I is empty then // pad group tuple with empty sequences33

Tuple r ← [so]; // create new unnested tuple of size so34
for int i← 1 to (position of A) -1 do35

r ← r + t[i]; // insert original tuple fields residing before unnest field36
end37
for int i← 1 to sg do38

r ← (); // append empty sequence(s)39
end40
for int i← sg + 1 to |t| do41

r ← r + t[i]; // append original tuple fields residing after unnest field42
end43
R← R + r;44

end45

end46
return R;47

end48

be filtered out by following structural joins. [Bruno 02] were the first ones to no-
tice this problem and to provide a solution for it, namely the holistic twig join (HTJ)
operator. A holistic twig join is an extension of the structural join. It can be param-
eterized with a tree-shaped pattern—the twig—and is able to find all occurrences of
this pattern in the document. Thus, it is, in contrast to the structural join, an n-ary
operator working on multiple input streams.

In contrast to evaluating a query with structural joins, the holistic twig join operator
does not produce an intermediate result tuple until it is clear that this tuple belongs

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.8 Twig Query Detection 129

to the final twig result. This is achieved by checking all necessary twig conditions
before the tuple is generated for the output, thus the term holistic. As we will see
in Chapter 8, the twig join operator internally keeps the tuples contributing to a
match compactly encoded in a set of stacks. With these characteristics, [Bruno 02]
solved the two problems for structural join operators sketched above. After their
first publication in the literature, a plethora of further holistic twig join algorithms
have been proposed by the research community (see Chapter 8). Some of them ex-
tended the “expressiveness” of the twig algorithm, e. g., by adding the capability to
match a not predicate on a path. Some others improved the matching performance
of the algorithm. In this work, a further variant of this operator will be developed.
All in all, the holistic twig join is an important operator class and it is worthwile to
think about how it can be integrated into our query processing framework.

Revealing opportunities to apply holistic twig join operators is the task of the HTJ
discovery rule introduced in this section. In contrast to the previously introduced
rules, we will state the notion of the XQGM holistic twig join operator before we ac-
tually show how it can be used. The twig join operator is quite complex. Therefore,
we do not introduce it formally, i. e., by defining the map, set, and eval method. In-
troducing the operator this way would fill many pages and it would forestall the in-
troduction of the physical counterpart for this logical operator in Chapter 8. Rather,
to define the semantics, we rely on a little trick: In Section 5.8.3, we will show how
an XQGM subtree can be transformed into a twig operator. The semantics of the
twig operator can then be defined by: 1) reversing the actions of transforming an
XQGM subtree into a twig operator, i. e., transforming the twig operator back into
the originating operators; and 2) relying on the semantics defined for the originat-
ing (non-twig) operators. This means, for the definition of the twig operator M , we
regard the originating XQGM subtree that generated M as the implementation of
M .

5.8.1 The XQGM Twig Join Operator

In our overview (Section 2.2.6 on Page 23), we have already seen a twig structure
for the following sample query (which we reuse for the discussion of the twig join
operator here):

let $auction := doc("auction.xml") return
count(

for $i in $auction/site/closed_auctions/closed_auction
where $i/price/text() >= 40
return $i/price

)

An XQGM twig operator (TWIG) consists of a set of for-quantified tuple variables,
a twig specification, and of further components of a select operator, i. e., a projec-
tion specification, an optional predicate, and an optional sorting specification. The
twig operator is, therefore, a special XQGM select operator. The interesting thing
is the twig specification. As you can see in Figure 2.5, a twig specification contains
a tree composed of several twig nodes (represented by oval components) connected
via some edges. Generally, i. e., independent of the representation in XQGM, a twig
node stands for a node predicate, e. g., a name test like site, price, etc. All XML nodes
that fulfill such a node predicate are matched by the particular twig node. The struc-
tural relationships between the twig nodes poses another predicate (i. e., a structural
predicate) defining the relationships between the XML nodes to be matched. In the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

130 Chapter 5: Query Unnesting and Twig Discovery

literature, algorithms for axes child (C in our representation), descendant (D), and the
attribute axis (@) have been proposed, e. g., [Bruno 02]. Due to the internal struc-
ture of the twig join algorithm, further axes, like the sibling axes or reverse axes,
cannot be evaluated. In XQGM, all XML node fulfilling a certain predicate (e. g., a
name test) are delivered by access operators reachable via the for-quantified tuple
variables. Therefore, the input of a twig node is given by a tuple variable. The link
between these two components is represented by a dotted line. From the point of
the twig join operator, the node predicate is already checked and only the structural
predicate needs to be matched. For example, node 42 is connected to tuple variable
F:42 which solely delivers price nodes.

In the following, we want to introduce the semantics of the twig nodes and how
twig nodes influence twig matching and result generation. To facilitate the repre-
sentation, we slightly abstract from the twig specification in XQGM and only show
the twig itself (with embedded node predicates). For example, in the “Twig” col-
umn of Figure 5.12a, a twig with four nodes having node tests a, b, c, and d is
presented. We will introduce the twig node semantics with the help of the eight ex-
amples in Figures 5.12 and 5.13. The first column in these figures contains the name
of the example and a short description. The second column presents the twig to be
matched against the document in the third column. Column number four presents
the result graphically, whereas the last column shows how the result looks like in
tuple representation. This representation is generated by the twig join operator dur-
ing evaluation. Lets step through the examples:

a) The first example shows a plain twig consisting of four nodes connected via three
child edges. Each node produces output (indicated by the white color of the
node). The twig join algorithm matches this twig against the document in the
third column. The two occurrences of this twig are shown in the fourth column.
As you can see, element a1 occurs twice in the result, because it is the root for both
matches. This is also true for the tuple result. Further, note that the order among
sibling twig nodes is not important for matching: although node c occurs before
node d in the twig, both subtrees in the document are matched. However, the
order of the nodes in the twig plays a role for the generation of the tuple result.
Here, the order of the tuple fields correspond to the twig nodes in pre-order.

b) The second example underlines the output ordering semantics again. Here, the
twig consists of three nodes connected by descendant edges. The pattern can be
matched five times and the tuple result consists of three fields per tuple. The
result is sorted by the first field, then by the second field, and then by the last field.
For output generation, we could decide to only return nodes for a certain subset
of twig nodes. In the following, we call nodes producing a field in the result
tuple output nodes. Non–output-nodes have a grey color in the our examples. If
some nodes do not produce output, the result is projected on their corresponding
fields and duplicates are removed. In our example, if a and c were the only
output nodes, the result would be: <[a1, c1], [a1, c2], [a1, c3], [a2,
c1], [a2, c2]>

c) The third example introduces two new Boolean node types, namely the and node
and the or node (other nodes will be called path nodes in the following). An and
node can have two or more branches. All these branches have to be present in
the document for the and node to match. Note, as a convetion we allow a certain
shortcut notation for and nodes: if a path node has multiple branches, we assume

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.8 Twig Query Detection 131

Figure 5.12 Twig matching examples

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

132 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.13 Twig matching examples continued

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.8 Twig Query Detection 133

an implicit and node. In case of an or node, only one of the branches has to exist.
Therefore, if we assume an and node in our example, only the first subtree is a
match. Otherwise, in case of an or node, all three subtrees are returned. Because
the or node also matches, when some information is not available, we have to pad
the result tuple with an empty sequence. This ensures a homogeneous result, i. e.,
each tuple fields corresponds to a particular output node.

d) Our fourth example introduces a new edge type, namely the optional subtree edge.
It is represented by a dashed line in the twig. A node with an incoming optional
subtree edge roots a subtree which may or may not exist in the document. In
our example, the subtree exists only in the first branch of the document. In the
second and in the third branch, the subtree exists only partially. Therefore, only
the non-optional node (matching a) is returned. In the tuple result, all fields that
belong to a non-existent optional subtree are filled with empty sequences. Please
note the similarity between or nodes and optional subtree edges. We will exploit this
similarity for the implementation of the twig operator.

e) The fifth example introduces yet another type of node, namely the grouping
node. A grouping node is a special path node that groups the matched sub-
trees below in the tuple result. In the example, you can see that the complete
document is matched. The tuple result reveals that the result delivered by the
subtrees below the grouping node is (separately) nested w. r. t. the result de-
livered for the grouping node. If b would not group, the result would consist
of four tuples: <[a1, b1, c1, d1], [a1, b1, c1, d2], [a1, b1, c2, d1],
[a1, b1, c2, d2]> .

f) The next example shows how an embedded output expression works. An output
expression is a simple XQGM expression with one or more tuple variable refer-
ences. An output expression is indicated by the prefix “out ”. It can be attached
to a grouping node in the twig, where the output expression is applied to the
nested subtrees for every match of the grouping node. In our example, the group-
ing node creates an element x and adds all d elements matched for a b element
inside this x. Note that the tuple variable references twig nodes. In the graphical
representation of the output expression, the reference to twig node d is presented
as [d] . Furthermore, note that the subtree below each d has to be materialized
in the tuple result, because the ds are embedded in a new element. This fact is
indicated by the curly braces.

g) In the last but one example, we show the application of an output filter on some in-
termediate twig result. An output filter is indicated by prefix “test ” and works
similar to an output expression. It can be attached to a grouping node and it can
reference one or more tuple variable references (represented by the bracket nota-
tion in the graphical representation). If the predicate in the output filter is true,
the subtree rooted at the grouping node matches. Otherwise, it does not match.
In our example, only the left subtree of the sample document matches. Because
the output node is set to d, only element d1 is in the output.

h) The last example shows how positional predicates can be embedded into the twig
specification. To make sure that the necessary context information is generated,
a path node can be adorned with two flags. These flags signal the need for con-
text size and context position information. In our representation, these flags are
visualized by appending a string (“cp ” or “cs ”) after the name test in the twig
node. A positional filter (prefixed “ppred ”) can query the positional information

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

134 Chapter 5: Query Unnesting and Twig Discovery

generated for a path node. In our example, the left subtree in the document ful-
fills the positional predicates, while the right subtree does not. Because b is the
output node, only b1 is returned.

Obviously, the twig pattern is quite expressive. To summarize, it supports output
nodes (i. e., projection), grouping, output ordering, Boolean and and or predicates,
output expressions, output filters, and positional predicates. Currently, there is no
algorithm in the literature able to evaluate a twig pattern of this expressiveness.
In Chapter 8, we will design such an algorithm. You might ask the question, why
it is meaningful to extend the expressiveness of a twig in the way shown at all.
The simple answer is: with these extensions, the twig algorithm can be applied in
many more situations than without them. Now, lets see how we can map XQGM
substructures to twig operators, i. e., how twigs are discovered.

5.8.2 The HTJ Discovery Rule Pattern

In this work, discovering twigs is a best effort approach. This means that the pattern
of the twig discovery rule searches for a “twig starting point” and the transforma-
tion instruction tries to integrate the semantics of as many (following) operators as
possible into the twig. Therefore, the higher the expressiveness of the twig pattern,
the more operators can be transformed into it. In the current implementation, the
twig discovery rule is applied in its own rewriting stage, i. e., insulated from the
other rewriting rules. The necessity for this desicion becomes clear during the dis-
cussion of the transformation instruction. Basically, the separation simplifies the
rewriting process. Integrating twig discovery with the other rule set would, never-
theless, be possible. However, this task is left open to future work. With respect to
this task, the rule proposed in this section can, at least, define the twig discovery
semantics.

As stated above, the pattern searches for a starting point. This starting point is
given by a structural join followed by 1) another structural join, 2) a split operator
(followed by structural joins), or 3) a select operator. Figure 5.14 presents examples
for the first two cases. The matches of the pattern are shown in dashed boxes. Note,
we have already seen these two queries:
• The XQGM instance in Figure 5.14a is the third example from the unnesting sec-

tion (Figure 5.10b on Page 117). The query was:

doc("auction.xml")//item[count(location) < 2]

• The XQGM instance in Figure 5.14b is the unnested version of the example shown
for the multiple correlated expression pull-out rule (Figure 5.7b on Page 109).
Here, the query was:

for $i in doc("auction.xml")//item
return <qloc>{$i/quantity}{$i/location}</qloc>

Besides the structural conditions, the operators participating in a pattern match
have to fulfill certain requirements: A structural join operator in the match has to
have a twig axis, i. e., one of the axes supported by the twig pattern as introduced
above (child, descendant, and attribute). Furthermore, the first access operator has
to have two access operators as input. A select operator in the match has to have
exactly one tuple variable T without a correlated edge and no sorting specification.
Furthermore, all expressions in the select operator have to reference T . In case of a

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.8 Twig Query Detection 135

Figure 5.14 Twig discovery

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

136 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.15 Discovered twigs of two sample queries

split operator, these restrictions also apply to the structural join and select operators
inside the split branches. The branches have to be completely unnested, i. e., they
do not contain any operator with a correlated edge. Finally, the split operator has to
receive a sequence of singleton tuples (recognizable by the projection specification
of their input operator).

5.8.3 The HTJ Discovery Transformation Instruction

Starting from the match, the transformation instruction first creates a twig pattern
and then tries to embed as many operators as possible into this twig. In our sample
queries, all operators will be completely integrated. The result is shown in Figure
5.15. The twig representation in this figure slightly differs from the representation in
the overview of Figures 5.12 and 5.13 on pages 131 and 132. Here, not the node tests
themselves are printed inside the twig nodes. Rather, tuple variables are referenced
(by their ID). Furthermore, output nodes are defined by an output edge into a tuple
variable reference of the projection specification (all twig nodes not referenced do
not produce a direct output). Finally, the tuple variable (and not the node test)
is referenced in the output expression and in the filter expression . The number
in brackets denotes the access position in the input tuple delivered by the tuple
variable (which is “0” in most cases). Let us now take a look at the actions that
transformed the XQGM instances in Figure 5.14 to twig operators.

First, a holistic twig join operator H is created. At the beginning, this operator is

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.8 Twig Query Detection 137

empty. Then, the transformation instruction iterates over the XQGM operators as
follows: Starting from the matched structural join operator, every operator O (up
to the XQGM root operator) is probed. When the operator can be integrated into
a twig, the necessary actions take place and the next operator is examined. Other-
wise, the transformation instruction stops at O, finalizes the twig construction, and
replaces the input of O with the twig. In case of a split operator, all split branches are
checked first. Only when every operator in every branch can possibly be integrated
into the twig, the transformation instruction executes the integration. Otherwise,
the twig discovery stops at the split operator. To pass information from one itera-
tion step to another, a discovery context C is required.

The first operator to be integrated into a twig operator is a structural join (as defined
by the pattern). Therefore, we start our discussion with this operator.

Structural Join Integration

As we have seen in the pattern, a structural join operator can be integrated into
the twig, when its predicate defines a twig axis and when the first structural join
operator to be integrated has two access operators as input. If a structural join
operator does not fulfill these requirements, twig discovery stops (as explained
above). Otherwise, the operator has to be integrated. In case of an initial integration
(first structural join), the following actions are executed (as an example, consider
structural join (11) in Figure 5.14a):
• The axis is extracted from the structural join.

• Access operators AL and AR delivering the input to the two tuple variables TL

(left) and TR (right) are detached.

• Two for-quantified FL and FR tuple variables receiving AL and AR as input are
instantiated inside twig operator H (see Figure 5.15a).

• Two twig nodes NL and NR are created. Technically, twig nodes are modeled as
tuple variables. Therefore, they can be referenced by tuple variable references.
However, twig nodes, in turn, also reference tuple variables. The ID of a twig
node (NL or NR) is the ID of a tuple variable (FL or FR) in H . For later use, the
correspondance between the generated twig node and the tuple variable (TL or
TR) of the original structural join operator is written into context C , i. e., C(TL)←
NL and C(TR)← NR.

• An edge between the two twig nodes is created. The edge carries the axis inferred
above. The parent twig node references the tuple variable with AR as input (i. e.,
NR); the child node references tuple variable AL as input (i. e., NL).

The result of these operations is a twig operator H with two twig nodes. Essentially,
this twig is a structural join. At this point, the projection specification of the twig is
still missing. It will be instantiated at the very last.

In case, the structural join is integrated into an existing twig, the following actions
are necessary (as an example, consider structural join (9) in Figure 5.14a):

• The axis is again extracted.

• The input AN of the tuple variable TN whose input is not yet integrated is de-
tached.

• A for-quantified tuple variable FN is inserted into H receiving AN as input.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

138 Chapter 5: Query Unnesting and Twig Discovery

• A twig node NN is created which references the new tuple variable. As before,
the context is populated with this information: C(TN)← NN .

• To insert an edge, the twig parent of the newly instantiated twig node has to
be found and the edge type (optional or not) has to be inferred. The first task
is achieved by analyzing the original XQGM instance: The structural predicate
contains two tuple variable references RL and RR. RL references TN . RR referen-
ces the subtree already integrated into the twig. Following the second reference
down the tree (i. e., over a chain of components consisting of tuple variables,
projection specifications, and tuple variable references), a tuple variable inside
a structural join operator can be found, which receives the output of an access
operator. In the following, we will call this tuple variable source tuple variable for
reference RR. In our example (Figure 5.14a), the source tuple variable is TL. The
access operator provided one join partner for the currently processed structural
join. The tuple variable generated a twig node during a previous operator inte-
gration. This twig node is the searched twig parent (NL in our example). It can
be found in the context (i. e., C(TL)).

The second task (inferring the edge type) is also achieved by analyzing the orig-
inal XQGM instance. If the right tuple variable (i. e., not TN) is outer, the edge is
optional. As we will see below, a previously integrated split operator might also
require an edge to be set as outer. This requirement is stated by a Boolean flag
(“nextTwigNodeOptional”) in context C and is obeyed here. When all structural
join operators following the split operator are integrated, the Boolean flag is set
to false.

In our example of Figure 5.14a, after the integration of the first two structural join
operators, the twig specification in H consists of the three twig nodes (see Figure
5.14a). Because in the original XQGM instance, F:8 was defined as outer, the edge
between node 13 and node 14 is an optional subtree edge. In this state, the projection
specification, the grouping semantics, and the content test are still missing. These
components will be produced during the integration of the following operators.

Split Integration

The integration of a split operator is quite straightforward. If the split operator does
not receive a sequence of singleton tuples, twig discovery stops here. The reason
for this circumstance is given below. As another prerequisite, the operators in all
branches of the split operator are checked to ensure that they can be integrated into
the twig (note, the conditions for each operator can be found at the beginning of
the integration discussion). If at least one operator cannot be integrated, the twig
discovery stops here. The reason is that, essentially, a branch stands for a part of a
relative path expression. If one of these parts cannot be integrated into the twig, the
discovery pattern is not able to integrate the other ones, because following operators
might depend on the integrated parts. In some cases, the integration of only a subset
of branches might be possible. However, we leave this case open for future work.

If all branches can be integrated, the rewriting process begins. In case of a pro-
jection split operator (i. e., when the multiple correlated expression pull-out rule
matched), the edges leading to the next twig nodes generated have to be optional
subtree edges. Therefore, the nextTwigNodeOptional flag in context C is set to true.
The reason is that in the merge operator receiving the result from the split branches
has an outer tuple variable with the projection split as input. In case of an and split

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.8 Twig Query Detection 139

operator or an or split operator (i. e., when the Boolean rule matched), an and/or twig
node N is created. Because the split operator receives a sequence of singleton tuples
(as required above), we can retrieve source tuple variable T in the original XQGM
instance (that generated this input) by following the component chain of the input
down to the access operator. Let us pretend that in our example in Figure 5.14b, the
split operator is an and split. Then, the source tuple variable would be F:12. The
twig node generated for this tuple variable (currently stored in C(T)) becomes the
parent of the new and/or twig node. All following integration actions have to respect
the new twig node. Therefore, we have to update the context by setting C(T)← N .

With the discussion so far, we can understand how the integration of the operators
in the dashed boxes of Figure 5.14 works. The result in this state for the second
query in the figure is shown in Figure 5.15b. The twig discovery rule created a twig
operator with four tuple variables and four twig nodes, of which 30 and 31 have
an optional incoming edge. Still missing are the grouping information, the output
expression, and the projection specification. The integration of the group by operator
will be discussed next.

Grouping Integration and Unnesting Integration

Before a group by operator can be integrated, its structure has to be checked. An
integration is not possible, when the grouping operator contains a complex projec-
tion specification not solely consisting of tuple variable references and the special
positional functions (xtc-fn:position and xtc-fn:last) introduced in Section 5.7. Note,
the rule set introduced in this work will not generate such a case. However, for
completeness, we nevertheless pose this requirement here. If the projection specifi-
cation contains a positional function, the tranformation instruction searches for the
consuming select operator among the operator’s ancestors. The consuming opera-
tor and all operators “in between” have to be integrable. Otherwise, twig discovery
stops at the grouping operator. The rationale behind this condition is to ensure that
also the consumer can be integrated into the twig.

If all preconditions are met, the twig is integrated. First, all tuple variable refer-
ences in the nesting specification are examined. For each of these references, the
source tuple variable is retrieved. From the context, we get the twig nodes generated
for these tuple variables. These twig nodes from a path, of which the leaf node is
converted into a grouping twig node. In our first example (Figure 5.14a), tuple vari-
able F:10 is the source tuple variable for the reference in the nesting specification of
group by (10) . The twig node generated for this tuple variable was number 13 (in
Figure 5.15a).

In case, a positional function exists in the projection specification, we have to make
sure that the “cp” and “cs” flags are set in some twig node accordingly (as shown in
Figure 5.13h). The twig node in question can be inferred by 1) calculating the source
tuple variable of the tuple variable reference, that is, the argument of the position
function, and by 2) looking up the generated twig node for the source tuple vari-
able in context C . In case of an xtc-fn:position function, the “cp” flag is set; in case
of an xtc-fn:last function, the “cs” flag is set. Note, the positional predicate (ppred)
is created, when the consuming select operator (matched by the transformation in-
struction above) is integrated.

Unnesting is the reverse operator of grouping. The effect of integrating an unnest
operator into a twig operator is the conversion from a grouping path node to a

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

140 Chapter 5: Query Unnesting and Twig Discovery

normal path node. This is done by analyzing the projection specification and the
nesting specification of the unnest operator. We skip the description of the necessary
actions here, because they are straightforward.

Merge Integration and Set Integration

In an XQGM instance, a merge operator only exists, when the multiple correlated
expression pull-out pattern matched. In a way, the merge operator closes the split
by uniting the output of the split branches. Therefore, we call the merge operator
a closing operator. Set operators can also be closing operators, when they unite the
results generated by and/or split branches. In both cases, all necessary integration
activities have already been executed by the integration of the split operator. There-
fore, nothing has to be done.

Select Integration

We have already discussed the conditions for the integration of a select operator in
the pattern above: A select operator has to have exactly one tuple variable T with-
out a correlated edge and no sorting specification. Furthermore, all expressions in
the select operator have to reference T . For integration, therefore, only the projec-
tion specification and an optional predicate are relevant. We start with the second
component.

The integration of a select predicate leads to an output filter, as shown in Figure
5.13g. Embedding a predicate like this is quite straightforward. For every tuple
variable reference, the source tuple variable TS is inferred. Then the reference is
rewritten such that it points to the twig node N , which was generated for that source
variable (i. e., by a lookup in the context: C(TS)). After this rewriting, the predicate
is removed from the select operator and attached to a twig node NP . This twig node
is inferred as follows: If the predicate contains exactly one tuple variable reference,
we navigate from N up in the twig until a grouping twig node is found. This twig
node is then the host for the predicate. If the original predicate has multiple tuple
variable references, multiple twig nodes are referenced in the rewritten predicate.
Then the least common ancestor of these twig nodes is then the host.

As an example for an output filter, consider the predicate in select (6) (Figure
5.14a). The source tuple variable for the reference in this predicate is F:7, for which
twig node 14 was generated. You can see that this twig node is referenced in the
rewritten predicate shown in Figure 5.15a. The host twig node for the predicate is
twig node 13, because the expression contained only one reference and twig node
13 is the first grouping ancestor.

Positional predicates and existential predicates receive a special treatment. Posi-
tional predicates are not transformed to output filters but to positional filters (see
Figure 5.13h). Because an unnest operator removes the nesting node, the positional
filters are directly attached to the twig node generating the positional information
(i. e., the node with an “cp” flag or “cs” flag set to true). An existential predicate
(i. e., an XQGM predicate containing a simple tuple variable reference) does not re-
sult in an output filter. Rather, the corresponding incoming edge of the referenced
twig node is set from optional to mandatory (because the nodes produced by this
twig node have to exist).

The integration of the projection specification is executed quite similar to predicate

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.8 Twig Query Detection 141

integration. The differences are: 1) a projection specification can contain multiple
output expressions, and 2) output expressions are generated instead of filter expres-
sions. As a result, a twig node can host multiple output expressions. Furthermore,
if an output expression consists of a simple tuple variable reference (i. e., the nodes
delivered by the twig have to be returned), nothing needs to be done. This case is
handled when the twig is finalized (see below).

As an example for the integration of an output expression, consider select (1)
in Figure 5.14b. The source operator of the left reference in the output expression
is F:26. Therefore, this reference is rewritten to twig node 31. The source operator
for the right reference is F:24; the reference is rewritten to twig node 30. The least
common ancestor of twig nodes 30 and 31 is 29, which is, therefore, the host for the
output expression, as you can observe in Figure 5.15b.

Twig Finalization

When all operators are integrated, the instantiated twig operator has to be finalized.
Especially, the projection specification of the twig operator is still missing and has to
be created. For this task, the projection specification of the most recently integrated
operator is examined. We have to distinguish three cases:

1) The projection specification contains a single tuple variable reference. In this case,
the source tuple variable of the reference is retrieved, the reference is rewritten
to the twig node created for the source variable, and, finally, the reference is inte-
grated into the projection specification of the twig operator.

2) The projection specification contains a single non–tuple-variable reference (i. e.,
a complex expression). Then this complex expression has been integrated as an
output expression into the twig as described above. As we have seen, the output
expression is “attached” to a twig node N . To deliver the output generated by this
expression, a tuple variable reference to N is added to the projection specification.

3) The projection specification contains multiple expressions. In this case, each
of the expressions is rewritten and integrated as described in the previous two
points.

An example for the first alternative is shown in Figure 5.14a: the tuple variable
referenece of the projection specification in select (6) points as tuple variable
F:10 as source. For this tuple variable, twig node 13 was generated. This twig node
is simply referenced in Figure 5.15a. An example for the second alternative can
be found in Figure 5.14b: The complex expression in the projection specification of
select (1) has been integrated as an output expression into the twig shown in
Figure 5.15b. It simply has to be referenced.

As a final action, the newly created twig operator has to be created with the sub-
tree it “consumed”. The holistic twig join operator is a bulk processing operator.
Therefore, the twig discovery rule belongs to the fourth category on Page 93.

5.8.4 Summary

At this point, we finish the discussion about the query processing at the logical
level. We have seen how queries are parsed, normalized, typed, simplified, trans-
formed into XQGM, and how they are rewritten. During rewriting, especially query
unnesting and the discovery of opportunities for the twig join algorithm were of ma-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

142 Chapter 5: Query Unnesting and Twig Discovery

jor concern. We will now consider related work on XML query algebras and XML
query rewriting, before we proceed with the physical aspects of query processing.

5.9 Related Work

In the following, we will consider the internal query representation and algebraic
rewriting phase of the five systems introduced in Section 2.3. For each system, we
will provide an example. Furthermore, we outline what kind of rewritings have
been published so far.

5.9.1 Galax

The algebraic teatment of queries inside Galax mainly relies on [Ré 06] and
[Michiels 07]. The first reference presents how queries can be transformed into a
tuple algebra (called RSF in the following after the names of the authors). The
second reference then shows how opportunities can be discovered to employ a
holistic twig join operator. The first reference is related to Chapter 4 (The XML
Query Graph Model), while the second paper discusses strategies similar to Sections
5.7 (Query Unnesting) and 5.8 (Twig Query Detection). Additionally, the authors of
Galax have published how unnecessary calls to the ddo function can be eliminated
[Fernández 05] and how XML data can be projected before a query is processed
[Marian 03] to reduce the size of the DOM tree Galax operates on. Let us take a
closer look at the algebra and the proposed rewriting techniques.

The Algebra

In RSF, a query is translated into an algebraic expression. The algebra contains oper-
ators for tuple manipulation, for XML manipulation, and for tuple-to-XML (XML-
to-tuple) conversion. XML operators are constructors, XML navigation and projec-
tion (i. e., subtree selection by path expression), type operators, functional operators
(e. g., a call to an XQuery function), and I/O operators (to retrieve or serialize XML
items). Operators for tuple manipulation are borrowed from the relational algebra,
i. e., tuple construction, select, project, join, map (i. e., the application of a function
on a tuple), grouping, and sorting. Conversion operators are map-from-item and
map-to-item. The first one converts a sequence of items into a sequence of tuples.
The second one operates vice versa.

In general, an operator has the form: Op[p1, . . . , pi]{DOp1, . . . ,DOph}(Op1, . . . , Opk),
where the pi’s are static parameters, DOpi are dependent parameters, and Opi

are independent parameters. A static parameter “configures” the operator, for
example, an element constructor operator receives the name of the element to be
constructed as a static parameter. The meaning of independent and dependent
operators is similar to our notion of dependent and independent tuple variables. A
dependent operator is a subexpression that can receive some value from outside.
This value is generated by an indepdent operator and can be referenced using the
IN keyword. Let us consider one of the examples from [Ré 06] to get an impression
of the algebra:

for $p in $auction//person
let $a as element(* ,Auction) :=

for $t in $auction//closed_auction

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.9 Related Work 143

where $t/buyer/@person = $p/@id
return validate {$t}

return <item person="{ $p/name }">
{ count($a/ element(* ,USSeller)) }

</item>

The query searches for all person elements that appear as buyer in some
closed_auction. For each of these person elements, the name and the number of
closed_auctions with children of type USSeller are returned. Additionally, the type
of the closed_auctions is checked and validated. The RSF expression of this query
has the following form:

1.MapToItem

2. {Element[item]

3. (Sequence

4. (Attribute[person]((IN#p)/name/text()),

5. count(IN#a/element(∗, USSeller))))}

6. (MapConcat

7. {[a : TypeAssert[element(∗, Auction)∗]

8. (MapToItem{Validate(IN#t)}

9. (Select

10. {IN#t/buyer/@person = IN#p/@id}

11. (MapConcat{MapFromItem{[t : IN]}

12. ($auction//closed_auction)}(IN))))]}

13. (MapConcat{MapFromItem{[p : IN]}($auction//person)}([])))

The algebra expression is an operator tree and is read from bottom to top, starting
with line 13. Note, normally, the path expressions would not literally appear in
the query. They would also be normalized. However, for brevity, they are kept as
paths. In line 13 of the algebra expression, all person elements are retrieved from
the document, mapped to tuples (MapFromItem) and concatenated to a sequence
(MapConcat). The dependent/independent expression evaluation can be explained
by the MapFromItem expression in line 13: independent expression $auction//per-
son is evaluated, and for every person element, dependent expression [p : IN] is
evaluated. This dependent expression is a tuple constructor, referencing the person
element by IN and constructing a tuple with a field named p. With the generated tu-
ple stream, the dependent expression of MapConcat (line 6) can be evaluated. This
subexpression contains the join on the buyer of some closed_auction element (and a
validation followed by a type check). The final result is assembled in the dependent
subexpression of line 2 to 5.

Both being tuple algebras, LAL (the logical algebra introduced in this work) is quite
similar to RSF. In fact, instead of LAL, we could have mapped XQGM to RSF. RSF
would then have been applied as background for the definition of the XQGM se-
mantics: Essentially, the IN technique is similar to our evaluation context C , which
keeps track of variable bindings. MapConcat is similar to the tuple generator. How-
ever, the latter one is more expressive, because MapConcat can only evaluate one
correlated subexpression, while TUPGEN can handle more than one. Therefore,
the AST-to-XQGM translation process would have to be modified to generate se-
lect operators with at most one dependent tuple variable. This would be possible.
However, the resulting structure would contain more operators, more complex pro-
jection specifications, and would be harder to read. In the end, we decided against

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

144 Chapter 5: Query Unnesting and Twig Discovery

the application of RSF to define the XQGM semantics, because the operators in the
literature [Ré 06] are not thoroughly defined (only their signature is given, but not
their implementation). In this work, however, we wanted to introduce the XQGM
semantics completely.

Algebraic Optimization

Let us take a look at the query rewriting strategies presented in the Galax context
[Michiels 07]: The first bulk of rewriting rules aims at query simplification and is
comparable to the actions presented in Section 4.3.2. The second set of rules aims
at twig discovery. Therefore, a twig operator is introduced into the RSF algebra.
This operator has the form TupleTreePattern[TreePattern{q1, . . . , qn}](S(t)) and takes
a tree pattern TreePattern{q1, . . . , qn} as static parameter and an operator generating
a sequence of tuples S(t) as independent parameter. The tree pattern consists of
tree nodes qi and allows the child, descendant, or descendant-or-self axis. Output gen-
eration is restricted to exactly one tree node. The twig is matched against the items
provided by the independent operator. Compared to the definition of our twig oper-
ator in Section 5.8.1, the TupleTreePattern has several drawbacks. It cannot capture:
1) multiple output nodes, 2) boolean or predicates, 3) optional subtrees, 4) grouping,
5) output expressions, 6) output filters, and 7) positional predicates. Therefore, the
TupleTreePattern operator can only be applied in very simple queries not requiring
one of the previously enlisted functionalities. Reference [Hidders 07] also presents
how these kinds of tree patterns can be discovered in an XQuery expression. How-
ever, the expressiveness of the assumed twig join operator is likewise restricted as
in [Michiels 07].

Obviously, Galax and XTC have several techniques in common. Both rely on the
Formal Semantics for normalization and static typing. Furthermore, their logical al-
gebra is quite similar and they both try to discover opportunities for the application
of twig operators. However, the XTC approach reaches further: With XQGM, we
chose a non-algebraic internal representation, which provides a more intuitive ba-
sis for implementation and explanation (than algebraic expressions). In situations,
when the twig join operator cannot be applied, we can, nevertheless, generate plans
with structural joins, because we unnest all queries. Galax has no notion of a struc-
tural join (only of a twig join) and, therefore, relies on a node-at-a-time evaluation,
when the twig operator cannot be applied. Note, the query unnesting capabilities
of XTC are a prerequisite for twig discovery. We have developed this technique
indepenently from Galax in [Mathis 07a, Mathis 07b]. Finally, our notion of a twig
and our twig discovery rules are much more expressive than the ones presented in
[Michiels 07, Hidders 07].

5.9.2 IBM DB2 Pure XML

As stated in Section 2.3.2, the internal query representation of DB2 is the Query
Graph Model (QGM), originally developed for the Starburst System [Haas 89,
Pirahesh 92]. This internal representation is also used to process XML queries. The
following description on how the QGM is drawn from [Beyer 05], [Balmin 06], and
[Beyer 06]. Unfortunately, these papers are fairly sketchy only giving some hints
as a short example on how the QGM solution might look like. Rewriting strate-
gies were only recently published in [Özcan 08]—developed in parallel to the work
presented in this dissertation.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.9 Related Work 145

Figure 5.16 A DB2 QGM example

QGM

Starburst’s QGM was designed for extensibility. Prior to the DB2 pureXML exten-
sion, QGM was employed to represent relational queries internally. XQuery in-
tegration required two types of extensions: the underlying data model had to be
enriched with sequences, and special operators for sequence handling and path
evaluation had to be inserted into the operator set. Figure 5.16 shows an exam-
ple QGM instance taken from [Beyer 05]. You can observe that path expressions are
not normalized but kept as they are. For their evaluation, DB2 uses a bulk opera-
tor (as XTC does), which is embedded into QGM by a table function. Furthermore,
we can observe that QGM is also extended with the let and for semantics of table
variables (which is the corresponding concept of a tuple variable). In case of a for,
an iteration over the input is executed, in case of a let, the inputs are aggregated
into a single sequence. How XML queries are exactly represented in the QGM is
not publicly available. [Özcan 08] only reveal that FLWOR expressions are trans-
lated to two select operators. The first select operator generates tuple sequences for
the for/let bindings, while the second select operator calculates the predicate of the
where expression and the order by/return expression. The reference further states
that, in some cases, these two select operators are merged into one.

Query Rewriting

In DB2, the goal of the algebraic query rewriting is to pre-optimize the query and
to bring it into a normal form. [Balmin 06, Beyer 06] state that they eliminate re-
dundant operators, merge nested query blocks, remove unused variables, and push
down navigation steps and content predicate. We can infer that the tree patterns
supported can have at most one output generating node and that they support op-
tional edges. In [Özcan 08], this functionality is extended by grouping. Further-
more, the latter reference adds rewriting strategies to transform let and for quantifi-
cations to simpler expressions. Certain types of XPath expressions can be merged
into one operator, if one expression is used as input for the other. Finally, they claim
to have implemented various join/query decorrelation methods. All these rewrit-
ings, however, are only sketched and not fully traceable.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

146 Chapter 5: Query Unnesting and Twig Discovery

5.9.3 Timber

The algebra developed for the native Timber XML DBMS is called TAX
[Jagadish 02b], which stands for “tree algebra for XML”. For the design of TAX,
the authors drew an analogy from relational query processing and relational alge-
bra to XML query processing to an XML algebra. In relational algebra, the operators
consume one or more relations and produce an output relation. Consequently, in
TAX, an operator consumes one or more collections of labeled ordered trees (docu-
ments or fractions) and produces a collection of labeled ordered trees. The structure
of XML data is heterogeneous (in contrast to relational data). To operate on this het-
erogeneous data, XQuery binds XML nodes to variables. The set of bound variables
is then “homogeneous” and further processing operations can be applied. The same
strategy is followed in TAX. Here, every operator is parameterized by a pattern tree
(i. e., a twig; similar to XTC). TAX pattern trees support the child and descendant re-
lationship as well as content predicates on twig nodes. Pattern trees can be matched
against the document resulting in an ordered forest of so-called witness trees. A se-
lection operator, for example, can match a pattern tree against the document and
returns a set of witness trees. From the data trees in the original document, only
the matched XML nodes are returned. However, if a selection result has to be pro-
cessed by further operators, the subtrees of the matched nodes might also be of
interest. Therefore, an operator can additionally be parameterized by an adornment
list. This list contains a set of twig nodes, for which not only the node, but also its
subtree appears in the output.

All in all, the TAX algebra defines the following operators: selection, projection,
product (and, thus, joins), grouping, aggregation, order by, renaming, reordering,
copy-and-paste, value updates, node deletion, and node insertion. Note that TAX
is one of the few algebras containing built-in operators for document modification.
The authors of TAX recognized that their simple notion of a pattern tree leads to a
lot of overhead, because in queries with nested FLWOR blocks, a twig could only
range over a single block. Therefore, they generalized their notion of a pattern tree
in [Chen 03c] and [Paparizos 04]. In [Chen 03c], they added support for optional
edges (as in our understanding of a twig). In [Paparizos 04], they added group-
ing. Because these generalizations also influenced the algebra operators, the authors
chose another name for TAX, namely tree logical classes (TLC).

Figure 5.17 contains a graphical representation of a TLC expression for the following
query:
for $p in doc("auction.xml")//person
for $o in doc("auction.xml")//open_auction
where count($o/bidder) > 5 and $p/age > 25

and $p/@id = $o/bidder/@person
return <person name={$p/name}>{$o/bidder}</person>

The data flows from bottom to top. The first selection operator (1) matches a pattern
against the document returning a person subtree with @id and age children (where
age is larger than 25). Each of these subtrees is rooted by an artificial doc_root node.
In the pattern tree specification, you can see the definition of so-called logical classes
(LCLs). These logical classes can be referenced by subsequent operators. In operator
2, another the open_auction subtree is matched. The “*” defines that all bidder nodes
shall be grouped below the open_auction node. In operator 3, the size of this group
is counted, resulting in a new class (LCL = 11), which is filtered in operator 4. Then,
the two matched trees are joined, where the join condition is that logical class 7 has

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.9 Related Work 147

Figure 5.17 A TAX example from [Paparizos 04]

to have the same value as logical class 9. The result is hinged below an artificial
join_root element with LCL 1. Operators 6 and 7 project the intermediate result and
remove duplicates, whereas operators 8 and 9 evaluate a navigation to calculate
bidder and name nodes (grouped below LCL 3 and 5). Finally, the construct operator
assembles the result. You can see that this query specifies four pattern trees for node
selection and two trees for node construction. Due to the expressive power of the
holistic twig join in XTC, we only require two pattern trees to answer this query.

The main problem with the TAX approach is that the authors sweep queries with
non-child/descendant axes under the rug. The XQuery-to-TAX/TLC translation
algorithms directly “parses” XQuery strings into TAX (without normalization, typ-
ing, etc.). Because the TAX algebra operates on pattern trees and cannot express
non-tree relationships, the approach is quite restricted. Only a small deviation from
the supported XQuery templates renders the query not expressible in TAX/TLC.
Reference [Paparizos 04] presents some optimizations which require a schema and
aim at the reduction of pattern tree nodes. We omit their discussion here. TAX/TLC
is a logical algebra. Therefore, for evaluation, a physical algebra is employed. We
do, however, not know whether this algebra contains a twig operator (as the XTC
algebra does; see Chapter 8). [Paparizos 04] decompose pattern trees into structural
joins. In Timber, the actual optimization takes place during this mapping [Wu 03].
The optimization is mainly concerned with finding an optimal structural join order.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

148 Chapter 5: Query Unnesting and Twig Discovery

5.9.4 Natix

NAL (for Natix algebra) [May 04] is a tuple-based algebra and is an extension of the
order-preserving SAL algebra [Beeri 99]. NAL also influenced both, the develop-
ment of XTC’s logical algebra and of the RSF algebra introduced in Section 5.9.1 for
the Galax system. NAL operates on sequences of (homogeneous) tuples, each tuple
consisting of a set of attribute-to-value mappings. As in XTC, these tuples can be
arbitrarily nested. Similar to the notion of the evaluation context defined in the For-
mal Semantics, these mappings keep track of the dynamic variable bindings during
query processing.

The Algebra

To illustrate how the algebra works, we give a brief example. Let us consider the
expression /a 1::t 1/a 2::t 2[position()=last()]/a 3::t 3[a 4::t 4] depicted
in Figure 5.18. The evaluation starts with the singleton scan operator (�) which
creates a singleton sequence containing an empty tuple. It triggers the map operator
(χ) to bind the root node of the queried tree to the c0 attribute of a new tuple. This
tuple, in turn, is consumed by the first D-join operator. The D-Join (⋊⋉

−→
—or 〈〉 in

the textual representation) is similar to XQuery’s for construct: for each tuple t in
the left input sequence, the dependent right expression is evaluated, binding t’s
attributes to free variables in the right expression (here c0). Then, the intermediate
result calculated for the dependent subexpression is joined with t. In our example,
the dependent expression is again a D-Join operator whose left subexpression is
an unnest map operator (Υ). This operator is a shortcut for a map operator (χ)
followed by an unnest operator (µ). In NAL, Υ is mainly used for the calculation
of path axes. Starting from c0 the path expression a1 :: t1 is evaluated to a single
sequence (using χ) which is immediately unnested (by µ). Together with the D-Join,
this results “flat” tuples (although NAL supports complex tuple values).

A predicate is translated into a selection operator (σ), where the predicate’s subex-
pression is compiled into σ’s subscript. NAL operators may be arbitrarily nested in
this fashion. For each input tuple, the subscript is evaluated. For almost all predi-
cates, certain measures have to be taken to ensure the evaluability of σ’s subscript:
In case of a relative path expression, the current context variable cn has to be pro-
vided explicitly. This is accomplished by the two map operators χcn:c3 and χc0:cn,
the first one binding c3 to the context variable and the second one “transferring” cn
into the variable c0 of the local context. For positional predicates, the current context
position and the context size have to be calculated. This is the task of the special
operators χcp:cntr(p1)++ and Tmpcs. The first operator simply counts the tuples in
its input and attaches a new attribute cp, containing the current position, to them.
Tmpcs buffers its input to calculate the total number of tuples in the context, before
it attaches attribute cs, containing this number, to each tuple. The aggregation op-
erator A evaluates aggregate functions, e. g., min(), max(), etc. More sophisticated
predicates, for example existential comparisons, are possible, too. Finally, the re-
sulting context node is produced by a map operator and duplicate elimination (ΠD)
is applied to comply with the XPath semantics.

Algebraic Rewriting

NAL provides an algebraic basement for XPath 1.0 [Clark 99] evaluation. The
XPath-to-NAL translation process is described in [Brantner 05]. Furthermore, NAL

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.9 Related Work 149

Figure 5.18 NAL example

start

χcn:c3

⋊⋉
−→

χc0:root(cn) ⋊⋉
−→

Υc1:c0/a1::t1
⋊⋉
−→

σcp=cs

Υc3:c2/a3::t3

Tmpcs

χcp:cntr(p1)++

Υc2:c1/a2::t2

ΠD

χcn:c3

σ

Aexists

⋊⋉
−→

χc0:cn Υc4:c0/a4::t4

supports FLWOR expressions and quantified XQuery expressions. The trans-
lation process for these query types is shown in [May 04]. Regarding rewrit-
ing, [Brantner 05] provided some optimization techniques like stacked transla-
tion for outer paths, duplicate-elimination push down, and memoization6. In
[Brantner 06b], certain algebraic equivalences were shown, which enable unnest-
ing of queries with semi-correlated XPath predicates. Queries with semi-correlated
predicates have the form p = e1[e2θe3], where either e2 or e3 is a path expression
depending on p’s outer—or global—context. Finally, some unnesting strategies for
nested queries with aggregation, grouping, and quantification have been proposed
in [May 06b].

The major problem with NAL is that it does not encorporate bulk operators (as XTC
and the so-far introduced other algebras do). This means that NAL has no notion
of a structural join or a twig join. The algebraic rewritings presented in [May 04,
Brantner 05, May 06b] are based on value joins (and not on structural joins). To
remedy this situation, [Mathis 07b] introduced the structural join operator, resulting
in the so-called NALSTJ algebra. The structural–join-based rewriting strategies, for
which the correctness proofs are given in [Mathis 07a], build the foundation for
query unnesting (i. e., for the unnesting rule) introduced in Section 5.7.3.

5.9.5 MonetDB/XQuery

MonetDB/XQuery is an XQuery engine implemented on top of a relational DBMS.
The Pathfinder frontend of the MonetDB/XQuery system is a compiler, which is
responsible for the translation of XQuery expressions into an extended version of
the relational algebra [Grust 04]. The relational algebra contains the following op-
erators: projection/renaming (π), row selection (σ), disjoint union (∪), disjoint in-
tersection (\), duplicate elimination (δ), equi-join (⊲⊳), Cartesian product (×), row
numbering (ρ), element construction (ε), text node construction (τ), and arithmetic
and comparison operators. Additionally, the algebra contains the so-called staircase
join operator [Grust 03a]. The staircase join injects tree awareness into the relational
algebra by providing algorithms for the evaluation of XPath axis steps. A key con-
cept for translating XQuery expressions into relational algebra is the way how iter-

6These optimizations have not been executed on our example, which is presented in the canonical translation.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

150 Chapter 5: Query Unnesting and Twig Discovery

ations (i. e., for clauses) are translated into joins. The observation is expressed by the
following semantic equality [Grust 04]:

for $v in (x1, . . . , xn) return e ≡

(e[x1/$v], . . . , e[xn/$v])

where e[x/$v] denotes the replacement of the free occurrences of $v in e by x. This
essentially means that expression e can be evaluated “in parallel” for every value
in (x1, . . . , xn). Because the underlying data model is relational, all sequences are
represented as tables (requiring an additional pos column to keep the order among
the items in the sequence). In the above expression, if we assume that (x1, . . . , xn)
is given as relation R and e is a constant expression given in relation V , a projection
over R × V computes the result of the query. This concept is called loop-lifiting in
[Grust 04]. If we assume that (x1, . . . , xn) is a set of context (XML) nodes and that e
is an axis step, the “navigations” from each context node can also be computed by
a join between the context table and the table containing the document. This join
is evaluated by the so-called staircase join operator. Depending on the axis and the
given context nodes, this special join operator optimizes axis evaluation by

1) pruning certain nodes from (x1, . . . , xn) (for example, in case of the descendant
axis, a descendant xi of a node xj in the context sequence will not produce new
nodes);

2) partitioning the document such that no duplicates are generated (i. e., when the
target sets of each evaluation of e overlap); and

3) skipping such that only those parts of the document are touched containing pos-
sible target nodes of the axis step.

Based on loop-lifting and the staircase join operator, the translator generates quite
complex algebraic expressions (often containing a large number of joins). For ex-
ample, the plan for query for $v in (10, 20) return $v + 100 contains three input
relations and twelve operators [Boncz 05b]. To efficiently evaluate the generated
plans, Pathfinder relies on the salient features of the main-memory-based MonetDB
backend, which can execute joins quite efficiently. In standard relational systems,
further data structures (e. g., partitioned B-trees) are required to guarantee good
performance [Grust 07]. In MonetDB/XQuery, optimization is more relational-style
[Boncz 06a]. The algebra does not contain any counterpart of a twig join algorithm
and path indexes are not available. Therefore, we skip the rewriting discussion here.

5.10 Summary

In this chapter, we have seen how XML queries represented in the XML Query
Graph Model can be algebraically rewritten. The chapter introduced nine rewriting
rules, which primarily aimed at query unnesting, intermediate result size reduction,
operator reduction, and twig discovery. Some rules required new operators and
components to be introduced to XQGM, for example, the structural join, the group-
ing operator, or the merge operator. Besides new operators, also new expression
types, like the between expression or the structural predicate have been introduced.
Figures 5.19 and 5.20 provide an overview over the complete XQGM.

Considering related work, our approach shares the first three query processing
stages with Galax (i. e., normalization, static typing, and simplification). Then, how-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.10 Summary 151

Figure 5.19 The complete version of XQGM in UML

ever, in contrast to an algebraic representation, we chose to extend Starburst’s query
graph model. This approach is also implemented in DB2. Nevertheless, because the
authors of that system do not publish any concrete internals on how XQueries are
represented in the QGM, we are the first ones doing so. With Timber and with
Galax, we share the notion of a tree pattern (or twig). However, our definition of a
tree pattern is more expressive than those the two other systems. Thus, we are ca-
pable of compiling a larger XQuery fragment into tree pattern matching operators
(supporting aggregate functions, optional subtrees, positional predicates, element
constructors, etc.). Natix influenced the logical algebra developed for XTC. The
problem with Natix was that the NAL algebra does not contain any bulk processing
operators. With the introduction of the structural join and the unnesting techniques
presented in [Mathis 07a, Mathis 07b], we lay the foundation for the rewriting rules
shown in this chapter. MonetDB/XQuery and XTC do not have much in common,
because the former system is purely relational.

To conclude this chapter, we want to show that the our rewriting rule set can op-
erate on more complex queries (than our example queries). Therefore, consider the
following query (which emerges from the XMark benchmark [Schmidt 02]):

for $p in doc("auction.xml")/site/people/person
let $l :=

for $i in doc("auction.xml")/site/open_auctions/open_auction/ini tial
where $p/profile/@income > 5000 * exactly-one($i/text())
return $i

where $p/profile/@income > 50000
return <items person="{$p/profile/@income}">{ count($l)}</items>

Figure 5.21 shows this query in the final, rewritten stage. Because the query is more

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

152 Chapter 5: Query Unnesting and Twig Discovery

complex and because XQGM is quite verbose in its graphical representation, the
example does not fit on the page in a readable way. This is, however, not our inten-
tion. We just want to give a proof of concept, showing that our rule set can handle
queries like the one above. For this, the display of the query’s general structure
in its various stages is sufficient. To the initial representation, all unnesting rules
are applied. Only one correlated edge remains. Essentially, this edge stands for the
value-based join in the above query. Since we can only unnest structurally nested
subexpressions, this edge cannot be removed (with the provided rule set). Tackling
these kinds of nested subexpressions is left open for future work. After twig dis-
covery, the query has the shape presented in Figure 5.21. As you can see, the two
structure-related subtrees of the query could be completely integrated into two twig
operators. Note, the presented rule set is also able to treat all other queries in the
XMark set this way, i. e., all structural predicates can be integrated into twig oper-
ators. This was only possible, because we extended the notion of twig operators in
the literature with grouping, output expressions, output filters, etc.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

5.10 Summary 153

Figure 5.20 Components of the complete XQGM version

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

154 Chapter 5: Query Unnesting and Twig Discovery

Figure 5.21 A complete rewriting example

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Part III

Physical Aspects of XML Query
Processing

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 6 Document Storage

Interestingly, according to modern
astronomers, space is finite. This is a
very comforting thought—particularly
for people who can never remember
where they have left things.

Woody Allen

Two substantial XML-specific characteristics collide at the document store of an
XDBMS: Structural XML complexity and different XML document processing
(XDP) models. Because XML conquered so many different application areas, the
structural complexity of XML instances heavily varies. For example, in some appli-
cations, XML replaces configuration files, resulting typically in only a few simply
structured documents. In other applications, XML is used for electronic data inter-
change (e. g., SOAP [Mitra 07]), resulting in hundreds of thousands of small XML
documents. In bioinformatics, protein sequences can be described using XML. The
resulting documents often are multiple gigabytes large [UniProt 08]. Other applica-
tions use XML to encode tree-based data like, for example, the Treebank document,
which contains information about the syntactical structure of a text [Miklau 09].
Many more examples exist, of which all somehow exploit the flexibility of XML,
thus resulting in documents with very different structural complexities. For vari-
ous reasons given in Chapter 1, it is meaningful to keep all these documents under
the centralized control of an XDBMS, where the document store has to cope with
structural complexity.

Over the time, various XDP interfaces have been standardized, e. g., DOM, SAX,
and XQuery. And still new ones are developed like, for example, the XQuery Update
Facility [Chamberlin 07a]. All these interfaces assume a different model of how XML
documents are processed: DOM navigates, SAX scans, XQuery is declarative and
therefore internally does both, and XQuery Update modifies. Clearly, an XDBMS
has to provide all these standard interfaces to serve as a powerful backend for XML
applications. But then the question arises how all these processing models can be
supported efficiently. The document store is critical to the answer of this question
because, in the end, all requests have to be evaluated over this component. This is
in particular true for XML query performance, which heavily depends on how the
document is organized on external memory.

XTC’s node-oriented document store introduced in Section 3.3.2 can already han-
dle different XDP models and structural complexities quite efficiently. However,
optimizations—especially w. r. t. succinctness and XML indexing—are still possible,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

158 Chapter 6: Document Storage

making the following work worthwile. This chapter identifies critical aspects of
native XML document storage by postulating a list of desiderata. The current doc-
ument store is reconsidered and, based on the identified weak spots, solutions are
presented. Furthermore, to address succinctness and indexing, the concept of path-
oriented XML storage is developed.

6.1 Desiderata

XML database systems are generic. Therefore, they should provide equally good
performance and functionality for all shapes of XML documents and for all kinds
of XDP models. This section presents a list of desiderata reflecting this considera-
tion. As the name “desiderata” implies, we do not consider this list normative but,
nevertheless, suggest that it is meaningful for many XML applications.

An XML document store should provide for the following eight characteristics:

1. Efficient storage and reconstruction. Because XML is a format for data interchange,
XDBMSs frequently need to receive and emit XML data. Therefore, the docu-
ment store has to provide fast storage and reconstruction facilities. Otherwise,
the XDBMS would become a bottleneck.

2. Navigational operations. These operations are required not only to implement the
DOM interface, but also to provide low-level operators for XQuery processing.

3. Scan and subtree reconstruction. A SAX parse is typically implemented by a doc-
ument scan. But also for XQuery evaluation, scans are very important, e. g., for
subtree reconstruction during result materialization.

4. Modifications. Of course, applications need to update XML data stored in an
XDBMS. Therefore, the document store should provide means to modify single
nodes, content, and subtrees.

5. Round-trip property. The round-trip property guarantees that a document can be
reconstructed from the document store without any loss. This is in particular of
importance for document-centric XML, for example, when legal contracts need
to be stored.

6. Document and collection support. Documents might come in single instances of
large documents or in large collections of small documents. No matter how, the
document store should be able to efficiently manage the XML data.

7. Succinctness. A space-efficient document store not only saves external memory
costs, but also leads to reduced I/O and logging and, therefore, better XDP per-
formance.

8. Indexing support. For query processing, secondary path indexes are of particu-
lar importance, because documents and collections often are too large to com-
pletely load them into main memory for processing. Therefore, the document
store should provide mechanisms that allow for cheap path index construction
and maintenance.

Some readers now might miss two points that are often associated with XML stor-
age, namely XML schema validation and versioning (i. e., keeping a history of modi-
fied subtrees in the store). We do not consider these points as physical properties

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.2 Node-Oriented Storage Reconsidered 159

Figure 6.1 Storage of sample document recordStore.xml in a B*-tree

...

T
E
T
E
E
A
A
E

...

E
E
A
E
T
E
T
E

recordStore
cd
id "cd_100"
title
"The Soul Cages"
artist
"Sting"
year

1998
genre
"Pop"
tracks
track
no 1
length 401
title

"The Soul Cages"
track
no 9
length 468
title
"When the Angels Fall"
vinyl
...

T
E
A
A
E
T
E
E

1
1.3
1.3.1.3
1.3.3
1.3.3.3
1.3.5
1.3.5.3
1.3.7

1.3.7.3
1.3.9
1.3.9.3
1.3.11
1.3.11.3
1.3.11.3.1.3
1.3.11.3.1.5
1.3.11.3.3

1.3.11.17.3.3
1.3.11.19
1.3.11.19.1.3
1.3.11.19.1.5
1.3.11.19.3
1.3.11.19.3.3
1.5
1.5.1.3

Key Desc Value Key Desc Value Key Desc Value

1.3.7.3

1 1.3.11.17.3.3

of an XML document store, but rather as logical ones that can and should be im-
plemented in a layer on top of the physical representation. Note, in XTC, schema
handling and versioning are two open issues that have not been explored yet.

6.2 Node-Oriented Storage Reconsidered

As introduced in Section 3.3.2, XTC implements a node-oriented storage model. Ev-
ery node in the XML hierarchy is mapped onto a record (using the node’s DeweyID
as the record key) for external memory storage in a B*-tree. For convenience, the
document store of our sample document from Figure 3.5 on Page 40 is repeated in
Figure 6.1. In the following, this storage layout is reconsidered w. r. t. to the above
requirements.

6.2.1 Storage and Reconstruction

Document storage is implemented using a third-party SAX parser. The parser
does a single sweep through the document. For each node delivered, the neces-
sary DeweyID, vocID or encoded content, and descriptor information is computed,
mapped onto a record, and appended to a B*-tree with enabled prefix compres-
sion. Because the DeweyIDs are generated in document order for each node (and
the records occur in correct key ordering), B*-tree insertion and prefix compression
can be implemented very efficiently. In fact, because the records to be inserted are
already sorted, the B*-tree can be built bottom up [Srinivasan 92]. As context in-
formation for prefix compression, only the last record stored before the current one
needs to be memorized to derive the new suffix.

Document reconstruction can also be implemented very efficiently. Basically, only
one scan over the doubly-linked list of leaf-pages of the document store is necessary.
During the scan, each record can be decoded to a node using the previous record to
reconstruct the node’s DeweyID, and the record manager to decode the vocID.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

160 Chapter 6: Document Storage

On external memory, both operations, document storage and reconstruction, are se-
quential operations. Furthermore, they only require a small amount of main mem-
ory for the SAX parser and/or the opened set of (leaf) B*-tree pages. In case of
storage, the maximum number of pages opened at a time is equal to the height ht of
the resulting B*-tree (bottom-up storage). For reconstruction, the number of pages
pages opened at a time is 1.

Storage and reconstruction cannot be further optimized for node-oriented storage,
therefore, no modifications to the current implementation of the document store are
necessary.

6.2.2 Navigational Operations

As already sketched in Section 3.3.2, navigational operations are “translated” by the
record manager to B*-tree index access methods. For a context node n and a B*-tree
of height ht, these translations can be sketched as follows (note, the implementa-
tion of the following algorithms is straightforward, which is why their pseudocode
description is omitted here):

• Parent: The record manager calculates the parent DeweyID from n and calls the
getNode method, which, in turn, gets the corresponding record from the index
by a key lookup. Obviously, because DeweyIDs are prefix-based, no document
access is necessary for the parent-ID calculation. To actually retrive the parent,
a key-based B*-tree index lookup reading at most ht pages is required. As an
example, consider the calculation of the parent of the title node with ID 1.3.3. The
parent ID is 1.3, for which a key-based lookup retrieves the cd node (see Figure
6.1).

• First Child: The record manager opens the index on n. Starting at the opened
record, the index is scanned forward. If attributes exist, they are stored before
the first child, therefore they have to be skipped. The scan stops on the first non-
attribute record it finds. If the level of this record’s DeweyID is of one larger than
the level of n, the first child is found. Otherwise, the first child does not exist. The
number of pages accessed to retrieve the first child in that way is ht + x, where x
is the number of pages containing the attributes of n. In most XML documents,
the number of attributes for an element is typically small, which is why the first
child resides on the same page as its parent most of the time. As an example,
consider the calculation of the first child for the cd element with DeweyID 1.3.
The index is opened at position 1.3, attribute 1.3.1.3 is skipped and element title
with DeweyID 1.3.3 is returned as the first child.

• Last Child: As the previous method, the record manager opens the index on n.
Then the index is scanned forward, buffering the last but one accessed non-
attribute child record rl−1. During the scan all records are skipped until an el-
ement record is found, whose DeweyID is not a descendant of n. If rl−1 has been
assigned at least once, it contains the last child. Otherwise, the last child does not
exist. Basically, the scan continues as long as it does not leave the subtree below
n. When the scan stops, the last child is buffered in rl−1. Similar to getting the
first child, the number of pages accessed is calculated by ht+x, where this time, x
is the number of pages containing the subtree of n (and one additional node). As
an example for this operation, consider the cd node again. The index is opened
on the corresponding record. The scan basically skips all nodes starting with 1.3,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.2 Node-Oriented Storage Reconsidered 161

keeping the current child of 1.3 in rl−1, i. e., 1.3.5, 1.3.7, 1.3.9, and 1.3.11. At node
1.5, the scan stops, because the subtree is consumed. The last child is then the
tracks node at 1.3.11.

• Next Sibling: This method is similar to getFirstChild. Again the index is opened on
n, and a forward scan is issued. This time, the scan stops on the first non-attribute
record, whose level is smaller or equal to the level of n. If the level is equal, the
next sibling is found. Otherwise, the next sibling does not exist. The cost of this
operations is again ht+x, where x is the number of pages that contain the subtree
of n (plus one additional node). As an example, consider the next sibling method
on the cd element at ID 1.3. The index is opened on that record and the scan skips
all nodes with prefix 1.3 until node 1.5 (vinyl) is found.

• Previous Sibling: This method is implemented like the previous one, except that
a backward scan is used. The cost is ht + x, where x is the number of pages that
contain the subtree of the previous sibling. Again, the number of pages may be
prohibitively high and an alternative implementation will be shown.

Due to the scan-based implementation, the number of page access operations to find
the last child, the previous sibling, and the next sibling is only bound by the document
size in the current implementation. Of course, even though sequential scans are fast,
this kind of access behavior has to be avoided. Therefore, we develop alternative
solutions in the following.

Common to all three methods is the first step to locate the B*-tree record where the
scan originates, i. e., the record of the context node n. This open operation already
requires access to ht pages. The idea is now to directly locate the page where the
last child, previous sibling, or next sibling actually resides, instead of opening the
index at the context node. To do so, special open/get methods over the B*-tree index
have to be developed that do not operate on a direct key comparison, but on a prefix
comparison. In particular, the following three methods are required:

• Largest Prefix (LP): Given a DeweyID d, this method opens the index on the last
record having d as prefix. For example, on the document index depicted in Figure
6.1, LP(1.3) opens the index on record 1.3.11.19.3.3. This method can be imple-
mented by a single top-down B*-tree traversal, just as an ordinary comparison-
based open command, thus, requiring access to ht pages.

• Largest Prefix Right (LPR): Given a DeweyID d, this method opens the index on the
neighbor record at the right of last record having d as prefix. For example, on the
sample document, LPR(1.3) opens record 1.5. The implementation of this method
is almost equal to the implementation of LP. The search algorithm descends the
B*-tree by following records with the largest prefix. If, however, at the leaf-page
level, the record with the largest prefix is the last record in the page, the LPR
resides on the next page. Thus, this method requires access to ht + 1 pages in the
worst case.

• Smallest Prefix Left (SPL): Given a DeweyID d, this method opens the index on
the neighbor record at the left of the first record having d as prefix. For exam-
ple, SPL(1.3.7) is 1.3.5.3. Similar to LP, this method requires to access ht pages,
because the leaf-page, where the SPL is stored, can be directly found.

Using these three methods, we can now sketch the index-based evaluation of the last
child, previous sibling, and next sibling navigation steps. Note, for brevity, handling
attribute nodes is omitted here. However, such an extension is straightforward:

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

162 Chapter 6: Document Storage

• Last Child: For the DeweyID of context node n, LP delivers the last record rl in the
subtree of n. If no such record is found, the last child does not exist. Otherwise,
record rl is either the last child or rl is a descendant of the last child. In the latter
case, the DeweyID d of the last child can be inferred by truncating suffix divisions
until the expected child level is reached. Now, the corresponding record for d can
be loaded via the getNode method.
As an example, consider the calculation of last child on the cd element with
DeweyID 1.3. LP(1.3) delivers 1.3.11.19.3.3. With the level information, we can
compute the DeweyID of the last child as 1.3.11. The record can be retrieved by a
key-based record lookup. The number of pages accessed ranges between ht and
2 ∗ ht.

• Next Sibling: For the DeweyID of context node n, LRP delivers the neighbor
record at the right of the last record having d as prefix. If such a record can-
not be found or if the level of the record’s DeweyID is not the same as n’s level,
the context node has no next sibling. Otherwise, the sibling is found.
As an example, consider the calculation of the next sibling on cd with DeweyID
1.3. LPR(1.3) delivers 1.5, which is the next sibling. As a counter example, con-
sider the next sibling of the tracks element with DeweyID 1.3.11. LPR(1.3.11) also
returns 1.5, which is no sibling, because the level is not correct. The number of
pages accessed ranges between ht and ht + 1, depending on LPR.

• Previous Sibling: This method is similar to the last child evaluation. SPL returns
the left neighbor of the first record having the context node’s DeweyID as prefix.
This record is either the previous sibling or it is a descendant. In the second case,
the previous sibling can be retrieved using the getNode method.
As an example, consider the operation on the vinyl element with DeweyID 1.5.
SPL (1.5) returns 1.3.11.19.3.3, which leads to 1.3 using the level information. The
costs for this method range between ht and 2 ∗ ht page references.

All in all, the costs to locate any node from a given context node ranges between ht

and 2 ∗ ht, thus, in all cases, the costs are bounded. In practice, the buffer manager
will keep many pages in main-memory anyway such that the number of physical
page references is at most 1 for any navigational operation.

6.2.3 Scan/Reconstruction, Modifications, and the Round-T rip Property

Scan and subtree reconstruction are quite similar to document reconstruction
sketched in the first point. To reconstruct a subtree for a given DeweyID, the en-
try page has to be found first, which is achieved by a key lookup in the B*-tree.
Then a scan over leaf pages in the B*-tree is issued. In total, the number of accessed
pages depends on ht + x, where x is the number of pages that hold the subtree.
For an ordinary document scan, the entry page is simply the left-most page among
the leafs and the complete linked list of leaf pages is accessed. Because on exter-
nal memory, these methods result in sequential operations, their implementation is
very efficient.

Like navigations, document modifications are translated to B*-tree updates. Re-
naming a node/attribute or some content leads to a localization of the respective
record in the B*-tree and a re-assignment of the vocID or the content. Thus, the op-
eration requires ht page access operations and one page write. Deleting a node n
(and its subtree) results in deleting all records from the B*-tree, whose DeweyIDs

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.2 Node-Oriented Storage Reconsidered 163

start with n’s DeweyID. The well-known B*-tree balancing and merging algorithms
[Comer 79] apply. To insert a node, its DeweyID has to be determined first. The
insert position of that node depends on this DeweyID. The necessary rules to cre-
ate the appropriate ID can be found in [Haustein 06a]. Given the ID, a record is
created and inserted into the B*-tree, where, again, the well-known balancing and
split mechanisms [Comer 79] apply. Because frequent insertions and deletions of
whole subtrees can be anticipated, more efficient bulk maintenance methods can be
implemented.

Of course, it should be possible to reconstruct a document stored in an XDBMS to its
original form, i. e., the XDBMS should support the round-trip property. There are,
however, several definitions of what “round-trip” actually means (e. g., [Cokus 05]).
For example, round-trip could mean that a reconstructed document has to be byte-
wise equal to its original form. Such a definition could be necessary, for example,
when digital signatures over documents are created. Another definition requires the
original and the reconstructed document to deliver the same data model instances,
e. g., both documents have to have the same XML Infoset [Cowan 04]. The data
store introduced above cannot provide for byte-wise equal documents, because it
does not provide any way to encode intra-markup whitespace. The data-model
definition however is supported. Because currently, XTC is a research prototype,
only element, attribute, and text nodes are supported for storage (i. e., processing
instructions, comments, namespace nodes, etc. are omitted). This is, however, only
an implementational restriction and not a conceptual one.

6.2.4 Document and Collection Support

In this work, collections are defined as (unordered) sets of documents. Often, but
not necessarily, collection documents are rather small and have a similar structure.
The question, whether an XML application operates on one large document or one
many small documents (in a collection), depends on the personal taste of the appli-
cation developer. Nevertheless, the XDBMS has to support both designs. However,
when large collections of small documents are stored in XTC’s document store, a
B*-tree is created for each of those documents leading to high memory fragmenta-
tion (because much space in nearly empty B*-tree pages is wasted). The situation
gets even worse, when additional indexes are created on collections.

As a simple but efficient solution to this problem, XTC is enhanced to store collec-
tions in a single document, by adding a virtual root node under which all doc-
uments are appended. An additional entry in the (metadata) master document
keeps track of the (DeweyID) position for a particular collection document in the
document store. All access methods are rewritten to detect document boundaries
(e. g., the document scan method). Furthermore, this collection store can be indexed
(Chapter 7) just like any other document. Thus, the documents in a collection share
indexing and storage space.

6.2.5 Succinctness

A space-efficient document store is mandatory because of storage and I/O costs.
The XTC document store tries to minimize required storage space by various com-
pression techniques (two of which will be briefly repeated for convenience): Ele-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

164 Chapter 6: Document Storage

Table 6.1 Characteristics of XML documents considered

Document
Name

Description Size [MB] Elem./Attr.
Nodes

Content
Nodes

Vocabulary
Size

DRTL
Paths

RTL Path
Instances

lineitem LinteItems (TPC-H Bench) 32.3 1,022,977 962,801 19 17 962.801

uniprot Universal Protein Re-
source

1,821.0 81,983,492 53,502,972 89 121 53,502,972

dblp Computer Science Index 330.0 9,070558 8,345,289 41 153 8,345,289

nasa Astronomical Data 25.8 532,967 359,993 70 73 371,593

treebank English Records 89.5 2,437,667 1,391,845 251 220,894 1,391,845

xmark100 Auctions (Synth.) 100.0 1,776,202 1,060,215 77 451 1,412,762

ment and attribute names are not stored in their string representation. Instead a
vocabulary is used that maps a name to a unique integer, i. e., the already intro-
duced vocabulary ID (vocID), and vice-versa. Because the vocabulary of XML docu-
ments is typically small, only one to two bytes are required to encode element and
attribute names. Another technique is prefix compression. Because two consecutive
DeweyIDs in document order often have a large common prefix (see Figure 6.1), it
is sufficient to store some delta information for following ID, instead of the full rep-
resentation. As a result, in each page, only the DeweyID in the first record is stored
completely. The IDs of the following records are encoded using delta information.
A third technique aims at the efficient encoding of DeweyIDs. DeweyIDs should not
be stored as strings or integer arrays, because these encodings cannot exploit the ob-
servation that DeweyIDs tend to contain small integer (division) values much more
often than larger ones. Again, consider Figure 6.1 for an example. In such cases,
Huffman encodings that represent often occurring values with short codes and sel-
dom occurring values with longer codes are very efficient. An empiric evaluation
on Huffman encoding for DeweyIDs can be found in [Haustein 05b, Härder 05b].
As a further technique (orthogonal to the already introduced), word-based and
character-based text compression could be integrated in the document store. How-
ever, at the time of writing, this feature is not implemented yet. First considerations
can be found in [Schmidt 07].

In general, redundancy is bad for storage, because of higher space consumption
and the need to maintain redundant data. In XML, especially data-centric docu-
ments often contain a lot of redundant information. Consider, for example, the
recordStore.xml document schematically presented as a tree in Figure 3.1 on Page 32.
The first type of redundancy you can observe in XML is that every opening tag has
a closing tag. This is however not a problem, because the node-oriented document
store interpretes XML data as a tree and only stores nodes (and no opening and
closing tags).

The second type of redundancy evolves from the mixture of metadata (i. e., struc-
ture) and content. As an example, consider all subtrees below a track element. They
have the same structure (but different content). Furthermore, all cd subtrees have
the same structure (but different content and cardinalities), and the structure of a cd
element and a vinyl element is quite similar.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.2 Node-Oriented Storage Reconsidered 165

To give an impression on how much redundancy XML documents can contain, Ta-
ble 6.1 shows some metrics of seven different documents. The five six documents
are real-world examples [Miklau 09], whereas the last one (xmark) is a frequently
used synthetic benchmark document [Schmidt 02]. All documents are single doc-
ument instances of several megabytes up to nearly two gigabytes of size. The in-
teresting columns are the three right-most ones. As you can see, the number of
different element/attribute names (vocabulary size) is typically small (below 100
for all except treebank). Therefore, for most documents, a one-byte field storing
the vocabulary ID (vocID) would be sufficient. What is even more interesting, is
the ratio between distinct root-to-leaf (DRTL) paths and the number of root-to-leaf
(RTL) path instances in the last two columns. This ratio is an indicator for the struc-
tural complexity of a document. Most shown documents have less than 200 distinct
paths but several orders of magnitude more path instances. Those documents are
typically data-centric. The only document with a higher ratio is treebank, which
contains a syntactically annotated text and is document-centric.

As Table 6.1 illustrates, in data-centric documents, the arrangement of nodes on
a path (over all path instances) is very similar, only quite a few combinations (i. e.,
distinct paths) exist. However, a node-oriented document store does not exploit this
feature. Instead, path information is neglected and all nodes are simply mapped to
records and stored in the B*-tree. This kind of redundancy can be reduced by a new
storing concept called path-oriented storage. The idea behind path-oriented storage
is to store paths instead of nodes, thereby virtualizing the inner document structure.
The concept will be introduced in Section 6.3.

6.2.6 Indexing Support

Just like relational data, XML needs to be indexed for fast query evaluation, because
scanning a complete document or relying on navigational primitives is often too ex-
pensive. While XML indexing will first be discussed in Chapter 7, we nevertheless
try to anticipate how the document store can support indexing. In particular, the
questions how secondary indexes can be built and maintained are of major impor-
tance. Note, in this section, the issues regarding indexing are only presented on a
high level to motivate the requirements for the document store.

XML indexes can come in various forms, probably the most natural of which is a
path index. Basically, a path index consists of an index definition which is stored in
the metadata of the XDBMS, and a physical store that contains the indexed values—in
this case, some path instances from the document. Typically, not all path instances
of a document should be collected in the physical store, but only the ones of in-
terest, e. g., to serve a particular query workload. Otherwise, maintenance costs
would be intolerably high. To restrict the number of path instances, the index defi-
nition specifies some kind of path pattern. All paths matching this pattern are part
of the index. Regarding index creation and maintenance, the question now arises
1) how the index builder can efficiently decide, which paths are contained in the in-
dex, and 2) how the document store can efficiently recognize which index requires
maintenance after a document modification.

Let us consider index creation first. There are two possibilities how the necessary
paths for an index definition can be found: by query or by scan. The first method
interprets the index definition as a query which is evaluated over the document. The

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

166 Chapter 6: Document Storage

results belong to the index. The second method scans the document (using a SAX
scan) and keeps a current path information. Whenever, the current path matches
the definition, it belongs to the index. Obviously, the node-based document store
supports both creational methods. However, as will be shown in the next section,
the path-based store already “knows” paths. Therefore, there is no need to keep the
current path information anymore and a matching against the index definition can
be omitted. Thus, the scan-based construction process is simplified.

For index maintenance, the advantages of a path-oriented store are even more obvi-
ous. Suppose an application deletes a subtree in a document for which a set of path
indexes exists. Of course, the indexes need to be maintained. In a node-oriented
document store, it is quite costly to identify the indexes requiring maintenance, be-
cause the current path information is not available. However, without the current
path, it is not possible to decide which index is affected by an update. The only
chance to do so is to reconstruct this information by navigating to all ancestors. Be-
cause a path-oriented document store is aware of paths, such a reconstruction is not
necessary.

A prerequisite for all indexing methods is the possibility to uniquely identify nodes
in a document, because an index inverts document nodes with certain properties
into lists of node references. If these references were physical, each document mod-
ification would lead to an extensive index update, because inverted nodes located
after the modified one(s) need to be updated. This, however, is prohibitively ex-
pensive and, therefore, not feasible. Actually, the point “Indexing Support” implies
a logical node identification mechanism, such as the DeweyID concept introduced
earlier.

6.2.7 Summary

In the previous Sections, the functionality of XTC’s document store was reviewed
w. r. t. to the list of desiderata given in Section 6.1. Table 6.2 summarizes the conclu-
sions. The points storage and reconstruction, scan and subtree reconstruction, updates,
and round-trip are sufficiently supported by the document store. For navigational op-
erations and collections, some improvements were necessary to restrict/minimize the
number of accessed/required pages. Succinctness and indexing support were identi-
fied as weak spots that will be addressed in the next Section. As we will see, the
reduced storage overhead of the path-oriented scheme also improves the first four
points in Table 6.2.

6.3 Path-Oriented Document Storage

XML has a tree-based data model and, intrinsically, paths play an important role
in trees: In an XML document, the payload data is stored “at the end of a path”,
and also paths encode information; furthermore, queries over XML naturally follow
paths. For example, most of the queries in the XQuery Use Cases [Chamberlin 07b]
contain only child and descendant axes, i. e., they contain plain path queries.

As shown, the node-oriented storage approach encodes each node and maps it onto
external memory. Because a node does not “know”, on which path it resides, paths
are only second-class citizens in the node-oriented model. To obtain path informa-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.3 Path-Oriented Document Storage 167

Table 6.2 Node-Oriented document storage summary

Requirement Comment

Storage and Reconstruction Documents stored and reconstructed node-at-a-time using single-sweep sequen-
tial operations. Document store (B*-tree) can be built bottom-up. Low main-
memory consumption. No direct improvements possible.

Navigational Operations Scan-based implementations of navigational operations require access to the com-
plete list of linked B*-tree leaf pages in the worst case. Index-based implementa-
tions require 2 ∗ ht + 1 page access operations in the worst case; therefore more
robust.

Scan and Subtree Reconstruction Scan and subtree reconstruction single-sweep sequential operations along leaf
pages of B*-tree. Subtree reconstruction bounded by ht + x page access opera-
tions, where x is the number of consecutive pages the subtree is stored in. No
direct improvements possible.

Updates Subtree deletions/insertions result in (bulk) B*-tree deletions and insertions,
where well-known tree balancing algorithms apply. Renaming a node or content
modification requires record fetch and update to record. No direct improvemens
possible.

Round-Trip Property Byte-wise round trip is not possible, however, data-model-based round-trip is im-
plemented.

Documents and Collections Collections are stored as virtual document, thus collection documents share stor-
age and indexing space.

Succinctness Compression opportunities based on structural similarities are not exploited.

Indexing Index creation with current path information possible. Index maintenance expen-
sive due to ancestor path reconstruction.

tion, the document needs to be accessed (even though the DeweyIDs of all nodes
on the paths are known).

Because paths occur very frequently in query processing, we will see that their opti-
mized management even (or already) in document storage is of major importance.
To address this consideration, the path-oriented storage model promotes paths to first
class citizens. This promotion is done in a careful way such that the value of nodes
is not degraded.

The basic idea behind path-oriented storage is simple: Assume a data structure
that structurally summarizes all paths in a document. In the following, this data
structure is called path synopsis. For a large group of XML documents, such a path
synopsis would be typically small: Table 6.1 reveals that the number of distinct
paths, i. e., the number of paths in such a synopsis is less than 500 for all considered
documents except one. The key ideas is to establish a link between a node on one
side and the node’s path on the other side. This can be achieved by the use of a path
synopsis.

A node (and its DeweyID) together with its path can be used as a kind of coordi-
nate in the document. Not only the DeweyIDs of the node’s ancestors can then be
inferred, but also the ancestor’s names. This mechanism allows a kind of “upside-
down” storage, in which the inner structure of the document is not explicitely
stored, but virtualized.

In the following, the path synopsis and the path-oriented storage model are intro-
duced, for which then the list of desiderata posed in Section 6.1 is considered.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

168 Chapter 6: Document Storage

6.3.1 The Path Synopsis

In the following, we content ourselves with only an informal description of the path-
synopsis concept, given in Definition 1 below. Actually, a path synopsis is the same
as a DataGuide [McHugh 98] or a 1-Index [Milo 99]. However, to introduce the
necessary concepts and terms, we nevertheless provide our own definition. The first
criterion states that a path synopsis only contains information about element and
attribute nodes (and not about text nodes). Therefore, only structural information
is stored in a path synopsis. Criterion number 2 actually means that, for every
path in the synopsis, there is at least on instance in the document, i. e., no paths are
contained that do not occur in the document. The last criterion states that, for each
path in the document, there is exactly one path in the synopsis, i. e., the paths in the
synopsis are distinct.

Definition 1 (Path Synopsis (PS)) A path synopsis is a tree structure containing all dis-
tinct paths of a document. Let pD be the path synopsis for document D, then the following
criteria hold:

1. The nodes n of a path synopsis carry a node name l, where such a node name is either an
element name from D or an attribute name. In the latter case, the name is prefixed by an
“@”. A path synopsis does not contain text nodes.

2. Let np be a node in pD and let l1, l2, . . . , ln be the node names on the path from the root of
pD to np. Then there is at least one element (or attribute) node nD in D having the same
names l1, l2, . . . , ln (or l1, l2, . . . ,@ln) from the root of the document D to nD.

3. Let nD be an element (or attribute) in the document and let l1, l2, . . . , ln (or
l1, l2, . . . ,@ln) be the node names on the path from the root of D to nD. Then there
is exactly one node np in pD having the same names l1, l2, . . . , ln (or l1, l2, . . . ,@ln)
from the root of pD to np.

As an example, consider the path synopsis for the recordStore.xml sample document
depicted in Figure 6.2. You can verify the above criteria by comparing the path syn-
opsis with the complete document depicted in the Appendix. Further on, note that
the order of the paths in the path synopsis is not significant. For example, in the syn-
opsis, the tracks node appears before the band node (in document order), however,
in the depicted document, the order is exactly the other way around. Furthermore,
note the names of siblings in the path synopsis is usually a superset of the names
of siblings in the document. For example, a cd element usually has either a band or
an artist child element, but not both. In general, the definition of the path synopsis
does not make any assumptions on the order of the nodes or on the existence of sib-
lings in a particular document. Assumptions are only made on the correspondence
between paths in the synopsis and in the document.

A path synopsis can be seen as a kind of up-to-date structural schema description of
the document. The use of this concept is manifold. In this work, the path synopsis
will be used to store documents and to create indexes over them. Additionally, a
path synopsis can serve for example as a container for statistical data, as a means
to define data consistency, or it can be used to prune path expressions from queries,
for which the synopsis reveals that they will produce an empty result.

In XTC, the path synopsis is a main-memory data structure with an external mem-
ory encoding for persistence. For easy reference, every node in the synopsis has

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.3 Path-Oriented Document Storage 169

Figure 6.2 Path synopsis of the recordStore.xml document

@id @id

vinyl

recordStore

20

tracks band pricegenreyearartisttitle

@no @lengthtitle title @length@no title

artist yeartitle aSide bSide genre format

Legend:

Element

Attribute

cd

track tracktrack

@length@no

31

11109

13126 8

1

2

15 16 18 19

232221 26 28

25

24 302917

14

27

4 5 73

a node label. In contrast to documents, where order plays a role and where the
DeweyID mechanism is required, the path synopsis is order oblivious and, there-
fore, a simple integer value to reference a node is sufficient. Because every path p in
the path synopsis subsumes several document paths pDi (Criterion 2 of Definition
1), we call p a path class and the the documents paths its path instances. The node la-
bels in the path synopsis are called path class references or PCRs, for short. Note, also
PCRs have no particular order. For example, the PCR of the left-most track node in
the path synopsis is larger than its child nodes.

The size of the path synopsis obviously depends on the structural complexity of
the document. In the worst case, the path synopsis is as large as the document.
However, as the structural analysis in Table 6.1 revealed, the ratio between path
classes and path instances is often very low and path synopses are typically small.

6.3.2 The Store

To promote path information to first-class citizens in our storage model, all that
needs to be done is to connect path information to nodes such that every node
“knows” on which path it resides. This can be accomplished by storing the node’s
corresponding PCR together with the node information in the document store.
Then, for every node in the document, it is possible to calculate the DeweyIDs and
the names of its complete ancestor path. As an example, consider our sample doc-
ument depicted in Figure 6.3 on. Assume, we regard the title node with DeweyID

Figure 6.3 Path-oriented document storage

Attribute Root

tracks

track track

no

title artist year

’’The Soul Cages’’ ’’Sting’’ 1998

genre

id
’’Pop’’"cd_100"

...

...

9 468

title

lengthno
1 401

length

P
hy

si
ca

l
V

irt
ua

l

1.3.1.3.1

1.3.1.3

1.3.1 1.3.3

1.3.3.3

1.3.3.3.1

1.3.5.3

1.3.5

1.3.5.3.1

1.3.7.3

1.3.7

1.3.7.3.1

1.3.9.3

1.3.9

1.3.9.3.1

1.3.11.3.1.3

1.3.11.3.1.3.1 1.3.11.3.1.5.1

1.3.11.3.1.5

1.3.11.3.1

1.3.11.3

title

’’Islands of Souls’’ "When the Angels Fall"
1.3.11.3.3.3.1

1.3.11.3.3.3

1.3.11.3.3 1.3.11.19.1

1.3.11.19.1.3

1.3.11.19.1.3.1
1.3.11.19.1.5.1

1.3.11.19.1.5

1.3.11.19

1.3.11.19.3

1.3.11.19.3.3.1

1.3.11.19.3.3

cd

recordStore

...
vinyl

1.3 cd
1.5

1

1.7

1.3.11

Legend:

Text Node

Element String Node

DeweyID1.3.3.9

Attribute

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

170 Chapter 6: Document Storage

Figure 6.4 The path-oriented document store for document recordStore.xml

id "cd_100"

"The Soul Cages"

"Sting"

...

Value

"The Soul Cages"

no 9
length 468

"When the Angels Fall"

...

...

1998

"Pop"

no 1
length 401

T

A
A

A

Key Desc PCR Value

1.3.1.3

1.3.3.3

1.3.5.3 T

T

3

4

5

Key Desc PCR Value

A
A

1.3.7.3

1.3.9.3

1.3.11.3.1.3
1.3.11.3.1.5 10

9

7

6T

T

Key Desc PCR

1.3.11.17.3.3 11

1.3.11.19.1.3
1.3.11.19.1.5 10

9

111.3.11.19.3.3 T

1.3.1.3 1.3.11.17.3.3

1.3.7.3

1.3.11.3.3. In the path synopsis, this node has PCR 11. Together with the path syn-
opsis, we can then compute the ancestor path of this node as the following list of
name-DeweyID pairs: (track, 1.3.11.3), (tracks, 1.3.11), (cd, 1.3), (recordStore, 1).

Storing the path information together with every node results in higher memory
consumption by the document store. Although a PCR size of two bytes (to encode
up to 65,536 paths) is sufficient for many documents, this size has to be multiplied
by possibly millions of nodes in the document. To remedy this situation and to even
save storage space, we can simply skip the storage of inner nodes and only store
leaves. This is possible, because, as shown above, the nodes on an ancestor path
can be recomputed using DeweyIDs and the path synopsis. This is the basic idea
behind the path-oriented storage scheme. For example, consider Figure 6.3 again.
Everything that needs to be stored in the depicted subtree are the nodes below the
dashed line, their PCRs, and the path synopsis of the document. All inner nodes
can be recomputed, when required. As shown, only string nodes need to be stored.
Because a string node always ends on division “1”, this last division can be skipped
to save space.

The resulting document store which is also based on a B*-tree is depicted in Fig-
ure 6.4. To facilitate the comparison of the path-oriented document store with the
node-oriented document store for the same document (shown in Figure 6.1 on Page
159), the path-oriented store is illustrated using gaps where previously records were
stored. For each text (T) or attribute (A) node in the document, a record is contained
in the store. In the new record format, besides the key, desc, and values components,
the PCR is also stored. For attributes, the PCR from the path synopsis can be directly
used (because attributes are directly represented there). For text nodes, the PCR of
their containing element is used, because text nodes are not directly represented in
the path synopsis. Note, this storage mode also works for mixed content and empty
elements. In the latter case, an empty (dummy) text string is generated to encode
the element.

All in all, less records are required, because inner elements are omitted in path-
oriented storage. Thus, path-oriented storage provides an opportunity to reduce the
external memory consumption. This space reduction will be empirically measured
in Chapter 9. In the following, we consider the given list of desiderata and show

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.3 Path-Oriented Document Storage 171

Listing 6.1 The storage content handler

c l a s s StorageContentHandler exten d s DefaultHandler implements ContentHandler

{

Array < in t > divisions = {−1, ..., −1}; / / f o r DeweyID c r e a t i o n
i n t level = 0; / / −− "" −−

Record dummyRecord ; / / t o b u f f e r t h e dummy n o d e
SynopsisNode psNode ; / / t o c r e a t e t h e s y n o p s i s
BSTreeBuilder bsTreeBuilder; / / t o c r e a t e t h e docum ent s t o r e

/ / SAX m e t h o d s . . .
}

that all operations on the node-oriented document store are also supported by the
path-oriented version.

6.3.3 Storage and (Subtree) Reconstruction/Scan

As in the node-oriented approach, we will see that the document can be stored and
reconstructed in a single sweep through the document or over the leaf pages of the
document index. However, because inner nodes are virtualized, less data needs to
be read or written. In contrast to the previous approach, the algorithms for storage
and reconstruction require a little more explanation. Therefore, they are presented
in the following.

Storage

For storage, a third-party SAX parser is used, which reads the document and issues
the call-back methods of the storage content handler. The storage content handler, in
turn, simultaneously computes the necessary DeweyIDs, builds the path synopsis,
and constructs the document store. To facilitate the presentation, only the treatment
of element and text nodes is discussed. Storing attributes only requires some simple
extensions to the presented algorithm.

Before the algorithm is presented in detail, consider the following: In the node-
oriented storage model, a record (DeweyID-value pair) is created and immediately
written to the document store for every node reported by the SAX parser. Because
only leaf nodes and no inner elements are stored in the path-oriented storage mode,
this process should intuitively become simpler. However, the occurrence of empty
elements slightly complicates the process: As introduced above, an empty element
requires an empty (dummy) text element to be written into the document store.
However, at the time an element is reported by the SAX parser, it is not known,
whether the element is empty or not. This question can only be answered by the
following SAX call, which signals whether a child element or text node was found or
not. Therefore, a one-node lookahead is required. With that, the member variables
keeping the state of the storage content handler in Listing 6.1 become clear.

The divisions array and the level variable keep track of the value for the cur-
rent DeweyID. The array is initialized with a set of -1 values. Both, divisions
and level are modified when the start or the end of an element is reported. The
dummyRecord variable is the one-node–sized buffer introduced above. It can con-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

172 Chapter 6: Document Storage

Listing 6.2 The startElement method for path-oriented document storage

p u b lic void startElement (String namespaceURI , String localName , String qName)

{

/ / c o m p o s e e l e m e n t name
String elementName = createElementName(namespaceURI , localName , qName);

/ / c a l c u l a t e t h e d i v i s i o n s f o r t h e c u r r e n t DeweyID
divisions [level] += 2;

DeweyID id = createDeweyID(divisions);

/ / m a i n t a i n t h e p a t h s y n o p s i s
i f (psNode .hasChild (elementName))

psNode = psNode .getChild (elementName);

e l s e
psNode = psNode .append (createSynopsisNode(elementName));

/ / c h e c k and o p t i o n a l l y s t o r e t h e dummy r e c o r d
i f (defined (dummyRecord))

storeDummyRecord(id);

/ / a s s i g n c u r r e n t e l e m e n t t o dummy r e c o r d
dummyRecord = createRecord(id, pcr , "");

/ / i n c r e a s e l e v e l
level ++;

}

tain a DeweyID, a PCR, and a value. To build the path synopsis and to generate
PCRs, the psNode variable keeps track of the current position in the synopsis. Fi-
nally, the bsTreeBuilder buffers the records and materializes the document store
as a B*-tree.

The following code contains some auxiliary methods that are more or less self ex-
plaining. Because two particular methods will also be used later on, we will explain
them in more detail: the defined method checks whether the passed object has a
value and the undef method sets the value of a passed object to undefined1. The
pseudocode in Listing 6.2 shows the actions executed upon element start.

As a first action, the new element name is created out of the three name particles
passed to the start method. Then the method computes the division of the current
level. If the current level is visited the first time, the division value becomes 1, oth-
erwise, the previous division value at the current level is increased by two. With the
divisions array, the new DeweyID can be initialized. In the third step, the path
synopsis is constructed. If the current synopsis node has already a child with the el-
ement name (from previous elements), this child is assigned to the current psNode .
Otherwise, the new child node has to be created (which internally generates a new
PCR).

The next two blocks handle empty elements. The latter block simply stores the
DeweyID and PCR information of the current element (together with an empty text
string) in the dummy record. Assume that prior to this startElement call, an element
occurred. Then this element might be empty and had to be stored first, before a new
one can be assigned. This is the task of the first block. The check for the condition,
if the dummy record actually needs to be stored, depends on the current DeweyID

1In Java, defined would check for NULL, while undef would assign NULL.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.3 Path-Oriented Document Storage 173

Listing 6.3 The endElement method for path-oriented document storage

p u b lic void endElement (String namespaceURI , String localName , String qName)

{

/ / r e s e t t h e d i v i s i o n v a l u e f o r t h i s l e v e l
divisions [level] = −1;

/ / n a v i g a t e p a t h s y n o p s i s up
psNode = psNode .getParentNode();

/ / c h e c k and o p t i o n a l l y s t o r e p r e v i o u s r e c o r d
i f (defined (dummyRecord))

storeDummyRecord(unset (createDeweyID(divisions)));

/ / d e c r e a s e l e v e l
level−−;

}

and is hidden inside the storeDummyRecord method, which will be presented below.
As a last action, the current level has to be increased.

The code snippet in Listing 6.3 shows the corresponding code for the end element
event, which basically mirrors the actions from the start method: First, the current
division is set such that the next time this level is reached, value 1 will be assigned.
Then, the parent of the current path synopsis node is obtained. In the third block,
again empty elements need to be handled, because an empty element might have
occurred before the current call. Note, this time, the current DeweyID does not play
a role, which is why an undefined value is passed. The reason is that, whenever an
empty element occurred before an endElement call, this element needs to be stored.
As a last action, the current level is decreased.

Because only leaf nodes produce a record in path-oriented storage, both so-far dis-
cussed methods only keep track of the current state, but do not write to the docu-
ment store. The characters method shown in Listing 6.4, however, does.

As before, the DeweyID is computed first. Then the check and storage of empty
elements takes place again. Finally, the current PCR is obtained and a record is

Listing 6.4 The characters method for path-oriented document storage

p u b lic void characters (String characters)

{

/ / c a l c u l a t e t h e d i v i s i o n s f o r t h e c u r r e n t DeweyID
divisions [level] += 2;

DeweyID id = createDeweyID(divisions);

/ / c h e c k and o p t i o n a l l y s t o r e p r e v i o u s r e c o r d
i f (defined (dummyRecord))

storeDummyRecord(id);

/ / g e t c u r r e n t PCR and s t o r e r e c o r d
i n t pcr = psNode .getPcr ();

bsTreeBuilder.appendRecord(createRecord(id , pcr , characters));

}

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

174 Chapter 6: Document Storage

Listing 6.5 The storeDummyRecord method for path-oriented document storage

public void storeDummyRecord(DeweyID id)

{

if(! defined (id) || !dummyRecord .getDeweyID (). isParentOf (id))

{

int pcr = dummyRecord .getPcr ();

int id = dummyRecord .getID () + ".3";

bsTreeBuilder.appendRecord(id , pcr , "");

}

undef(dummyRecord);

}

passed to the B*-tree builder.

Because empty elements can occur before text nodes, before other elements, and
inside other elements, their handling was an issue for all three methods above. The
condition, when an element is actually empty is coded into the following method
shown in Listing 6.5. Only when the dummyRecord is not a parent of the passed
DeweyID (for another element or text node), the buffered record actually belongs to
an empty element. As explained above, the passed DeweyID is undefined in case of
the endElement method and, thus, also requires the storage of an empty element. The
PCR of the written dummy record is the PCR of the empty element. Its DeweyID
however belongs to the (contained empty) text node (therefore, a ".3" division has
been appended). In the final method, the actual B*-tree/synopsis is built and the
necessary metadata is written during the endDocument method shown in Listing
6.6.

Obviously, the space complexity of the algorithm is bounded by the number n of
nodes in the document: Let e be the number of elements (of which x are empty), let
a be the number of attributes and let t be the number of text nodes (i. e., n = e+a+t).
Furthermore, let d be the maximum length of a path in the document. Then the
space complexity of the divisions array is O(d) = O(n), the space complexity of
the path synopsis is O(e) = O(n), and the space complexity of the document store
(B*-tree) is O(a + t + x) = O(n).

The time complexity of the algorithm is bounded by O(n log n): the time complexity
to handle the divisions array and empty elements is O(n); also the time complexity
to build the B*-tree is O(n) (note, no record sorting is required, because the records
occur in the right order). However, the worst-case complexity to build the path-

Listing 6.6 The endDocument method for path-oriented document storage

public void endDocument () throws SAXException

{

bsTreeBuilder.materialize ();

// register document (B∗−tree) in metadata

Synopsis synopsis = createSynopsis(psNode);

// register path synopsis in metadata

}

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.3 Path-Oriented Document Storage 175

synopsis is O(n log n), because of the hasChild and getChild method calls contained
in method startElement. Each of these methods needs to search for an already exist-
ing path synopsis node with the given name. This search requires O(log n) opera-
tions and is issued for each element. Therefore, the overall complexity is O(n log n).
However, the number of children will be bounded in many documents and efficient
hashing schemes can be used to implement the above two methods. This is why
also the path synopsis construction will take place in near linear time in most cases.

(Subtree) Reconstruction/Scan

For document reconstruction, the XDBMS has to fetch the necessary nodes from the
document store (in document order) and convert them into the external represen-
tation as a character string. Given a node list in document order, this conversion
is straightforward, which is why it is not presented in this chapter. Here, only the
generation of the node list from the document store is discussed.

In node-oriented storage, retrieving this node list is simple: The leaf pages of the
document index are read sequentially and, for each record found, a node is pro-
duced. In the path-oriented storage mode, only records for leaf nodes and attributes
are stored. Therefore, the remaining virtualized elements have to be reconstructed
with the help of the path synopsis and the stored PCRs. The pseudocode if List-
ing 6.7 presents an algorithm that reconstructs all element and text nodes (again, to
facilitate the code, attribute nodes are omitted).

For the iteration over the B*-tree records during reconstruction, a set of context vari-
ables is necessary. Variable record represents the current record delivered by the
B*-tree. Remember that this record is always a leaf node and contains informa-
tion about its DeweyID, its PCR, and its value (which are immediately assigned
to the corresponding variables). During reconstruction, a particular DeweyID that
belongs to the least common ancestor (LCA) is required. Initially, this LCA is set to
the DeweyID of the root node. The root ID is computed by the getAncestor method,
which returns the ancestor of a DeweyID at a particular level (here, at level 0).

As a first result node, the root node is added to the result list. To compute this
node, its name has to be resolved in the path synopsis by specifying a path class (via
a PCR), and the level of the node name to be returned.

The while loop iterates over all records. As a first action, all elements below the
current least common ancestor (lcaLevel + 1) and above the current leaf node
(level < id.getLevel()) are reconstructed and added to the result. If the cur-
rent record is not a dummy record (i. e., if it does not encode an empty element), the
record value (content) needs to be added as a text node.

Finally, the iteration context needs to be re-assigned, during which the new record,
its PCR, its DeweyID, and its value are again decoded. Then, the new least common
ancestor of the old record and the new record has to be calculated. Like calculating
ancestors at a particular level, the calculation of the LCA between two DeweyIDs
is a straightforward operation that operates on the ID’s prefixes. You may have
noticed that no PCRs are assigned to the generated nodes. The necessary code for
that was omitted to keep the listing simple.

Assuming that a name can be resolved by the synopsis in constant time and that
ancestor computations on DeweyIDs are also constant (which both are in practical
implementations), the space and time complexity of the algorithm is bounded by

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

176 Chapter 6: Document Storage

Listing 6.7 The node reconstruction algorithm

List <Node > reconstructNodes(BSTree bsTree , Synopsis synopsis)

{

List <Node > result ;

/ / r e c o n s t r u c t i o n c o n t e x t v a r i a b l e s
Record record = bsTree .getNextRecord ();

DeweyID id = record .getDeweyID ();

i n t pcr = record .getPcr ();

String value = record .getValue ();

i n t lcaLevel = 0;

DeweyID lca = id.getAncestor (lcaLevel);

/ / add t h e r o o t n o d e
String nodeName = synopsis .getName (pcr , lcaLevel);

result .add(createNode (lca , nodeName));

/ / i t e r a t e o v e r a l l r e c o r d s
while (defined (record))
{

/ / r e c o n s t r u c t and add i n n e r e l e m e n t s f r o m l c a on
f o r (i n t level = lcaLevel + 1; level < id.getLevel (); level ++)

{

DeweyID nodeID = id. getAncestor (level);

nodeName = synopsis .getName (pcr , level);

result .add(createNode (lca , nodeName));

}

/ / add t h e c o n t e n t
i f (! isDummyRecord(record))

result .add(createNode (id , value));

/ / r e−a s s i g n r e c o n s t r u c t i o n c o n t e x t
record = bsTree . getNextRecord();

i f (defined (record))
{

pcr = record .getPCR ();

String value = record . getValue ();

DeweyID tmpID = record . getDeweyID ();

lca = id.calculateLCA(id , tmpID);

lcaLevel = lca. getLevel ();

id = tmpID;

}

}

r e t u r n result ;

}

O(n) (because each node is exactly decoded once).

Embedding the Reconstruction Algorithm in XTC

The presented algorithm can not only be used to reconstruct the document, but
also to reconstruct fragments (for example, during result materialization) and to
implement the SAX parser interface of the XDBMS, i. e., it can be used in general,
when a (partial) document scan is required. In practice, it is necessary to restrict
the size of the resulting node list, for example, when nodes need to be transferred
to the client for a SAX scan. Therefore the scan is split up in several partitions.
Because document scans are part of the physical XML algebra, the interface to such
a partitioned scan is introduced here. The getScanPartition method has the following
parameters:

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.3 Path-Oriented Document Storage 177

• DeweyID root : Only elements in subtree below the root are returned.
• DeweyID start : The scan starts at this DeweyID.
• DeweyID end : The scan ends with this DeweyID.
• NodeTest filter : Only elements that fulfill the node test are part of the result.
• Integer resultSize : Restricts the number of nodes returned.
• Boolean self : If true, the first node (root or start) is part of the result.

At least one of the first three parameters has to be specified to get a starting point
for the scan. The filter and the result size may remain unspecified. Internally, the
algorithm operates like the one presented above and a similar version for node-
oriented storage also exists.

6.3.4 Navigational Operations

Navigational operations are necessary to implement the DOM interface, but, be-
cause physical XML operators can be implemented using navigations, they also
play a role for the query processor. As we will see, the evaluation of the five naviga-
tional primitives parent, first child, last child, previous sibling, and next sibling requires
only a single top-down traversal of the document index and a single access to the
path synopsis. In the following, we only consider element nodes. The extensions of
the presented base algorithms to support further node types is trivial.

Listing 6.8 The parent method

Node getParent (Node contextNode , Synopsis synopsis)

{

Node resultNode ;

DeweyID contextID = contextNode .getDeweyID ();

i n t pcr = contextID .getPcr ();

DeweyID parentID = contextID .getParent ();

i f (defined (parentID))
{

i n t parentPCR = synopsis .getParentPcr(pcr);

String name = synopsis .getName (parentPCR);

resultNode = createNode (parentID , parentPCR , name);

}

r e t u r n resultNode ;

}

Given a context node, the algorithm in Listing 6.8 computes its parent node. Because
a node contains its path information, this code simply calculates the parent node
with the help of this path information and the synopsis. Because no document
access is required, this method is very cheap.

For the implementation of the remaining operators, the prefix-based B*-tree access
methods Largest Prefix (LP), Largest Prefix Right (LPR), and Smallest Prefix Left (SPL),
introduced in Section 6.2.2 on Page 161, are also required here. Additionally, a sim-
ilar method named Smallest Prefix (SP), which returns the left-most record with the
prefix of the passed ID is implemented over the B*-tree. As LPR, this method re-
quires at most ht + 1 page access operations to find the record.

The first-child algorithm depicted in Listing 6.9 makes use of SP. Using the DeweyID

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

178 Chapter 6: Document Storage

of the context node, the record with the smallest prefix of this ID is obtained from
the B*-tree using SP. If this record’s DeweyID is the same as the context ID, no first
child exists and the method returns an undefined value. Otherwise, the first child
must reside at the level below the current context node. Using the path synopsis,
the child can then be reconstructed. As an example, consider the first-child method

Listing 6.9 The first-child (last-child) method

Node getFirstChild(Node contextNode , Synopsis synopsis)

{

Node resultNode ;

DeweyID contextID = contextNode .getDeweyID ();

Record record = bsTree .smallestPrefix(contextID);

DeweyID smallestID = record .getDeweyID ();

i n t smallestPCR = record .getPcr ();

i f (smallestID != contextID)

{

i n t childLevel = contextID .getLevel () + 1;

DeweyID childID = smallestID .getAncestor (childLevel);

i n t childPCR = synopsis .getPcrAtLevel(smallestPCR , childLevel);

String name = synopsis .getName (childPCR);

resultNode = createNode (childID , childPCR , name);

}

r e t u r n resultNode ;

}

on context node 1.3.11 in Figure 6.3 on Page 169 and the document store illustrated
in Figure 6.4 on Page 170. The SP method returns record 1.3.11.3.1.3. Because this
ID is different from the context ID, a first child exists, which has to reside one level
below 1.3.11. Therefore, the ID of the first child is 1.3.11.3 and together with the
PCR of the opened record and the synopsis, the track element can be reconstructed.

The method to retrieve the last child works analogous. The only difference is that
the index is opened on the record with the largest prefix (LP). All remaining con-
ditions and actions remain the same. Therefore, the pseudocode for this method is
not presented separately. As an example, consider the computation of the last child
on context ID 1.3.11. The LP method returns record 1.3.11.19.3.3 as the largest pre-
fix from the document store, which is not equal to the context ID. Therefore, the last
child exists and has ID 1.3.11.19. Together with the synopsis, the last track element
can then be recomputed.

The algorithm to compute the previous sibling is illustrated in Listing 6.10. Here,
the SPL method is used to retrieve the record left to the one with the smallest prefix
in the document store for the given context ID. From this record on, the ancestor at
the same level as the context node is computed. If such a node exists, it is checked,
whether it is really a sibling (it could also be a node in an unrelated subtree that hap-
pens to be at the correct level). If this check is passed, the sibling can be computed
using the synopsis.

The algorithm to find the next sibling is again analogous, except that the record
right to the one with the largest prefix (LPR) is retrieved from the document store.

If we analyze the access behavior of the presented navigational primitives, we can

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.3 Path-Oriented Document Storage 179

Listing 6.10 The previous-sibling (next-sibling) method

Node getPreviousSibling(Node contextNode , Synopsis synopsis)

{

Node resultNode ;

DeweyID contextID = contextNode .getDeweyID ();

Record record = bsTree . smallestPrefixLeft(contextID);

i n t contextLevel = contextID .getLevel ();

DeweyID siblingID = record . getDeweyID (). getAncestor (contextLevel);

i f (defined (siblingID) && siblingID .isSiblingOf (contextID))

{

i n t smallestPCR = record .getPcr ();

i n t siblingPCR = synopsis .getPcrAtLevel(smallestPCR , contextLevel);

String name = synopsis .getName (siblingPCR);

resultNode = createNode (siblingID , siblingPCR , name);

}

r e t u r n resultNode ;

}

infer that at most ht + 1 access operations to pages are required for any method,
which is a improvement to the 2 ∗ h1 + 1 operations required in the worst case on
the node-oriented document store.

6.3.5 Modifications

Modifications on the node-oriented document store can be implemented fairly
straightforward, because every record corresponds to exactly one node. On the
path-oriented store, the synopsis captures some kind of document schema, which
might change if the document is updated and some nodes are not explicitely stored.
Therefore, the problem gets slightly more complex (but only conceptually and not
computationally). For updates in path-oriented storage mode, the following three
“dimensions” of the problems have to be considered:

1. The type of the update, which can be an insertion, an update, or a deletion;

2. The granularity of the update, which can affect a single inner node, a leaf node, or
a whole subtree; and

3. The schema conformance, which indicates, whether the path synopsis needs modi-
fication or not.

Figure 6.5 Update scenarios for the path-oriented document store

Document Modification

Subtree

Conform Non−Conform Conform

Inner Node Leaf Node

ConformNon−Conform Non−Conform

Subtree

Insert Update Delete

Synopsis Conformance

Granularity

Type

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

180 Chapter 6: Document Storage

We regard these dimensions as not necessarily orthogonal. Figure 6.5 illustrates the
meaningful combinations to be discussed in this section:

• Insertions of single nodes are always insertions of leaf nodes, because it is not
allowed to insert a node between a parent and a child (this functionality is neither
required in DOM nor in the declarative XQuery Update Facility, which is why
we do not provide for it). Furthermore, because a single node can be seen as a
subtree, only subtree granularity is discussed here. New subtrees might conform
to the existing synopsis or they might not. As we will see, both cases can be
treated quite similarly.

• Updates can effect inner nodes or leaf nodes. This is sufficient, because neither
DOM nor XQuery Update define a “subtree update” functionality. All updates
are translated to single-node modifications. Both granularities, however, can af-
fect the path synopsis.

• Deletions of inner nodes always results in deletions of their complete subtree.
Therefore, this is the granularity of a deletion. For deletions, a possible synopsis
modification is not considered because, even if due to a deletion, a particular
path class has no instances in the document anymore, it is meaningful to keep
this class for possible later insertions of corresponding instances.

In the following, the actions to implement these different scenarios are described. In
contrast to the previous sections where pseudocode was presented for that purpose,
the description here is given in prose and is illustrated by examples, because code
fragments tend to be too long for convenient comprehension. Again, only elements
are discussed.

Insertion

Let n be the context node to which the new subtree shall be attached. There are two
possibilities: 1) n is virtual, or 2) n is an empty element and thus non-virtual. In the
second case, the non-virtual element has a corresponding record in the document
store. This record has to be deleted because, when the insertion is complete, the
empty element is virtualized. However, to avoid information loss, the deleted node
is (conceptually) attached as a new root node to the subtree to be inserted. From
this point on, both cases from above are handled equally.

For the actual subtree insertion, the document storage algorithm presented in Sec-
tion 6.3 can be reused. For that purpose, the storage content handler (from List-
ing 6.1 on Page 171) is initialized with information from context node n, i. e., the
divisions array is initialized with the divisions from the context ID, the level
is initialized with n’s level, the dummyRecord remains undefined, and the current
psNode node is loaded from the synopsis. Instead of the bsTreeBuilder , a ref-
erence to the B*-tree itself is now required, to directly insert the newly generated
records. During the insertion algorithm, the path synopsis is automatically main-
tained, when a new path synopsis node is created.

The costs for an insertion consist of the cost to locate the insertion position (on B*-
tree traversal), optionally the cost to delete a record, and the cost to insert the new
subtree, which depends on the subtree size. Compared to subtree insertion in the
node-oriented approach, the possibly required deletion operation and the number
and size of the new records account for differing costs. In case, the subtree to be
inserted is small, e. g., only one node as in node-by-node DOM-style insertions, the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.3 Path-Oriented Document Storage 181

deletion cost can actually decrease the performance. However, in case of larger sub-
trees, to be expected for example in XQuery Update statements, the fewer number
of records to be written in path-oriented storage can amortize the required deletion
costs.

Deletion

Intuitively, subtree deletion in the path-oriented storage mode works in the same
manner as in the node-oriented case: To delete the subtree rooted at context node n,
all records having n’s DeweyID as a prefix have to be removed from the document.
However, there is a small pitfall: Assume, n has no sibling nodes, then (at least)
the parent node p of n is also removed from the document store, because 1) p is vir-
tual, and 2) only the records corresponding to the leaf nodes in the subtree below n
“store” the information that p exists (but these records are to be deleted). Therefore,
first a sibling has to be located and, if none exists, a record for p has to be prepared.
Then, after all records have been deleted, the new record for the parent is inserted.

The deletion cost consists of the cost to do the sibling check, the cost to actually
delete the records, and the insertion cost, if no siblings were found. For the compar-
ison with the node-oriented approach, again the trade-off depends on the subtree
size. If it is small, the deletion costs are higher, if it is large, the costs are amortized
by the smaller number and size of records to be deleted.

Update

Updating leaf nodes conforming to the synopsis is straightforward: the node’s
record is located in the document store and the value is changed. Under this type
of update, also value changes to attributes and text content are subsumed. The cost
for such operations consists of a B*-tree traversal to locate the node to be updated
and of the cost to actually change the value. Thus, these costs are the same as in the
node-oriented case. When the leaf update affects the path synopsis, a new synopsis
node with a new PCR has to be created and assigned to the updated XML node. All
other actions and costs remain the same.

The update to an inner (virtual) node (i. e., renaming an element or attribute) is the
only operation conceptually more expensive in the path-oriented case than in the
node-oriented case. Because a virtual node is not stored explicitly, it “exists” implic-
itly in the PCRs of the records that correspond to its descendant leaf nodes. There-
fore, when an inner node is modified, all the PCRs of these “descendant records”
have to be updated, because they now belong to different path classes. Further-
more, if the update does not conform to the path synopsis, the complete synopsis
subtree below the changed subtree node needs to be copied and new PCRs have to
be generated.

As an example, consider a modification on the last track element with ID 1.3.11.19
in the document presented in Figures 6.3 on Page 169 and the store in Figure 6.4 on
Page 170. Let the new name be hiddenTrack. Because the new name has no corre-
sponding class in the path synopsis (in Figure 6.2 on Page 169), the subtree below
the synopsis node with name track (PCR 31) needs to be copied, having a new syn-
opsis node hiddenTrack as root node. This new subtree is now added to the cd node
(PCR 2) as a child. Then, all records in the document store having 1.3.11.19 as prefix
have to be updated with the newly generated PCRs.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

182 Chapter 6: Document Storage

Of course, this operation is much more expensive on the node-oriented store than on
the path-oriented one, and no amortization can be expected this time. The update
costs consist of the cost to locate the node to be updated, the cost to modify the path
synopsis, and the cost to adjust the PCRs in the subtree below the updated node.
In contrast, in the node-oriented case, the costs only consist of a location and an the
subsequent update of a single record.

6.3.6 Round-Trip Property and Collection Support

Because the inner structure of an XML document can be reconstructed without
loss (as shown above), path-oriented document storage supports the same type
of round-trip property as node-oriented storage. This means that the data model
(XML Infoset) of a stored document can be reconstructed. However, as before,
storing byte-wise equal documents is not possible, because of intra-markup white-
space. Note, as in the node-oriented implementation, only element, attribute, and
text nodes can currently be stored in XTC.

Collection handling can be implemented similar to the node-oriented approach, i. e.,
all documents of the same collection share the same document storage and indexing
space by adding all documents under a virtual root node. In many XML applica-
tions operating on collections, all collection documents have a very similar struc-
ture (for example, because they all adhere to the same schema). However, some
XML applications may store differently shaped documents in a single collection. In
the following, we refer to documents that have the same shape, as document classes
(note, what is meant by “the same shape” will be clarified below). Whenever a col-
lection contains multiple document classes, we can anticipate that the documents
of these classes are often processed in one context (or user request). For example,
consider a music collection containing document-centric articles about music records
as the first class and—similar to our running example—a data-centric description of
music records as the second class. If the user is only interested in articles, then the
first class would be queried. In this case, a physical clustering of all articles, i. e.,
of the first class, would be beneficial. Such a physical clustering is simply imple-
mented by creating a distinct document index (and distinct secondary indexes) for
each class. Note, if we assume that document classes are sufficiently large, this clus-
tering strategy only requires a small overhead to operate on multiple classes in one
user request (namely to open different indexes).

To identify different classes in a collection (to find documents with “the same
shape”), the path synopsis as a kind of ad-hoc document schema can be exploited.
Identifying similar tree structures is a standard research problem and many publi-
cations exist (e. g., [Helmer 07]). For our needs, a rather simple comparison scheme
can be used: We compare the path synopses of the documents to be stored on the
first k levels, where k is a user-defined storage parameter. If the path synopses of
two documents on the first k levels are equal (except permutation), the two doc-
uments belong to the same class and are stored together in one document index.
Such a simple scheme is sufficient, because it 1) needs to be fast, i. e., more time-
consuming complex comparisons on the whole tree structure unnecessarily slow
down the storage process, and 2) a certain fuzziness in document classification can
be tolerated.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.3 Path-Oriented Document Storage 183

Figure 6.6 Best-case and worst-case space reduction scenario for path-oriented documents

b b b b b

a

b1 b2

a

bnbn−1 bn−1... ...

a) b)

6.3.7 Succinctness

A main motivation behind the design of the path-oriented document store is suc-
cinctness, i. e., the reduction of storage cost by virtualizing the inner document
structure. The “amount” of reduction depends on the structural complexity of the
document, which we measured in Section 6.2.5 as the ratio between distinct root-
to-leaf (DRTL) paths and root-to-leaf path (RTL) instances. Figure 6.6 shows the
best-case (a) and the worst-case (b) scenarios for this ratio. In the best case, there is
only one distinct root-to-leaf path and n path instances, i. e., the ratio is 1/n. On the
other hand, in the worst-case scenario, the number of distinct root-to-leaf paths is
equal to the number of path instances, resulting in a ratio of 1. Therefore, in the best
case, the path synopsis contains only one path, whereas, in the worst case, the path
synopsis is as large as the original document.

Of course, reality lies between these two extremes. For many data-oriented XML
documents, such as the ones presented in Table 6.1 (with the exception of treebank,
which is document-oriented), the DRTL-RTL ratio is a very small number. For them,
structure virtualization is quite efficient and also results in reduced processing time,
because more data fits into the leaf pages of the document store which therefore
leads to less read/write overhead and a higher number of buffer hits. We will un-
derlay these statements with experiments in Chapter 9.

Concepts like prefix compression, Huffman-based DeweyID encoding, the use of
a vocabulary (vocID) to represent element and attribute names, and text compres-
sion, as already sketched in Section 6.2.5, are orthogonal to both storage approaches.
However, we have to state that the overall compression ratio to be expected from
prefix compression is smaller in the path-oriented store than in the document-
oriented store. The relationale is that in the path-oriented case, the DeweyIDs in
the B*-tree leaf pages are not so dense as in the node-oriented case. Therefore, the
delta information that has to be stored requires a little bit more storage space for
each node. However, in our experiments, this effect did never overshadow storage
savings that resulted from smaller absolute number stored nodes.

6.3.8 Indexing Support

Again, we want to consider path indexes and the question of how they can be effi-
ciently built and maintained. As sketched in Section 6.2.6, the definition of a path
index contains a path pattern to specify which paths of the documents are contained
in the index. The pattern is evaluated against the document, either by direct eval-
uation or by a document scan (with path reconstruction) and an interleaved path
pattern matching on the reconstructed path. Furthermore, when the document is
modified, the ancestor path of the modified node/subtree has to be reconstructed

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

184 Chapter 6: Document Storage

and matched against all index definitions to retrieve the indexes to which the mod-
ification needs to be propagated.

For both problems, the path-oriented document store provides simple and efficient
solutions, which shall only be sketched in this section (the next chapter will provide
a detailed discussion): The path-oriented document store already “knows” paths
and furthermore shares the path synopsis with the path indexes. This means that a
PCR assigned to a record in the document store can also be used in a path index to
identify a path class. As a result, index creation can be implemented as follows: The
path pattern of the index definition is evaluated over the path synopsis, resulting in
a list P of PCRs. Then the document is scanned, and every node with a PCR con-
tained in P is written into the index. Path reconstruction and repetitive path match-
ing as necessary in the node-oriented store are therefore avoided. Likewise, index
maintenance is also very simple: To detect, which index requires maintenance, the
PCR of a modified node/subtree can directly be compared to the document’s index
definitions in the metadata. No path reconstruction (and as we will see, no path
matching) is necessary.

Figure 6.7 A classification of related work on XML storage

Schema−
Oblivious

Schema−
Aware

Information
No Path

Information
With Path

Node
Mapping

Subtree
Mapping

Schema
Mapping

BLOB/FileStorage Approaches

Shredding

Native

SystemRX [Beyer 05]
Natix [Fiebig 02]

XTC (node-oriented)
Timber [Jagadish 02a]
Niagara [Naughton 01]
eXist [Meier 02]
NoK [Zhang 04]

XTC (path-oriented)
XSum [Arion 08]
Sedna [Grinev 06]
OrientX [Mang 03]

Inlining [Shanmugasundaram 99]
LegoDB [Bohannon 02]

Edge [Florescu 99]
Tatarinov et. al. [Tatarinov 02]
Interval [DeHaan 03]
MonetDB/XQuery [Boncz 06a]

Lee/Chu [Lee 00]
RRXS [Chen 03b]
ShreX [Amer-Yahia 04]
Georgiadis/Vassalos [Georgiadis 07]

Suxcent++ [Prakash 06]

XRel [Yoshikawa 01]
XParent [Jiang 02]

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.4 Related Work 185

6.4 Related Work

Figure 6.7 classifies recent XML storage techniques. At the first level, we can distin-
guish three basic approaches: storage in a binary large object (BLOB) or a flat file
in the file system, storage in a specially designed XML store (native), or a mapping
onto relational tables (shredding). Of course, the first alternative is not very appeal-
ing because, on every document access, the complete document has to be parsed
and eventually loaded into main memory for processing. Furthermore, in case of
document modifications, the complete document has to be written back to disk,
too. Although BLOB or flat file storage was one of the first approaches to support
XML documents in database systems, we do not consider this alternative as a true
competitor to our storage schemes.

The proposed node-oriented and path-oriented storage layouts were developed in
the context of a native XML database system. However, because some properties
are similar, shredding approaches shall also be discussed in this related work sec-
tion. In the following, one representative of each class introduced in Figure 6.7 will
be presented. Among them, we discuss two of the five systems introduced in the
related work section of our overview chapter, namely DB2 pureXML and Monet-
DB/Query. For Natix, Timber, and Galax will not be further discussed (we just
categorize them).

6.4.1 Native XML Storage

As in relational systems, native XDBMSs have to map data onto fix-sized external
memory pages. Depending on the granule of XML items that are actually mapped
onto a page, we can distinguish subtree mappings from node mappings. The first strat-
egy partitions an XML tree into different regions (subtrees), which are then mapped
onto external memory. In the second strategy, the mapping granule corresponds to
a node. Several nodes are written in document order into a page (as in the node-
oriented approach). This means that subtrees are not clustered together on pages
in node mapping schemes. A third solution exploits the ad-hoc structure (in form
of a path synopsis) or schema to store the document (similar to the path-oriented
approach). In the following, we will discuss the storage layout of various native
XDBMSs.

Subtree Mapping: DB2 pureXML

IBM’s DB2 pureXML [Beyer 06] (and its predecessor SystemRX [Beyer 05]) are hy-
brid database systems that can store and process (i. e., query) both, relational and
XML data at the same time. For XML storage, DB2 follows a side-by-side archi-
tecture [Halverson 04], in which the XML data is placed into a separate native XML
store (i. e., no shredding is applied). The developers expect native storage to outper-
form shredding. An empirical evaluation however is still an open problem. Unfor-
tunately, only high-level literature on the DB2 pureXML system is available, making
the following discussion on physical storage layout more or less speculative. How-
ever, because DB2 gained much attention, we think a consideration is worthwhile.

At the logical level, the system assumes that XML documents are stored in columns
of relational tables. At the physical level, these documents are mapped onto exter-
nal memory pages. Figure 6.8a gives a high-level impression over this mapping.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

186 Chapter 6: Document Storage

Figure 6.8 DB2 pureXML storage overview

P

Q

S

XU V W

R T

A

B

FE

C D J

K

L O

NM

Y

Z

G H I

Table Music Pages

Regions Index

Page N Page N’

ID XML
...

... ...

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

1

7

a) Layout (from [Beyer 05])

b) Paged sample tree (subtree clustering)

If possible, a complete document is encoded as a binary representation of a type-
annotated tree and stored in a single page. Of course, multiple small documents
can also be stored within in a single page. However, if a page is not sufficient, a
document is grouped into subtrees which are then stored in multiple pages. The
literature does not contain any information about how these subtrees are identified.
However, because the authors of [Beyer 05] state that parent child relationships are
stored in page slots, we can assume that the storage mapping tries to cluster sib-
ling nodes onto the same page, resulting in a kind of breadth first storage. A sample
paged tree is illustrated in Figure 6.8b. We assume that a page can hold four nodes.
Different subtrees of a single document are “glued together” by the regions index.
Therefore, when a tree operation navigates over a subtree boundary, the regions
index is queried to find the next adjacent subtree. As in our approaches, element
and attribute names are compressed using a vocabulary and, to logically and phys-
ically reference a node, a suitable node identification mechanism is used (but not
published). Furthermore, the authors state that the store supports versioning, i. e.,
upon document modification, a new version of the updated subtree is stored and
presented to the user.

Evaluation: Because detailed information is not published, a fair and objective com-
parison to our storage proposal is not possible for DB2 pureXML. However, if we
assume a mapping as depicted in Figure 6.8b, we can nevertheless draw some con-
clusions: 1) we can state that pureXML does not provide any technique to virtual-
ize the inner structure of a document and, with the given mapping, virtualization

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.4 Related Work 187

would also not be possible; 2) we note that the store of pureXML is not aware of
paths, thus complicating index construction and maintenance; 3) document storage
is more complex than in our approaches, because pages need to be visited/buffered
multiple times. As an example for the last point, consider the reconstruction of the
document in Figure 6.8b: After Page 1 is opened and nodes A and B are serialized,
the page should then remain in the buffer because, after reconstruction the subtree
below B, it is referenced again. If the subtree is large, it is likely that the page was
already replaced and needs to be refetched again.

An advantage of this storage scheme is that navigational operations along the five
primitives parent, first-child, last-child, previous-sibling, and following-sibling are effi-
ciently supported. Subtree clustering makes sure that related nodes are often placed
in the same page, thus minimizing I/O cost for these operations. The rationale be-
hind subtree clustering is to process queries using the above navigational primitives
directly on the document store. A similar subtree mapping approach with the same
restrictions is implemented in the native Natix XDBMS [Fiebig 02].

Node Mapping: The NoK Approach

Storage engines based on node mapping store every node in document order on
external memory. Because the mapping granule is a node, no subtree clustering is
achieved. Rather, neighboring nodes in document order are also written together on
disk. Of course, the node-oriented approach proposed in this work is also a node
mapping scheme. Further implementations can be found in the following native
XDBMSs: Timber [Jagadish 02a], Niagara [Naughton 01], and eXist [Meier 02].

As another interesting representative for node mapping, we consider the NoK
(“Next-of-Kin”) approach [Zhang 04]. NoK separates the document struc-
ture from the content and stores both parts separately. The structure is en-
coded into a string representation, using the well-known braces notation for
trees. For example, the tree in Figure 6.8b can be represented by the string:
(A(B(C)(D(E)(F(G)(H)(I)))(J))...(Z)) or, because the opening braces are
dispensable: ABC)DE)FG)H)I)))J))...Z)) . This string representation is then
distributed across several pages in a linked list (if it does not fit into a single page).
Note, no labeling mechanism to reference single nodes is implemented in this stor-
age mapping. The omission of a node ID mechanism results in a very succinct
structure representation. For example, for the 89 MB Treebank document (Table 6.1
on Page 164), only 5.3 MB are required to encode the structure [Zhang 04].

After the separation of structure and content, a mechanism is required to con-
nect both parts for lossless document reconstruction. Here, the scheme relies on
DeweyIDs, which are constructed on the fly, when the document is stored, scanned,
or reconstructed. If the storage SAX parser encounters a text node, a record
(DeweyID, nodeValue) is written to a value index. If a document is reconstructed,
the system generates DeweyIDs and queries the text index for corresponding val-
ues. Another index structure inverts text values and stores records of the from
(HashedText, DeweyID) for index-based content matching.

The advantage of this approach is its structural succinctness, which makes scan-
based query matching over the structural part efficient. However, although
[Zhang 04] state that updates are supported, they are likely to be not very efficient,
because the assigned DeweyIDs in the value index do not remain stable and have to
be adjusted for large parts of the document after every modification. Furthermore,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

188 Chapter 6: Document Storage

Figure 6.9 The node mapping approach

P

Q

S

XU V W

R T

A

B

FE

C D J

K

L O

NM

Y

Z

G H I

Page 1

Page 2
Page 3

Page 4 Page 5

Page 6

Page 7

because content and structure are separated, they need to be joined for document
reconstruction, thus requiring an index lookup for every generated DeweyID (or
at least some kind of merging algorithm that operates on the structure and content
pages). This process can be very time consuming, as similar experiments in Section
9.3.3 will show.

In general, node-mapping approaches, as the one introduced in this work, do not
suffer these penalties, because they employ a node identification mechanism and do
not separate structure from content. Furthermore, in contrast to subtree mapping,
they do not cluster siblings, but neighboring nodes (in document order). Figure 6.9
illustrates a paged sample tree. As an effect, sometimes nodes are stored in the same
page that are not anyhow related by the above stated five navigational primitives
(for example, in page 3). However, the nodes in a page can also form a subtree (as in
page 5). A general comparison between subtree mapping and node mapping is still
missing. In the latter case, we suppose that with a large number of nodes stored in
a single page, the probability that a subtree is formed is very high. Therefore, access
cost for page boundary traversal will be statistically equal to subtree clustering for
many operations. The only significant difference will then result from the intra-page
layout and the efficiency to operate on the page content.

Figure 6.10 The XSum schema-based mapping [Arion 08]

[1.2.11.3.3.3 "Islands Of Souls"]
[1.2.11.3.5.3 "All this Time"]
[1.2.11.3.7.3 "Mad about You"]
...

tracks

title

track

cd

recordStore

......
1.3, 1.7, 1.9, ...

1.3.11.1, 1.3.11.5, 1.3.11.7, ...

1.3.11.3.3, 1.3.11.5.3, 1.3.11.7.3, ...

1.3.11, 1.7.11, 1.9.11, ...

Element Extent 1

Element Extent 2

Element Extent 3

Element Extent 4

Text Extent 1

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.4 Related Work 189

Schema-Based Mapping: XSum

As our path-oriented approach, XSum [Arion 08] employs a structural summary
to store a document. Such a structural summary can be seen as a kind of ad-hoc
schema, therefore the name “schema-based mapping”. In contrast to separating the
document store from secondary path indexes—as in this work—, XSum integrates
the document store into the path index. A snippet of the resulting structure for our
sample document is depicted in Figure 6.10, where the structural summary is on
the left side. As in our case, it is a strong DataGuide or a 1-Index. Attached to each
node, there are one or more extent lists, depicted on the right side. XSum separates
extents containing structural information from extents containing content (text) in-
formation. In [Arion 08], the authors use a range-based node labeling scheme, but
explicitly mention that any other scheme (which encodes certain structural relation-
ships) can also be used. In our sample, we, therefore, depicted the storage scheme
based on DeweyIDs.

The advantage of this mapping is the integration of the document store into a path
index. For example, to retrieve all elements on path //cd/tracks/track , only
the access to one extent is necessary. On the down side, XSum violates several of
our desired document store features: Although the concepts in the XSum approach
allow for DeweyIDs, they do not make use of them. From Figure 6.10 you can
immediately infer that this naive application of DeweyIDs introduces a lot of the
redundancy (e. g., the IDs of the cd elements is also contained as a prefixes in the
extent list of the tracks element). Therefore, the store is not really succinct. Note,
because our path-oriented store virtualizes inner elements, such as cd, tracks, ..., this
type of redundancy is avoided. A much worse problem is that the document is
“shredded” over the extents. Although the document order is maintained inside the
extents, a merge join is necessary to combine two or more of them, as frequently
required during result construction. This process is very expensive and violates
our requirement for fast reconstruction and scan operations. Furthermore, no al-
gorithms for document navigation and modifications have been published for the
approach. Similar schema-based approaches have been published in the context of
the Sedna [Grinev 06] and OrientX [Mang 03] native XDBMSs.

6.4.2 Shredding

With the emerging need to store large volumes of XML in database systems, a quite
simple idea was to distribute (shred) XML documents over various relational ta-
bles which are then stored in well-known, well-tested, and well-accepted RDBMSs.
As a consequence, also XML operations, such as declarative queries, have to be
mapped onto SQL statements to be executed over the shredded document. While
some research systems were quite successful with the shredding technique (e. g.,
[Boncz 06a]), large database system vendors nowadays more and more prefer na-
tive XML storage [Beyer 06]. What, in the end, will be the better approach, is still an
open question. Two of our most substantial doubts on shredding are the following:
Because relational systems are generally oblivious of the hierarchical XML struc-
ture, they cannot provide efficient operators to evaluate XML path queries and they
do not provide any optimized mechanisms for fine-grained transaction control (as
in [Haustein 06a]). Nevertheless, we want to give an overview over the numerous
shredding proposals.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

190 Chapter 6: Document Storage

Figure 6.7 groups the approaches into 1. schema-oblivious shredding, which
provides a single generic relational schema into which all XML documents are
stored, and 2. into schema-aware shredding, where a distinct set of relational
tables is generated for each document (based on a DTD or an XML Schema).
The schema-aware approaches can further be refined into non-cost-based (e. g.,
[Shanmugasundaram 99]) and cost-based strategies (e. g., [Bohannon 02]), where
the latter ones take the expected query workload on the stored data into account.
In the following, we do not consider schema-aware approaches, because they can-
not truly support dynamic documents that have a dynamic (i. e., changing) schema
or no schema at all and, thus, violate the key requirement update support. Except
the both already cited approaches, further schema-aware shredding strategies were
developed by [Lee 00, Chen 03b, Amer-Yahia 04, Georgiadis 07].

On the side of schema-oblivious shredding techniques, we distinguish those that
store only node/edge information and those that (also) store paths. [Florescu 99]
proposed one of the first schema-oblivious node mapping approaches, in which
each edge of a document is stored in a row of a relational table. An edge is encoded
in the so-called edge table by the following information: [source, ordinal, name, flag,
target], where source is an integer object identifier (node label), ordinal encodes the
order among edges, name contains the node or attribute name, flag is a descriptor
indicating the type of the referenced node’s content (i. e., int, string, ref, ...), and
target is a foreign key to a table, where all content values are stored (i. e., content
and structure information is separated).

Considering this mapping, two substantial problems can be identified that influ-
enced subsequent shredding approaches: 1. the relational query engine is not and
cannot be aware of the hierarchical data model. Therefore, to evaluate a path expres-
sion over the above relational schema, self joins over the edge table are required; and
2. to re-construct a document (or a result), structure information and value informa-
tion need to be joined. Both problems severely affect query performance. Of course,
since this first proposal, many research projects tackled these two problems, mainly
by encoding path information in the relational model and by embedding special-
ized algorithms (e. g., [Grust 03b]) for path matching and result construction (e. g.,
[Chebotko 07]) in the relational algebra. In the following, we will introduce the stor-
age layout of MonetDB/XQuery and the Suxcent++ approaches as representatives
for the two schema-oblivious shredding classes.

Mapping Without Path Information: MonetDB/XQuery

As we have seen, MonetDB/XQuery [Boncz 06a] consists of two components: the
relational MonetDB system and, on top, the Pathfinder XQuery engine [Boncz 05b].
Compared to commercial DBMS, the design of MonetDB has some particularities:

• Physically, relational tables are stored in so-called binary association tables (BATs),
i. e., a logical relational model is completely decomposed into relations of cardi-
nality 2 for storage. One column of each binary table carries an object identifier
(oid) of type integer. Actually, oids are not physically stored. They are assigned in
ascending order with an increment of 1, therefore, they can be dynamically recal-
culated from the array position. BATs keep the data in the same order as in the
logical relational representation. Therefore, two BATs can be efficiently joined,
solely based on the position of their elements. Basically, a BAT is nothing else
than a (long) array.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.4 Related Work 191

Figure 6.11 MonetDB/XQuery document mapping overview

P

Q

S

XU V W

R T

B

FE

C D J

K

L O

NM

Y

Z

G H I

pre size level ref kind attr pre qn prop
Attributes

prop val
Attribute Values

qn ns loc
Qualified Names

A

1/25/0

2/8/1

3/0/2 4/5/2

5/0/3 6/3/3

7/0/4 8/0/4 9/0/4

13/0/3

10/0/2 12/2/2

14/0/3

11/4/1

15/0/2

18/0/3 19/0/3

17/7/2

16/8/1 25/1/1

26/0/2

20/4/3

21/0/4 22/0/4 23/0/4 24/0/4

Nodes

text val
Text

a) (pre/size/level) Tree Encoding

b) Shredding Schema (primary keys indicated by white box; foreign keys indicated by arrows)

• MonetDB reuses the operating system’s virtual memory management as
“database buffer”. Data is solely addressed in main memory and the operating
system takes care of swapping in and swapping out the requested data from/to
external storage. As a consequence, relational operators are optimized for main
memory usage.

To store a document, Pathfinder first applies a pre/size/level labeling scheme on the
document (see Figure 6.11a). The pre number is an integer assigned to each node in
preorder traversal. Attribute size contains information about how many nodes are
located below each node, and the level attribute, designates the node level. Similar to
range-based encodings or DeweyIDs, pre/size/level numbering can decide all XPath
axes and serves as a foundation for the implementation of the staircase join operator
[Grust 03b]. For storage, every node in the document is mapped into a relation of
the schema presented in Figure 6.11b (physically, this schema is of course further
normalized into BATs, however, it would also be possible to use this schema in any
other relational system).

In the MonetDB/XQuery shredding schema, all nodes are stored in the Nodes table.
Besides the introduced pre, size, and level information, this table also has a kind col-
umn which designates the type of the encoded node and a ref column that points to
a table containing the node value. Thus, the kind column acts as a switch, to select
the correct value table (i. e., a qualified name in case of an element, a text value for
text nodes, ...).

The MonetDB/XQuery schema is quite similar to the above introduced edge table
approach. The only significant difference is the node labeling scheme, which ex-
tends the primitive source labels with a size and level attribute. Still, to reconstruct

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

192 Chapter 6: Document Storage

Figure 6.12 The Sucxent++ storage scheme

Path

PathId PathExp
Document

DocId Name

DocId PathId CPathId

PathValue

LeafOrder BranchOrder BranchOrderSum LeafValue

DocumentRValue

DocId RValueLevel

a document or a query result, various tables have to be joined. Joins, however,
are specially optimized operators in MonetDB (because BATs frequently need to be
joined). As a result, although joins are necessary, MonetDB/XQuery delivers ac-
ceptable performance for document reconstruction. This may, however, not be true,
if the same shredding scheme would be implemented on other relational systems.
Although the authors present some work on how XPath axis steps can be evalu-
ated on off-the-shelf relational DBMS [Grust 07], they did not provide any figures
on the performance of document reconstruction. A detailed investigation is still an
open issue. Updateability poses another problem. Obviously, when a subtree is in-
serted or deleted, the size information of all ancestor nodes of the subtree have to
be re-assigned. Furthermore, because no gaps are left in the pre column, all follow-
ing nodes have to be updated when a new subtree is inserted. As a solution, the
authors presented a modified (updateable) shredding schema [Boncz 05a], which
rests on the salient features of the MonetDB system and is probably hard to port
to off-the-shelf systems. Again, a detailed investigation is an open issue. For path
evaluation, MonetDB/XQuery employs the staircase join operator which operates
in a scan-and-skip fashion, i. e., the operator scans the nodes table and—based on
the pre/size/level information—tries to skip as large parts as possible. Because
MonetDB is a main memory database, secondary access structures, such as a path
index, are not considered to speed up this path matching process. Therefore, no
path information is contained in the storage layout, in contrast to the approach pre-
sented in the next section. Further schema-oblivious mapping schemes that do not
store path information can be found in [DeHaan 03, Tatarinov 02].

Mapping With Path Information: Sucxent++

Although Sucxent++ (for Schema Unconscious XML Enabled System) [Prakash 06]
is a shredding technique, we will see that it is quite close to (but actually not the
same as) our path-oriented document store. To overcome that problem of expensive
path reconstruction over shredded XML documents, Sucxent++ also stores path in-
formation (a technique introduced before in [Yoshikawa 01]). Figure 6.12 illustrates
the relational schema into which documents are shredded. As before, white boxes
indicate primary keys and arrows stand for foreign keys. The darker shaded boxes
have a special meaning which will be discussed below.

Because all documents are stored into the depicted sets of tables, a document iden-
tification mechanism is required. This is the task of the Document table, which gives
each document a unique ID. The Path table conceptually resembles our path synop-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

6.5 Summary 193

sis, because it stores all paths and gives them a unique identifier. In the PathValue
table, all leaf nodes are stored together with their pathID. To reconstruct a doc-
ument, it is necessary to keep the leaf nodes in the correct order. Therefore, the
LeafOrder column simply enumerates them consecutively. Further information re-
quired for lossless reconstruction is the information on which level the paths of two
consecutive leaf values intersect. This information is stored in the BranchOrder col-
umn. As an example, consider the document in Figure 6.11a. Nodes E and G would
be stored side by side (i. e., their leaf order values differ by 1). Their branch order
would be 2, because their paths intersect at the D node.

Besides these tables and columns, Sucxent++ additionally introduces the Documen-
tRValue table and the BranchOrderSum column. Without delving into the details
(which are quite complex), we simply state that this additional information is re-
quired to calculate the least common ancestor between any two leaf nodes in the
document (note, the BranchOrder column can only deliver the ancestor of neighbor-
ing nodes). In summary, the additional table/colum stores some kind of document
“geometry”.

To the best of our knowledge, Suxcent++ and our independently developed
path-oriented document store (formerly named “elementless document store”
[Härder 07]) are the only XML storage approaches with structure virtualization.
However, it is obvious that the Sucxent++ approach was developed without tak-
ing document modifications into account. Upon modification, not only new tuples
are inserted into the PathValue table, but also large fractions of the darker shaded
columns (in Figure 6.12) need maintenance. Thus, Suxcent++ violates updates key
requirement. Further related work on shredding approaches with explicit path stor-
age can be found in [Yoshikawa 01, Jiang 02].

6.5 Summary

The document store is a central component in any XDBMS. Because XML is a very
flexible data format with a large range of possible applications, documents are pro-
cessed using quite different access models, i. e., scans, navigations and declarative
queries. Furthermore, documents themselves can occur in many different shapes
and sizes. This chapter started with a list of important characteristics, the docu-
ment store of a modern XDBMS should provide. During the design of XTC’s storage
scheme, special attention was paid to fulfill all these desiderata without biasing to-
wards only one or two of the posed requirements. The resulting document container
can store documents in a node-oriented manner, which is preferable for document-
centric XML data, or in a path-oriented manner with structure virtualization, prefer-
able for data-centric XML. Currently, the user has to fix the storage scheme when the
document is imported. In the future, however, the XTC system should internally de-
cide the storage mode, based on some pre-storage analysis phase that samples parts
of the document.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

194 Chapter 6: Document Storage

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 7 XML Indexing

I’m so fast that last night I turned off
the light switch in my hotel room and
was in bed before the room was dark.

Muhammad Ali

Because the XML data model is essentially a tree, path patterns are quite natural and
common idiom in XML query languages. Thus, finding path patterns, also known
as path pattern matching, is a frequent operation in XML query processing. Further-
more in a query evaluation plan, operators that find path patterns are often located
at the bottom, i. e., they fetch data from external memory on which subsequent pro-
cessing algorithms operate. In Chapters 4 and 5, we have seen many examples of
this structure. Because external memory access is involved in path pattern match-
ing, they are not only a frequent operation, but also possibly expensive. Of course,
path pattern matching can be implemented directly on the document store by rely-
ing on the navigational and scan primitives available. However, often navigational
and scan performance are not sufficient enough.

A similar situation occurs in relational systems. A B*-tree-indexed base table pro-
vides for table scans or ID-based access operations. To speed-up certain queries,
secondary access paths (indexes) are specified by the administrator in the physical
database layout. In XML data management, we can proceed similarly: The docu-
ment store provides enough functionality to efficiently store, reconstruct, modify,
and navigate a document. It, therefore, can be seen as a plain XML container. How-
ever, when query processing over the document store (based on its primitive opera-
tions) does not deliver enough performance, the database administrator can decide
to create secondary index structures by anticipating the expected query workload.
As introduced, declarative XML languages often contain path expressions. There-
fore, the ideal candidates for secondary indexes would be path indexes.

Of course, because XML indexing can be considered as a standard problem, many
solutions have been presented in the past. Roughly, we can divide them into value
and text indexes, element/attribute indexes, path indexes, adaptive path indexes, and
content-and-structure indexes. This richness may lead to the conviction that index-
ing has thoroughly been studied in the literature (and, in fact, we can find many
good proposals, some of which we will pick up in the following to design the XTC
indexes). However, despite this richness, many proposals lack a “system context”
in their solutions, i. e., they completely abstract from the integration of their ideas
in a (native) XDBMS and only consider the problem of XML indexing alone. As in
the previous chapter, an often forgotten aspect in these approaches is the need for

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

196 Chapter 7: XML Indexing

dynamic (i. e., updateable) documents and, therefore, index maintenance.

To overcome these problems, this chapter takes a global, system-centric view on
XML indexing. It illuminates interdependencies and optimization opportunities
between document storage, XML indexing, and query processing. As shown in
the previous chapter, (path-oriented) document storage could heavily benefit from
ideas proposed by the indexing community, e. g., the path synopsis and the B*-tree.
Here, we will now see that, because of this kind of proximity, problems like index
creation and index maintenance can be implemented in a very simple and efficient
way on top of the document store. Furthermore, we will consider how the results
of index access operations can be utilized in query processing. The result will be an
integrated approach to XML indexing and storage.

As in the storage chapter, we will start by defining a list of desiderata expressing
the requirements kept in mind during the index design. Then, XTC’s available in-
dex structures will be assessed and, based on our considerations, the new indexing
scheme for path and content-and-structure (CAS) queries will be introduced.

7.1 Desiderata

As in the previous chapter, our list of desiderata implies that we do not consider it
as normative, but suggest that it is meaningful for many XML applications.

An XML indexing scheme should provide for the following six characteristics:

1. Optional Use: As in relational systems, indexes should be secondary access paths
that are optional (i. e., not essentially required for document storage). This en-
sures that indexes can be created on demand to trade query performance with
maintenance cost and space consumption.

2. Expressiveness: The indexing scheme should be able to answer path queries sup-
porting the child (/) and descendant (//) axes, name tests, wildcards (*), as well
as one optional content predicate, e. g., //record[price="12.99"] . Queries
without content predicates will be called simple paths in the following, whereas
queries with a content predicate, will be called content-and-structure (CAS) queries.
Both types frequently occur in XQuery expressions.

3. Selectivity: The selectivity of an index, i. e., which paths are actually contained in
an index, should be user-defined. Thereby, a set of indexes can be adjusted to
document characteristics and query workload.

4. Updates: The index should be updateable. Depending on the index selectivity,
not all document updates lead to index updates. However, there should exist
efficient mechanisms to discovery, when an index needs maintenance.

5. Applicability: The test whether an index can be applied for query evaluation
should be simple and cost-efficient.

6. Result Computation: The index should be able to retrieve all elements
on an indexed path, e. g., if an index can answer the above query
//record[price="12.99"] , then it should be able to return the matching
record and price nodes. Otherwise, the applicability of the index would be too
restricted, w. r. t. further processing algorithms.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.2 XTC’s Indexing Scheme Reconsidered 197

Figure 7.1 The ID-attribute index and the element index on sample document recordStore.xml

1.5lp_399

1.7cd_2201.3cd_100

B−Tree

title

trackartist

1.3.3

IdxNoName <empty>DeweyIDParent DeweyIDID Value

B*−Tree

ID−Attribute Index

...

Element Index

B*−Tree B*−Tree B*−Tree

... ...1.3.5 1.3.11.3 ...

Name Directory Node−Reference Idx

N
od

e−
R

ef
er

en
ce

N
am

e
D

ire
ct

or
y

In
de

xe
s

b

ID−Attribute Index

a) Index Structures

7.2 XTC’s Indexing Scheme Reconsidered

Initially, XTC provides two index structures [Haustein 06a]: the so-called ID-
attribute index and the element index (besides the document store, which can also
be seen as an index for DeweyID-based access). Figure 7.1a illustrates these two
secondary access structures for our sample recordStore.xml document.

7.2.1 The ID-Attribute Index

The ID-attribute index is a B*-tree which maps the value of an ID attribute (as for
example specified in an XML schema specification) to the element containing the
ID attribute. Figure 7.1b presents the record format of this index structure. As a
convention, a white box always represents the indexed key and a shaded box the
indexed value. The purpose of this kind of index structure is to speed-up the getEle-
mentByID method, defined in the DOM standard [DOM 04] or to support ID-based
XML queries. It can, furthermore, be used to maintain the required uniqueness
among all ID attributes in a document.

7.2.2 The Element Index

The element index maintains a posting list of all occurrences for a given element
name, where all element names are contained in a B-tree called name directory. The
record format of the name directory therefore contains the indexed element name
as key and a pointer to its posting list as value. The posting lists, in turn, maintain
element occurrences by storing DeweyIDs (i. e., by node reference). As depicted,
the lists are themselves indexed using B*-trees and are named node-reference indexes.
The record format of the node-reference index only stores a DeweyID as a key; the
value field is empty.

For query processing, the element index provides two basic access primitives:

• Scan: Because the DeweyIDs in a node-reference index are stored in document
order in the leaf pages of the B*-tree, retrieving all occurrences (DeweyIDs) of

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

198 Chapter 7: XML Indexing

a certain element name in document order can be implemented by a sequential
scan. For example, if the query processor needs to access all artist elements, the
record containing artist as a key is retrieved from the name directory, and the cor-
responding node-reference index (identified by its index number) is scanned. Be-
cause this list of artists may become very large, the element index provides a simi-
lar (partitioning) method as for the document container (see Section 6.3.3 on Page
176): Access method getScanPartition can be parameterized with 1) DeweyIDs
root, start, and end , denoting the range to scan in the DeweyID space; 2) a
resultSize parameter to restrict the number of returned nodes; and 3) a self
flag indicating whether the start node shall also be returned as an element in the
partition. The element index can be opened at any DeweyID for scanning, thus
also supporting a “scan-and-skip” access.

• Axis Evaluation: Given a context node n, the element index can be used to re-
trieve all nodes of a certain name having one of 11 XPath axis relations1 with
respect to n. Thus, given n as an XPath variable $n, the element index can eval-
uate query $n/<axis>::<nameTest> . Axes child, descendant, descendant-or-self,
following-sibling, preceding-sibling, following, and preceding can be evaluated by a
suitable range scan. The remaining axes (ancestor, ancestor-or-self, parent, and self)
are evaluated by single node lookups.

Because the corresponding methods are more or less straightforward, they shall
only be sketched with the help of two examples here. Consider the track element
with DeweyID 1.3.11.7 in our sample recordStore.xml as context node n. Then
the query $n/following-sibling::track can be evaluated with the help of
the element index by: 1) opening the node-reference index for track at DeweyID
1.3.11.7, 2) scanning the index, until the first record is found, whose DeweyID
is not a descendant of n’s parent DeweyID (1.3.11), and 3) (on every returned
record) testing whether it actually is a following sibling of 1.3.11.7. Points 1 and
2 delimit the range of the scan. Point 3 is necessary, because (in contrast to our
sample document) track elements may appear as descendants of parent DeweyID
1.3.11 in the scanned range.

Scan-based evaluation for the second group of axes mentioned above does not
make any sense because of their selectivity (i. e., they typically would skip many
nodes when implemented by a range scan). Therefore, they are implemented in a
node-at-a-time fashion: Consider again our sample document and track element
1.3.11.7 as context node n. Then, query $n/ancestor::cd can be evaluated, by
1) calculating all ancestor DeweyIDs of 1.3.11.7, and 2) subsequent lookups in the
node-reference index of cd.

You may have noticed that the scan access is only a special case of axis evaluation (or
the other way around), i. e., a scan is an axis evaluation of the descendant-or-self axis
on the root DeweyID (1). An axis evaluation could be implemented on top of the
getScanPartition method. For the sake of simplicity, the above two methods were
introduced separately, despite their dependencies.

Note, furthermore, that similar scan and axis evaluation primitives can also be im-
plemented over the document store, i. e., the element index is optional w. r. t. to these
operations. However, in general, element-index-based evaluation will perform sig-
nificantly better, because only elements with the same name are read (and no further
nodes, such as for example text nodes in the case of a document scan).

1The namespace and the attribute axis are not supported.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.2 XTC’s Indexing Scheme Reconsidered 199

7.2.3 Assessment of XTC’s Indexing Scheme

We now consider the introduced indexing scheme w. r. t. our list of desiderata:

• Optional Use: Both indexes are optional. In the case of an absent ID-attribute
index, the evaluation of the getElementByID method would however be extremely
expensive, because the complete document would have to be scanned.

• Expressiveness: Obviously, not even the combined use of the ID-attribute index
with the element index can deliver the required expressiveness for query evalu-
ation. The element index can deliver ordered element lists but, what is actually
required are path matches. In Chapter 5, we have introduced the twig operator.
This logical operator stands for a special pattern matching algorithm that will
be introduced in Chapter 8. The algorithm can take ordered element lists (pro-
vided, for example, by the element index) as input and can return path pattern
matches. However, because the element index does not contain any content in-
formation, we cannot evaluate content predicates this way. Therefore, only the
structural part of a query like //record[price="12.99"] can be evaluated
(by the twig operator), but the content part has to be checked against the docu-
ment. Another problem is the evaluation of wildcards (*). A wildcard matches
any name. Of course, it would not be viable to read all node-reference indexes.
Therefore, other techniques to efficiently evaluate wildcards have to be found.
Note, by adding the functionality of the ID-attribute index, CAS queries like
//record[@id="d_100"] can also be evaluated.

• Selectivity: The selectivity of both indexes is “hard wired”, i. e., no true adjust-
ment to a query workload is possible. For the element index, however, this can
be fixed by allowing the user to define the element names that should be con-
tained in the index.

• Updates: The update scheme for both indexes is quite straightforward: When a
subtree s is deleted from the document, every element and attribute node is vis-
ited in document order (using a sequential scan over the document store for the
subtree to be deleted). When an ID attribute is encountered, it needs to be deleted
from the ID-attribute index. In case of an element node, its name is collected in
a name list. For each name in the name list, all descendants of the subtree s are
removed from the corresponding node-reference index. Similar measures have
to be taken, when a subtree is inserted/modified. The maintenance overhead
consists of the cost for a subtree scan and the cost for the actual index updates.

• Applicability: The question of index applicability has a trivial answer, because the
indexes are “hard wired”, i. e., the ID-attribute index is applicable, if it exists. The
same is true for the element index. If, however, the user has restricted the set of
element names indexed (as sketched before), the element index is only applicable
for a (sub-)query, when the necessary element names are contained.

• Result Computation: Because paths can only be matched algorithmically (and not
directly over the indexed data), the question of how inner elements can be re-
computed is a mute point. We will see in Chapter 8 how this is actually achieved.

Both index types are independent from the storage mode, i. e., they can be created
over a document stored in node-oriented or in path-oriented mode. Furthermore,
they also support collections.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

200 Chapter 7: XML Indexing

In summary, even the combined use of an element and an ID-attribute index lacks
expressiveness (no content queries) and user-defined selectivity. Intrinsically, the
notion of paths is missing in these index structures. Paths have to be reconstructed
or recomputed by complex path matching algorithms (see Chapter 8). However, for
the following reason, we nevertheless consider the proposed indexes useful: Some-
times documents have a high structural complexity (for example the treebank.xml
document) and, therefore, indexes encoding precomputed paths would inherit this
structural complexity, rendering their management quite expensive. On the other
hand, element and ID-attribute indexes do not inherit structural complexity, be-
cause they do not encode paths. Therefore, their management on structurally com-
plex documents is cheap.

7.3 Path Indexing

As already motivated, path queries are essential ingredients in XML query lan-
guages and their evaluation is critical to query performance. To address this re-
quirement, we propose a path indexing scheme. We want to highlight the salient
features of this scheme already at this point: The path indexing scheme is solely
based on the structures already proposed for document storage, namely DeweyIDs,
the path synopsis, and the B*-tree. This infrastructure “reuse” allows code shar-
ing and a tight coupling between storage and indexing concepts, resulting in an
integrated mechanism. In this mechanism, issues like index construction and main-
tenance can be implemented in a very simple and efficient way, because both, the
path-oriented document store and the index manager are aware of paths. Addition-
ally, we have seen that DeweyIDs provide for fast ancestor ID recomputation and
that DeweyIDs and PCRs form a kind of coordinate system in the document. This
concept will be reused to compute inner elements from path matches, as desired in
our indexing “wish list” in Section 7.1.

This section first gives a more formal definition of the query types considered for
path indexing, thus, refining Requirement 2 in our list of desiderata. Then, so-called
content and structure (CAS) indexes, which are a hybrid form of path and content
indexes, are introduced and classified. After discussing how CAS indexes can be
queried and maintained, the question of when such an index is applicable for query
processing will be answered. Afterwards, we will generalize CAS indexes to content
indexes and plain path indexes (to evaluate simple path queries without a content
predicate).

7.3.1 Query Types Considered

Definition 2 introduces the concept of a simple XPath query (XPQ). Basically, an
XPQ is a path query with at most one predicate, which, in turn, can be a sim-
ple path (as in //cd[genre]) or a content predicate. Content predicates can be
specified as path predicates (as in //cd[genre="Pop"]) or as self-predicates, as
in //vinyl/genre[. = "Jazz"] . Furthermore, content predicates may occur
as range predicates (e. g., //cd[10 < price < 20]) or as point predicates (e. g.,
//vinyl[price="12.99"]).

In Definition 2, the semantics of an XPQ expression is only informally given by ref-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.3 Path Indexing 201

erencing the XPath semantics. This should however not pose any problems because
of the simplicity of XPQ expressions. Nevertheless, some specialties shall be illus-
trated: The particle “// ” abbreviates the descendant axis2, while @abbreviates the
attribute axis. Thus, XPQ //@∗ refers to all attributes in the document. In contrast
to XPath, range predicates are not expressed using the Boolean and conjunction,
but directly in a mathematical range notation. The dot (.) can be used to refer the
output of the rightmost name test in the preceding simple path expression, as in
//cd/genre[. = "Jazz"] .

Definition 2 (Simple XPath Query (XPQ)) The syntax of a simple XPath query Q
is defined by the path grammar production below. The terminals <nameTest> and
<value> are substituted by qualified names (QNames) and values. The semantics of a
simple XPath query expression are derived from the XPath semantics [Berglund 04]. XPQs
with a content predicate (i. e., with a predicate based on grammar productions pathPred
or selfPred) are referred to as content-and-structure (CAS) queries. If a CAS query has
an equality predicate (=), we name it point query; otherwise, we name it range query.

path ::= //relPath | /relPath
relPath ::= simplePath | simplePath[simplePath] |

simplePath[pathPred] | simplePath[selfPred]
simplePath::= step | simplePath/step | simplePath//step
step ::= <nametTest> | @<nameTest> | *
pathPred ::= simplePath Cmp <value> | <value> RCmp simplePath RCmp <value>
selfPred ::= . Cmp <value> | <value> RCmp . RCmp <value>
Cmp ::= < | <= | = | != | >= | >
RCmp ::= < | <=

In the following, we only consider CAS queries and suitable indexes for their eval-
uation. The necessary modifications on the introduced index structures to support
other types of XPQs will be introduced afterwards.

7.3.2 Defining CAS Indexes

To answer CAS queries, we provide a hybrid index structure that captures content
and structure. For its definition, we reuse three basic concepts already introduced
in the previous chapter, namely: DeweyIDs, the path synopsis (with PCRs), and the
B*-tree. The resulting access structure is called CAS index and is specified in Defi-
nition 3. As a CAS index example, consider definition I(//recordStore/*/year, Integer),
for which the resulting access structure is schematically depicted in Figure 7.2. The
index contains a record for every year element on the specified path3. At the level of
B*-tree leaf pages, these records are ordered by the content of the year element and,
inside each group of records with the same key, in ascending document order. Each
record carries a PCR denoting the path on which the corresponding year element
resides, i. e., 6 and 18 (see also Figure 6.2 on Page 169). As we will see, the index
can be used to answer queries like //year[. = 1998] , //cd[1960 < year <
1990] , etc. Of course, the sample index structure is very selective, because only
queries related to the year element can be answered. Further interesting indexes

2Note, here we use “//” as an abbreviation for the descendant axis neglecting the previously discussed
correct semantics of this operator.

3Note, to make the example more illustrative, we added some records representing further year elements that
are not explicitly shown in the recordStore.xml document printed in the appendix.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

202 Chapter 7: XML Indexing

Figure 7.2 A Sample CAS index on recordStore.xml with definition I(//recordStore/ ∗ /year, Integer)

1959 181.13.7.3

DeweyID PCRValue

...

...

...

...
1990

2008

1960

1975

1998

1997

1958

1959
1959

1959 18

18

...

...

1.11.7.3

1.5.7.3

1998 6

1998 18

1998 6

1.3.7.3

1.19.7.3

1.25.7.3

a) Index Structure b) Record Format

with a lower selectivity are, for example, the following: I(//@id, String), which pro-
vides a similar functionality as the ID-attribute index, and I(//*, String), which is
basically an index over all content values in the document.

Definition 3 (Content-and-Structure (CAS) Index) A CAS index on document D is
denoted as ID(p, T), where the index path predicate p is a simple path query following
the syntax of grammar production idxPath below (and non-terminal simplePath is
borrowed from Definition 2), and T is the indexed content type, e. g., Integer, String, etc.
Where non-ambiguous, we omit D and T . A CAS index is implemented using a B*-tree
that can handle duplicate keys. For each leaf node n of D, a record is contained in the B*-tree
of ID(p, T), iff C1) the parent element of n is contained in the result of the evaluation of p
against D and if C2) n matches the content type of the index definition. An index record
has the following form: R = [C,D,P], where C is the content of the indexed leaf node
used as the record key, D is the DeweyID of n, and P its PCR. The keys in ID are ordered
in ascending order w. r. t. T, while the DeweyIDs (occurrences of n in D) are in document
order for one and the same key value.

idxPath ::= //simplePath | /simplePath

Obviously, a CAS index is optional and its selectivity can be specified by a user-
defined path pattern. Therefore, Requirements 1 and 3 are immediately fulfilled.
Because CAS indexes are content-related, pure path queries cannot be answered by
them. However, as already stated above, the CAS index concept will be generalized
to fully support Requirement 2.

7.3.3 Creating CAS Indexes

An index ID(p, T) is created on a document stored in path-oriented mode as follows:
First, index path p is evaluated4 against document D’s path synopsis, resulting in a
list P of PCRs matching p. Then, D is scanned in document order. For each value
vi, we check whether its PCR is contained in P (C1 in Definition 3) and whether
its type matches T (C2). If so, a record for vi is inserted into a sort buffer. After
the complete document is scanned, a stable sort on the index keys is executed and

4The evaluation of a structure query on a path synopsis is not formally defined here. The semantics should,
however, be intuitively clear.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.3 Path Indexing 203

I is built bottom-up. The correctness of this creation process—i. e., every indexed
content value is on path p and the ordering complies with Definition 3—is assured
by the path synopsis’ consistency and by visiting the indexed nodes in document
order.

As an example for CAS index creation, again consider the index definition
I(//recordStore/*/year, Integer). The evaluation of the query //recordStore/*/year on the
path synopsis in Figure 6.2 on Page 169 returns the two PCRs 6 and 18. During in-
dex creation, all leaf nodes having either PCR 6 or 18 are included in I , e.g., nodes
1.3.7.3, 1.5.7.3, etc.

Note, for the implementation of the CAS index creation process, the inner document
structure does not need to be re-computed. A simple scan on the leaf pages of
the document store is sufficient. As stated, CAS indexes can only be created on
documents stored in path-oriented mode. The rationale behind this restriction is
that a path synopsis must exist. As shown in the previous chapter, some documents
are better stored in a node-oriented way, without the need to maintain a complex
and possibly large path synopsis. For those documents, it would be a bad idea to
built a CAS (or path) index on a path synopsis (because this would mean to maintain
this structure, despite its structural complexity). Therefore, another mechanism to
define path indexes would be required. A viable solution to create a CAS index over
a node-oriented document would be to construct the current path during a document
scan, which could then be used to match the index definition path p. This solution
is not followed in this work, because the resulting index would not be “connected”
to the document store in a way such that index updates could easily be detected.
Furthermore, most data-oriented documents for which path indexes are actually
interesting can be stored in a path-oriented manner anyway.

Depending on the structure of the path synopsis and the given index path predicate
p, we can partition the possible indexes into the three classes unique, collective and
generic. These classes will be discussed in the next section.

7.3.4 Unique, Collective, and Generic CAS Indexes

In index definition ID(p, T), parameters p and T determine the index’ selectivity
(Requirement 3). In Definition 4, we generalize the CAS index definition from above
and identify four different index types.

Definition 4 (Unique, Collective, and Generic CAS Indexes) In a unique CAS in-
dex, all entries have the same PCR, while in a homogeneous collective index, the entries
may have varying PCRs. For the heterogeneous collective CAS index, we generalize p to
p = p1 ∨ ... ∨ pi ∨ ... ∨ pn where the pi are index paths as in Definition 3. A generic CAS
index contains all values of a certain type (i. e., p = //*).

On our sample data, I(//cd/year) is a unique index, I(//year) is a homogeneous collec-
tive index, I(//@no ∨ //@length) is a heterogeneous collective index and I(//*, [Integer])
is a generic index over integers. While unique indexes are specialized and can an-
swer queries on a single path class only, the selectivity “widens” over collective to
generic indexes. Because unique indexes contain records with the same PCR, ex-
plicit PCR storage could be omitted to save space. Such a design decision, however,
should be supported by a fixed schema, because an insertion of a cd/year path at
any other position in our sample document would turn the unique index I(//year)

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

204 Chapter 7: XML Indexing

into a collective one, which requires PCR storage. Homogeneous collective indexes
are the standard case. They potentially require some effort to remove false positives
(shown below). For example, query //cd/[year <= 1980] requires removal of
vinyl/age entries in I(//year).

Depending on the selectivities of the path classes included in collective indexes and
on the overhead to remove false positives, it can be worthwhile to combine as many
path classes as possible in CAS indexes. The more frequent an index is accessed,
the higher is the locality of reference on the index pages which, in turn, keeps such
pages longer periods of time in the DB buffer [Graefe 07]. Therefore, it could be ad-
vantageous to broaden the index use and provide heterogeneous collective indexes.

Finally, we can design indexes combining all path classes of a given indexable type,
e. g., Integer, String, or Text (where Text implies the use of IR search techniques).
Such generic indexes are not tailored anymore to a particular CAS query, but drasti-
cally reduce the number of indexes needed. In our running example, I(//*, [String])
could serve to evaluate such diverse XPath queries as //cd[artist="Sting"] ,
//vinyl[genre="Jazz"] , or //recordStore/ * ["B" < title < "D"] .

7.3.5 CAS Index Maintenance

Upon the creation of CAS index I , a record is inserted into the metadata catalog.
This record contains I’s index definition ID(p, T) and also the list of PCRs resulting
from the evaluation of p on the path synopsis of document D. With this list, we can
decide index matching without evaluating path p for each query to be answered (as
shown in the Section 7.3.7). Furthermore, we can detect whether the index has to be
updated in case of document modifications.

There are two types of modifications: The first type does not alter the path synopsis
while the second one does. Subtree insertions/deletions for the first type or plain
content modifications can be handled as follows: For each affected content node n
(in the modified subtree), its parent’s PCR p is inferred from the path synopsis. If
any index definition’s PCR list in the metadata contains this PCR (hash lookup),
the modification is propagated to the corresponding index, because n is contained
in that index. Because the index itself is a standard B*-tree, the well-known and
efficient record insertion/deletion/modification algorithms apply. Modifications
altering the path synopsis trigger a re-computation of the PCR lists in the metadata.
Then, the same process described above updates the indexes. This re-computation is
implemented by re-evaluating all index paths on the path synopsis of the document.
Note, because the path synopsis is typically small to fit into main memory, this re-
evaluation can be tolerated.

As an example, consider index I(//year) (PCR list {6,18}) on our sample document.
If we alter the content of the first cd’s year element from 1998 to 1999, we can infer
PCR 6 from the affected content node and detect that our index has to be updated. If
we add a path biography/born/year below the artist element, we have to alter
the path synopsis, resulting in a new PCR (say 17), which is added to I’s PCR list,
before the index is updated as above. Note, because the path synopsis is unordered,
we do not need to reassign PCRs at any time. Thus, PCRs are stable.

Assume, the document store would not encode any path information, as for exam-
ple in the node-oriented case and as in many other XML storage proposals. Then,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.3 Path Indexing 205

index maintenance would cause substantially more overhead than in the update
scheme introduced above. In the path-oriented case, everything happens in main
memory, once the path synopsis and the metadata of a document has been loaded
(which happens upon the first document access). In the node-oriented case, how-
ever, expensive disk access is necessary to reconstruct the current path on which the
modification takes place (without this path information it would not be possible to
identify the CAS indexes requiring maintenance). Therefore, embedding path infor-
mation in the document store not only serves for virtualizing the inner document
structure, but also to simplify and optimize the interplay with the index manager of
an XDBMS.

7.3.6 Answering Point and Range Queries over CAS Indexes

Assume we have an XPQ expression Q, a document D, and a set of indexes J . The
two questions arising now are 1) which set of indexes in J can be used to eval-
uate Q (index applicability), and 2) how is the evaluation of Q using an index I
accomplished (search model)? Because the search model is required to clarify how
existing indexes are selected, we start the discussion with the second point. Index
applicability will be discussed in the next section.

CAS queries, as specified in Definition 2, can be decomposed into a structural part,
i. e., a path p, and into a content part, which is referenced to by T in the following.
For example, in query //recordStore/ * ["B" < title < "D"] , the structural
part is path p =//recordStore/ * /title and the content part is a range test T
with the exclusive range boundaries “B” and “D”. Given a suitable index ID, a CAS
query can be evaluated as follows:
1. Path p is matched against the path synopsis of document D, resulting in a set of

PCRs P . If P is empty, the result is also empty, because the document does not
contain any path matching p.

2. For content predicate T , a point access or a range scan to/over I is issued to
deliver all records matching content predicate T .

3. For the PCR of each record R delivered by the index access, the set inclusion in P
is checked. If P contains the PCR, record R belongs to the final result, because its
ancestor path matches path predicate p. Thus, this step removes false positives.

4. The correct inner path elements (as defined by the brackets of the predicate) are
computed.

5. Optionally, if T is a range predicate and further processing operators require an
ordered result, the nodes are sorted in document order. Note, for one and the
same value, the nodes are already sorted this way.

For an example, assume we have a collective CAS index I(//recordStore/*/year) (as
depicted in Figure 7.2 on Page 202) and the query Q =//cd[year=1998] . Match-
ing path //cd/year against the document’s path synopsis returns a set P of ex-
actly one PCR: 6. A point access to index I results in a sequence of three records,
of which only the PCR of the first and the last one (having DeweyIDs 1.3.7.3 and
1.25.7.3) are contained in P . Therefore, the remaining vinyl/year node 1.19.7.3
(false positive) is filtered out. In the last step, the correct inner nodes are computed,
as defined by the predicate in the path query: From the path synopsis, we know that
cd elements reside on the second level of the path with PCR 6. Therefore, we can

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

206 Chapter 7: XML Indexing

simply clip the delivered DeweyIDs at that level, delivering cd nodes 1.3 and 1.25 as
query result. In general, result computation may be slightly more complex than in
this simple example. We dedicate a separate section in Chapter 8 for the discussion
of this topic.

Our search model can be implemented very efficiently. Because B*-trees are search
trees, they guide the evaluation of the comparison predicate T . Our implementa-
tion interleaves steps 2 and 3, such that the PCR is immediately matched for each
scanned record. In Requirement 6, we postulated an efficient result computation
for inner elements. As sketched above, the powerful DeweyID + PCR construct
serving as a coordinate system in the document construct, allows to do so in main
memory, i. e., without document access. This mechanism can, therefore, deliver the
“right” input nodes to further evaluation operators (e. g., for query Q =//cd[year
= 1998]/title , which calculates a structural join between cd and title nodes after
a CAS index access).

Assume we could not rely on the cheap ancestor-ID reconstruction mechanism pro-
vided by the prefix-based DeweyID labeling scheme. Then, our indexing scheme
would either loose flexibility w. r. t. its integration into query processing or it would
require rather expensive document access. In the first case, the index could only
deliver content/leaf nodes or a positive/negative answer to the question whether
the query returns a result on a particular document. In the second case, inner el-
ements would have to be reconstructed either by navigating the document or by
using structural joins. As we will expose in our experimental results in Chapter 9,
this kind of result computation is substantially slower than direct computation as
introduced in our search model.

So far, only the PCR-based evaluation of a query using a CAS index has been dis-
cussed. However, the relationship between the path predicate of the query and the
path predicate of the index is not established, yet. Therefore, the question arises of
whether or not the result is complete. This matter is discussed in the next section.

7.3.7 CAS Index Applicability

The initial task of index-based query processing is to find an appropriate set of in-
dexes in J based on which a path expression Q can be evaluated (Requirement 5).
Let ED(Q) be the result of Q’s evaluation on document D and let EI(Q) be the result
of its evaluation using index I ∈ J , as outlined in the previous section. Then, there
are four possible cases:

1. ED(Q) ∩ EI(Q) = ∅: The evaluation on the document and on the index have no
common subset. This either means that the query has no result at all or that the
index is not applicable to answer the query.

2. ED(Q) = EI(Q): The evaluation on the document and the index returns the same
result, i. e., the index is applicable without removal of false positives. In this case,
the PCR check (Step 3 in Section 7.3.6) can be omitted.

3. ED(Q) ⊂ EI(Q): In this case, the index contains false positives that make Step 3
above necessary.

4. ED(Q) ⊃ EI(Q): The index does not contain all nodes to answer the query, but
only a partial result.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.3 Path Indexing 207

Figure 7.3 A sample plain path index on recordStore.xml with definition I(//title)

41.3.3

111.3.11.3.3

111.3.11.19.3

...

DeweyID PCR

...

...

...
1.25

1.33

1.9

1.21

1.19

1.15

1.5

1.7

...

...
231.5.17.3.3

1.5.3

28

16

1.5.19.3.5
...

...

a) Index Structure b) Record Format

The decision of these four cases based on Q and I‘s path predicate p alone, i. e.,
without access to the document, is a difficult problem in the general case (see for
example [Hammerschmidt 05, Miklau 04]). Fortunately, the path synopsis and our
PCRs provide a basis to solve this problem in a simple way: The above result-set
comparison deciding the four cases shown can be replaced by a PCR-set compari-
son: ED(Q) is replaced by the evaluation of Q’s structure predicate on path synopsis
PS, and EI(Q) is replaced by the evaluation of I’s path predicate on PS. Both eval-
uations return a set of PCRs, based on which the above cases can be decided. In
practice, the metadata catalog stores the set of PCRs together with the index defi-
nition. Therefore, only the query path has to be evaluated on the path synopsis for
the set comparison.

As an example, consider the index I=(//year) and the queries Q1 =// *
[year=1998] and Q2 =//vinyl[year=1998] . The PCR sets 6,18 for I and Q1

are equal (case 2) and, therefore, Step 3 can be omitted. For Q2, the PCR set is {18}.
Therefore, Step 3 is required and removes all nodes with PCR 6. Note, in contrast
to the use of a plain element index, queries with wildcards (*) can easily be evalu-
ated over CAS indexes. While cases 1 to 3 yield a “positive” result, case 4 signals
that the index alone is not sufficient to evaluate the query. However, when multi-
ple (not necessarily unique) CAS indexes qualify, e. g., I(cd/year) and I(//vinyl/year)
for query //year[. = 1998] , the qualified node-reference lists of all matching
indexes can be merged to derive the result. If the union of all participating PCR sets
is a superset of the query’s PCR set, the result is complete (but may contain false
positives).

7.3.8 Plain Path Indexes and Plain Content Indexes

So far, only indexes that can answer content-and-structure (CAS) queries were intro-
duced. To support plain path queries with indexes, we just have to slightly simplify
the proposed indexing scheme. A plain path index definition has the form ID(p),
i. e., no content type information is given. The records stored in a plain path index
have the form R = [D,P], where D is the DeweyID of the indexed node and P is its
PCR (alternatively, we could swap D and P resulting in a different clustering; see
next section).

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

208 Chapter 7: XML Indexing

As an example, consider index I(//title), depicted in Figure 7.3. On our sample doc-
ument, the index collects the following PCR list (see Figure 6.2 on Page 169) upon
index definition: {4, 11, 16, 23, 28}. In contrast to CAS indexes, where only leaf
nodes are maintained, a plain path index maintains inner document nodes. In path-
oriented storage, these nodes are, however, not physically stored, thus, they cannot
be retrieved by a simple scan over the leaf pages of the document store. Therefore,
to construct a plain path index, the inner document structure has to be recalculated
(as described in Section 6.3.3). To do so, the PCRs of the inner nodes have to be gen-
erated to check whether a node belongs to the plain path index or not. However,
no sorting on the records is required, because the plain path index keeps them in
document order. Similar to CAS indexes, plain path indexes can be classified into
unique indexes, (homogeneous and heterogeneous) collective indexes, and generic
indexes. The generic type (i. e., I(//*)) should however be handled with care, because
it contains all nodes of the documents and is therefore expensive to maintain. Test-
ing a plain path index for applicability and index maintenance are quite similar to
the proposed procedures for CAS indexes. To query a plain path index, the content
check is simply omitted. In summary, operations on plain path indexes are quite
similar to the ones defined for CAS indexes.

Interestingly, we can also embed path evaluation capabilities into the element in-
dex proposed in Section 7.2.2. Logically, the relationship between the element index
and path indexes can be regarded as follows: Let V = {v1, . . . , vn} be the set of all
element names in a document. Then the element index J contains all path indexes
J = {I(//v1), . . . , I(//vn)}. However, as long an element name vi is not unique
within the path synopsis, index I(//vi) can only answer query Q(//vi), and noth-
ing else. To alleviate this situation, we provide the possibility to “piggyback” path
indexes on top of the element index. This is accomplished by embedding PCRs into
the records of each node-reference index. Embedding PCRs is straightforward, be-
cause the original record format of node-reference indexes has an empty value field
(see Figure 7.1). With a PCR in each record, we can distinguish all paths in I(//vi)
as in an “ordinary” path index. The resulting element index is depicted in Figure
7.4. Regarding maintenance, applicability testing, querying, and so on, the distinct
node-reference indexes for element name vi behave just like a plain path index with
definition I(//vi).

Path indexes were “defined” on the basis of CAS indexes by the omission of con-
tent information. Of course, we can also design an index by the omission of struc-
tural information. The result is a plain content index that solely maintains value-to-
DeweyID mappings. A content index is defined by ID(T), where D is the document
and T is the indexed content type, as before. Content indexes are actually nothing
new, as the related work section will reveal. Nevertheless, they are presented here
to complete the set of index structures available in XTC. Because content indexes do
not encode any path information, they can also be created on a document stored in
node-oriented mode.

7.3.9 DeweyID Clustering and PCR Clustering

The records contained in the leaf pages of a CAS index are sorted by the indexed
key and, as a second ordering criterion, by the occurrence (i. e., DeweyID) of the
indexed node in the document. As an example, consider index I(//recordStore/*/year)
depicted in Figure 7.2 (with PCRs 6 and 18). Therefore, on the structural part of

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.3 Path Indexing 209

Figure 7.4 The extended element index

B−Tree

title

trackartist

IdxNoName

Name Directory Node−Reference Idx

DeweyID PCR

...

Element Index

B*−Tree B*−Tree B*−Tree

1.3.5 1.3.11.3

N
od

e−
R

ef
er

en
ce

N
am

e
D

ire
ct

or
y

In
de

xe
s

...

5 1.3.3 4 31

a point query like //vinyl/year[.=1959] , the DeweyIDs of the resulting year
nodes are delivered in document order. This is beneficial, if the result of the point
query is processed by further XML operators. Actually, the ordering on the key and
the DeweyID implies a type of index clustering, which we will refer to as DeweyID
clustering in the following. Obviously, in DeweyID clustering, the PCRs are dis-
tributed randomly over the set of leaf-page records. During query processing over
the index, records with PCRs that do not match have to be filtered out. For exam-
ple, above query only returns records with PCR 18 on the given index. Suppose, the
distribution between vinyl and cd entries is highly skewed, i. e., many more cds are
stored. Then, many unnecessary records will be read and many false positives will
be removed for this query. In such a case, it would be better to cluster the records by
their paths, i. e., by their PCRs. This kind of clustering will be called PCR clustering
in the following and is achieved by a modified record layout.

Figure 7.5 shows the record layouts that led to the different DeweyID and PCR clus-
terings on CAS, path, and extended element indexes. Because DeweyID clustering
has already been discussed, we only concentrate on the right side. On the extended
element index and on a path index, PCR clustering is achieved by swapping the key
with the value. The records are then ordered by the PCR (first) and by the DeweyID
in document order (second). Of course, the introduced query evaluation over the
index does not work anymore and has to be adjusted. The same is true for CAS in-
dexes in PCR clustering, where the key is now a concatenation of the content value
and the PCR (forming a combined key) and the value is the DeweyID (sorted in
document order for records with one and the same value-PCR combination). Here,

Figure 7.5 Record formats for DeweyID and PCR clustering

Value & PCR PCRValue PCRDeweyID

DeweyID PCR PCR DeweyID

PCR ClusteringDeweyID Clustering

CAS Idx

Node−Reference IdxPath Idx and

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

210 Chapter 7: XML Indexing

we only sketch the modified query evaluation over the CAS index (cf. Section 7.3.6).

Let p be the structural part of a CAS query and let T be the content part. Given a
suitable index ID with PCR clustering, the CAS query can be evaluated as follows:

1. Path p is matched against the path synopsis of document D, resulting in a set of
PCRs P . If P is empty, the result is also empty, because the document does not
contain any path matching p (this step is the same as for indexes with DeweyID
clustering).

2. If T is a point query, for each PCR delivered in the previous step, a combined
key is generated that consists of the comparison value and the PCR. For each
combined key, an index lookup delivers an intermediate result of records. If T is
a range query, the range is scanned using the given range boundaries as prefixes
to locate the scan boundaries (note, prefix usage is necessary, because the index
contains combined keys). For range queries, the rest of the query evaluation over
the index proceeds as sketched in Section 7.3.6 for DeweyID-clustered indexes.
The following points only apply for point queries.

3. Optionally, if further processing operators require an ordered result, the nodes
of the intermediate results are merged on the basis of the record DeweyID. Note,
before merging, each intermediate result is already sorted on the DeweyID field
in document order. If no sorting is required, the intermediate results are simply
concatenated.

4. The correct inner path elements (as defined by the brackets of the predicate) are
computed.

As an example, consider index I(//recordStore/*/year) in PCR clustering and query
Q =// * [year="1998"] . Evaluating the structural part of the query (// * /year)
over the path synopsis delivers PCRs 6 and 18, and thus the combined query keys
“1998 & 6” and “1998 & 18”. Index lookups for both keys return two result sets,
each of which is sorted in document order on the DeweyID field. These result sets
are merged and the required inner cd and vinyl elements are recomputed. For point
queries, no removal of false positives is necessary. In the above motivated case,
when the distribution of indexes records on different paths is highly skewed, PCR
clustering allows to directly “address” the records on the required paths. For exam-
ple, in query //vinyl[year="1959"] only one index lookup an no false positive
removal is necessary over the PCR-clustered CAS index. However, if the document
is structurally complex, and many intermediate results have to be merged (due to
many queried path classes), DeweyID-clustering could be advantageous. As we
will see in the experimental section, DeweyID-clustered indexes perform better on
explorative queries (where the use of “//” leads to many path classes), whereas
PCR clustering should be preferred on selective queries (using “/” and fewer path
classes). Finally, we want to state that the evaluation over path indexes is imple-
mented in an analogous way.

7.4 Related Work

Figure 7.6 provides an overview over recent indexing proposals for semistructured
data and XML. As you can observe from the number of references, XML indexing a
very active field of research. You will also see that many different notions exist on

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.4 Related Work 211

Figure 7.6 A classification of related work on XML indexing

Summary−Based
Index

Sequence−Based
Index

Structural Join
Index

Content−and−Structure
Index

Indexing Approaches

Twig

Content Index

Path Index

Partial

Complete

Tindex (Lore) [Mchugh 97]
XTC Content Index

XISS [Li 01]
XR Tree [Jiang 03a]
XB Tree [Bruno 02]
Natix [May 06a]
Timber [Jagadish 02a]
XTC Element Index

ViST [Wang 03]
Prix [Rao 04]
Prüfer [Prasad 05]
FiST [Kwon 05]

F&B Index [Kaushik 02a]
Disk-based F&B Index [Wang 05]

IndexFabric [Cooper 01]
KeyX [Hammerschmidt 04]
Inverted Lists [Kaushik 04]
FLUX [Li 06]
DB2 pureXML [Beyer 06]
XTC CAS Index

DataGuide [Goldman 97]
1-Index [Milo 99]
XTC Path Index

A(k) Index [Kaushik 02b]
D(k) Index [Chen 03a]
M(k) Index [He 04]

what “XML indexing” actually means. For brevity, we only sketch some approaches
out of every class.

7.4.1 Structural Join Indexes and Content Indexes

The first class of indexes support join-based query evaluation. Therefore, they are
called structural join indexes. A structural join [Al-khalifa 02] (or a holistic twig
join [Bruno 02], which is actually an extension) can evaluate a path query by joining
ordered input lists of element, attribute, and text nodes, in the style of a merge
join (see Chapter 8). For example, assume query //cd//track which returns all
tracks of cd elements. A structural join can read two input lists, one containing
cd elements, e. g., 1.3, 1.7., etc., and the other one containing track elements, e. g.,
1.3.11.3, 1.3.11.5, etc. Then, based on the structural relationships of the elements
(in this case, the descendant relationship), those track elements that actually have a
cd element as ancestor are returned. To provide the input lists for structural joins,
a document scan can be used. However, in most cases, the number of elements
read will be much higher than the number of elements required for structural join
processing. Therefore, appropriate index structures are required.

A quite simple implementation is the XISS (XML Indexing and Storage) scheme

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

212 Chapter 7: XML Indexing

[Li 01], which maintains a posting list of nodes (identified by a range-based label-
ing scheme) for each distinct element name. The structure is quite similar to our
element index (without embedded PCRs). However, the element index addition-
ally organizes the posting lists in a B*-tree index and therefore can support scan-
based XPath axis evaluation, as introduced in Section 7.2.2. As we have seen, for
some axes, the scan-based evaluation is not very meaningful, because the selectiv-
ity of the axis is too high. The XR-tree (for XML Region Tree) [Jiang 03a] alleviates
this situation for the ancestor axis by additionally storing ancestor information in
an extended form of B*-tree. The authors provide a special structural join opera-
tor working on the XR-tree that can exploit ancestor information to speed-up pro-
cessing time. Finally, the XB-tree [Bruno 02] manages certain node label ranges to
enable range skipping. The index can signal, when a certain range of nodes does
not contain any match. Obviously, the element index with embedded PCRs makes
structural joins for the child and descendant axis completely unnecessary, because it
allows to directly match complete paths (without further algorithmic processing).

Structural join indexes do not support queries with content predicates, be-
cause only elements are indexed, i. e., it is not possible to evaluate query
//cd[year="1998"] . A content index can remedy this situation. The first content
indexes were proposed in the context of the Lore system [Mchugh 97]. The content
index introduced in Section 7.3.8 follows the same idea (except that instead of plain
integer node labels as in Lore), DeweyIDs are indexed. Because the result of a con-
tent index access (point or range) can be used as input to structural join operators
and thus help to evaluate content predicates in XPath expressions, content indexes
are classified as structural join indexes.

7.4.2 Path Indexes

Indexes to speed up path queries (i. e., structure queries without content predicates)
were developed quite early in the XML history, e. g.DataGuides [Goldman 97] and
the 1-Index [Milo 99]. Basically, a path index consists of a structural summary (such
as the path synopsis) and a collection of extents, where each extent is assigned to a
node in the structural summary. Each extent contains a collection of XML nodes.
These nodes form an equivalence class, i. e., they have a certain property in com-
mon. The definition allows a certain kind of freedom in how the equivalence re-
lation inducing these equivalence classes can be defined. This led to the various
indexes, such as the DataGuide [Goldman 97], the 1-Index [Milo 99], the A(k)-Index
[Kaushik 02b], the D(k)-Index [Chen 03a], the M(k)-Index [He 04], and the F&B-
Index [Kaushik 02a].

Common to all these approaches is that they were developed with the semi-
structure data model in mind (e. g., OEM [Papakonstantinou 95]) and not partic-
ularly for XML. The major difference between these two models is how non-tree
edges are handled. In OEM, non-tree edges are first-class citizens, i. e., they are han-
dled as ordinary edges resulting in a graph data model. XML is tree-based and non-
tree edges are expressed via id/idref value-based relationships. Therefore, in our
understanding of an XML index, non-tree edges do not need to be indexed. Non-
tree edges imply additional structural complexity. As a result, true semi-structured
indexes may become quite large. For example, the DataGuide can be of exponential
size w. r. t. the source [Goldman 97]. Therefore, the research community spent quite
some effort to control the index size. In the beginning, there were the DataGuide

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.4 Related Work 213

Figure 7.7 A sample path index

tracks

title

track

cd

recordStore

......

(10, 14), (15, 19), (20, 24), ...

(13, 13), (18, 18), (23, 23), ...

(9,54), (70, 109), (120, 149), ...

Element Extent 1

Element Extent 2

Element Extent 3

Element Extent 4

(2, 55), (56, 110), (111, 150), ...

and the 1-Index. On tree-shaped data, the 1-Index and the DataGuide are the same.
In the 1-Index, two nodes u and v are in the same extent (equivalence class), if they
have the same incoming label path. The equivalence relation inducing the 1-Index
is called bisimulation. Figure 7.7 shows an example (note, the Figure is quite similar
to the XSum storage structure displayed in Figure 6.10 on Page 188). The IDs in
this figure are range labels, which serve as a node identification mechanism in most
indexing approaches. On graph-structured data, the 1-Index can still have many
extents. Therefore, [Kaushik 02b] relaxed the equivalence relation to k-bisimilarity:
not the complete incoming label path of nodes u and v has to be equal, but only
the first k ancestors. With this relaxation, the number of extents is also diminished.
However, now only queries up to length k can be answered directly by the index.
Other queries require expensive post-processing. The D(k)-Index [Chen 03a] and
the M(k)-Index [He 04] both refined this idea by allowing different values of k for
different “parts” of the index. Another idea is the F&B-Index [Kaushik 02a], which
can answer branching path queries. We will discuss this type of index in Section
7.4.4.

The major differences between our approach and the proposed path indexes are:

• We index tree-shaped data, while the above introduced path indexes consider
graph-structured data. We think that our restriction is justified, because we ap-
ply indexing in an XML database system and not in a system for graph-structured
data. However, nevertheless, we exploit the 1-Index as a structural summary. As
long as we are dealing with tree-structured data (i. e., as long as we can assign
DeweyIDs), our approach can also be integrated with the A(k)-Index, the D(k)-
Index, and the M(k)-Index. This could be beneficial for structurally complex doc-
uments. However, we did not follow this thread.

• Our approach does not store “inner” extents. Because we rely on DeweyIDs, we
can reconstruct inner nodes.

• Our indexes can directly deliver inner elements without further document or
index access. For example, consider the evaluation of query //cd[.//track]
on the sample index in Figure 7.7. A single access to the cd extent is not sufficient,
because it may contain false positives (in general, a cd element might not have a
track element). Therefore, a structural join between the cd extent and the track
extent is required to remove false positives. In our approach, inner elements can
simply be computed, thus, avoiding I/O.

• We provide a flexible mechanism to define index selectivity. Although other ap-
proaches (e. g., the T-Index [Milo 99]) allow to define path patterns for index-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

214 Chapter 7: XML Indexing

ing, our approach reaches further, because we also provide for merged indexes
[Graefe 07].

7.4.3 Content-and-Structure Indexes

Indexing content and structure separately results in additional processing cost in
case of CAS queries (because content and structure has to be joined again). We as-
sume that CAS queries are quite frequent. Therefore, we developed CAS indexes
in this work. The idea of a CAS index has been proposed earlier. IndexFabric
[Cooper 01] is one of the first proposals. To store a document in IndexFabric, all
tag names are first abbreviated by a unique designator. Then, all root-to-leaf paths
are encoded into strings and stored in a paged and layered patricia trie. For exam-
ple, path recordStore/cd/artist/"Sting" is encoded as RCASting, where R
stands for recordStore, C stands for cd, and so on. A content-and-structure query is
answered by matching the encoded structure part against the trie and by a subse-
quence content predicate test. An obvious disadvantage is that the descendant axis
can result in substantial trie traversal implying high I/O costs. Furthermore, even if
the content predicate is highly selective, the structure part has to be evaluated first.
Another disadvantage is that IndexFabric can only return leaf nodes and no inner
elements, thus requiring additional post-processing to deliver inner nodes.

An alternative CAS index is KeyX [Hammerschmidt 04]. For the creation of a KeyX
index, the database administrator has to define an index path pattern and a result
path pattern. The result path pattern has to be a “subpath” of the index path pat-
tern, for example //cd/year could be the index path pattern and //cd could be
the result path pattern. The index path pattern is evaluated against the document
returning a list of nodes. For each node, a record is created where the record key
is the content of the node. The record value is a reference to the ancestor node in
the result path. All records are written into a search tree. With this construction,
it is possible to evaluate the content predicate of a CAS query and to return inner
elements. However, this structure is quite static compared to our approach, because
we can freely compute all inner elements and do not require an output path pattern.

Another approach was presented by [Kaushik 04]. Basically, the authors bring in-
verted lists (on the XML content) and the 1-Index together by embedding a reference
into each entry of the inverted list. However, because they do not use a prefix-based
labeling scheme, they cannot compute inner elements as we do. Furthermore, they
also suggest to answer the structural part of a CAS query first, before the inverted
lists are checked.

As a last CAS index, we consider the FLUX approach [Li 06], which is quite similar
to ours. Instead of embedding a PCR with each stored content value, the FLUX
index embeds a Bloom filter. This filter is generated by applying a hash function
to the label path of the content node. The obvious problem with this approach is
that the bloom filter generates false positives upon query evaluation. These false
positives have to be removed by a subsequent document access. Furthermore, also
this approach cannot directly return inner elements.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

7.4 Related Work 215

7.4.4 Twig Indexes

To answer a twig query (with multiple branches) on a set of path indexes, the twig
query is first decomposed into single paths. These paths are then matched with
the help of the indexes and then joined (or intersected). As a result, some post-
processing is necessary to compute the final result (how this actually works in XTC
will be shown in Chapter 8). To avoid joins, twig indexes can answer path pat-
tern queries directly. Essentially, two techniques have been proposed as twig index
structures: sequence-based indexes and variants of the F&B Index [Kaushik 02a].

The key idea behind sequence-based indexes is the following: an XML document can
be represented as a sequence of nodes SD; a tree pattern query (i. e., a branching
path query) can be represented as a sequence of nodes SP . Essentially, SD and
SP can be represented as strings. Therefore, the problem of tree pattern match-
ing can be transferred to substring matching. The first approach exploiting this idea
was ViST [Wang 03]. In ViST, a document is represented by a two dimensional se-
quence (a1, p1), (a2, p2), . . . , (an, pn), where ai is a node and pi is the path of the
node. Queries can be represented in a similar fashion. For query processing, the
documents are stored in a suffix tree, which is indexed by a B*-tree. Subsequence
matching to find tree pattern matches is then implemented using this B*-tree. Two
major problems with the approach are that false positives may occur and that the
space complexity of the B*-tree is quadratic to the size of the document [Rao 04].
Therefore, [Rao 04] proposed PRIX—a similar approach, which relies on so-called
Prüfer sequences. Their indexing scheme avoids false positives and guarantees a
linear correspondence between document size and index size. False positives are
avoided by refining the delivered subsequence matches against the pattern tree
structure. A further similar approach was published by [Prasad 05, Kwon 05].

The major advantage of sequence-based indexes is their ability to match complete
path patterns with content-based predicates. On the flip side, the technique suffers
from the following substantial problems: 1) Pattern trees with descendant axes and
wildcards require navigational document access for their refinement (i. e., to assure
that the matched sequence is really a tree pattern match). 2) The pattern trees in
query processing are order indifferent. Therefore, to find all matches, all sequences
generated for pattern trees with permutated branching paths have to be generated,
matched, and unified. 3) Sequence-based indexes encode the complete document
and are, therefore, not selective (as required in our list of desiderata).

Another approach to twig indexing was presented with the F&B Index by
[Kaushik 02a]. The F&B Index assumes a graph data model and defines its own
notion of a branching path query containing, for example, also operators to follow
non-tree edges and navigations along the parent and ancestor axis. In the F&B In-
dex, all nodes are grouped together into an extent that “cannot be distinguished
by a branching path query”. This means that if two nodes u and v are in the same
extent, all branching path queries return either both nodes or none. The problem
here is the word “all”. Because branching path expressions can get arbitrarily com-
plex, the extents can get quite small. In the worst case, each extent contains only
one node. Then, query processing over the F&B Index is as expensive as evaluating
the query over the document. Therefore, the authors suggest various methods to
reduce complexity by restricting the set of indexed tag names, applying the idea
of k-bisimilarity, restricting the complexity of branching path queries, and ignor-
ing non-tree edges. An external memory mapping for the F&B Index was given

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

216 Chapter 7: XML Indexing

by [Wang 05]. The mapping is quite complex and does not rely on standard index
structures, such as the B*-tree. In their experimental results, the authors also re-
ported that the index can easily become quite large ranging between 57% and 158%
of the original document size. Besides these problems, no index maintenance algo-
rithm has been proposed until the time of writing.

7.4.5 Indexing in Related Query Processors

Let us now take a short look at the indexing capabilities of the five systems intro-
duced in our overview chapter (Section 2.3): We are not aware of any possibility to
create and use indexes in Galax, MonetDB/XQuery. Both systems operate on main-
memory document representations and, thus, do not require any external memory
index structures. [May 06a] briefly describe an indexing scheme for Natix, which
is quite similar to our element index (without embedded PCRs). However, how
this index is created and whether the query engine makes use of it is not known.
Timber also has a similar indexing framework as XTC before path indexing was in-
troduced, i. e., they have an equivalent form of the element and the content index
[Jagadish 02a]. In contrast, DB2 pureXML provides for path and CAS indexes, as
we do [Beyer 06]. However, again, only the external interface is known (i. e., how
these indexes are created by the user), but not how they are implemented.

7.5 Summary

This chapter introduced a flexible indexing framework for the XTC native XDBMS.
To fulfill our “wish list” posed at the beginning, XTC’s basic indexing scheme (con-
sisting of the ID-attribute and the element index) was substantially extended by
content, content-and-structure, and plain path indexes. Our index structures are
tightly integrated with the document store to foster code reuse (e. g., the reuse of
the path synopsis) and to detect and implement index updates. Our indexes can be
freely adjusted to the physical DB layout and to the expected query workload. Fi-
nally, we developed measures to detect index applicability and we have motivated
the importance of returning inner elements to facilitate the integration of the index
with the remaining operators of the physical algebra. The latter point will be dis-
cussed again in the following chapter, where we show how index scans are actually
embedded into a physical XML algebra.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 8 The Physical Algebra

A goal without a plan is just a wish.

Antoine de Saint-Exupéry

At this point, we have approached XML query processing from two directions:
1) from the logical abstraction level, where we studied the problem in a top-down
manner from parsing, over normalization, static typing, simplification, and XQGM
translation to rewriting; 2) from the physical abstraction level, where we prepared
the foundation in a bottom-up manner by considering the storage and indexing
layout of a database. To close the remaining gap, all we have to do is to present
the algorithms that run on top of the storage and indexing layout implementing the
various XQGM operators. Furthermore, we have to show how these algorithms can
be assembled to an executable program.

The latter problem is commonly known as plan generation. We have already seen in
the overview chapter (Section 2.1.3) how plans are conceptually built: Plan gen-
eration is a two-phase process. The first phase is implemented by a rule-based
approach, similar to the rewriting stage. When a plan generation rule matches an
XQGM component, the rule creates the physical implementation of the logical op-
erator. This implementation can be a single algorithm (also called physical operator in
the following) or a whole group of algorithms (i. e., a tree of physical operators). The
implementation is registered with the XQGM component it was created for. When
multiple rules match on one and the same XQGM operator, multiple alternative
implementations are registered.

After all XQGM operators have been mapped to their implementations, the plan
generator walks over the XQGM instance and stitches the physical implementations
together. Note, this actually implies that the rule set for plan generation is complete,
i. e., that for every logical operator, a matching rule exists. At the time of writing, the
plan generation process is implemented in a straightforward manner: If multiple
alternatives for an XQGM operator exist, always the first one previously registered
is chosen. To make the generation of alternative QEPs for a query possible, plan
generation rules can be priorized such that a rule with a higher priority registers
its implementation before a rule with a lower priority. In a real cost-based query
optimizer, the implementation alternatives will be chosen by the query optimizer
based on some cost model, thus, making rule priorities unnecessary. However, be-
cause this is future work, we satisfy ourselves with the above sketched simple plan
generator.

For the rest of this work, we omit a technical discussion on the plan-generation rule

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

218 Chapter 8: The Physical Algebra

set and on how plans are actually assembled. Instead, we give an overview over
the set of physical operators (called physical XML algebra in the following) and over
alternative implementation strategies of certain XQGM operators. You will see that
most logical-to-physical mappings are quite intuitive (we will give some examples).
Note, we have not only developed these concepts on paper, but also implemented
them in the XTC system. The query processor was demonstrated by [Mathis 08].

8.1 An Introduction to the Physical Algebra

We can roughly group the operators of the physical algebra into path processing op-
erators (PPOs) and into “the rest”. The rest consists of operators not developed for
document access, such as selection, projection, grouping, unnesting, merging, tuple
generation, etc. We omit the discussion of these operators, because, essentially, we
have already introduced them in Chapters 4 and 5. With slight deviations, most
algorithms of the logical algebra are implemented one-to-one in the physical alge-
bra. Thus, LAL operators are PAL operators. However, the plan generator does not
take the “detour” over LAL operators, but directly generates PAL operators out of
the XQGM representation. This “mapping” implies that also the data model of the
logical algebra is used for the physical algebra. At the end of this chapter (Section
8.6), we will give a summary how the PAL operators differ from the LAL operators.
But first, let us consider algorithms for the evaluation of path expressions.

Path expressions occur quite frequently in XML queries. For their evaluation, the
document or appropriate index structures have to be accessed, thus often external
memory access is implied. From the perspective of a DBMS developer, operations
that occur frequently and possibly require expensive external memory access are
naturally those algorithms that receive special attention. This is also the case in the
work at hand and, therefore, this chapter is mainly dedicated to PPOs. We distin-
guish navigational, join-based, and index-based PPOs. The first group of operators is
also the most expressive one; every path expression in a query can be evaluated by
navigations on the document. As we will see in Chapter 9, compared to join-based
and index-based methods, they are, however, often enough the group of operators
with the slowest performance. Hence, navigational primitives are a “fallback so-
lution”, when no operators of the other two groups can be applied to evaluate a
certain path expression.

Join-based operators stream through the document or over the element index and
evaluate path expressions by matching structural relationships among the streamed
nodes. Compared to navigational methods, they often provide for better perfor-
mance. However, their use is restricted to certain XPath axes. The two most promi-
nent representatives for this group are structural joins (STJ) and holistic twig joins
(HTJ). Especially holistic twig joins have gained much attention in the scientific liter-
ature and many variations of the original algorithm [Bruno 02] have been presented.
Most of these variations aimed at optimizing the algorithm’s structure matching
phase and at increasing its performance. Of course, performance will also be an
issue for the holistic twig join operator developed in this work. However, we fur-
thermore pay attention to the integration of the HTJ operator into XTC’s physical
algebra and show how the operator can work hand-in-hand with the rest of the
algebra.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.2 Navigational PPOs 219

The last group of operators provides index access. In the previous chapter, only
the structure of our indexes have been presented, while the algorithms working
on path and CAS indexes are proposed in this chapter. In particular, we will see,
how path queries extracting inner elements (such as //cd[id="cd_101"]) can be
answered with path/CAS indexes and how index-based operators can be “married”
with join-based operators. Note, index-based operators have yet again a reduced
expressiveness compared to join-based operators, because join-based operators can
match arbitrary branching path patterns and index-based operators can only match
linear paths. Below, we will give an overview over the PPOs in the physical algebra,
starting with navigational PPOs.

The interface of all physical algebra operators is quite simple. It consists of only
three methods named open, next, and close (i. e., the XML algebra implements the
ONC protocol). Generally, the operators in the XML algebra from a directed acyclic
graph (DAG) structure, i. e., an operator consumes the output generated by one
or more input operators and produces output for one or more operators. As an
example, consider the operator tree depicted in Figure 2.6 on Page 24. The open
method of the operator interface causes an operator to initialize its internal data
structure. An open call is passed to all children of an operator. Likewise, the close call
is passed recursively over the DAG structure and causes to clean-up internal data
structures, when the query is evaluated. The next method also recursively descends
down the DAG structure and delivers a single result item. If no further results
are produced, the next method returns a NULL value. For the implementation of
the physical XML operators in XTC, ONC was chosen because it hides cumbersome
aspects of control flow and data flow and is, therefore, easy to implement (compared
to an active scheduler as an alternative solution for these tasks).

8.2 Navigational PPOs

As we have seen in Chapter 6, the document store provides functionality for nav-
igational access and scan access. The operators introduced in this section are built
on these navigation and scan capabilities. Because the document store is the place
where the document resides, navigation and scan are always “available” (i. e., no
secondary index structures are necessary). This is why navigational PPOs provide
the default path algorithms in the physical XML algebra.

Navigational PPOs evaluate XPath axis steps, i. e., given one (or more) input node(s)
and an XPath axis with a node test, the PPO returns all nodes on the axis that fulfill
the name test. Depending on the input cardinality, we can distinguish operators
that work on a single node (also called context node in the following), and operators
that work on a whole sequence of input nodes. The first set of operators shall be
discussed first.

8.2.1 A Single-Node Navigational PPO

Often, a situation as depicted in Figure 8.1 occurs in an XQGM: A navigational
access operator has to evaluate an axis step starting from a context node delivered
by a correlated input edge (dotted line). A similar situation expressed in XQuery
would have the form $d/child::price , where $d is bound to the context node

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

220 Chapter 8: The Physical Algebra

Figure 8.1 A navigational access operation in the XQGM (for an example, see Figure 2.4 on Page 20)

(i. e., the navigation starts at a single node). In XTC, there are three possibilities for
the implementation of this operator:

1. by opening the document store at the given context node and delivering all re-
quired nodes by navigations, i. e., by calls to the internal taDOM interface (Figure
3.2 on page 33);

2. by opening the document store at the given context node and delivering all re-
quired nodes by a scan, i. e., by calls to the internal node scan interface, see Page
176;

3. by an access to the element index, if it exists (see Section 7.2.2 on Page 197).

You might argue that the name “navigational PPO” might be a bit misleading here,
because actually also scans are used. The name was chosen, because logically, the
XQGM operator in Figure 8.1 evaluates a navigation. Let us start with the first
implementation.

Navigating the Document Store

As a convention throughout this work, physical operators will be described by their
constructor method signature. Operators navigating the document store are called
axis-step navigational operators and have the following signature:

AxisStepNavigationalOperator (Axis axis ,

NodeTest nodeTest ,

TupleGenerator contextItemProvider);

The first parameter is the navigation axis and the second one is the node test that
shall be applied to all retrieved XML node. The third parameter is a tuple generator,
which is also a physical operator. Basically, the context item provider is passed as
a parameter to the axis-step navigational operator by the plan generator. The tuple
generator provides the context item from which the navigation starts.

The skeleton of the algorithm is the same for all axes: 1. The context item is retrieved
from the tuple generator; 2. all nodes on the given axes are retrieved from the
document by navigation; and 3. for each delivered node, the node test is evaluated
(actually this happens immediately when the node is returned by a navigational
operation). If the node test is passed, the node is returned upon a call to the next
method and belongs to the result, otherwise it is skipped.

Delivering all nodes on a certain axis using the internal taDOM operations from
Figure 3.2 is more or less straightforward, which is why we omit a detailed dis-
cussion here. As an example, consider the child axis which is evaluated by calling

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.2 Navigational PPOs 221

getFirstChild on the context node and repeated calls to getNextSibling. Reverse axes
need special care because, according to the XPath Recommendation, they also de-
liver the sequence of result nodes in document order. Therefore, for the implemen-
tation of the preceding-sibling axis, repeated calls to the getPreviousSibling method
would not return a correct result. Rather, the first sibling has to be retrieved first
(by navigating to the parent of the context node and a call to getFirstChild) and then
repeated calls to getNextSibling have to be issued until the context node is reached.
The remaining axes can be evaluated similarly.

Scanning the Document Store

For some axes, retrieving all nodes from the document store by navigation is rather
cumbersome. For example, navigating all nodes on the descendant axis requires the
following actions: 1) navigate along first-child edge until no more nodes found;
2) try navigating next sibling until no more nodes found; 3) try navigating parent
and then next sibling, if not successful, try parent twice and then next sibling, and
so on; 4) if successful (not all descendants found), proceed with 1), otherwise stop.

As you can observe, this strategy leads to navigations into the void (e. g., “no first
child found”) and nodes visited twice (because of the parent navigation). Thus,
actually more navigation steps are required than nodes returned. Furthermore, in
XTC, navigational calls provoke random I/O, because for each step, the document
index is traversed. Of course, when the page of the context node resides in the
buffer, it is also likely that the neighboring nodes are also buffered. However, still
a much better implementation for the descendant axis builds on a document scan
operation. Remember that the nodes in the document store are stored in document
order and are neatly packed side-a-side into the pages. Therefore, the document
scan delivers them in the right order, as required by the axis step.

Therefore, we get another operator called axis-step document scan operator with the
following signature:

AxisStepDocScanOperator (Axis axis ,

NodeTest nodeTest ,

TupleGenerator contextItemProvider);

As before, the skeleton of these operators is the same: 1) the document index is
opened (either at the context node or at the root node, depending on the axis); and
2) the document is scanned until some termination condition (which also depends
on the axis) is reached. The start and stop conditions for the eight major axes can be
summarized as follows:

1. descendant: The scan begins at the first child of the context node and ends, when
the subtree below the context node is reached.

2. child: The scan has the same range boundaries as defined for the descendant axis.
Besides the plain node test of the axis step a child check is also required (because
the scan sweeps over all descendant nodes, of which the child nodes are only a
subset).

3. following-sibling: The start node is the following sibling of the context node. The
scan completes on the last child of context node’s parent. As for the child axis,
the structural relationship needs to be checked for every delivered node.

4. following: Since the descendant nodes of the context node do not belong to the
following axis, the next following node of the context node is the start point for

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

222 Chapter 8: The Physical Algebra

the scan. The end is reached when the complete document has been scanned.

5. parent: A document scan to retrieve the parent of the context node is obviously
not very meaningful. Therefore, this operator does not exist.

6. ancestor: For the same reason, the ancestor axis is not evaluated by a scan.

7. preceding-sibling: The scan starts at the first child of the context node’s parent and
stops on the context node. As in the range scan for the following-sibling axis, the
nodes have to be structurally checked.

8. preceding: The document root is the starting point for the scan, whereas the con-
text node marks the end point. Ancestors of the context node do not belong to
the preceding axis, therefore, they need to be filtered.

You can observe that some axes can retrieve quite a large number of nodes from the
document (i. e., preceding, following, and descendant), while others are more selective
(e. g., child, following-sibling, preceding-sibling). The latter group possibly discards a
large number of nodes returned by a scan that would not have been touched by
the navigational implementation. In the end, the structure of the document and the
location of the context node decide, which of the two implementations is superior.
Thus, finding the right alternative during plan generation depends on document
statistics component and a cost model.

Evaluation via Access to the Element Index

The evaluation scheme introduced by the above two operators can not only be ap-
plied to the document store, but also to the element index. Section 7.2.2 has already
shown by example how scan-based and navigational axis steps can be evaluated.
Therefore, we keep this section short.

For scan-based access, the same range boundaries as introduced before can be used.
For “navigational” access (i. e., to implement the highly selective axes parent, ances-
tor, and ancestor-or-self), the necessary node IDs on the axis in question are com-
puted from the DeweyID of the context node and subsequently probed against the
element index. Because the element index can only be queried for element names,
these operators only support the evaluation of axis steps with name tests. Further
types of node tests are not possible. Here are the two operator signatures for scan-
based an navigational element access:

AxisStepElIdxNavOperator (Axis axis ,

NodeTest nodeTest ,

TupleGenerator contextItemProvider);

AxisStepElIdxScanOperator (Axis axis ,

NodeTest nodeTest ,

TupleGenerator contextItemProvider);

8.2.2 A Multi-Node Navigational PPO: NavTree

XPath semantics demands that the result of an axis step is duplicate-free and in
document order. Therefore, during normalization, ddo function calls are embedded
after all axis steps. Throughout this work, we have seen quite some examples for
that. Essentially, the implementation of the ddo function is based on sorting. In gen-
eral, sorting is considered a rather expensive operation in query processing because
of its non-linear worst-cased complexity and because sorting is a pipeline breaker.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.2 Navigational PPOs 223

Therefore, the ddo function should be avoided whenever possible.

One way to reach this goal is to implement the path processing operators in a way
such that they already deliver a sorted and duplicate-free result. With the operators
introduced so far, this is impossible because they do not possess enough “context
knowledge” to ensure these requirements (their context is only a single input node,
from which the navigational operation starts). As an example, consider XQuery
expression $d/descendant::w , where $d is bound to sequence S. S is a series
of context nodes that serve as starting points for the navigation. Let S contain two
nodes u and v, where v is a descendant of u. Suppose that in the document, a node
w exists, which is a descendant of both u and v. On the evaluation of axis step
$d/descendant::w , the above algorithms would return w twice (because they
are evaluated both on u and v), thus removing duplicates in the final result would
become necessary.

With the “context knowledge” of S containing nodes with the descendant relation-
ship, we can avoid duplicates. The simple idea is to skip the axis evaluation on certain
nodes (because their “relatives” contained in S already delivered or will deliver all
necessary information). While this idea ensures a duplicate-free result, document
order is not necessarily established. Further measures need to be taken, as we will
see in the following discussion.

The Base Algorithm

In contrast to the above operators, the NavTree operator consumes a complete,
sorted and duplicate-free sequence of input nodes (and not only a single node) and
returns a sorted and duplicate-free sequence of output nodes. This actually means
that the algorithm is closed w. r. t. these two characteristics and, therefore, it can be
combined neatly to evaluate arbitrary paths according to the XPath semantics. Be-
cause multiple nodes are navigated “simultaneously”, we call this kind of algorithm
a multi-node navigational PPO.

The above discussion motivated solutions to avoid duplicates and to establish the
document order. However, it did not reveal the complete truth about all the features
of the algorithm. For its integration into XTC’s physical XML algebra, the algorithm,
furthermore, needs to support different kinds of joins (semi joins, full joins, and outer
joins). This becomes immediately clear, when we think about how our context se-
quence S (containing the starting nodes for the navigations) is provided to NavTree,
namely as an input stream of nodes. This can only be achieved, if the input is decor-
related. Therefore, the NavTree operator actually implements a structural join and,
thus, all join variants occurring in the XQGM have to be offered1. In summary, the
plan generation rule for the NavTree operator searches for a structural join, which
receives the result of exactly one sequence access operator as input. We will see
some examples below. For a full join, the requirement to bring the result into dis-
tinct document order makes no sense. Therefore, we establish this order only in
semi-joins. However in a full join, the ordering of the result also allows some free-
dom: the result can be returned in right/left order or in left/right order.

Let us motivate these considerations by an example: Figure 8.2 shows the
XQGM instance and the physical plan for query doc("auction.xml")//item

1Note, this also means that NavTree cannot be applied to implement the XQGM operator presented in Figure
8.1 on Page 220.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

224 Chapter 8: The Physical Algebra

Figure 8.2 An output ordering example: An XQGM instance and its physical plan

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.2 Navigational PPOs 225

[.//mail/text]/location . On the left-hand side, we see the query completely
unnested in XQGM representation. The XQGM instance consists of four structural
joins, of which three are semi joins and one is a normal join. The right-hand side
of the figure presents the physical plan. To visualize the physical properties of the
operators, we use the tableau technique [Mitschang 95]: Every physical operator
carries a name and a unique ID. Each row in a tableau presents one physical prop-
erty. As you can see, the plan consists of four NavTree operators, each expressing
one of the four logical structural join operators. The plan is read bottom-up. The
first operator (20) joins the virtual document root with all item nodes. The docu-
ment root is delivered by a document access operator; the item nodes are delivered
by an AxisStepDocumentScanOperator , which we introduced in the previous
section. Note, this scan operator is utilized by the NavTree operator, as we will see
below. The NavTree operator computes the descendant axis and only returns the item
nodes. Therefore, it is a (right) semi join operator. The property join position clarifies
on which fields of the input tuples the join is computed. Finally, the output order
property defines how the result is sorted. Here, only left/right or right/left are possi-
ble. In case of a semi join, the input stream delivered as output is up front (and the
second one is not significant). In case of a full join and the combination left/right, the
left input is the first ordering criterion, while the right input is the second ordering
criterion.

In our example, the first NavTree (20) operator returns only item nodes. The next
NavTree operator (15) returns pairs of item/mail nodes, ordered right/left, i. e., by the
mail nodes first. Here, a full join was generated during XQGM rewriting, because
the item nodes are required for the final output. NavTree (9) joins the mail nodes
with the text nodes. Only the left input is required (and therefore ordered by the
mail nodes). Because the left input was a pair, we retain only the item nodes and
discard the mail nodes after NavTree (9) . This is done by the projection operator.
Afterwards, there is a small problem: Because NavTree (9) ordered the output by
the mail nodes, this does not necessarily mean that the item nodes are in document
order. Therefore, they have to be sorted by a TupleSort operator. The remaining
NavTree operator computes the resulting location elements by a semi join.

While the physical plan is assembled, the plan generator fixes the output order of
the joins. To avoid additional TupleSort operators, the order is set such that the
following join operator (if any) receives its input in the correct order. If this is not
possible, a TupleSort operator is injected. Due to the lack of space, we do not give
an in-detail view on how this actually works.

After this discussion about the features of the NavTree algorithm, let us come back
to its implementation. All in all, the algorithm consists of three components: an
input filter responsible to avoid duplicates, the base algorithm controlling the evalu-
ation, and an output generator to establish the correct result order. The first and the
last component will be discussed in the following sections. Here, the base algorithm
is introduced. The NavTree operator has the following signature:

NavTreeOperator (Operator input ,

i n t leftJoinPos ,

i n t rightJoinPos ,

Axis axis ,

NodeTest nodeTest ,

JoinMode joinMode ,

Sorting sorting ,

AxisStepOperator baseImplementation);

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

226 Chapter 8: The Physical Algebra

The given operator input provides the duplicate-free and sorted input sequence.
According to the data model, this input sequence consists of tuples. Therefore, we
need to identify on which tuple field the navigation is calculated. The argument
leftJoinPos points at this tuple field. For completeness, the rightJoinPos ar-
gument for the input to be navigated is also given. The value of this integer is, how-
ever, always “0”, because the navigation only produces singleton tuples. Params
axis and nodeTest are the same as before. Arguments joinMode and sorting
capture the discussed features and baseImplementation is one of the algorithms
introduced above used to implement the navigational evaluation inside the NavTree
operator. The algorithm itself is shown in pseudocode representation in Listing 8.1.

For brevity, the parameter variables configuring the algorithm are referenced by
letters, such as L, A, M , etc. Besides these variables, we need some further local
variables: the input filter F , the output generator G, a buffer queue Q to handle
intermediate results, and a tuple generator C for context item provision. These
local variables are initialized in the open method shown in Listing 8.1a. The context
item provider is set as a parameter to the single-node navigational operator (base
implementation). The close method simply closes the input filter which, in turn,
closes the leftInput .

The main algorithm is given in the next method shown in Listing 8.1c. If buffer
queue Q is empty, new tuples have to be generated by the algorithm. Otherwise,
the first entry in the buffer queue is removed and returned. To generate new tuples
in the buffer queue, the input filter is called to return a new input tuple a (line 3).
Depending on the axis A and the join mode M , the input filter guarantees that only
tuples are delivered that contribute to the final result. If the input filter returned a
NULL value, all input tuples are consumed and the algorithm can terminate. For
termination, all remaining tuples in output generator G have to be flushed to the
buffer queue (line 5). If the input filter returned a non-NULL tuple, the item at the
join position is retrieved (line 8). This item serves as a starting point for the navi-
gation. If this item is an empty sequence and a left outer join has to be computed,
the output generator receives an outer join tuple and the rest of the while loop is
skipped (lines 10 and 11). Otherwise, the navigation is executed and all retrieved
tuples are passed to the output generator (lines 13 to 29). During navigation, when
the join mode is left semi only one existing node returned by the navigation operator
is sufficient (lines 18 to 20). If the navigation returned no tuples and the join mode
is left outer, again, the algorithm generates an outer-join tuple (line 26).

Input Filters

The NavTree algorithm assumes to receive a duplicate-free input sequence of XML
nodes in document order. If either of these two criteria is not met, the algorithm
cannot guarantee them on the output generated. Therefore, the first task of an input
filter is to realize these requirements. Note, if the input consists of a non-singleton
tuple stream and the join mode is not right semi, the requirement of a duplicate-free
input stream has to be dropped obviously. Besides these tasks, the input filter can
also provide for some optimization, because for certain axes some nodes in the input
sequence S may not result in any new information. For an example, consider Figure
8.3 and query //a/b (right semi join). In the first round the NavTree algorithm is
called for a1 and returns all descendant bi elements (i. e., b1, . . . , b5). For the second
round, elements b2 to b4 would be returned by NavTree. However, because the
result shall be duplicate-free, these elements are discarded. To avoid producing

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.2 Navigational PPOs 227

Listing 8.1 The NavTree operator methods a) open, b) close, and c) next

Parameter variables:
Operator leftInput as L;
int leftJoinPos as l;
int rightJoinPos as r; // constant “0”, because sequence access returns singleton tuples
Axis axis as A;
NodeTest nodeTest as N ;
JoinMode joinMode as M ; // possible values: left semi, right semi, full, left outer
Sorting sorting as S; // possible values: left/right or right/left
AxisStepOperator baseImplementation as B; // a navigational operator from Section 8.2.1

Local variables:
InputFilter F ; // removes redundant input nodes
OutputGenerator G; // generates duplicate-free output in document order
BufferQueue Q; // buffers intermediate results
TupleGenerator C; // provides the context item for the navigation

a) NavTree.open:

begin1
F ← InputFilter(A, L, M , l); // receives the axis, the input, the join mode, and the join position2
G← OutputGenerator(A, Q, M , S, l); // axis, buffer queue, join mode, sorting, and join position3
Q← BufferQueue();4
C ← ContextItemProvider(l); // receives join position to project correct item5
B.setContextItemProvider(C); // set context item provider to single node navigation operator6

end7

b) NavTree.close:

begin1
F.close();2

end3

c) NavTree.next:

begin1
while Q is empty do2

Tuple a← F.next(); // get next filtered tuple from input3
if a is NULL then // we’re done4

finalize(G); // write remaining tuples from output generator to buffer queue5
break;6

end7
Item i← a[l]; // get item at the join position8
if i is empty sequence and M is left outer join then9

G.addOutputTuple(a, emptyTupleOfSize(1)); // produce an outer-join tuple10
continue;11

end12
C.setContextTuple(a); // prepare the context item provider for the navigation evaluation13
B.open(); // open single node navigational operator14
Tuples T ; // tuple list to capture intermediate result15
Tuple b← B.next();16
while b is not NULL do17

if M is left semi then // in case of a left semi join, the existence of one node is sufficient18
break;19

end20
T ← T + b;21
Tuple b← B.next();22

end23
B.close();24
if T is empty and M is left outer join then25

G.addOutputTuple(a, emptyTupleOfSize(1)); // produce an outer-join tuple26
else27

G.addAllOutputTuples(T);28
end29

end30
if Q is empty then31

return NULL; // no more nodes found32
end33
return Q.first();34

end35

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

228 Chapter 8: The Physical Algebra

Figure 8.3 A filter and output generation example

them in the first place, the input filter simply skips input node a2. For all other
axes and join modes, similar techniques can be applied, which we, however, do not
present here. We have implemented input filters for all 12 XPath axes. Interestingly,
the skipping algorithms for axes parent, ancestor, and following-sibling are the same.

Output Generators

An output generator receives all tuples generated by the base NavTree algorithm
(see Figure 8.1c). Its task is to produce a duplicate-free output in document order,
or, where an outer join or a full join is required, the correct left/right or right/left
output ordering. Again, we motivate output generators by a simple example. Con-
sider query //a/b on the document shown in Figure 8.3. Because the child axis
between a and b has to be computed, the input filter delivers a1 in the first round,
and a2 in the second round. Node a1 results in the two children b1 and b5. How-
ever, these nodes may not be placed into buffer queue Q directly, because the nodes
produced for a2 have to lie “in between”. Therefore, the output generator buffers
(and orders) the received nodes until no more nodes can be generated. Output gen-
eration depends on the axis, the join mode, and the desired output order. We have
implemented output generators for all 12 XPath axes, where the following three
axis groups share one algorithm: [child, preceding-sibling, following-sibling, attribute],
[parent, ancestor], and [following, preceding].

At this point, we finish the discussion on the NavTree algorithm. In summary, the
algorithm 1) computes a structural join (left semi, right semi, full, and left outer) on
2) all XPath axes, 3) is able to skip unnecessary input nodes, and 4) can establish a
duplicate-free, sorted output stream. The algorithm can operate on the document
or on the element index (depending on the base implementation chosen). There-
fore, it provides a fallback solution in case one of the algorithms introduced in the
following cannot be applied. Note, the predecessor of the NavTree algorithm (with
reduced functionality) has been proposed by [Mathis 06b].

8.3 The Structural Join Operator: Extended StackTree

As we have seen, navigational PPOs require some input node(s), which serve(s)
as a starting point for a navigation (or scan) operation over the document or the
element index. In contrast, join-based PPOs do not directly access the document.
They operate on two or more input streams and are capable of finding path matches
in these input streams. Where the input streams come from does not matter, e. g.,
they could be the result of some document scan or they could be the result of other

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.3 The Structural Join Operator: Extended StackTree 229

operators.

In this and the next section, we will introduce two join-based PPOs, namely the
physical structural join operator and the physical twig join operator. In the litera-
ture, both operators have gained significant attention, resulting in quite some re-
lated work (see Section 8.7). The structural join operator implemented in XTC is
a merge-join algorithm, which is very close to the original StackTree operator pro-
posed by [Al-khalifa 02]. Therefore, we will not provide you with the details, but
just sketch what the operator accomplishes and how it can be employed for plan
generation. On the other hand, in case of the holistic twig join algorithm, we will
present some more details, because we substantially extended the algorithms ex-
pressiveness compared to the standard approaches in the literature. Let us start
with the structural join operator.

We extended the StackTree operator by some features required for the integration of
the algorithm into our algebra. In Section 8.2.2, we have already motivated the need
for a structural join implementation supporting semi joins, full joins, and outer joins.
The join implementation should, furthermore, return the result in distinct document
order (in case of a semi join), or in left/right and right/left output ordering (in case of
a full join or an outer join). The StackTree algorithm also has to provide this func-
tionality. Therefore, we extended the basic algorithm proposed by [Al-khalifa 02].
The resulting extended StackTree operator has the following signature:

StackTreeOperator (Operator leftInput ,

Operator rightInput ,

i n t leftJoinPos ,

i n t rightJoinPos ,

Axis axis ,

JoinMode joinMode ,

Sorting sorting);

In contrast to NavTree, which receives one input operator, StackTree receives two
(leftInput and rightInput). Because these input operators can deliver non-
singleton tuple streams, a join position for each input is required (leftJoinPos
and rightJoinPos). The axis parameter can have the following values: child, at-
tribute, descendant, parent, ancestor (and the -or-self variations of descendant and ances-
tor). Note, the reverse variants of the algorithms are implemented by exploiting join
commutativity. For example, matching the ancestor axis between input streams SA

and SB can be implemented by matching the descendant axis between SB and SA.
The input operators are simply swapped (and the other parameters are reconfigured
appropriately).

As an example, let us consider query doc("auction.xml")//mail[text]
/ancestor::item/location . The plan for this query is shown in Figure 8.4.
The plan generator mapped the first structural join to a NavTree operator (because
a real structural join between the singleton virtual root node and the descendant
mail does not make much sense). NavTree is then followed by three StackTree op-
erators. A particularity we have not yet introduced, is the way how the input to
these StackTree operators is generated, namely by a split up document scan. Sim-
ilar to the logical split operator, the physical implementation splits the incoming
input streams. In our example, these streams are processed by three adapters, each
of which applies a node test. Note, the query could also have been implemented
by three separate document scans (later on, we will see how index structures can
deliver this input). The first stack tree algorithm computes the join between mail

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

230 Chapter 8: The Physical Algebra

Figure 8.4 A StackTree example

and text. The second join was generated for the ancestor axis. As you can observe,
the plan generator replaced the axis by descendant and swapped the input opera-
tors to employ a stack tree operator (note, without this mapping, the plan generator
would have to have used a NavTree operator). Finally, the last StackTree operator
calculates the join between item and location.

8.4 The Holistic Twig Join Operator: Extended TwigOpt

The twig join operator is an extension of the structural join. In contrast to struc-
tural joins, the algorithm can consume more than two input streams, in which it
matches complex branching path patterns (also known as twigs). Our notion of a
twig has been introduced at a logical level in Section 5.8. In summary, our logical
twig operator defines the following concepts:

1. path patterns supporting axes child, descendant, and attribute,
2. logical and and or conjunctions,
3. optional subtree patterns (i. e., optional edges),

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 231

4. projection,
5. positional predicates,
6. output filters,
7. embedded output expressions, and
8. grouping.

So far, no algorithm has been published in the literature that can capture the expres-
siveness of our logical twigs. However, such an algorithm is desirable, because the
higher its expressiveness, the more operations can be embedded into the twig algo-
rithm, thus, resulting in a smaller number of operators in the final plan. As we will
see below, the twig algorithm keeps intermediate results compactly encoded on a
set of stacks. Therefore, evaluating as many operations as possible on this encoding
can avoid the materialization of intermediate results in some cases. In this section,
we will develop an algorithm supporting the above features. Twig algorithms have
gained quite a lot of attention in the research community, resulting in a large body
of work on the topic (cf. the related-work section). To avoid re-inventing the wheel,
we picked a promising approach as the basis for our implementation, namely, the
TwigOpt algorithm proposed by [Fontoura 05]. In the following, we will introduce
the algorithm and our extension with the help of a brief example. Then we will
present implementation details.

8.4.1 Extended TwigOpt by Example

Figure 8.5 presents various stages of a sample extended TwigOpt run for query:

for $i in doc("auction.xml")//item
where $i/location = "United States"
return <mailbox>{$i//mail}</mailbox>

Unnesting and twig discovery generate the logical XQGM instance shown in Figure
8.5a: The twig has four input sequences (displayed in a summarized way to save
space), an optional descendant edge, a grouping node, and an output expression
(with a projection). Note, the content predicate has been pushed down to an access
operator. Therefore, this operator delivers only location nodes with content “United
States”. Figure 8.5b shows the document, on which our sample query is executed.
To keep the presentation simple, we abbreviated item by i, location by l, “United
States” by “US”, and so on. Basically, the document consists of nine structurally
differing subtrees, of which only four are presented (i1, i2, i8, and i9). We assume,
that only i1, i8, and i9 fulfill the content predicate.

Cursors

The input of the TwigOpt operator is delivered by so-called cursors [Fontoura 05].
Essentially, these cursors are iterators (providing some skipping functionality),
which deliver XML nodes in document order. In the physical mapping of the
logical twig from Figure 8.5a, the plan generator omits the twig root node, if the
node delivers the virtual document root. Therefore, we only require three cursors:
Ci = {i1, i2, . . . , i9}, Cl = {l1, l2, . . . , l9}, and Cm = {m1,m2, . . . ,m27}. Initially, the
cursor pointers are positioned on the first node of each cursor list (i. e., at the un-
derlined nodes). In our sample figure, the cursors are represented by black arrows.
Besides the cursors, the TwigOpt algorithm maintains a set of stacks, one for each
twig node. The stacks will be used to encode intermediate results.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

232 Chapter 8: The Physical Algebra

Figure 8.5 An example of the extended TwigOpt operator: a) a sample twig query, b) initial cursor position
and movements, c) virtual cursor movements, d) real cursor positions, e) stack configuration after
containing first match, and f) situation provoking output generation

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 233

Solution Extensions

While the algorithm runs, it checks whether the current cursor configuration (i. e.,
the current cursor pointers) form a match w. r. t. the twig specification. In our exam-
ple, the initial cursor configuration forms a so-called solution extension (see Figure
8.5b). Informally, a solution extension for a twig node n having cursor Cn is found,
if

1. the cursor positions of n’s child twig nodes are descendants/children (depending
on the axis) of the cursor position of Cn,

2. cursor position of Cn is a descendant/child of the top-most element in the stack of
n’s parent node, and

3. the children have solution extensions [Fontoura 05].

If any of the information required to check one of these criteria does not exist (e. g.,
if a twig node does not have any child twig nodes), the criterion is true. In our
example, the first criterion is matched for twig node 31, because l1 (of cursor Cl) is
a child of i1 and m1 (of cursor Cm) is a descendant of i1. The second criterion is
true, because twig node 31 has no parent twig node. The third criterion results in a
recursive check on the two children, which is also evaluated to true.

In TwigOpt, the order in which solution extensions are found on a twig depends on
the current cursor positions. The twig node, whose current cursor position points
to the smallest XML node (in document order), is selected for a solution extension
check. This assures that no possible match is omitted. When a solution extension
has been found for a twig node n, the XML node at the current cursor position is
pushed onto the corresponding stack Sn. Then, cursor Cn can be advanced to the
next position. These cursor movements are represented in Figure 8.5b by dotted
arrows. First, a solution extension for Ci is found, i1 is pushed to stack Si, and Ci is
advanced to i2 (movement 1). Then, l1 is pushed and Cl is advanced (movement 2),
and then m1/Cm (movement 3). Because in this situation, Cm points to the smallest
XML node among all cursors, twig node 32 is checked for a solution extension. This
check is evaluated to true, because criterion 2 from above is fulfilled: parent stack
Si contains i1 which is an ancestor of m2. After m2 has been pushed to Sm, node
m3 also matches, resulting in the stack configuration represented in Figure 8.5e. To
implement grouping, the algorithm has to do some “bookkeeping”: because m1,
m2, and m3 have been matched as descendants of i1, they are marked as a group
below i1 (note, these group markers are implemented by a secondary stack per twig
node, which grows and shrinks with the primary stacks).

Cursor Movements (with Skipping)

After the stack configuration in Figure 8.5e has been established, the cursors reside
at the positions shown in Figure 8.5c (Cl is located at l8, because previous subtrees
did not contain a location element with content “United States”). Obviously, the
cursor positions do not match the twig structure and, therefore, twig node 31 has
no solution extension. What follows is an adjustment of the cursors such that a
solution extension can become possible [Fontoura 05]. For that, TwigOpt tries to
skip as many nodes in its cursors as possible. In our example, we can see that Cl

resides on l8. Therefore, because l8 has to be a descendant of an item node, the next
position of Ci has to be somewhere among the ancestors of l8. Therefore, the cursor
is advanced virtually to such a position (represented by the grey arrow in Figure

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

234 Chapter 8: The Physical Algebra

8.5c; movement 4). Such a virtual cursor movement does not directly lead to a
physical (i. e., real) cursor movement. Now, for the next cursor Cm, we know that
it has to point to the parent node of Ci. From the virtual cursor position of Ci, we
can calculate another virtual cursor position for Cm (movement 5). Now we have
two virtual cursor positions and one physical one. In this state, the algorithm has
to check the node of the cursor with the smallest position for a solution extension.
Because this is not possible for a virtual position, the corresponding cursor is moved
physically. In our example, this would be cursor Ci, which is set to i8 (movement
6). Using this movement, we have skipped all item nodes i3 to i7 (not shown in our
figure). To check a solution extension on twig node 32, its cursor has to be made
real, too. The next (real) position after the virtual one is at m27 (thus, nodes m5

to m26 have been skipped by movement 7). The resulting situation is depicted in
Figure 8.5d.

Output Generation

While the solution extension concept and the cursor movement strategy in our
TwigOpt implementation are nearly the same as in the original algorithm, output
generation is different (note, [Fontoura 05] did not provide any details on how out-
put is generated). In the situation presented in Figure 8.5d, we can again find a
solution extension for twig node 31, although Cm points to a node not contained in
the subtree below Ci. The reason why we, nevertheless, find a solution extension is
the optional edge between twig nodes 31 and 32. The optional edge states that mail
elements do not have to exist below item elements. Therefore, we find a match here.
In our informal solution extension definition above, we have omitted the semantics
of optional subtree edges (among other things) to keep the discussion simple. Be-
cause a solution extension has been found on i8, the node has to be pushed onto
Si. Obviously, i8 is no descendant of the bottom-most node in the stack (i. e., of i1).
Therefore, we know that the subtree below i1 has been completely processed and
that no more matches can be found in that subtree. As a result, we can produce
some output for the subtree below i1, clear all stacks, and push i8 to Si (see Figure
8.5f). Note, if i8 would be a descendant of i1, it would have been pushed on Si and
no output would have been generated (for now).

Output generation is a recursive process over the twig structure, which is similar to
finding a solution extension. If you reconsider all the output options we have intro-
duced for the twig operator in Section 5.8 (i. e., in Figures 5.12 and 5.13 on Pages 131
and 132), you immediately see that all information for this task is there: From the
stack configuration we know that i1 is a parent of l1 and that i1 has three descendant
mail nodes m1 to m3. Using this knowledge, we can compute projections, positional
predicates, output filters, output expressions, and grouping.

For a twig node n, output is produced as follows:

1. The output process iterates bottom to top over all stack elements of Sn in the
group requested from n’s parent node. If n is the root node, the output process
iterates over all stack elements from bottom to top.

2. For a node in such an iteration step, the groups of their child twig nodes are re-
quested (recursive call). Note, for a child c of n this only happens, if c or at least
one twig node in the subtree below c produces some output or has further se-
mantics (e. g., an output filter, some positional predicate, etc.). Otherwise, child
c is only a structural predicate. Because the matching process has already evalu-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 235

ated all structural predicates, c can be skipped. Each group returned for a child c
is processed as follows:

(a) If c contains a positional predicate, this predicate is applied to the group
returned for c (thus, removing all group members not fulfilling the positional
predicate).

(b) If n contains an output filter for c, this filter is applied to the group returned
for c. If the filter evaluates to false and the edge to child c is not optional, the
complete match is discarded. If the filter evaluates to false and the edge of the
child is optional, the group is replaced by an empty sequence. Otherwise, the
group is kept as it is.

(c) If n contains an output expression for twig child c, the output expression is
applied to the group returned for c. The group value is then replaced by the
value returned from the output expression.

3. If n is a grouping node, an intermediate result tuple is generated, that contains
the current stack element of Sn and all groups (or values generated by output
expressions on the returned groups).

4. If n is not a grouping node, the Cartesian product is computed on the current
stack element of Sn and all groups (or values generated by output expressions on
the returned groups).

5. If n has an output expression or if n does not produce any output (due to projec-
tion) and if n is does not have any further semantics (e. g., referenced in an output
expression, output filter, etc. in a twig node above), the item generated for n in
the intermediate result is removed (projected).

Let us consider the output generation process in our example: The output process
iterates over all elements in Si (point 1 above), which is just one node, namely i1.
For i1, the groups of the twig children are requested (point 2). Because twig node 33
does not contribute to the output and is, therfore, a pure structure match, this twig
node is skipped. The recursive call on Sm returns group <m1,m2,m3> in a sequence.
Twig node 31 contains an output expression for twig node 32 (point 2c). Therefore,
the group is replaced by the result of the evaluation of the output expression on
the delivered group: <mailbox>{ m1,m2,m3}</mailbox> . Because twig node
31 is a grouping node, the join with the current value from Si returns tuple [i1,
<mailbox>{ m1,m2,m3}</mailbox>] (point 3). Finally, because node 31 con-
tains an output expression, the information generated for that node is projected out
(point 5), resulting in output value <mailbox>{ m1,m2,m3}</mailbox> . Note,
the implementation of the algorithm does not add i1 at first, before it directly re-
moves it again (as described here). It can detect such situations and directly deliv-
ers the correct result. The deviation from the algorithm here was made to keep the
discussion simple.

After this overview over the algorithm, we present some implementation details.
For the following discussion, we group the topics around the extended TwigOpt
operator into twig mapping, cursors, the matching process, and into output generation.

8.4.2 Twig Mapping

During plan generation, a logical XQGM twig is mapped onto the TwigOpt oper-
ator. Thereby, also the twig specification is mapped to a physical representation,
which is slightly different from the logical one. The TwigOptNode class shown in

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

236 Chapter 8: The Physical Algebra

Figure 8.6 The physical plan generated for the sample query in Figure 8.5a

Listing 8.2 captures this physical representation. During twig mapping, the plan
generator constructs a tree of TwigOptNodes and initializes the member variables
of each twig node according to the logical twig representation. Besides member
variables, the TwigOptNode class contains some methods. These methods will help
to implement the TwigOpt algorithm, as we will see in the next section. However,
at first, we want to summarize the twig mapping process and the meaning of the
member variables.

Twig Root Handling

As we have seen during the discussion of our example, the twig operator blocks
until the bottom-most node at the stack of the twig root node is no ancestor of a
node to be pushed onto this stack. To avoid collecting all matches on the stacks,
before generating output, we do the following: When 1) the twig root node has
exactly one twig child, when 2) this child is connected via a descendant axis, and
when 3) the twig root node is not required for output, we do not map the twig root
node in the physical representation. In this case, the twig algorithm will find all
occurrences of the twig in the document. If criteria 1) and 3) are true, but a child
edge connects the twig child, then, the root node is also removed. However, the
plan generator presets a special DocRootNodeCursor (see below) for the child
TwigOptNode. This cursor delivers only the root element of the document. Thus,
the restriction to match the child axis is assured. Figure 8.6 contains the physical
plan for the query represented in Figure 8.5a. Because the three criteria from above
were matched, the physical twig consists of only three path nodes.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 237

Listing 8.2 The TwigOptNode class

c l a s s TwigOptNode {

/ / member v a r i a b l e s s e t by t h e p l a n g e n e r a t o r d u r i n g t w i g m apping
Axis axis; / / t h e i n c o m i n g a x i s
Cursor cursor ; / / t h e i n p u t c u r s o r
Stack nodeStack ; / / s t a c k c o n t a i n i n g DeweyIDs
Stack positionStack; / / s t a c k c o n t a i n i n g I n t e g e r L i s t s
TwigOptNodes children ; / / a l i s t o f c h i l d n o d e s
PalExpression expr; / / an o u t p u t e x p r e s s i o n
PalExpressions filters ; / / a l i s t o f f i l e r e x p r e s s i o n s
CmpMethod cmpMethod ; / / a l l o w e d : ’ < ’ , ’ <= ’ , ’ = ’ , ’ ! = ’ , e t c .
i n t cmpValue ; / / f o r p o s i t i o n a l p r e d i c a t e s
boolean isGrouping ; / / t r u e , i f f t h i s n o d e g r o u p s i t s i n p u t l i s t s
NodeType type; / / a l l o w e d : ’ and ’ , ’ o r ’ , ’ o u t e r o r ’ , and ’ p a t h ’
OutputMode mode; / / ’ none ’ , ’ i n t e r n a l c h i l d ’ , ’ i n t e r n a l f i l t e r ’ , e t c .

/∗ f i n d t h e n o d e w i t h t h e s m a l l e s t / l a r g e s t c u r s o r p o s i t i o n ∗ /
TwigOptNode minCursorPathNode ();

TwigOptNode maxCursorPathNode ();

/∗ f i n d i n g a s o l u t i o n e x t e n s i o n ∗ /
boolean checkSolutionExtension (); / / t r u e , i f f t h i s n o d e h a s an e x t e n s i o n
boolean constraints (); / / c h e c k s s o l u t i o n e x t e n s i o n c o n s t r a i n t s
boolean stackContains(Cursor c); / / t r u e , i f f n o d e S t a c k c o n t a i n s a n c e s t o r o f c
boolean allCursorsAreReal (); / / t r u e , i f f a l l c u r s o r s a r e r e a l

/∗ c u r s o r movement ∗ /
void moveCursors (); / / v i r t u a l l y / p h y s i c a l l y m oves c u r s o r s
void moveCursorsBottomUp (); / / a d j u s t s p a r e n t c u r s o r s f r o m c h i l d p o s i t i o n s
void moveCursorsTopDown (); / / a d j u s t s c h i l d c u r s o r s f r o m p a r e n t p o s i t i o n s
Cursor chooseBestVirtualCursor (); / / c u r s o r w i t h m os t s k i p p i n g p o t e n t i a l

/∗ o u t p u t g e n e r a t i o n ∗ /
/ / g e n e r a t e s a l l o u t p u t and p u s h e s c u r r e n t c u r s o r ’ s n o d e o n t o t h e s t a c k
void outputAndPush(Queue queue);

/ / g e n e r a t e s o u t p u t f o r t h e r o o t s t a c k
void outputRootStack(Queue queue);

/ / g e n e r a t e s o u t p u t f o r a s t a c k (s t a r t i n g a t s t a r t P o s i t i o n ; r e s u l t s b e l o w e n t r y)
Item outputOneStack(i n t startPosition , DeweyID entry);

/ / g e n e r a t e s o u t p u t f o r o n e s t a c k e l e m e n t
Tuple outputOneEntry(i n t stackPosition);

/ / c o l l e c t s t h e g e n e r a t e d r e s u l t s f r o m e a c h t w i g n o d e c h i l d
Items processChildren(TwigOptNode parent , DeweyID entry , IntegerList positions);

/ / a p p l i e s o u t p u t f i l t e r s / e x p r e s s i o n s , u n n e s t i n g , and p r o j e c t i o n
Tuple processTuple(Tuple tuple);

/ / c a l c u l a t e s t h e C a r t e s i a n p r o d u c t i n t h e s e q u e n c e s i n t h e t u p l e
Tuple unnest (Tuple tuple);

/ / r e m o v e s u n n e c e s s a r y t u p l e f i e l d s
Tuple project (Tuple tuple);

/ / r e m o v e s a l l e l e m e n t s f r o m n o d e S t a c k and p o s i t i o n S t a c k
void cleanStacks ();

/∗ p o s i t i o n a l p r e d i c a t e h a n d l i n g ∗ /
boolean preCheckPositionalPredicate (i n t position); / / pr e−e m p t i v e c h e c k
boolean checkPositionalPredicate (i n t position); / / c o m p l e t e c h e c k

}

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

238 Chapter 8: The Physical Algebra

Boolean Twig Node Handling

In our logical twig representation, when a twig node has multiple children, we as-
sume implicit and semantics. For the physical twig mapping, we generate an explicit
and node. Logical or nodes are simply mapped onto physical ones. In our example
of Figure 8.5a, you can also find the generated and node. The type of a twig node is
stored in the type variable of the TwigOptNode class.

Optional Edge Handling and Grouping Embedding

An optional edge an be expressed by a Boolean or node: Let e be an optional subtree,
then (informally) “e or empty sequence” returns the result of e or, if e does not return a
result, the empty sequence. We express these semantics by an outer or node, to which
the optional subtree is attached. See Figure 8.6 for the mapping of the optional edge
of the query in Figure 8.5a. A twig node is declared to be outer or by setting the
type variable appropriately.

If a logical twig node is grouping (i. e., if it has a double circle), then the correspond-
ing physical twig node is also grouping (signaled by the Boolean isGrouping flag).

Expression Embedding

During the discussion of the example above, we have seen how output is gener-
ated. Essentially, intermediate tuples are generated on which output/filter expres-
sions are evaluated. In the logical representation, these expressions reference tuple
variables and tuple positions. For example, in the output expression of the twig in
Figure 8.5a, such a reference has the following form: 32[0] . This notation means
that the output expression receives the results generated for twig node 32 at posi-
tion 0. During physical twig mapping, we remove these tuple variable references
(because the physical twig has no tuple variables). To do so, we replace them by
pure tuple access positions. In the physical representation of our example, the cor-
responding access position to 32[0] is in[1] . These access positions are calcu-
lated by analyzing the twig structure. The mapping is quite straightforward and
not formally introduced here. Output expressions are introduced in the TwigOpt-
Node class by member variable expr . Note, similar to the LALExpression concept
(see Section 4.2.4), an output expression is a PALExpression, i. e., a physical algebra
expression (with the ability to be evaluated on an input tuple). The mapping from
LALExpressions to PALExpressions is done by the plan generator and is straight-
forward, because they essentially translate to XQuery expressions (e. g., algorithmic
expressions, comparisons, etc.).

Output Modes

For each physical twig node, the plan generator can define a certain output mode
(in the mode field). In our example above, we have seen that output generation is a
recursive process which, for a certain twig node n, pulls data from n’s children and
processes on this data. Now, the output mode of a node n specifies for which pur-
pose n generates data. There are five possibilities: none, internal child, internal filter,
internal expression, and external. Output mode none is chosen for n, when the cursor
of n delivers information that is only necessary for matching the twig structure, but
for nothing else. This is the case, when n’s incoming edge is descendant, when the
information generated for n is not used in any predicate/filter, and when n is not

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 239

referenced in the projection specification.

Note, despite what was explained in our introductory example, the TwigOpt algo-
rithm implemented here can only match the descendant axis. The child axis has to
be checked, when the output is generated. We swept this problem under the rug,
because we wanted to keep the introduction example simple. When the child axis
has to be checked, the child XML nodes have to be passed to the parent twig node,
where the check is executed. To express this, we set the output mode of the child
twig node to internal child.

In the following, “internal” means that the output generated for this node will be
projected out by some ancestor twig node. In case, a physical twig node is ref-
erenced by some embedded expression or filter, its output mode is set to internal
expression or internal filter. Finally, when a physical twig node is referenced in the
projection specification, its output mode is set to external, because the data it pro-
duces will be passed on for further processing.

In our example depicted in Figure 8.6, you can observe three of the above sketched
output modes. Twig node 7 is of mode internal expression, because its output will be
used in the output expression of twig node 2. Twig node 8 has internal child as output
mode, because the child axis has to be verified by the matching algorithm. Twig
node 2 has output mode external, because this node is referenced in the projection
specification.

Note, if a node n has an incoming child axis and if this node is also referenced by the
projection specification, the external output mode will override the internal child out-
put mode for n. In general, the output modes have the following priorities (highest
to lowest): external, internal expression, internal filter, internal child, and none. Essen-
tially, the output modes are used to infer the correct tuple access positions during
expression/filter embedding (as discussed before).

Positional Predicates

Positional predicates are embedded by specifying a comparison value (cmpValue)
and a comparison method (cmpMethod). For example, for predicate
item[position() < 5] , the comparison method would be “<” and the compar-
ison value would be “5”. This information is directly attached to the physical twig
node on which the predicate shall be applied (in our example, the twig node for the
item step). The last function (e. g., item[last()]) receives a special treatment:
Essentially, the last function selects the last item from a sequence. We implemented
this semantics with the help of the new xtc-fn:last() function. For the physical em-
bedding, the xtc-fn:last() function is set as an output expression to physical twig
node generated for the parent of the logical twig node with the last() predicate. If
no such parent exists, the function is given to a projection operator, which executes
it on the complete twig result. Note, positional predicates can be “preemptive”. For
example, in case of item[position() < 5] , we can stop generating the output
of item nodes, when four items have been returned.

Cursors

Cursors provide the input for physical twig nodes. We will introduce cursors in the
following. As we will see, the cursor of a physical twig node can be implemented by
an operator of the physical algebra or by special index access cursors. Therefore, the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

240 Chapter 8: The Physical Algebra

plan generator can choose from different cursor alternatives. When the plan gen-
erator creates the physical twig structure during twig mapping, the cursors remain
undefined (with the exception of virtual cursors and the document root node cursor;
see below). In the second plan generation phase, when the plan is assembled based
on the generated alternatives, the cursors are set appropriately. However, during
twig mapping, we also allow to pre-define a cursor for a twig node by directly set-
ting the cursor variable (for example, to prefer an index access cursor). These
pre-defined cursors will not be overwritten in the second plan generation phase.

Further Internal Data Structures

Every physical twig node has a nodeStack and a positionStack . The first stack
encodes the intermediate result, while the second stack keeps the group informa-
tion, as explained in the example above. Furthermore, every twig node contains its
children as a list of TwigOptNodes in the children variable. Sometimes, access
to the parent twig node is necessary. We omitted the necessary variable in Listing
8.2 for simplicity. Besides parents and children, we can also retrieve the set of path
children which are the nearest descendants of type path in each path. Accordingly,
the path parent is the nearest ancestor of type path. For example, in Figure 8.6 on
Page 236, the path children of node 2 are nodes 7 and 8 (Boolean nodes have been
omitted). Accordingly, the path parent of 7 is 2. All member variables are accessible
by appropriate get and set methods (not shown).

The TwigOptOperator

After the twig has been converted into its physical form, the projection specification
of the logical twig operator is mapped onto a physical projection operator, similar
to the mapping of an ordinary XQGM select. The signature of the TwigOpt operator
is fairly simple:

TwigOptOperator (TwigOptNode rootNode);

With the physical twig mapping in mind, we can now discuss the extended TwigOpt
algorithm itself, starting with the cursor alternatives.

8.4.3 TwigOpt Cursors

Listing 8.3 presents the common interface of all cursors implemented. A cursor has
a current position (i. e., currentID) and two Boolean flags signaling whether the
cursor is consumed or virtual. Important for our cursor discussion are the following
four methods (the remaining ones will be discussed in the next section):
• compareTo compares the current cursor position currentID with the current po-

sition of the given cursor. Significant for this comparison is the document order.
Note, on DeweyIDs, this comparison can be efficiently computed by a “lexico-
graphical” comparison.

• contains checks whether the current cursor position of the given cursor is a de-
scendant of currentID . This method is required to check for the above intro-
duced solution extension. Note furthermore, contains and compareTo are generic
methods implemented in the abstract class given in Listing 8.3.

• setToFirst initializes the cursor by setting its pointer currentID to the first cursor
position.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 241

Listing 8.3 The abstract Cursor class

a b s t r a c t c l a s s Cursor {

DeweyID currentID ; / / t h e c u r r e n t c u r s o r p o s i t i o n
boolean isConsumed ; / / t r u e , i f f t h e c o m p l e t e i n p u t h a s b e e n p r o c e s s e d
boolean isVirtual ; / / t r u e , i f f t h e c u r s o r p o i n t s t o a c o m p u t e d p o s i t i o n

/ / c o m p a r e s w i t h c u r r e n t ID o f o t h e r c u r s o r
i n t compareTo (Cursor other){ /∗ . . . ∗ / };

/ / r e t u r n s t r u e , i f f t h e c u r r e n t ID o f t h e o t h e r c u r s o r i s d e s c e n d a n t o f c u r r e n t I D
boolean contains (Cursor other){ /∗ . . . ∗ / };

/ / i n i t i a l i z e s t h e c u r s o r w i t h t h e f i r s t p o s i t i o n
a b s t r a c t void setToFirst ();

/ / i m p l e m e n t s t h e p h y s i c a l c u r s o r move
a b s t r a c t void forwardTo (DeweyID position);

/ / f o r f i n d i n g a s o l u t i o n e x t e n s i o n
boolean containsAllCursorsOf (TwigOptNodes nodes);

boolean containsSomeCursorsOf (TwigOptNodes nodes);

/ / f o r v i r t u a l c u r s o r p o s i t i o n c o m p u t a t i o n
DeweyID getCurrentPlusOne ();

DeweyID getPositionBelowLCA (Cursor cursor);

}

• forwardTo implements a physical cursor move. If the cursor is virtual, the cursor
“searches” for the next DeweyID in the input, which is larger or equal (≥) to the
given ID (position). If the cursor is not virtual, the next DeweyID has to be
really larger (>).

For the integration of TwigOpt into XTC and into our physical XML alge-
bra, we have implemented six different types of cursors: two jump cursors,
that operate on the document (DocJumpCursor) or on the element index
(ElIdxJumpCursor); one virtual cursor (VirtualCursor) required for the im-
plementation of and/or predicates; one cursor for the provision of the document
root (DocumentRootNodeCursor); one cursor for the integration of path indexes
(ATBCursor); and one operator cursor. The last cursor was implemented by ex-
tending the Operator interface with the setBegin and forwardTo methods. The
Operator interface is, in turn, implemented by all physical algebra operators. Let
us briefly discuss these cursors.

Jumping Cursors

A jumping cursor can be parameterized by an optional selection expression, by
a node test (in case of the DocJumpCursor), and by a node name (in case of
the ElIdxJumpCursor). The plan generator can use these cursors for the
implementation of sequence access operators with optional selection predicates
(e. g., for the input operators of twig node 31, 32, and 33 in Figure 8.5a). Be-
cause the DocJumpCursor receives a node test, it is more general than the
ElIdxJumpCursor . The latter can only be used by the plan generator, when an el-
ement index is available and when the sequence access operator has a simple name
test.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

242 Chapter 8: The Physical Algebra

Upon setToFirst, both cursors open an index—either the document index or the ele-
ment index. The open position is the first element that fulfills the node test (or name
test) and the optional predicate. For the implementation of forwardTo, both jumping
cursors open the index at the position of the given DeweyID (or before). Starting
at this position, they scan until they find an XML node fulfilling the node test (or
name test) and the optional predicate.

Jumping cursors were proposed by [Fontoura 05] in the original paper on the
TwigOpt algorithm. As we have seen, jumping allows us to skip large parts of the
document and only a minimum number of nodes is accessed by the algorithm (thus
the suffix “Opt” for optimal). However, what [Fontoura 05] conceal is the problem
that jumping results in multiple index open/close operations. Each of these opera-
tions contains some overhead which cannot be neglected for low selectivity queries.
We will consider this problem in Chapter 9, where you can find our experimental
results.

The Virtual Cursor

The virtual cursor is required for the implementation of and/or twig nodes (see
Figure 5.12c on Page 131). During plan generation, the logical twig representation
in the XQGM twig operator is mapped onto a physical representation (which is
quite similar and which will be introduced in the following). During this mapping,
twig nodes that are no and/or nodes (i. e., path nodes) but that have multiple children
are split up into an ordinary twig node and into an and twig node. Therefore, the
Boolean and/or nodes are always explicit in the physical twig representation.

The TwigOpt algorithm requires that every physical twig node has a cursor. How-
ever, Boolean twig nodes have no input. Therefore, they receive an artificial cursor
in form of the VirtualCursor . The cursor has almost no semantics. Upon set-
ToFirst, the Boolean isVirtual flag is set to true (i. e., Boolean nodes are always
virtual). In case of forwardTo, the given DeweyID is simply stored in the currentID
variable. Note, this cursor is directly pre-set, when the twig is mapped onto its
physical representation.

The Document Root Node Cursor

In Figure 8.5a, you see that the XQGM twig contains a node receiving the virtual
document root (namely, node 30). During twig mapping, we try to get rid of this
node. In our example, the physical twig for the one presented in the figure only
consists of three nodes (as already stated above). This is possible because the logical
twig node below the root has an incoming descendant axis. If the axis is child, we can
also remove the root node. However, we have to generate the correct input. We
do so by providing a special DocRootNodeCursor . Upon setToFirst, the cursor
loads root node (not the virtual root) and checks a node test (which is given to
the DocRootNodeCursor as a parameter). When the node test evaluates to false,
the cursor is immediately consumed (i. e., isConsumed is true). Otherwise, the
forwardTo method can be called. Because the cursor contains only one element, the
cursor is then also immediately consumed. Note, this cursor is also directly pre-set,
when the twig is mapped onto its physical representation.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 243

The ATBCursor

The prefix “ATB” stands for ancestor tuple builder. Ancestor tuple builders are re-
quired to embed path and CAS indexes (introduced in Chapter 7) into the TwigOpt
algorithm. Let us briefly consider how a CAS index on //item/location could
be utilized for the implementation of the example in Figure 8.5a. The input of twig
node 33 has to deliver all location elements with content “United States”. From the
twig specification, we can infer that the location elements have to appear as children
of item nodes. Therefore, we could implement the input of twig node 33 by a scan
over the //item/location CAS index. However, with the CAS index, we can
achieve more than the simple implementation of one access operator. As explained
in Section 7.3.6, a CAS index can compute all inner elements. In our example, the
index can, therefore, also compute item nodes. Thus, the input of twig node 31 be-
comes dispensable. Additionally, twig node 31 “sees” only those items that have a
location element with content “United States” as a child.

To provide inner nodes (like the item nodes from our example), an ATBCursor is
required. This cursor receives the input of a path or CAS index scan and provides
inner elements to the TwigOpt algorithm. In Section 8.5, we will see how this is
accomplished.

Operator Cursors

Any operator delivering a sequence of singleton tuples containing XML nodes can
be used as input to the TwigOpt operator. Therefore, we implement the cursor inter-
face shown in Listing 8.3 for ordinary operators of the physical algebra. This way,
we achieve maximum flexibility. The implementation of setToFirst and forwardTo is
quite straightforward. Method setToFirst calls open on the operator and retrieves
the first (singleton) tuple by calling next. The XML node of this tuple provides the
currentID . If the operator did not return any result, the cursor is immediately
consumed. Method forwardTo is implemented by iterating over the tuples delivered
by calls to the next method, until a tuple is found, whose node’s DeweyID is larger
(or equal) to the given one.

8.4.4 TwigOpt Matching

The matching algorithm can now be defined at the cursor interface. Note,
[Fontoura 05] sketched the TwigOpt algorithm in a simple manner, thereby neglect-
ing certain corner cases. As a result, the algorithm did not work correctly. In the
following, we will not skip these corner cases, but show the complete algorithm (al-
though the matching and cursor movement parts are quite close to the original; cf.
[Fontoura 05]). To keep the discussion simple, we skip the open and close methods.
Basically, open/close is recursively called on all physical operators contained in the
twig cursors. Additionally, during open, the setToFirst cursor method is called for all
twig nodes, thus, all cursors are properly initialized. Listing 8.4 presents the main
part of the extended TwigOpt algorithm embedded into the next function. As you
can see, the algorithm is largely built upon the functions, we sketched in Listings
8.2 and 8.3. Other functions will be introduced as required.

We refer to the parameter twigRootNode as R. Furthermore, the algorithm buffers
intermediate results in a buffer queue Q. If this queue is not empty, its first element

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

244 Chapter 8: The Physical Algebra

Listing 8.4 The TwigOpt main algorithm embedded in the next function (adapted from the original by
[Fontoura 05])

Parameter variables:
TwigOptNode twigRoot as R;

Local variables:
BufferQueue Q; // buffers intermediate results; initialized in open call

TwigOpt.next

begin1
while Q is empty and not done() do2

TwigOptNode q ← R.minCursorPathNode(); // get twig node having cursor with smallest ID3
while q is not NULL and q.checkSolutionExtension() is false do4

q.moveCursors();5
q ← R.minCursorPathNode();6

end7
if q is not NULL then // solution extension found→ try to do output and advance cursor8

q.outputAndPush(Q);9
q.getCursor().forwardTo(q.getCursor().getCurrentPlusOne());10

else11
R.outputAndPush(Q);12

end13

end14
if Q is empty then15

return NULL; // no more nodes found16
end17
return Q.first();18

end19

is removed and returned (method first in line 18). Otherwise, if Q is empty, results
have to be generated by the twig operator. This happens in lines 3 to 13. The al-
gorithm operates, as long as method done does not return true. Essentially, done
embodies the termination criteria for the twig algorithm. The method returns true,
if 1) all cursors are consumed, or 2) in case of a positional predicate on the twig root
node, if we know that no more results have to be generated (pre-emption). Let us
assume, that we are not done. Then, function minCursorPathNode returns the twig
node with the smallest cursor position q. This method is implemented using the
compareTo method defined in the cursor interface (see Listing 8.3). If all cursors are
consumed, this method returns NULL. If the result is not NULL, the algorithm tries
to find a solution extension on q (method checkSolutionExtension, line 4). As long
as no solution extension has been found, the algorithm moves its cursors (function
moveCursors) and retrieves the new twig node with the smallest cursor. If a solution
extension has been found and not all cursors are consumed (i. e., if q is not NULL),
the algorithm tries to generate output by calling the outputAndPush method. This
method receives the buffer queue, to which it writes the output tuples. Besides
trying to write output, this method also pushes the XML node that has a solution
extension to q’s stack. We will discuss this method in detail below.

After the output has been generated, q’s cursor is physically moved by calling the
forwardTo cursor method. Because we need to provide a DeweyID for this method,
we simply generate one out of DeweyID d at the current cursor position. The gen-
erated DeweyID is both, lexicographically larger than d and smaller or equal to
any existing (following) DeweyID in the document. This ID is calculated by cursor
method getCurrentPlusOne without document access, by simply appending “.1” to
d.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 245

Listing 8.5 The a) checkSolutionExtension method and b) the constraints helper function

Local variables (for both methods):
Cursor cursor as C;
TwigOptNode p← getPathParent(); // the path parent of this TwigOptNode

a) TwigOptNode.checkSolutionExtension

begin1
if not allCursorsAreReal () or not constraints() then2

return false;3
end4
return p = NULL or p.stackContains(C); // parent stack contains ancestor of C5

end6

b) TwigOptNode.constraints

begin1
for every TwigOptNode child c among the children do2

if c is an “and” node and not C.containsAllCursorsOf (c.getChildren()) then3
return false;4

else if c is an “or” node then5
if c is “outer” then6

continue;7
else if not c.containsSomeCursorsOf (c.getChildren()) then8

return false;9
end10

else if not C.contains(c.getCursor()) or not c.constraints() then //here, c is an ordinary path node11
return false;12

end13

end14
return true;15

end16

Finally, if no solution extension has been found and if all cursors are consumed, the
algorithm tries to generate output for the last time (in line 12). Here, the call to the
outputAndPush method is necessary to assemble and flush the remaining internally
buffered intermediate results.

In the following, we omit further details for the done, first, minCursorPathNode, and
getCurrentPlusOne methods. Instead, we show the checkSolutionExtension, moveCur-
sors, and the outputAndPush functions.

Checking the Solution Extension

The method checkSolutionExtension can be called on a physical twig node q. Its se-
mantics is depicted in Listing 8.5a. If not all cursors in the twig are real, the method
immediately returns false (in this case, the cursors have to be moved). Otherwise,
the method calls the constraints helper method. This method actually recursively
checks the constraints of the solution extension, as we will see below. If the con-
straints are not fulfilled, the method returns false. Otherwise, it checks, whether q’s
current cursor position is part of a solution extension. This is the case, if either q is
the twig root or if the stack of q’s path parent twig node p contains an ancestor of
the current position of q’s cursor (checked by method stackContains in line 5).

In the constraints method, we iterate over all child twig nodes of q, where we dis-
tinguish the three twig node types: and nodes, or nodes, and path nodes. If the
child c is an and node, method containsAllCursorsOf is called with q’s grand chil-
dren below c. Essentially, it checks, whether the cursors of all these grand children
are contained in the cursor of child c and whether these grand children also fulfill

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

246 Chapter 8: The Physical Algebra

Listing 8.6 The containsAllCursorsOf method

Parameter variables:
TwigOptNodes as Nc; // the children this method was called for

Local variables (for both methods):
DeweyID currentID as p;

Cursor.containsAllCursorsOf

begin1
for TwigOptNode c in Nc do // i. e., for each grand child2

if c is “and” node and not containsAllCursorsOf (c.getChildren()) then3
return false;4

else if c is “or”node then5
if c is “outer” then6

continue;7
end8
if not containsSomeCursorsOf (c.getChildren()) then9

return false;10
end11

else12
if c.getCursor().isConsumed () then13

return false;14
end15
if not p.isAncestorOf (c.getCursor().getCurrentID()) then16

return false;17
end18
if not c.constraints() then19

return false;20
end21

end22

end23
return true;24

end25

the constraints. We will discuss this method in detail below. If c is an or node, we
distinguish ordinary or nodes from outer nodes. If the node is outer, we do not have
to check anything at all, because outer semantics always leads to a solution exten-
sion (as motivated in our example in the introduction). If the node is an ordinary
or node, method containsSomeCursorsOf is called. This method is very similar to
containsAllCursorsOf. However, because of the or semantics, it is sufficient that the
cursor of only one grand child is contained in c’s cursor (and that this grand child
has a solution extension). Finally, in case c is an ordinary path node, its cursor has
to be contained in q’s cursor and c itself has to fulfill the constraints. Otherwise, the
constraints are not fulfilled for q.

To conclude this discussion about checking the solution extension, let us consider
the containsAllCursorsOf method. We omit the corresponding containsSomeCursors-
Of method for brevity. Both methods are part of the cursor interface (however,
we did not introduce them in Listing 8.3). The structure of the containsAllCursors-
Of method is the same as the structure of the constraints method: It iterates over
all passed child nodes. If a child node c is an and node or an or node, the same
semantics is applied, and the containsAllCursorsOf (containsSomeCursorsOf) method
is called recursively. Otherwise, if child c is a path node, 1) its cursor may not be
consumed, 2) its current position of c’s cursor is a descendant of the current cursor
position p, and 3) c itself fulfills the constraints. If these three criteria are matched,
the method returns true, otherwise, there is no solution extension. Intuitively, the
containsSomeCursorsOf methods works similarly. The major distinction, however, is

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 247

Listing 8.7 The moveCursors method

Preconditions:
This algorithm is called for a TwigOptNode q which
• has the smallest cursor position and
• has no solution extension.

Local variables:
Cursor cursor as Cq ;
TwigOptNode p← getPathParent(); // the parent path node of this node
Cursor Cp ← p.getCursor(); // the parent’s cursor

TwigOptNode.moveCursors

begin1
if p is not NULL and p.stackContains(Cq) then2

if not Cp.isConsumed() then3
DeweyID b← Cp.getCurrentPlusOne();4
if Cq .getCurrentID().compareTo(b) < 0 then // set cursor Cq virtually below Cp5

Cq .setCurrent(b);6
Cq .setVirtual(true);7

end8

else9
// this cursor is also consumed10
Cq .setConsumed();11
Cq .setVirtual(true);12

end13

end14
moveCursorsBottomUp();15
moveCursorsTopDown();16
if this node is minCursorPathNode() then17

// cursor movement had no effect, because this node is still the smallest one→ advance18
Cursor Cc ← chooseBestVirtualCursor ();19
Cc.forwardTo(Cc.getCurrentID();20
Cc.setVirtual(false);21

end22

end23

that only one child has to fulfill all these criteria (be it an and node, an or node, or an
path node).

Cursor Movement

In our introductory example, we have already discussed how cursors are moved in
the extended TwigOpt operator. A cursor can be real, if it points to a node in the
document, or it can be virtual, if it points to a computed position. Every time the
forwardTo method is called on a cursor, the resulting position is real, because the
document (or an index) is accessed to retrieve an XML node. This XML node then
contributes the currentID variable (see Listing 8.3) of the cursor.

In the main algorithm, if no solution extension can be found for a twig node q, the
TwigOpt operator calls the moveCursors method. This method tries to adjust the
cursors in the subtree below q such that the probability for a solution extension is
maximized. Method moveCursors is depicted in Listing 8.7.

Let us start with the first if -block in lines 2 to 14: We assume that the moveCursors
method was called for node q and that node q has a path parent p. The situation
checked by the if -condition is depicted in Figure 8.7a. If a path parent exists, and
if the stack of this path parent contains the current cursor position of q’s cursor Cq,
we have to move Cq into the subtree below p’s current cursor Cp. The rationale
is the following: Before the move, Cq had no solution extension (otherwise, the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

248 Chapter 8: The Physical Algebra

Figure 8.7 The moveCursors function illustrated: a) initial move, b) moveCursorsBottomUp, and c) moveCur-
sorsTopDown

moveCursors method would not have been called; see preconditions in Listing 8.7),
but this was not Cq’s fault, because Cq is contained in p’s stack (and, thus, fulfills the
necessary criterion for a solution extension). Essentially, this means that some twig
node below q is responsible for the non-existence of a solution extension. In this
situation, we know that q will not contribute to any twig match and that it is safe to
move Cq into the subtree below Cp. When cursor Cp is not consumed, this happens
in lines 3 to 9: We calculate a virtual position in the subtree below Cp and set this
position to the cursor. If Cp is already consumed, Cq is obviously also consumed
(because there is no subtree anymore, into which we could move Cq).

After this adjustment, the two helper methods moveCursorsBottomUp and moveCur-
sorsTopDown are called. Let us again assume that p is the path parent of q and that
Cp and Cq are their cursors. Both methods recursively descend down the tree and
adjust Cp and Cq (by calculating virtual positions). Method moveCursorsBottomUp
modifies Cp such that the new position contains Cq (see Figure 8.7b). Method move-
CursorsTopDown modifies Cq such that it is contained by Cp (see Figure 8.7c). We
will discuss these algorithms in detail below.

The main algorithm calls moveCursors for TwigOptNode q with the smallest cursor
position (see preconditions in Listing 8.7). If, after the so-far described (virtual) cur-
sor movements, q is still the node with the smallest cursor, we would run into an
infinite loop (because the moveCursors method would again be called by the main
algorithm on q). Therefore, we have to physically move one cursor to “move to a
new subtree in the document”. Of course, we want to skip as many subtrees as
possible, to find the “right-most” one in the document. The question is now, which
cursor can be physically advanced the farthest. The answer depends on the docu-
ment characteristics and cannot be given in general. In our implementation, we hide
this decision behind the chooseBestVirtualCursor method which, essentially, always
chooses the Cq cursor as a heuristics. This part of the algorithm is implemented in
lines 17 to 22 of Listing 8.7.

To conclude the discussion about cursor movement, let us take a look at the move-
CursorsBottomUp and the moveCursorsTopDown methods. Both are shown in Listing
8.8. The first recursively calls itself for every child node. “On the way back”, the
cursors are moved. If the node is an and node, the cursor of this and node can be set
to the right-most (maximum) cursor position out of all children’s cursors (method

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 249

Listing 8.8 The a) moveCursorsBottomUp method and the b) moveCursorsTopDown method

Local variables:
Cursor cursor as Cq ;

a) TwigOptNode.moveCursorsBottomUp

begin1
for every TwigOptNode child c among the children do2

c.moveCursorsBottomUp();3
end4
if this is an “and” node then5

Cq.setCurrentID(maxCursorChild ().getCursor().getCurrentID());6
else if this is an “or” node then7

if this is not “outer” then8
Cq .setCurrentID(minCursorChild ().getCursor().getCurrentID());9

end10

else if q has a child c then11
Cc ← c.getCursor();12
if Cq is in document order before Cc and Cq does not contain Cc then13

if Cc.isConsumed() then14
Cq .setConsumed();15
Cq .setVirtual(false);16

else17
Cq .setCurrentID(C.getPositionBelowLCA(Cc));18
Cq .setVirtual(true);19

end20

end21

end22

end23

b) TwigOptNode.moveCursorsTopDown

begin1
for every TwigOptNode child c among the children of q do2

if c is an “and” node or c is an “or” node then3
c.getCursor().setCurrentID(Cq .getCurrentID());4

else if c.getCursor().compareTo(Cq) < 0 and not q.stackContains(Cc) then5
if not Cq .isConsumed() then6

Cc.setCurrentID(Cq .getCurrentPlusOne());7
Cc.setVirtual(true);8

end9

end10
c.moveCursorsTopDown();11

end12

end13

maxCursorChild; line 6). On the other hand, if the node is an or node and if this or
node is not outer, its cursor is set to the smallest cursor position minCursorChild (line
9). The rationale is that for an and node, we can skip as many subtrees as possible
(because we know, that these subtrees do not contribute any result). For an or node,
we can only skip the subtrees until the first child cursor is met, because after this
position, further matches can probably be found. If the node traversed “on the way
back” (i. e., node q) is a path node (with one child c), we can adjust q’s cursor Cq with
the child’s cursor Cc. This only happens, if Cq is strictly situated before Cc, i. e., if
their subtrees in the document do not overlap and the ID of Cq is smaller than the
ID of Cc. This situation is also depicted in Figure 8.7b. If Cc is already consumed,
we can also set Cq as consumed (lines 15 and 16). Otherwise, we calculate the first
position below the least common ancestor (LCA) of Cq and Cc (which is done by
appending “.1” to the DeweyID of the LCA). This position is set as the new virtual
position to Cq.

Similarly, moveCursorsTopDown adjusts the child cursors w. r. t. their parent cursors.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

250 Chapter 8: The Physical Algebra

Listing 8.9 The outputAndPush method

Parameters:
BufferQueue Q;

Local variables:
Stack nodeStack as Sn

q ;
Stack positionStack as Sp

q ;
Cursor cursor as Cq ;
int s← number of children;

TwigOptNode.outputAndPush

begin1
if q is the twig root then2

while Sn
q is not empty and (Cq is consumed or Sn

q [0] does not contain Cq) do3
outputRootStack(Q);4
cleanStacks();5

end6

end7
if not Cq is consumed then8

Sn
q .push(Cq .getCurrentID());9

IntegerList m← [s]; // initialize a list of integers of size s10
int x← 0;11
for each child c among the path children do12

m[x]← c.getStack().getSize();13
x← x + 1;14

end15
Sp

q .push(m);16

end17

end18

TwigOptNode.outputRootStack

begin1
int p← 0;2
for int i← 0 to stack size do3

if preCheckPositionalPredicate(p) then4
Tuple t← outputOneEntry(i);5
if t is not NULL and checkPositionalPredicate(p) then6

Q.add(t);7
end8
p← p + 1;9

else10
break;11

end12

end13

end14

The algorithm is depicted in Listing 8.8b. It iterates over all child twig nodes c. If
the child is an and node or an or node, the corresponding cursor is set to the current
position of the parent cursor Cq (line 5). Otherwise, if the child cursor is smaller
than Cq and if this cursor is not contained in q’s stack (i. e., if it has no solution
extension), we can move the child’s cursor below Cq. This situation is depicted in
Figure 8.7c.

After this in-detail discussion on the extended TwigOpt matching and cursor move-
ment phases, we will now take a look at output generation.

8.4.5 TwigOpt Output Generation

While the matching and moving process of our TwigOpt implementation was quite
close to the original, output generation is different. The reason for that is naturally

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 251

the extended expressiveness of our algorithm. As already explained in the intro-
duction, output is generated, when the bottom-most XML node stored at the root
stack is no ancestor of the XML node issued for intermediate storage on that stack.
At this point, all matches below the bottom-most XML node are encoded on the
stacks of the TwigOptNodes. The output generation process reads these stacks and
assembles a result according to the configuration of the twig nodes. Because of our
extended expressiveness, the strategy to derive the result is quite complex. The al-
gorithm is distributed over six methods, of which some call each other recursively.
The entry method is outputAndPush (Listing 8.9a). In case, output can be gener-
ated, this method calls outputRootStack (Listing 8.9b) to actually generate the out-
put. Independent of that, outputAndPush maintains the stacks. Therefore, it pushes
new XML nodes (represented by their DeweyIDs) onto the stacks or it removes old
nodes. Method outputRootStack iterates over each entry on the stack of the twig
root. For each of these elements, it calls outputOneEntry (Listing 8.10) to assemble
and fetch the result for this element. The call structure of the next three methods has
the following shape: outputOneEntry calls processChildren (Listing 8.11), when a twig
node is an internal node. For each twig child, processChildren calls outputOneStack
(Listing 8.12) to retrieve the result from the child’s stack. Method outputOneStack is
quite similar to outputRootStack. It recursively calls outputOneEntry for each entry
on the stack. Thus, the recursion loop is closed. Naturally, it terminates on the leaf
nodes of the twig. Method outputOneEntry collects the tuple results generated for
each child and calls the processTuple method (Listing 8.13) which, in turn, applies
filters, output expression, projection, etc.

Let us start our discussion with the outputAndPush method. The method receives a
buffer queue Q as a parameter, where it will store the results. For brevity, we de-
clare member variable nodeStack as Sn

q , positionStack as Sp
q , and so on. Local

variable s captures the number of twig node children. The algorithm first checks if
it is called for the twig root node (only for the root, output can be generated). In this
case, we check whether the cursor Cq is consumed or whether the first ID found at
the bottom-most node stack position Sn

q [0] is an ancestor of the current cursor posi-
tion. In either case (and if the stack is not empty), we can produce output. The actual
output generation is handled by the outputRootStack method. After the output has
been generated, all stacks can be cleared (by cleanStacks).

Independent of output generation, if cursor Cq is not consumed, we have to push
the ID of the current cursor position onto the stack (line 9) and we have to compute
the group markers and add them to the position stack. A group marker is calculated
for each path child c of node q. It simply captures the group for the currently pushed
ID starts where on c’s stack. This position can be calculated by retrieving c’s stack
size. Note, this is only possible, because the children stacks for a match are populated
after their parent stacks have been filled. All group markers are collected in an integer
list and pushed onto the position stack (lines 10 to 16).

Method outputRootStack initializes a position counter p and iterates over all stack
entries. As explained, positional predicates can be pre-emptive. Method preCheck-
PositionalPredicate checks these pre-emptive predicates and stops the output gen-
eration, when the predicate will not return true for any following call. After that,
an intermediate result tuple is generated by calling outputOneEntry for the current
stack entry. If this tuple is not null and if a possibly existing positional predicate is
fulfilled, the tuple is appended to buffer queue Q.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

252 Chapter 8: The Physical Algebra

Listing 8.10 The outputOneEntry method

Parameters:
int i // the current position in Sn

q to generate output for

Local variables:
TwigOptNode q; // this TwigOptNode
Stack nodeStack as Sn

q ;
Stack positionStack as Sp

q ;
int s← number of path children that produce internal/external output;
Tuple r; // an intermediate result tuple;

TwigOptNode.outputOneEntry

begin1
DeweyID e← Sn

q [i];2

if output mode is not (“none” or “internal child”) then3
r ← [s + 1]; // create empty intermediate tuple of size s + 14
r ← r + e; // append output entry to tuple i5

else6
r ← [s]; // create empty intermediate tuple of size s7

end8
if this twig node has no children then9

return processTuple(r);10
end11
IntegerList p← Sp

q [i]; // get the group start positions12
ItemList l← processChildren (q, e, p);13
if l is not NULL then14

r ← r + l; // append complete list to intermediate result tuple15
else16

return NULL;17
end18
return processTuple(r);19

end20

Method outputOneEntry is called on twig node q for a specific stack position i to
assemble the output “below” the XML node at that position. First XML node e (rep-
resented by its DeweyID) is fetched from the stack. If the twig node, the method was
called for, generates output, an intermediate result tuple r of size s + 1 is instanti-
ated, where s is the number of children producing output. Furthermore, DeweyID
e is set as the first tuple field. If the twig node does not produce any output, the size
of the intermediate tuple is simply s.

In case q is a leaf twig node, everything is now ready to produce the result for q. This
happens during the processTuple method, which we will discuss later. On the other
hand, if q has children, we have to process their result, too. To do so, we fetch the
group markers from position stack Sp

q a call processChildren (additionally passing
q and the current output node e). Method processChildren returns a list of items,
one item for each child. For those children that produce internal/external output
(recognizable by their output modifiers), their result is written to intermediate tuple
r. In the case, processChildren returned NULL, this twig node also returns NULL.
This can happen when some internal filter did not match, thus, the subtree does
not return a result. Otherwise, if processChildren returned a result, it is appended to
intermediate tuple r which is, in turn, processed by processTuple and returned.

Method processChildren is called for every stack entry e of an internal twig node q.
The result of this method is a list of items, one for each child producing output. The
method iterates over all children c of q. If the child is a path node and if the child
or any descendant twig node produces an internal/external output relevant for q,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.4 The Holistic Twig Join Operator: Extended TwigOpt 253

Listing 8.11 The processChildren method

Parameters:
TwigOptNode q; // the parent twig node
DeweyID e; // the entry for which output shall be generated
IntList s; // the group start positions

Local variables:
ItemList r; // the result list of items;

TwigOptNode.processChildren

begin1
for each child c of q at position i do2

if c is path node then3
if c or any descendant twig node produces internal/external output then4

Item p← c.outputOneStack(s[i], e);5
if p is not NULL then6

r ← r + p; // append sequence generated from one stack7
else8

if q is “or” node then9
r ← r + (); // append empty sequence10

else if q is “and” node then11
return NULL;12

end13

end14

end15

else16
// c is “and” node or “or” node17
ItemList l← c.processChildren(q, e, s);18
if l is NULL then19

return NULL;20
end21
if c is “or” node then22

boolean b← false ;23
for each item i in l do24

if i is not empty sequence then25
b← true ;26
break;27

end28

end29
if not b then30

if c is “outer” then31
return l;32

end33
return NULL;34

end35

end36
return l;37

end38

end39
return r;40

end41

method outputOneStack is called, which computes the result for one child stack. The
scanned range on the child stack depends on the starting position s[i] and the given
stack element from the parent stack e. We will discuss this method below. Its result
is a sequence, which is appended to item list r. If outputOneStack returned NULL,
and q is an or node, we generate an empty sequence as a representative for the
missing subtree. Otherwise, in case of an and node, the subtree did not match, and
we return NULL.

In case, q itself is an and/or node, we recursively call processChildren on q’s children.
The result may not be NULL, because then no match was found in the subtree below

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

254 Chapter 8: The Physical Algebra

Listing 8.12 The outputOneStack method

Parameters:
int s; // the start position in the stack
DeweyID e; // the entry for which output shall be generated

Local variables:
Stack nodeStack as Sn

q ;
Stack positionStack as Sp

q ;
TupleSequence r; // the result tuple sequence

TwigOptNode.outputOneStack

begin1
int p← 0;2
for each node n at position i in Sn

q starting at s, as long as n is a descendant of e do3
if incoming axis is not “child” or n is child of e then4

if preCheckPositionalPredicate(p) then5
Tuple t← outputOneEntry(i); // recursive call6
if checkPositionalPredicate(p) then7

if t is not NULL then8
r ← r + t;9

end10

end11

else12
break;13

end14

end15
p← p + 1;16

end17
if size of r is 0 and output mode is not “none” then18

return NULL;19
end20
return r;21

end22

Listing 8.13 The processTuple method

Parameters:
Tuple t; // the tuple to process

Local variables:
PALExpressions filters as Fq ; // a list of filters
PALExpression expr as Eq ; // the output expression

TwigOptNode.processTuple

begin1
if q has one or more output filters Fq then2

for each filter expression e in Fq do3
if not e(t) then4

return NULL;5
end6

end7

end8
if q has output expression Eq then9

t← E(t); // evaluate the expression on the tuple and replace value of t10
end11
t← project(t);12
if q is no “grouping” node then13

t← unnest(t);14
end15
return t;16

end17

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.5 Index-Based PPOs 255

Figure 8.8 Various XQGM access operators to be mapped to indexes

q. When c is an or node, we demand that at least one child returned a non-empty
sequence, otherwise, we return NULL (lines 22 to 36). When c is outer or, all children
may return empty sequences. If we do not return NULL, the result delivered by the
children is simply returned.

Generating output for one stack is quite simple. The structure of the algorithm is
similar to outputRootStack, however, the range to produce output for is restricted
here. The start position i is given by the caller of the outputOneStack. The end po-
sition is reached, when the element read from the stack is no descendant of the
passed entry e from the parent stack. Additionally, the method checks the child axis,
if necessary, and evaluates positional predicates (again, relying on preCheckPosition-
alPredicate and checkPositionalPredicate). Another major difference to the outputRoot-
Stack method is that NULL is returned (lines 18 to 20), if the intermediate result
remains empty, but the node should actually return some result.

To conclude the discussion about the TwigOpt algorithm, let us take a look at how
intermediate tuples are processed. Method processTuple is called by outputOneEn-
try for the intermediate result generated for a stack entry. Let us assume that, for
a particular twig node q, each twig child, as well as q generates output. Then, the
intermediate tuple constructed in outputOneEntry has the following form: [e, s1,
s2, . . . , sn] , where e is the stack entry and the si are sequences, one generated for
each child. This intermediate tuple is passed to processTuple, on which the method
applies the output filters (lines 2 to 8), the output expression (lines 9 to 11), pro-
jection (line 12), and unnesting (lines 13 to 15). An output filter simply discards a
tuple (and returns NULL), when the filter evaluates to false. The result generated
by an output expression replaces the input tuple. Projection is necessary to remove
information generated for twig nodes with an internal output mode: When the inter-
nal information is not required anymore, we can remove the corresponding tuple
fields. Finally, unnesting computes the Cartesian product on the sequences con-
tained in the tuple. The result is again a sequence which is embedded into a result
tuple and returned by the unnest method. We do not further specify the semantics
of these helper methods algorithmically, because they are quite straightforward.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

256 Chapter 8: The Physical Algebra

8.5 Index-Based PPOs

In the previous chapter, we have introduced four types of indexes: the content in-
dex, the path index, the CAS index, and the element index. Together with the doc-
ument container, we, therefore, can consider five indexes for query evaluation. In
the discussion so far, we only have utilized the document container and the ele-
ment index. They can be used for navigational access by single-node PPOs or by
the NavTree operator, or they can be used in jumping TwigOpt cursors. We now
want to enable the plan generator to also exploit the other three indexes.

Basically, an index can be used for the implementation of plain XQGM sequence
access operators, such as the ones depicted in Figure 8.8. In the following section,
we will show the various alternatives for that. On the other hand, path indexes can
also be combined with twig pattern matching: To utilize a path or a CAS index,
path information has to be available in the XQGM. Otherwise, index matching (see
Section 7.3.7) could not find any applicable indexes. In an XQGM instance, path
information is captured by the twig operators. However, not always all branches in
a twig may be covered by a path/CAS index. To nevertheless utilize such an index,
we have to integrate it into the TwigOpt algorithm. We will see in Section 8.5.2 how
this works.

8.5.1 Simple Index Mapping

Throughout this work, we have seen many XQGM sequence access operators. Ba-
sically, such an operator returns all nodes that fulfill a certain node test, and some-
times, they additionally match a content predicate. For an example, see Figure 8.8.
The first operator is a simple sequence access operator that delivers all location nodes
of a document. The second access operator delivers only those location nodes, whose
content is “United States”. Finally, the third operator contains a between expression
and delivers all quantity nodes with a content between 1 and 3. The easiest way to
implement these three operators is a document scan. The physical operator has the
following signature:

DocumentScanOperator (Document document ,

NodeTest nodeTest);

This operator works on the document container and is, therefore, always avail-
able. The operator returns all nodes from the document that fulfill the given node-
Test. The nodeTest is optional. If left undefined, the operator returns all nodes
from the document (surely, a quite expensive operation). A possibly available
predicate has to be checked by a following select operator. For its evaluation, the
DocumentScanOperator relies on the document reconstruction capabilities intro-
duced in Section 6.3.3 on Page 176.

Because a document scan is quite expensive, we allow to share its result such that it
is possible to pass the result to various other operators. Sharing is implemented by a
split operator (distributing the input) and by so-called split adapters that apply node
tests. We omit the details here and refer to Figure 8.6 on Page 236 for an example. As
you can see, the output of the document scan is used as an input for a twig operator.
Furthermore, the content predicate (i. e., [. = "United States"]) is mapped
onto a select operator.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.5 Index-Based PPOs 257

A similar operator exists to scan the element index:

ElementIndexScanOperator (Index index ,

QName elementName);

Here, the plan generator has to find and provide the index to be queried. Further-
more, the name of the elements to be retrieved has to be supplied. Note, the op-
erator cannot be used for the implementation of a sequence access operator with a
node test other than a name test. Therefore, it is sufficient to only pass the QName to
the ElementIndexScanOperator . As the document scan operator, the element
index scan can be shared using a split operator.

Access operators with a content predicate can be mapped to a
ContentIndexScanOperator :
ContentIndexScanOperator (Index index ,

NodeTest nodeTest ,

Item keyValue ,

Item lowerKeyValue ,

Item upperKeyValue ,

boolean minInclusive ,

boolean maxInclusive);

Again, the plan generator has to provide the index. If the content predicate specifies
a point query (such as the example in Figure 8.8b the keyValue parameter is set
appropriately, e. g., to “United States”. In case of a range query (Figure 8.8c), the
range boundaries and the inclusion flags have to be provided by the plan generator.
In our example, the lower (upper) boundary is 1 (3) and both inclusion flags are
set to false. The content index contains text nodes. However, the sequence access
operator returns elements. Therefore, we have to retrieve the elements (i. e., the
parent elements) from the document store (or from an element index). When using
the document store, our only option is to fetch each parent separately by a key
lookup. On the parent, we then evaluate the given nodeTest . When an element
index exists, we can read all nodes fulfilling the nodeTest and do a structural join
with the result from the index.

Furthermore, note that the result of a range query is not correctly sorted in gen-
eral (because the index inverts the nodes by their content values). In this case,
a reordering is necessary to emit the result nodes in document order. Note, the
ContentIndexScanOperator can only be applied, when we know that the nodes
fulfilling the node test only contain a text node (and no other children)! If this were
not the case, we would probably miss an internal node, which fulfills the node test,
and whose string value (result of fn:atomize) matches the content predicate. Upon
index creation, this information is captured and stored in the metadata catalog of
the XTC system.

The above three operators can be exploited regardless in which mode the docu-
ment is stored (node-oriented or path-oriented). Path indexes are, however, only
available in the path-oriented storage mode. The CasIndexScanOperator has a quite
similar interface to the content index scan operator:

CasIndexScanOperator (Index index ,

IntegerList pcrs ,

Item keyValue ,

Item lowerKeyValue ,

Item upperKeyValue ,

boolean minInclusive ,

boolean maxInclusive ,

boolean splidClustering);

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

258 Chapter 8: The Physical Algebra

The only difference is the integer list containing the PCRs and the clustering flag.
For a sequence access operator with a name test n, we simply evaluate query //n on
the path synopsis to retrieve the PCR list, e. g., //location or //quantity in our
example from Figure 8.8. If an index for this PCR list exists (see Section 7.3.7), we
can employ the CasIndexScanOperator . The necessary clustering information
comes from the metadata and the remaining parameters are configured as for a
content index scan. Furthermore, the same restrictions apply: only nodes with text
content can be retrieved and upon a range query, additional sorting is required.
However, compared to the content index scan, the CAS index scan does not need
to query the document (or do structural join) to retrieve the parent nodes, because
they can be directly computed using the stored DeweyIDs.

The usage of the CAS index as sketched does not require any “real” path infor-
mation. Thus, we can employ a CAS index scan independently of the existence of
twigs. However, in combination with twigs, we can further restrict the PCR set
given to the scan operator. As an example, consider the XQGM instance from Fig-
ure 8.5a. The sequence access operator delivering the location elements is depicted
in Figure 8.8b. It directly delivers its input to the twig operator. Therefore, we know
that the output generated will contribute to path matching and that we can analyze
the twig structure to infer the path pattern, e. g., //item/location . Instead of
retrieving PCRs for //location as sketched above, we can now query the path
synopsis for the former path, thus restricting the PCR set.

Many XML (sub-)queries do not have a content predicate, but simply have to match
plain paths, e. g., path //item/mail in our sample query of Figure 8.5a. In the
previous chapter, we have introduced path indexes to speed up this kind of queries.
The operator to access such an index is the following:

PathIndexScanOperator (Index index ,

IntegerList pcrs ,

PalExpression predicate ,

boolean splidClustering);

The interface is quite similar to the CAS index scan without the parameters to ex-
press the content predicate. PCRs and the clustering flag are derived as explained
above. In contrast to the CAS index scan, however, we provide an additional
predicate parameter to directly evaluate a selection on the fetched path nodes.

The plan generator can use a path index for the implementation of a sequence ac-
cess operator as described above, either with or without further path information
(inferred from a twig operator). If further path information is not existent, only path
indexes of structure //n can be used to implement the sequence access operator.

Finally, in the previous chapter, we have shown how path indexes can be embed-
ded into the element index by storing PCRs. These indexes can be accessed by the
following operator:

PathOverElementIndexScanOperator (Index index ,

IntegerList pcrs ,

QName elementName ,

PalExpression predicate ,

boolean splidClustering);

In addition to the path index scan parameters, we have to provide a qualified
elementName which selects the inverted index (from the element index) on which
the scan is executed. This name can be inferred from the sequence access operator

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.5 Index-Based PPOs 259

Figure 8.9 Various index-based implementations of the sample query from Figure 8.5a: a) evaluation on the
element index and the content index, b) evaluation on a path index and a CAS index, and c)
embedded CAS index evaluation

implemented by the scan.

In Figure 8.6 on Page 236, we have already seen an implementation of our sample
query from Figure 8.5a, which is based on a shared document scan. Let us now
create an element index and a content index and see how the plan generator makes
use of them. Figure 8.9a presents the result. Instead of a shared document index,
item and mail nodes are provided by an element index scan. The content predicate
is evaluated by a content index scan with a location name test. To enable path/CAS
indexes, we created path indexes I(//item//mail) and I(//item) as well as a CAS index
I(//item/location, String). In Figure 8.9b, the plan generator exploits these indexes by
implementing the sequence access operators on them. The last query in this figure

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

260 Chapter 8: The Physical Algebra

embeds the CAS index into the twig operator such that the internal twig nodes are
delivered directly from the index scan result. We will discuss in the following how
this actually works.

8.5.2 Complex Index Mapping

In our simple index mapping scenarios, we implemented sequence access operators
with various index scan operators. For the integration with twig operators, there-
fore, only their “leaf” input can be generated by an index scan. However, as we
have sketched in the previous chapter, our indexes can deliver more than just leaf
elements. They can deliver inner elements, too. This possibility opens the door to
embed path and CAS index operators into the twig operator. Figure 8.9c illustrates
how this integration looks like. The CAS index scan delivers the DeweyIDs of lo-
cation elements. Because using a DeweyID, we can compute inner nodes, it is also
possible to compute the necessary item nodes. Thus, the result of the CAS index
scan can be shared and an additional scan to provide item nodes can be avoided.
Before we discuss the actual embedding, let us take a look at how we can generate
inner XML nodes from index scan results.

The Ancestor Tuple Builder

The ancestor tuple builder (ATB) is an algorithm that can receive an ordered stream
of XML nodes as input and that can produce an ordered stream of tuples as output,
where these result tuples contain the ancestors of the nodes in the input stream. To
introduce the algorithm, let us take a look at the example depicted in Figure 8.10.
The figure shows a synthetic document and its path synopsis. On this document,
query //a//b//c shall be evaluated and a path index I(//c) exists. With the in-
tegration into a twig join operator in mind, we demand that not only the c nodes
are returned, but also the ancestors a and b. Our path index contains and deliv-
ers c nodes only (together with the node’s PCR). However with the DeweyID (not
depicted) and the path synopsis, we can compute the inner elements.

For every path step in the query, the ancestor tuple builder maintains a list L. The
concept here is similar to the TwigOpt algorithm: A list stores XML nodes of a cer-
tain name. However, in contrast to TwigOpt, the nodes in the list have to fulfill the
descendant relationship2, i. e., L[i + 1] is a descendant of L[i]. Let us now take a look
at how the algorithm produces results. For every node returned by the index scan,
method processOneElement is called. The pseudocode is shown in Listing 8.14. Be-
sides node N , the method also receives the path synopsis P and the path expression
E for which it was called. Based on E, it creates a set of lists L, one list for each path
step. In the first processing phase, the algorithm fills its internal lists. Then output
is produced.

To fill the lists, the algorithm first initializes an AncestorBuilder with the cur-
rent node N , the path synopsis P , the path expression E, the PCR R, and the set
of lists L. The AncestorBuilder is a small helper class. Its main functionality
is to compute the ancestors of a given node N . For example, if N = c1, it pro-
duces c1, b2, b1, and a1 (in this order). To access the generated ancestor nodes, the
AncestorBuilder provides iterator functions: hasNext returns true, if more an-

2Note for TwigOpt, this property held only for the root stack. On the other stacks, the elements had only be
stored in document order.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.5 Index-Based PPOs 261

Figure 8.10 An ancestor tuple builder example

cestors can be computed using N , and getCurrentNode actually returns the ancestor.
During processing, we need some more information for each ancestor node pro-
duced: method getCurrentList returns the list on which the ancestor will be stored
and currentNodeIsFirstOfType returns true, when the first ancestor with a particular
name is returned. In our ancestor sequence from above, the method would return
true for b2 and false for b1. The necessary information can be derived from the passed
parameters.

Let us step through the algorithm. In the first iteration through the while loop, the
ancestor builder returns node c1 and list Lc. Because the list is empty, c1 is simply
added. The same happens for the next ancestor b2 and list Lb. Upon b1, Lb is not
empty, because we just added b2. Therefore, the algorithm iterates over all entries e
in Lb and checks various relationships between b1 and e. Because b1 is an ancestor

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

262 Chapter 8: The Physical Algebra

Listing 8.14 The processOneElement method

Parameters:
DeweyID deweyID as D; // a node from an index scan
int pcr as R;

Local variables:
PathExpression pathExpr as E; // the path expression to be evaluated
PathSynopsis ps as P ; // the structural summary of the document
Lists lists as L; // a list of lists

ATBinput.processOneElement

begin1
AncestorBuilder b← AncestorBuilder(D, L, R, P, E); // create a per-node ancestor builder2
while b.hasNext() do3

Node n← b.getCurrentNode(); // get the current ancestor4
List l← b.getCurrentList(); // get the list on which we store n5
if l is empty then6

l.add(n); // simply add n7
else8

for each element e in l do9
if n = e then10

if b.currentNodeIsFirstOfType() then11
l.clearAfter(n); // remove all list entries behind n12

end13
break; // done pushing onto stacks for the current node N14

end15
if n is ancestor of e then16

l.addBefore(n, e); // add n at the position before e17
if b.currentNodeIsFirstOfType() then18

l.clearAfter(n); // remove all list entries behind n19
end20

else if n is no descendant of e then21
l.addBefore(n, e);22
l.clearAfter(n);23

else if e is last element in l and n is descendant of e then24
l.add(n);25

end26

end27

end28

end29
// now all elements are in the lists30
produceOutput();31

end32

of b2, lines 17 to 20 are executed and b1 is stored before b2 (see Figure 8.10). Because
method currentNodeIsFirstOfType returns false for b1, nothing more has to be done.
Finally, a1 is added to La. In this state, all ancestors have been computed out of N
and output can be generated. Output generation is quite similar to the procudure
shown for the TwigOpt algorithm. Therefore, we do not discuss method produce-
Output. Note, in our example, we have chosen to directly produce the output, thus,
generating it in leaf-to-root order (see Figure 8.10).

The next call to processOneEntry consumes node c2 (ancestors c2, b4, b3, b2, b1, and a1).
Node c2 is no ancestor or descendant of c1. Therefore, lines 22 and 23 are executed.
Here, c2 is stored before c1 and then everything behind c2 is removed from the list
(i. e., c1). Ancestor b4 is appended to Lb, after b1 and b2 have been visited. Then, b3

is stored before b4. On b2, lines 10 to 15 are executed (because we already have b2 on
the stack). In this case, we know that no more new information can be generated out
of N = c2. Therefore, we can terminate the while loop. Element c3 replaces c2 on Lc.
Then, b5 triggers the removal of b2, b3, and b4 from Lb (lines 22 and 23). Finally, a2 is

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.5 Index-Based PPOs 263

Listing 8.15 The ATBinput and ATBcursor classes

c l a s s ATBinput

{

/ / member v a r i a b l e s s e t by t h e p l a n g e n e r a t o r
Cursor inputCursor ; / / t h e c u r s o r d e l i v e r i n g t h e i n d e x o u t p u t
PathExpression pathExpr ; / / t h e q u e r y p a t h

/ / i n t e r n a l s t a t e
PathSynopsis ps; / / t h e s t r u c t u r a l summary o f t h e docum ent
Lists lists; / / a l i s t o f l i s t s f o r XML n o d e s

/∗ s t a c k m a i n t e n a n c e m e t h o d s ∗ /
void open ();

void processTo (i n t cursorID , DeweyID position);

/∗ h e l p e r m e t h o d s ∗ /
void processOneElement(DeweyID deweyID , i n t pcr);

boolean allListsAreFilled ();

}

c l a s s ATBcursor exten d s Cursor

{

/ / member v a r i a b l e s s e t by t h e p l a n g e n e r a t o r
ATBinput atbInput ; / / s h a r e d a n c e s t o r t u p l e b u i l d e r i n p u t
i n t cursorID ; / / t h e u n i q u e i d e n t i f i c a t i o n number

/ / i n t e r n a l s t a t e
i n t startPos ; / / l i s t s c a n s t a r t p o s i t i o n f o r o u t p u t g e n e r a t i o n

/∗ c u r s o r m e t h o d s ∗ /
void setToFirst ();

void forwardTo (DeweyID position);

}

added to La. In the following, all code paths in the algorithm are traversed, when
the remaining nodes are consumed. Here, we omit the detailed discussion and leave
it open for your consideration. Note, the algorithm also works with child/attribute
axes. Then, the AncestorBuilder returns only those ancestors fulfilling the axes
in the given path expression.

We could implement this algorithm as a stand-alone operator in the physical al-
gebra (together with the output generation strategies suggested for the TwigOpt
operator). In combination with a path/CAS index as input, it would then be able to
evaluate linear path queries, i. e., path queries with at most one branching path pred-
icate. In the current version of the query engine, we did, however, not follow this
approach. In contrast, we decided to integrate the ancestor tuple builder with the
TwigOpt algorithm to enable flexible path index usage in complex twig patterns.
The essential idea behind this integration is the similarity between the TwigOpt
stacks and the lists of the ancestor tuple builder. As we will see, it is possible to
directly pump the output of the ATB into the TwigOpt operator.

Path-Index Twig Embedding

For the TwigOpt embedding, we have to provide two classes: one class containing
the ancestor tuple builder algorithm (ATBinput) and one class providing a cursor
(ATBcursor). Obviously, the cursor makes the output of the ATBinput accessible
to the TwigOpt operator. The definition of these two classes is depicted in Listing

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

264 Chapter 8: The Physical Algebra

Figure 8.11 Structure of an ancestor tuple builder mapping

8.15 and will be introduced in the following. Note for now, we skip a discussion
on how twig operators with embedded indexes are mapped from the logical twig
representation by the plan generator. We will return to this point in the next section.
Let us assume the situation depicted in Figure 8.11. There, we have twig operator
with five nodes, of which one is a Boolean and node and of which three nodes (de-
picted in a darker shaded grey) receive the output generated by an index scan. The
fifth node is a path node with another type of cursor.

Each darker shaded node is connected to an ATBcursor . Because this class imple-
ments the standard cursor interface (from Listing 8.3), the TwigOpt operator can is-
sue methods setToFirst, forwardTo, and getCurrentID (see Listing 8.15). Internally, the
ATBcursor references the ATBinput . Because multiple ATB cursors reference the
same ATB input, we need to distinguish them. Therefore, each ATB cursor carries a
cursorID . Finally, variable nextPosition is required for the implementation of
the forwardTo method.

The ATBinput class consists of several lists, one for each cursor, for which the ATB
serves as input. Note, in contrast to what we have seen above, for the integration
into the TwigOpt operator, not all path steps have to be covered by a list. When
a cursor for a twig node on the path is served by some other input operator, we
simply omit the list in the ATB input. In this case, the plan generator has to make
sure to assign the correct ATB cursor to the correct list.

Of course, the ATB input requires an input itself. We implemented this input as a
cursor (i. e., CI in our example). Thus, the ATB input can call setToFirst and forwardTo
to retrieve the nodes from the input path/CAS index scan. Besides the lists and
the input cursor, the class has access to the path synopsis of the queried document
and to the path expression derived from the TwigOpt operator. This information is
required to reconstruct the ancestor nodes using the index scan result.

In the following, we will discuss the methods of the ATBcursor class and the
ATBinput class. We start with the latter one. Method processOneElement has al-
ready been introduced in Listing 8.14. The two methods depicted in Listing 8.16,
namely open and processTo, make use of the processOneElement method. Method open

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.5 Index-Based PPOs 265

Listing 8.16 The open method and the processTo method

Local variables:
Cursor inputCursor as C; // the input cursor

a) ATBinput.open

begin1
if not already opened then // only-once semantics, because this method is called by all ATB cursors2

C.setToFirst(); // set index scan cursor on first node3
if not C is consumed then4

processOneElement(C.getCurrentID(), C.getCurrentPCR()); // push ancestors on the lists5
end6
while not C is consumed and not allListsAreFilled() do7

C.forwardTo(C.getCurrentID()); // advance index input8
processOneElement(C.getCurrentID(), C.getCurrentPCR()); // push ancestors on the lists9

end10

end11

end12

Parameters:
DeweyID position as p;
int cursorID as i; // index pointing to the list to be advanced

Local variables:
Cursor inputCursor as C; // the input cursor
Lists lists as L;

b) ATBinput.processTo

begin1
List l← L[i];2
while not C is consumed do3

C.forwardTo(C.getCurrentID()); // move C to the next position4
processOneElement(C.currentID(), C.getCurrentPCR()); // adjusts lists5
if l.getLastEntry().compareTo(p) >= 0 then6

break;7
end8

end9

end10

is called by each ATB cursor. Essentially, it initializes (setToFirst, line 3) and fetches
the first element from input cursor C , reconstructs the ancestors, and pushes them
into the appropriate lists (line 5). It could happen, that not all lists are filled, e. g.,
when a child axis has to be evaluated. Then, the open method simply fetches the next
element from the input cursor and tries to fill the lists until all lists are filled (lines 7
to 10). Because opening is required only once for the ATB input, we have to check
whether the input was not opened before (line 2). After the open call, all lists are
initialized with the ancestor set of the first match from the path index.

The processTo method is called by an ATB cursor when it has to advance its cursor
(i. e., when forwardTo is executed). The processTo method receives two parameters:
the position to advance to and the ID of the cursor calling the method. Basically,
the processTo method calls processOneElement until the list responsible for the cursor
contains an element larger or equal to the passed position. Note, of course, all other
lists are manipulated, too. At this point, a problem arises: The other cursors “loose
their internal state”. To alleviate the situation, we alter the “list protocol” by relaxing
the processOneElement method. In the new protocol, a list is allowed to have non-
ancestor nodes, similar to the stacks in the TwigOpt algorithm. With this relaxation,
the processOneElement method gets even simpler. The new version is depicted in
Listing 8.17. Note, cleaning the lists now has to be triggered from outside, because
the new version only adds elements. An example with the relaxed list protocol can

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

266 Chapter 8: The Physical Algebra

be found in Figure 8.12.

Listing 8.17 The relaxed version of the processOneElement method

Parameters:
DeweyID deweyID as D; // a node from an index scan
int pcr as R;

Local variables:
PathExpression pathExpr as E; // the path expression to be evaluated
PathSynopsis ps as P ; // the structural summary of the document
Lists lists as L; // a list of lists

ATBinput.processOneElement

begin1
AncestorBuilder b← AncestorBuilder(D, L, R, P, E); // create a per-node ancestor builder2
while b.hasNext() do3

Node n← b.getCurrentNode(); // get the current ancestor4
List l← b.getCurrentList(); // get the list on which we store n5
if l is empty then6

l.add(n); // simply add n7
else8

for each element e in l do9
if n = e then10

break; // node and its ancestors already on the stack11
end12
if n is ancestor of e then13

l.addBefore(n, e);14
end15

end16
if n has not been added so far then17

l.add(n); // add at the end of the list18
end19

end20

end21

end22

With the relaxed version of the ancestor tuple builder in mind, we can now discuss
the implementation of the cursor interface in Listing 8.18. The setToFirst method
is quite simple: It calls open on the ancestor tuple builder. As we have seen, the
ATB fetches the first elements from the index cursor and initializes its stacks with
the ancestors. When the builder is opened, we fetch the list responsible for this
cursor from the ATB. If this list is not empty, the currentID member field can be
initialized with the first element in the list. Otherwise, the index delivered no results
for this cursor and it is set to consumed.

The implementation of forwardTo in Listing 8.18 also fetches its responsible list l
from the ATB. If the position to be forwarded to is larger than the last element on
the list, we need to trigger the ATB to produce new list entries. This happens in line
8. If forwardTo was called on the bottom-most cursor in the path (e. g., on C3 in our
example), we know from the TwigOpt algorithm that all other cursors above (C1

and C2) have already been advanced “over” the position provided. Therefore, it is
safe to remove all elements from all lists that are smaller than the last element on
the bottom-most list. This happens during the call to clearAllLists in line 5.

Every cursor maintains a variable startPos that points to a position in the cursor’s
ATB list, from which the cursor starts to scan upon a call to forwardTo. Note, this
variable is required, because list maintenance in the ATB has been relaxed. When a
the lists are cleared by a call to clearAllLists, all cursors need to be set to position 0.
This happens by calling updateCursorPositionsOnAllCursors in line 6.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.5 Index-Based PPOs 267

Figure 8.12 A sample run on the relaxed ancestor tuple builder (with the input from Figure 8.10)

When the ATB advanced the cursor’s list to contain the right range, we can search
the list for the first element larger (or equal) to the given position DeweyID. If
no such position can be found, the cursor is consumed. Otherwise, the currentID
variable is set and we remember the list position, where we found that element
in startPos such that the next call to forwardTo will avoid scanning all elements
before startPos again.

8.5.3 Index Embedding Considerations

In Section 8.4.2, we have discussed, how a logical twig is mapped onto a physical
one. During this mapping, the twig cursors remain undefined (with the exception
of virtual cursors and the document root node cursor). In the second plan genera-
tion phase, when the operators are stitched together, also the twig cursors will be
defined. However, as explained, we allow to pre-define certain cursors. This pos-
sibility is exploited to integrate path indexes into the twig operator. Therefore, the
ATBinput and the ATBcursor have to be instantiated appropriately for each index
to be integrated and for each cursor required.

To employ CAS/path index embedding, the plan generator analyzes the twig struc-
ture and derives the necessary path information. To do so, it traverses the twig in
post-order and, for each node n in the twig, the “incoming” path pattern of n is
derived. Note, being a heuristics, the post-order traversal prefers long paths. The
derived path pattern is then checked against the metadata to retrieve appropriate
CAS or path indexes, as described in Section 7.3.7. As a further heuristics, when a
content predicate exists, a CAS index is always preferred to a path index (for the
same path), because the CAS index is likely to be more selective.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

268 Chapter 8: The Physical Algebra

Listing 8.18 The setToFirst method and the forwardTo method

Local variables:
ATBinput atbInput as I ;
int index as i;

a) ATBcursor.setToFirst

begin1
I.open(); // open and initialize the ancestor tuple builder2
List l← I.getLists().get(i); // get the atb list responsible for this cursor3
if l is not empty then4

setCurrentID(l[0]); // fetch first element from the list5
else6

setIsConsumed(true);7
end8

end9

Parameters:
DeweyID position as p;

Local variables:
ATBinput atbInput as I ;
int cursorID as i;
int startPos as k;

b) ATBcursor.forwardTo

begin1
List l← I.getLists().get(i);2
if p.compareTo(l.getLast()) > 0 then3

if l is last list then //this cursor is the bottom-most cursor4
I.clearAllLists(l.getLast()); // remove all elements from all lists up to l.getLast()5
I.updateNextPositionOnAllCursors(0); // set nextPosition = 0 on all cursors6

end7
I.processTo(i, p); // advance atb on the ith list8

end9
for int j ← k to |l| do // for each element in list l10

DeweyID d← l[j];11
boolean f ← false;12
if this cursor is virtual then13

f ← d.compareTo(p) >= 0;14
else15

f ← d.compareTo(p) > 0;16
end17
if f then18

setCurrentID(d);19
k ← j;20
return;21

end22

end23
// no ID found→ consumed24
setIsConsumed(true);25

end26

A problem occurs when a node in the path pattern has an optional incoming edge or
when a node is connected to an or node. As an example, again consider the query
depicted in Figure 8.5a on Page 232. The twig node contributing mail nodes has
an optional edge. If we would employ a path index I(//item//mail) to retrieve item
elements, then we would probably skip some, because an item element does not
necessarily have to contain a mail element. To avoid false negatives, we, therefore,
do not allow a complete index embedding for these paths. Rather, only subpaths
can be answered by indexes. As an example, consider path //a/b[c/d or e/f] .
In this case, we can neither employ an index I1(//a/b/c/d) nor an index I2(//a/b/e/f) to
calculate the inner a and b nodes, because we might skip some of them. However,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.6 LAL Operators as PAL Operators 269

Figure 8.13 Motivation for a lazy tuple generator

I1 could be used to deliver c and d nodes and I2 could deliver e and f nodes (be-
cause all necessary nodes to match the above query are contained in the indexes).
Furthermore, if an index I3(//a/b) is available, we can also use it for this query.

This circumstance is also reflected in the plan shown in Figure 8.9c. The input of
the twig node contributing mail elements is a path index, however, this path index
is not integrated into the twig operator (and has been created by a mapping of the
mail sequence operator to a PathIndexScanOperator as described above).

As we will see in Chapter 9, embedding path indexes as described here is very
effective, when we can avoid to fetch inner elements from the document or from
other indexes (e. g., from the element index). We now finish the discussion on path
processing operators and provide a glimpse on how the remaining operators of the
physical algebra are implemented.

8.6 LAL Operators as PAL Operators

This chapter mainly introduced the necessary path processing operators of XTC’s
physical algebra. For brevity, the remaining operators will only be summarized.
This is acceptable because their implementation is mostly quite similar to their al-
gorithms given in the logical algebra section. Therefore, we will only highlight the
differences.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

270 Chapter 8: The Physical Algebra

8.6.1 Lazy Tuple Generation

In the logical algebra, the TUPGEN operator is responsible to create the
Cartesian product of multiple input streams. Figure 8.13 shows an exam-
ple for query doc("auction.xml")//item[location="United States"
or quantity=2] . Let us assume that this nested version of the query shall be
evaluated. Then the tuple generator instantiated for the select operator would eval-
uate doc("auction.xml")//item and, for every item returned, both subqueries
returning location and quantity elements would be executed. Let us assume that for
item i, location elements l1 and l2 are returned, and that i has one quantity child q.
Then, the tuple generator would assemble the following tuple for i: [i, < l1, l2>,
q] . This tuple is then passed to the physical select operator generated for the predi-
cate. If we assume that q already value 2, then the predicate would evaluate to true
and, regardless of the values of l1 and l2, i will be passed on. Therefore, we have
fetched l1 and l2 in vain.

To avoid this situation, we implemented a so-called lazy tuple generator, which pro-
duces information for following selection, projection, and sorting operators only
when the information is really required. We omit the details on how this is techni-
cally accomplished for brevity.

8.6.2 The Merge Operator

A sample application of the merge operator can be found in Figure 5.7 on Page 109.
In this example, the merge operator receives three input streams, one containing
item nodes, and two containing item/location and item/quantity tuples. The merge
operator finds all tuples with a common item node and assembles an intermediate
tuple capturing all input information.

In section 5.7.2 on Page 112, we have defined the logical merge operator as a selec-
tion over the Cartesian product, where the selection predicate was based on node
identity (using XQuery’s is expression) to find the matching tuples in the input
stream. Of course, a physical implementation based on a Cartesian product would
not be efficient.

Therefore, for the implementation of the merge operator, we exploit the fact that the
input stream S1 delivered by the split operator contains a superset of the nodes to be
matched in the other input streams and every node in S1 is unique. With this knowl-
edge, the merge operator becomes quite simple. For every node in S1, we have to
find the corresponding tuples in the other streams and create an output tuple. We
can further simplify the process by passing integer IDs instead of XML nodes to
implement the matching. Thereby, the equality check becomes more efficient.

8.6.3 Value-Based Joins in XQuery

As relational algebra, XQuery allows to express value-based joins. However, in
contrast to relational algebra, XQuery joins are ordered and have existential seman-
tics. As an example, consider query Q8 from the XMark benchmark [Schmidt 02]
shown in Figure 8.14. The query essentially contains two twigs (not shown). One
twig returns a sequence of tuples, where the first tuple field contains an id at-
tribute and a sequence of name nodes. The second twig delivers a tuple sequence,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.6 LAL Operators as PAL Operators 271

Figure 8.14 An XQGM instance with a value-based join

Sample XMark Query Q8:

let $auction := doc("auction.xml")
return

for $p in $auction/site/people/person
let $a :=

for $t in
$auction/site/

closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t

return
<item person="{$p/name/text()}">

{ count($a)}
</item>

where the first field is a person attribute and the second field contains a sequence of
open_auction nodes. For each id/name tuple, select (4) calls select (15) . Op-
erator select (15) evaluates the second twig to receive the person/open_auction
sequence. Between id and person, a value-based join is computed. From every per-
son tuple that matches, the open_auction sequence is passed to select (4) , which
constructs a result.

Note, the sketched evaluation mode implies a nested loop join (i. e., for every id
tuple, the subtree below F:24 is evaluated). However, because the subquery be-
low F:24 is independent of any correlated input, it always returns the same result.
Therefore, we can save some work by evaluating the subquery only once. Further-
more, to support the comparison operation, we can maintain all person values in
a hash table and simply probe the values of the id attributes. Essentially, the op-
erator implementing select (15) is a hash join. A similar implementation for
non-equality predicates is provided by a merge-join. We do not explicitly give the
necessary algorithms and content ourselves with the given example.

8.6.4 The Remaining Operators

The following operators are implemented as they have been discussed in the logical
algebra: selection, projection, sorting, the attachment of the context position/size,
the ddo function, external tuple variable references, the root operators well as the set-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

272 Chapter 8: The Physical Algebra

based operators, group by, and unnest. The only difference is that all these operators
implement the open-next-close protocol in the physical algebra (not shown in the
logical representation). Of course, node access operators, structural joins, and the
twig join operator are implemented as introduced in this chapter.

We now conclude the main contribution of this work and consider related work on
path processing operators and the physical algebra. After that, we will assess the
concepts developed in our chapter on experimental results.

8.7 Related Work

Path processing operators have been the main contribution of this chapter. There-
fore, we will start by discussing various PPO approaches from the literature. In
particular, we will look at structural joins and holistic twig joins. After that, we
will consider the physical algebras and the plan generation capabilities of the five
competitor systems.

8.7.1 Navigational Primitives

Navigation steps are essential to the XQuery language. Therefore, every system that
is able to answer XML queries can execute navigation. In native XML DBMSs, these
navigations often are mapped to some basic access primitives (similar to our single-
node navigational PPOs). In XDBMSs implemented over relational storage engines
(e. g., XQuery/MonetDB), navigational have to be calculated by (structural) joins,
because the underlying access system is unaware of document hierarchy. However,
as we have seen, structural joins can also be applied in native systems. We will
discuss them in the next section.

When implementing query processing over navigational primitives, one has to
watch out to avoid doing the same work over and over again. We have addressed
this issue in Section 8.2.2, where we developed an algorithm based on navigational
primitives that filters its input list to avoid redundant navigation steps. Another
important requirement is that navigational algorithms deliver a duplicate-free re-
sult sequence because, otherwise, intermediate results might grow exponentially.
NavTree also incorporates a solution for this problem. You might have noticed
that these considerations are quite basic. As a result, similar ideas can be found in
quite a number of publications, e. g., [Helmer 02, Grust 03b, Hidders 04, Gottlob 05,
Mathis 06b].

8.7.2 Structural Joins

With the StackTree algorithm, [Al-khalifa 02] proposed the one of the first structural
join algorithm. It is capable of finding pairs of structural matches in two node input
streams. The result is delivered in root-to-leaf order or leaf-to-root order. In this
work, we extended this algorithm to support outer joins and semi joins. After the
first proposal, quite many other proposals followed:

• [Chien 02] have explored how indexes can be used to avoid scanning. The orig-
inal StackTree algorithm did not employ any indexes and scanned the complete
input sequences. The indexes considered in this work were similar to our ele-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.7 Related Work 273

ment indexes. Thus, no path/CAS indexes have been studied. One disadvantage
of the proposed algorithm is that it cannot be applied, when at least one input
sequence is not indexed. This situation might occur, when the plan generator
produces bushy query plans (based on structural joins).

• [Vagena 05] have incorporated the ability to evaluate positional predicates into
a structural join algorithm. They furthermore extended their algorithm to eval-
uate positional queries on the following-sibling axis. The authors claim that their
approach can easily be extended to all XPath axes. Note, similar techniques to
evaluate positional predicates have been embedded into our twig join algorithm.

• [Mathis 06a] have studied hash-based structural join algorithms. The hash-based
joins do not expect sorted input streams. Therefore, sorting operations can be
avoided. Furthermore, they allow to compute the sibling axes (additional to an-
cestor/descendant and parent/child). A disadvantage of the approach is the costly
computation of the hash table. Therefore, the approach can only be applied effi-
ciently, when the size of the input streams is substantially differing.

• [Li 03] and [Vagena 04] explored data partitioning to avoid sort operations on
both input streams. However, the algorithm of [Li 03] needs to sort at least one
input, while the proposal of [Vagena 04] builds an in-memory data structure,
whose construction time lies in O(n log n).

• The staircase join operator [Grust 03b] is also a structural join algorithm, used in
the relational XQuery/MonetDB system. It joins a table of context nodes with
the document table. The algorithm can “detect” ranges, where no matches will
be found. These ranges are then skipped. Furthermore, it produces an output
in document order. The skipping feature of the algorithm rests on a range-based
labeling scheme. The algorithm is optimized for main-memory database systems
(where the costs to retrieve a node are O(1)). Note, the staircase join algorithm is
conceptually similar to our NavTree algorithm. Like NavTree, it cannot be used
to implement a general structural join (required in bushy query plans).

8.7.3 Holistic Twig Joins

Similar to the history of structural join algorithms, after the publication of the first
twig join algorithm, many others followed. The first algorithm—TwigStack—was
proposed by [Bruno 02]. TwigStack is a two-phase algorithm. In the first phase,
all sub-paths are matched over the input streams (only the descendant axis is sup-
ported). In the second phase, these path matches are merged into the complete
result. Note, to implement the child axis, a separate child check is required during
the result construction phase. The result consists of a forest of trees, where each tree
node corresponds to a twig node (it was matched for). Internally, the TwigStack
algorithm maintains a list of stacks (one for each twig node). The stack protocol
requires that every element on the stack is the ancestor of the element above it. Ad-
ditionally, for every stack position, the StackTree algorithm maintains a pointer to
the stack of the parent node, indicating where the descendants of this parent node
start. To speed up the matching process, [Bruno 02] suggested the XB-tree, a B-tree-
like index structure for the storage of node-label ranges. Let’s take a look at other
twig join approaches:

• The PathStack algorithm was also proposed by [Bruno 02]. It extends the binary
structural join operator to an n-way operator capable of matching linear path

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

274 Chapter 8: The Physical Algebra

patterns (i. e., path with no branching predicates). Note, PathStack was just a
“transitional” algorithm to introduce TwigStack. Its implementation is, therefore,
quite similar.

• PathStack¬ by [Jiao 05] extends the original PathStack algorithm to directly eval-
uate not-based path predicates. All other characteristics of the PathStack algo-
rithm are inherited.

• TwigStackList by [Lu 04] was the first algorithm supporting the evaluation of
the child axis in the matching phase. On structurally complex documents, it can,
therefore, reduce the number of intermediate results (generated by the other op-
erators due to a descendant match). Its implementation is similar to TwigStack:
each twig node has a stack and the stack protocol allows descendants to be stored
on a stack. Additionally, each twig node has a list where it can store a certain
look-ahead of nodes delivered by the input cursor. This look-ahead can be used
to decide the child axis3.

• Twig2Stack by [Chen 06] is one of the first algorithms capable of matching op-
tional axes and projection (i. e., so-called generalized tree patterns [Chen 03c]). The
algorithm manages the internal result on a set of stacks. However, in contrast to
the StackTree algorithm, one twig node can manage multiple stacks. The set of
stacks captures the hierarchy of the matched elements. The stack management
constantly requires to create and delete stacks. The algorithm is, furthermore,
the first one-phase twig-matching algorithm. This means that the output is not
calculated by merging paths, but directly from the stacks. This is also the case
in our algorithm. By relaxing the stack protocol, our algorithm can, furthermore,
compute generalized tree patterns (and even more semantics) on a stable set of
stacks in a much simpler way.

• TwigList by [Qin 07] is a simplification of the Twig2Stack algorithm. It operates
on lists instead of stacks to maintain the internal state. As our approach, it re-
laxes the stack protocol and is a one-phase algorithm. Furthermore, it supports
projection, but no child edges.

• TwigStackList¬ by [Yu 06] is a combination of PathStack¬ and the TwigStack al-
gorithm. It can evaluate not predicates directly in the matching phase.

• TJFast by [Lu 05] aims at the reduction of elements to be read in the matching
phase. For its implementation, the algorithm relies on a so-called extended dewey
labeling mechanism that encodes node names into DeweyIDs (without destroying
the salient features of DeweyIDs). The drawback is that some kind of schema
is required to create these extended DeweyIDs and that, upon changes to this
schema, the IDs do not remain stable (a major drawback in real XML DBMSs).
However, the basic idea behind TJFast is quite similar to our embedded indexes.
Only the leaf nodes of a twig have some input cursors. Internal elements are
recomputed rather than fetched from the document.

• iTwigJoin [Chen 05] is an extension of the TwigStack algorithm which can operate
on streams generated by structural indexes. For its implementation, it assumes
a special cursor delivering nodes labeled with their prefix path. The iTwigJoin
operator is a two-phase algorithm. Note, the paper makes no assumptions on

3Interestingly, the child axis is harder to match, because, compared to the descendant axis, child imposes an-
other requirement: for nodes u and v to match, v has to be a descendant of u and its level has to be larger by
1.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.7 Related Work 275

where these labels come from. The approach is conceptually similar to our index-
based twig evaluation technique. However, because it does not rest on the salient
features of DeweyIDs (but on a range-based labeling scheme), it cannot compute
the elements for inner twig nodes (as our ATB), but has to scan them from a path
index.

• TSGeneric+ [Jiang 03b] assumes the existence of a so-called XR-tree index
[Jiang 03a], which encodes the document in a way such that the algorithm can
skip regions of the document, where no matches will be found. Its internal
forwardBeyond and forwardToAncestorOf methods implement skipping and can
be seen as the counterparts of the forwardTo method of the TwigOpt algorithm.
Therefore, we consider the TSGeneric+ algorithm as the predecessor of TwigOp-
timal.

• Finally, this work extended the TwigOptimal algorithm which was originally pro-
posed by [Fontoura 05].

Table 8.1 summarizes the functionality of the various twig operators introduced. If
a table cell is left blank, the concept is either not possible to integrate or the authors

Table 8.1 Comparison of various holistic twig join algorithms

Algorithm d
e
sc

e
n

d
a
n

t

ch
il

d

a
n

d

o
r

n
o

t

o
p

ti
o

n
a
l

e
d

g
e
s

p
ro

je
ct

io
n

g
ro

u
p

in
g

e
x
p

re
ss

io
n

s

fi
lt

e
rs

p
o

s.
p

re
d

ic
a
te

s

p
h

a
se

s

e
le

m
e
n

t
in

d
e
x
e
s

p
a
th

in
d

e
x
e
s

PathStack [Bruno 02] X –

PathStack¬ [Jiao 05] X X –

TwigStack [Bruno 02] X X 2 X
1

TwigStackList [Lu 04] X X X 2

TwigStackList¬ [Yu 06] X X X X 2

TJFast [Lu 05] X X X 2 X
2

iTwigJoin [Chen 05] X X X 2 X
3

TSGeneric+ [Jiang 03b] X X 2 X
4

Twig2Stack [Chen 06] X X X X X 1

TwigList [Qin 07] X X X 1

TwigOpt. [Fontoura 05] X X X X 1 X

Ext. TwigOpt (our work) X X
5

X X X
5

X X X X X
5

X 1 X X
6

1. Skipping in TwigStack supported only by XB-Tree.

2. TJFast requires special embedding of path information into DeweyIDs.

3. iTwigJoin supports streams generated by path indexes, however, no internal element reconstruction.

4. TSGeneric+ relies on the special XR-tree.

5. Matching child/not/filter integrated in output generation (and not in matching phase).

6. Index embedding with ATB only possible, when DeweyIDs are indexed.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

276 Chapter 8: The Physical Algebra

did not publish how an integration would look like. Of course, all operators support
the descendant axis. The child axis is not embedded into the matching process of our
extended TwigOpt algorithm. An extension similar to the TwigStackList approach
utilizing a look-ahead buffer is, nevertheless, possible. The same is true for the not
function. In the current implementation, this function is evaluated as a filter (on the
already matched intermediate result). However, the function can be embedded into
the matching process by redefining the solution extension concept.

Essentially, our extended TwigOpt algorithm combines all advantages of the other
algorithms into one flexible operator. Extended TwigOpt runs in a scan-and-skip
fashion on element indexes (like TwigStack and TSGeneric+), can embed index re-
sults like TJFast and iTwigJoin, is able to evaluate optional edges and grouping like
Twig2Stack, and, furthermore, provides for positional predicates, filters, and em-
bedded output expressions. The keys to this functionality are 1) the simple cursor
interface borrowed from the TwigOpt operator, which flexibly allows to integrate
streams from different data sources; and 2) the internal stack protocol, which en-
ables the algorithm to manipulate the intermediate result.

8.7.4 A Glimpse on Physical Algebras in Other XML Query Proce ssors

To conclude this chapter, we take a brief look at the implementation of path pro-
cessing operators in our five competing XML query systems.

Galax

Galax loads the complete document as a DOM tree into main memory before pro-
cessing. On this tree, the basic access primitives are navigations. However, for
a comparison, [Michiels 07] also implemented the staircase join operator and the
TwigStack algorithm. In their experiments, both operators ran on main-memory
data structures, thus, making the results of this experimental approach question-
able. On the physical algebra of the Galax system, no complete publications exist.
[Ré 06], however, report a hash-based algorithm for the calculation of value-based
joins (that adheres to the special existential XQuery semantics on general compar-
isons).

Timber

Timber’s physical algebra has been described by [Paparizos 02]. The operators there
are more or less a 1-to-1 implementation of the logical operators. Therefore, also
Timber’s physical algebra does not clarify how non-tree axes (e. g., the next-sibling
axis) can be evaluated. Furthermore, the authors do not state how their structural
join (which is actually an n-way join) is implemented. Because the Timber group
was involved in the development of the twig join operator, we can assume that be-
hind the physical structural join a twig join algorithm does its work. On the other
hand, [Chen 03c] show how structural joins are used to implement generalized twig
patterns. No further details on alternative algorithms are published in the Tim-
ber context. However, a paper on structural join reordering has been published by
[Wu 03].

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

8.7 Related Work 277

DB2 pureXML

As we have seen in Section 7.4.5, DB2 pureXML allows to define CAS indexes. These
indexes can be created over XML-typed relational columns. During query process-
ing, they are used to prune the set of documents to be searched. Index applicability
is decided with the help of the framework developed by [Balmin 04]. To find match-
ing indexes, the query processor has to match the query path pattern against all
index definition patterns. This process is naturally more complex than our simple
PCR hash-lookup for index matching.

When an index has been matched, its integration into a query plan is implemented
by a so-called XISCAN operator (i. e., by an index scan algorithm). Several XISCAN
operators can be combined by a special XANDOR operator to combine CAS index
usage. According to [Balmin 06], the XANDOR operator is conceptually similar to
a holistic twig join. The resulting list of XML nodes (retrieved by XISCAN and
combined by XANDOR) can then be used as a context set of starting points for
the XSCAN operator. Basically, the XSCAN operator streams through each docu-
ment and evaluates path expressions. Because the DB2 indexes can contain false
positives, the path patterns used to access the indexes in the first place are again
evaluated by the XSCAN operator to remove these false positives. Note, this is not
necessary in our approach, because the results of the indexes can be directly mate-
rialized or processed by further operators without a verification against the docu-
ment. How query plans look like, when no indexes can be applied, is not described
by [Balmin 06]. However, a positive point is that DB2 pureXML has a cost model
and a cardinality estimation component. It is, therefore, the only system discussed
here, which is able to execute cost-based plan generation.

Natix

The basic access primitives in Natix are navigations over the document store
[Helmer 02]. [May 06a] have compared navigational access with index-based struc-
tural joins. It is, however, not clear whether Natix is able to generate plans with
structural joins or whether these operators were just implemented for comparison.
Some optimization for in-memory grouping have been published [May 05]. How-
ever, sophisticated access operators, like the holistic twig join or path and CAS in-
dexes, are not available in the system’s physical algebra.

XQuery/MonetDB

As we have seen, XQuery/MonetDB consists of the Pathfinder XQuery frontend
[Boncz 05b] and the MonetDB relational main-memory DBMS as backend. There-
fore, Pathfinder compiles XQuery into relational algebra. To inject tree-awareness
into the relational algebra, they proposed the staircase join operator [Grust 03b],
which was classified in Section 8.7.2 as a structural join operator. Because the back-
end is main-memory-based, no path/CAS index structures or more complex twig
join algorithms were proposed. The authors of the system frequently state that
pathfinder can generate efficient query plans for any relational DBMS. However,
their optimizations are often tightly coupled to the specifics of the MonetDB sys-
tem (for an example, consider the work of [Boncz 06b] which discusses updates).
[Grust 07] have shown some results using IBM’s DB2. However, the queries used
in their experimental results are simplest path queries that make no conclusions on
more complex queries possible.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

278 Chapter 8: The Physical Algebra

In our opinion, the major problem of the Pathfinder approach when implemented
on other DBMSs than MonetDB is the scan-and-skip fashion of the staircase join
operator. As we will see in our experiments with the similar NavTree operator,
scan-and-skip imply frequent index open/close operations.

8.8 Summary

This chapter concludes the main contribution of this thesis. It introduced the basic
path processing algorithms in the form of navigational, join-based, and index-based
operators to XTC physical XML algebra. The remaining non-PPOs are more or less
direct “translations” of the algorithms presented in Chapter 4 and 5 into the ONC
protocol. To ensure a meaningful integration of holistic twig joins into the physi-
cal algebra, we have extended the TwigOptimal algorithm to support a quite wide
range of features such as optional edges, positional predicates, output expressions,
filters, grouping etc. Furthermore, we have shown how the result of path/CAS in-
dexes can be embedded via an ancestor tuple builder into the join algorithm, thus,
making index intersection possible. To the best of our knowledge, the resulting ex-
tended TwigOpt algorithm is the most expressive (w. r. t. functionality) and flexible
(w. r. t. input sources) algorithm published so far.

Of the five competitor systems, only DB2 provides for similar indexing techniques,
and only DB2 and (possibly) Timber4 can generate plans based on twig joins. How-
ever, in DB2 indexes are not as tightly integrated as in our system, making a re-
evaluation of already matched paths on the document necessary. In the next chap-
ter, we will assess XTC’s query processor in an experimental evaluation.

4... we are not quite sure on this point.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Part IV

Experimental Evaluation and
Future Research

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 9 Experimental Results

My experiments did not turn out quite
like yours Henry. But science, like love,
has her little surprises—as you shall
see.

Dr. Septimus Pretorius

In this chapter, we empirically assessed and compared the concepts developed in
this thesis. In our experiments, we expored the proposed document storage and
low-level XML processing techniques (i. e., scan and DOM operations). To analyze
our query processing approach, we regarded different types of query plans (i. e.,
nested vs. unnested plans), physical operators (structural joins vs. twig joins), and
physical database layouts (i. e., XML indexing strategies). Before discussing these
issues, however, we explain the experimental setup.

9.1 Experimental Setup

The XTC server ran on a host system to which we connected with the help of a
benchmark client. The client stored/retrieved documents and issued queries. As
we have discussed, the query compiler of the XTC system can be configured by a
set of simplification, rewriting, and plan generation rules. These rules are declared
in an XML file which is read by the XTC server during system startup.

The host system had an Intel XEON quad core (3350) 2,66GHz CPU with 4096 MB
of DDR2 RAM and a 500GB SATA II disk connected via RAID III. On the host was
equipped with Ubuntu Linux (kernel “2.6.24-16-server”) and a Java Runtime Envi-
ronment (version “1.6.0_07”).

XTC was started with an initial main-memory size of 265 MB and was allowed to
consume up to 1200 MB. XTC is a multi-threaded server. However, although the
server runs on a quad-core machine, the query processor used only one thread
to evaluate a query. No intra-query parallelization is implemented so far. The
database buffer was configured with 250 8K buffer pages. Performance timings
were recorded on the server side. This means that the resulting numbers do not
contain network time. All queries were executed on a cold buffer and have been
repeated 35 times. As an exception, we measured extremely long running queries
(i. e., queries that ran longer than one minute) only once. When, the compiler con-
figuration or the physical layout of the database changed during a benchmark,
the server was restarted. In the following query processing benchmarks (Section

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

282 Chapter 9: Experimental Results

9.3), we configured the query engine with many different compiler configurations.
Therefore, many different query plans were generated. To facilitate the understand-
ing of the plans, we executed all queries, collected the XQGM instances and the
physical plans, and published them online [Mathis 09].

9.2 Document Processing

In our first set of tests, we assessed document storage and low-level operations,
such as scanning and navigation. For the benchmark, we used the documents from
Table 6.1 on Page 164, of which the first five are real-world documents taken from
[Miklau 09] and of which the last one is a synthetic XMark document [Schmidt 02]
with a size of 100 MB.

9.2.1 Space Consumption

First, we measured the space consumption of the XML documents. Figure 9.1a
presents the consumption in the external format (i. e., serialized as a text file on
disk), in the node-oriented format (i. e., with inner structure), and in the path-
oriented format (i. e., with virtualized inner structure). Figure 9.1b shows the rel-
ative space consumption of the node-oriented and the path-oriented formats w. r. t.
the external format. As you can see, the both internal formats required substantially
less space than the external format. Furthermore, in all cases, the path-oriented al-
ternative could further reduce the space consumption, even for the highly irregular
Treebank document.

Figure 9.1 Space consumption: external vs. node-oriented vs. path-oriented

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.2 Document Processing 283

Figure 9.2 Storage time: node-oriented vs. path-oriented

9.2.2 Storage and Reconstruction

In the next test, we measured the storage and reconstruction timings on the tested
document collection. In the benchmark, the documents already resided on the host
machine such that a transmission over the network could be avoided. For recon-
struction, we scanned 1,000,000 nodes of the document and (internally) measured
the elapsed time until all nodes were fetched. The results are shown in Figures 9.2
and 9.3 (again with absolute and relative performance figures). With the exception
of the XMark reconstruction column in Figure 9.3, the path-oriented approach was
always the winner, although we admit that the difference in the reconstruction fig-
ure is not that significant. However, we can also state that the path-oriented storage
worked well even on the highly irregular Treebank document (which was the only
document whose path synopsis did not fit into one page).

9.2.3 Navigation Performance

In the next experiment, we explored the navigation performance resulting from our
two storage formats. Therefore, we executed a DOM walk over the document with
100,000 steps and recorded the average time for each of the four navigation direc-
tions: first child, last child, previous sibling, and following sibling. The results
are shown in Figure 9.4. Again the path-oriented storage variant (PO) was almost
always faster than the node-oriented variant (NO). The numbers reflect our worst-
case estimations from Section 6.3.4: when ht is the height of the B*-tree of the docu-
ment container, then NO-based navigation requires 2∗ht +1 page access operations
in the worst-case, whereas the PO-based navigation requires only ht + 1.

To summarize, we can say that the performance and space-consumption differences
are document-dependent (e. g., Lineitem vs. XMark) and, furthermore, in most doc-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

284 Chapter 9: Experimental Results

Figure 9.3 Reconstruction time: node-oriented vs. path-oriented

Figure 9.4 Navigation time: node-oriented vs. path-oriented

uments tested, the path-oriented implementation had advantages (even on struc-
turally complex documents). In the next section, we will examine the query proces-
sor and the physical operators that work on the database layout.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.3 Path Processing Operators and Query Plans 285

9.3 Path Processing Operators and Query Plans

Physical operators have been discussed in the previous chapter. In this section,
we want to assess the various PPOs introduced, in particular navigational, join-
based, and index-based path matching operators. To do so, we configured the query
processor to generate plans that make use of a certain PPO as much as possible.
We also explored different implementations of query plans (i. e., nested plans vs.
unnested plans).

9.3.1 Navigational PPOs

The following benchmark was executed on a 10MB XMark document. We defined
two setups: In the basic setup, the document was not indexed at all. Thus, all oper-
ators had to navigate or stream through the document. In the indexed setup, a plain
element index (without further path information) existed. For the evaluation of the
queries in the following tests, we configured the query processor to generate plans
based on navigational and on join-based primitives. The following scenarios were
explored:

• The plan remained nested.

N1) Node access operators were mapped to single-node navigational access algo-
rithms (AxisStepNavigationalOperator).

Listing 9.1 Path queries (partly drawn from the XPathMark benchmark)

q1: //site/people/person/name

q2: //site//people//person[.//name][.//age]//income

q3: //text[bold]/MPH/keyword

q4: //listitem[.//bold]/text//emph

q5: //listitem[.//bold]/text[.//emph]/keyword

q6: /site/closed_auctions/closed_auction/annotation/ description/text/keyword

q7: //closed_auction//keyword

q8: /site/closed_auctions/closed_auction//keyword

q9: /site/closed_auctions/closed_auction[annotation/ description/text/keyword]/date

q10: /site/closed_auctions/closed_auction[descendant::keyword]/date

q11: /site/people/person[profile/gender and profile/age]/name

q12: /site/people/person[phone or homepage]/name

q13: /site/people/person

[address and (phone or homepage) and (creditcard or profile)]/name

q14: //person[profile/@income]/name

q15: /site/people/person[profile/age >= 18 and profile/@income < 10000

and address/city != ’Dallas’]/name

q16: /site/open_auctions/open_auction[bidder/increas e = current]/interval

q17: /site/open_auctions/open_auction[(count(bidder) mod 2) = 0]/interval

q18: (count(//text) + count(//bold) + count(//emph) + count(//keyword))

q19: /site/open_auctions/open_auction[sum(bidder/increase) > 10 * initial]/interval

q20: /site/open_auctions/open_auction

[sum(bidder/increase) != (current - initial)]/interval

q21: /site/regions/europe/item/description/ descendant::keyword[last()]

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

286 Chapter 9: Experimental Results

N2) Node access operators were mapped to single-node scan-based algorithms
on the document store (AxisStepDocScanOperator).

N3) Node access operators were mapped onto the single-node scan algorithms
on the element index (AxisStepElIdxScanOperator).

• The plan was unnested.

U1) Structural join operators were implemented by the NavTree oper-
ator with the navigational access algorithm as base implementation
(AxisStepNavigationalOperator).

U2) Structural join operators were implemented by the NavTree opera-
tor with the scan-based access algorithms as base implementation
(AxisStepDocScanOperator).

U3) Structural join operators were implemented by the NavTree operator with
the scan-based access algorithms on the element index as base implementa-
tion (AxisStepElIdxScanOperator).

U4) Structural join operators were implemented by the StackTree algorithm. The
input was delivered by a shared document scan.

U5) Structural join operators were implemented by the StackTree algorithm. The
input was delivered by (shared) element index scans.

Scenarios N1 to N3 correspond to what the XQuery Formal Semantics specifies as
evaluation model. Only the descendant-or-self removal rewriting rule (see
Section 5.3) was activated. In scenarios U1 to U5, all rewriting rules were applied,
with the exception of the twig discovery rule (thus, all structural joins generated
during unnesting have to be mapped to physical structural joins). Note, already
here, we injected the structural join operator to enable a comparison with join-based
query evaluation.

Path Queries

We first consider the query set shown in Listing 9.1. Essentially, it contains a set of
path queries over the XMark document. Some of these queries were drawn from the
XPathMark benchmark [Franceschet 05]. The result of the benchmark run is shown
in Figure 9.5. The first three charts present the run time of groups N1–N3, U1–U3,
and U4–U5. The last chart compares the best evaluation strategy of each group. Let
us consider Figure 9.5a first. Here, the queries remained nested and we applied a
navigational evaluation (N1), a document-scan-based evaluation (N2), and a scan-
based evaluation over the element index (N3). The dominating column scheme is
that of query q01 : navigation (N1) is slower than document scan (N2), and this
document scan is slower than an element index scan (N3). This scheme holds for
queries q1 to q5 , q7 , q14 , and q18 . Common to (almost all of) these queries is
that they make use of the ‘//’ step. In these cases, given a context node, scanning
the document or the element index below this context node is more efficient than
navigating the subtree. Another colum scheme can be observed for queries q06 ,
q09 , q19 , and q20 : Here, the navigational algorithm (N1) is the winner. Common
to all these queries is that they define a long path with child axes only. Finally, there
are situations, when node-wise navigation (N1) is comparable to a node-at-a-time
element index scan (N3), e. g., q11 to q13 . These queries do also not contain a de-
scendant axis. However, they all have some predicate, which gives the navigational
evaluation (N1) a little disadvantage w. r. t. the scan-based mode (N3).

Note, preferring a node-a-a-time document scan (N2) over navigational access (N1),

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.3 Path Processing Operators and Query Plans 287

Figure 9.5 Path evaluation benchmark under scenarios N1–N3 and U1–U5 on a 10MB XMark document

e. g., when an element index is missing, is a good idea in some cases (mainly, when
‘//’ axes are involved; see q18). However, the operator should be handled with
care, when the axis is selective. Then, it scans the complete subtree, even if only a
few nodes will be returned. To decide, which algorithm should be used for a given
XQGM node access operator, statistics and cardinality estimations are required.

In Figure 9.5b, the results of the NavTree operator are presented. Here, the queries
are unnested (in contrast to Figure 9.5a). The NavTree operator received the pre-
vious types of single-node navigational algorithms as base implementation. As
you can see, there is no significant difference between the nested (N1–N3) and the
unnested (U1–U3) evaluation mode. This essentially means that the NavTree oper-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

288 Chapter 9: Experimental Results

ator was not able to effectively prune the input set of context nodes during evalua-
tion. Because of the pruning overhead, some queries are even a little bit slower than
in the nested version (e. g., U3 vs. N3 on q18).

In settings U4 and U5, we used the structural join operator instead of the NavTree
operator to evaluate the path queries. Therefore, the queries were unnested by the
rewriter. The input to this operator was either given by a document scan (U4) or
by an element index scan (U5). As you can see in Figure 9.5c, for all queries, the
document-scan-based evaluation required roughly one second, while the element
index scan was substantially faster.

The last chart in Figure 9.5c compares the best run times of all three groups with
each other. The nested and unnested node-at-a-time evaluation delivers compara-
ble performance results. However, when an element index is available, the (bulk)
stream-based evaluation using the StackTree operator beats the node-at-a-time eval-
uation mode often by at least on order of magnitude (even if the node-at-a-time
evaluation also operates on the element index). The rationale is the expensive ran-
dom access imposed by the node-at-a-time algorithms, where indexes have to be
frequently opened/closed to retrieve only a small number of nodes per look-up.

NavTree vs. Nested Evaluation (Reloaded)

Previously, the NavTree operator did not have any advantage over the nested query
evaluation. The effect of pruning the sequence of context nodes depends on the
query and the shape of the document. To illustrate that the NavTree operator can be
superior, we constructed queries nt01 to nt05 from the following pattern:
count(doc("auction.xml")//open_auctions/

open_auction[position() > $n]/ following-sibling::open_auction)

Parameter $n was set to 0, 250, 500, 750, and 1000 (note, the result returned for
nt01 is 1066). The benchmark was conducted on a 10MB XMark document, where
we only considered scenarios N3 and U3 (both operating on the element index).
The result is shown in Figure 9.6: The nested version performs significantly worse
than the unnested version using the NavTree algorithm. Essentially, the latter one
receives an input sequence of open_auction elements. The following-sibling axis is
only evaluated on the first element; the remaining elements are pruned. That the
nested version, in fact, evaluates the following-sibling axis on all nodes in the con-
text sequence (scenario N3) can easily be recognized by the correlation between the
query time and the number of nodes in sequence s (configured by parameter $n).

XMark Queries

To assess the performance of the various operators in more complex queries, we
also ran the 20 XMark queries (see Appendix B). The plan generator was again
configured to deliver the eight scenarios from the beginning of this section. Figure
9.7 shows the result on a 10MB XMark document. Basically, what we have found
during our path-only benchmark also holds true for the XMark queries: Comparing
N1–N3 in Figure 9.7a, queries xm01 to xm05 contain long paths with child axes
only. As we have seen before, N1 can beat a node-wise element index access (N3).
Queries xm06, xm07, and xm14 contain at least one ‘//’ step but, again, N3 beats
N1 and N2. Queries xm08 to xm12 are quite interesting. As you can see, their
performance is poor on any evaluation scheme. The reason for this effect is that
these queries compute at least one value-based join. Due to the nested-loop join

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.3 Path Processing Operators and Query Plans 289

Figure 9.6 Effects of context-sequence pruning

Figure 9.7 XMark evaluation under scenarios N1–N3 and U1–U5 on a 10MB XMark document

evaluation implied by the Formal Semantics (N1–N3), the query plans waste a lot
of time for evaluating the inner expressions in such a join over and over again. For

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

290 Chapter 9: Experimental Results

the remaining queries, N1 and N3 show a similar performance, while N2 is the clear
looser.

Let us now consider the unnested version which is based on the NavTree operator
(Figure 9.7b). For all queries except xm08 to xm12, we received comparable perfor-
mane numbers w. r. t. the nested version. The rationale is that, again, the NavTree
operator can obviously not successfully prune its context sequences. For the join-
based queries (xm8– xm12), however, we can detect a substantial performance boost
(one and a half to three orders of magnitude). The reason for that is, however, not
the NavTree operator, but the more intelligent evaluation of the join-based queries.
As explained in Section 8.6.3, we can avoid evaluating independent subqueries by
mapping the XQGM operator with the join predicate to a hash join or a merge join.
This happened in U1–U3.

Comparing structural joins with a document scan as input (U4) to structural joins
on the element index (U5), Figure 9.7c resembles the corresponding chart from
the path-based test. Note here again that the document-scan-based plans require
around one second for the evaluation of almost any query. Even on the more com-
plex XMark queries, the timings for the document-scan-based evaluation ranged
around one second. Obviously, the processing speed is more influenced by I/O time
(i. e., to scan the document) than by the main-memory processing time required by
the plan operators.

The group comparison in Figure 9.7d again underlines the large performance gap
between the nested and the unnested version of the query plans for the join queries.
In summary, if an element index is available, the evaluation based on the struc-
tural join delivered the most stable and, in most cases, the fastest processing results.
Therefore, we use structural joins as a baseline for the following experiments.

9.3.2 Join-Based PPOs

Join-based PPOs can only support query evaluation for certain axes. In case of the
structural join, axes child, descendant, descendant-or-self, parent, ancestor, ancestor-or-
self, and attribute are supported. Our twig join algorithm can only evaluate child,
descendant, and attribute queries. All other axes have to be evaluated by navigations
or by document scans, where the performance shown in the previous experiments
can be expected. However, because “downward” axes are quite frequent in many
XML queries, their optimization makes sense. In this section, we now want to see
what further speed-ups can be achieved by using the twig join operator.

STJ vs. HTJ

To compare STJ-based plans with HTJ-based plans, we defined a new query pro-
cessor configuration named T1: In T1, the query is unnested and twig discovery is
enabled. The input of the twig operator is delivered by a (shared) element index
scan. With this setting, we can directly compare T1 with U5 from the previous sec-
tion. To do so, we extended the set of queried documents and the set of queries.
In the literature on twig query processing, the three most cited experiment docu-
ments are DBLP, Treebank, and the XMark document. For our benchmark, we used
a DBLP document of 128MB size. The Treebank document had a size of 83 MB, and
the XMark document on of 112 MB. We tested the path queries introduced in the
previous chapter (i. e., the queries of Listing 9.1) and, additionally, the path queries

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.3 Path Processing Operators and Query Plans 291

Figure 9.8 STJ. vs. HTJ on the element index (U5 vs. T1)

we collected from the literature (e. g., from [Qin 07]). The additional queries can be
found in Appendix B.

The benchmark result is shown in Figure 9.8. The first figure contains the absolute
evaluation timings, whereas the second figure presents the speed-up of the HTJ
operator w. r. t. the STJ-base evaluation. With the results from the literature in mind
(e. g., [Bruno 02, Qin 07]), we expected the twig join to be the clear winner in this
benchmark. However, as it turned out, the differences are not as high. Only on
d1 , d7 , t1 , q1 , and q22 , the twig algorithm is by far the better alternative. In

Listing 9.2 Queries on the MemBeR document

m0: count(//t23)

m1: count(//t23/t24)

m2: count(//t23[t26]/t24)

m3: count(//t23[t26]/t24/t31)

m4: count(//t23[t26/t32]/t24/t31)

m5: count(//t23[t26/t32 or t24/t31])

m6: count(//t13[t24][t25][t33][t20])

m7: count(//t23//t24)

m8: count(//t23[.//t26]//t24)

m9: count(//t23[.//t26]//t24//t31)

m10: count(//t23[.//t26//t32]//t24//t31)

m11: count(//t23[.//t26//t32 or .//t24//t31])

m12: count(//t13[.//t24][.//t25][.//t33][.//t20])

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

292 Chapter 9: Experimental Results

Figure 9.9 MemBer benchmark results

most other queries, the twig algorithm performs better (mind the logarithmic scale),
but the speed-up is not breath-taking as expected. To analyze these circumstances
and to see whether our twig implementation caused any problems, we profiled our
implementation on various queries. For both, the STJ and the HTJ, the determining
factor for the processing speed was I/O. In the hotspot analysis, I/O subroutines
occurred on the first ranks; method calls of the STJ or HTJ operators occurred way
further down the list.

To further check this theory, we conducted another experiment on a synthetic Mem-
BeR document [Afanasiev 05]. The MemBeR data generator produces a more or less
balanced tree, where the depth, the fan-out, the number of different tags (and their
names), the assignment of tags to levels, and the distribution of tags can be con-
figured. The configuration file for this experiment can be found in Appendix B
(“MemBeR File 1”). The resulting document is more or less balanced with a size of
11 MB, has 50 different evenly distributed tag names, and a pre-defined fanout of
6. On this document, we posed the 13 queries of Listing 9.2, which delivered the
timings shown in Figure 9.9.

Again, STJ and HTJ show comparable performance. The good thing with evenly
distributed tag names is that every tag name has roughly the same cardinality.
Therefore, an element index scan over a tag name requires the same time for every
name. You can see the raw performance of an element index scan in the column for
m0. It takes around 60 milliseconds (to retrieve roughly 25000 elements). The query
set is constructed such that 1) the structure of m1to m6resembles the structure of m7
to m12 (the only difference is ‘//’ usage); and 2) from m1 to m4 (m7 to m10) a new
path step is introduced in each query. With the introduction of each step, the query
processing time raises accordingly (nearly by the time for an element index scan).
Query m6 (m11) has as many steps as its predecessor. However, the or predicate
implies some additional evaluation overhead. On the other hand, query m6 (m12)
(also having five steps) is faster. The explanation is that the element index scan is
partitioned (not the complete index is read, as in m0). Therefore, if the plan detects
that no more results can be generated, the scan stops before all elements have been
retrieved. Therefore, for most queries, the performance of STJ plans and HTJ plans
mainly depends on the number of XML nodes read from external memory.

If a node has been read from external memory, it does not cause substantial main-
memory processing costs. Therefore, the essential idea of holism behind twig joins—
i. e., to discard nodes from which we know that they will not contribute to the final
result—is actually not as critical w. r. t. query performance as one might get the im-

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.3 Path Processing Operators and Query Plans 293

Figure 9.10 STJ vs. HTJ on XMark

pression from the literature. Even on the highly irregular and recursive Treebank
document, the performance of STJ vs. HTJ was comparable, although the HTJ op-
erator has the opportunity to discard XML nodes early. Therefore, what is more
important (w. r. t. our results) is the meaningful restriction of elements read from
external memory. This goal can be achieved by more expressive path indexes.

To conclude the discussion on Figure 9.8, consider the following: In queries q14
and q15 , the structural join performs significantly better. However, this result is
not influenced by the performance of the operators, but by the structure of the plan
generated. Query q14 contains an attribute access and q15 has content predicates.
Both queries cannot be evaluated on the element index alone. They have to access
the document. In the join-based implementation, the plan generator uses a NavTree
algorithm for that. In the case of the twig join, a document scan is used to provide
this input. Therefore, the queries are so relatively slow.

To compare STJ and HTJ on more complex queries, we ran them on the XMark
queries. However, because XMark queries frequently need access to attributes
and check content predicates, we have to take measures to avoid document scans.
Therefore, we allow the HTJ to use a jumping cursor (see Section 8.4.3), whenever
the necessary input cannot be read from the element index. The resulting query
processor configuration is called T2 in the following.

The result is shown in Figure 9.10. Also this experiment underlines our theory that
query processing performance is bound by I/O performance. For purely structural
queries, both alternatives perform comparable, again with a slight advantage for the
HTJ operator, e. g., queries xm2, xm5 to xm7, etc. For queries with a content predi-
cate or for our join queries, the twig alternative is, however, slower, e. g., xm1, xm8
to xm12, etc. Here, the bias towards the STJ operator is more distinctive as before.
The explanation comes from the fact that the jumping cursors of the HTJ operator
need to jump into the document and scan until the first XML node is found that

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

294 Chapter 9: Experimental Results

fulfills the cursor’s predicate. The “jump address” is calculated by the TwigOpt op-
erator during a virtual cursor move. There might be quite some distance between
the jump target to the first result node. On the other hand, in case of STJ plans, a
NavTree operator is responsible for all requests that cannot be evaluated by the ele-
ment index. Obviously, the input of the NavTree operator is a more reliable source
for finding information, because the input nodes have been computed by document
access (and not by virtual address computation).

HTJ vs. HTJ

Our HTJ implementation is quite flexible w. r. t. its input cursors. In the next test, we
want to see what happens, when we let the HTJ algorithm run on different cursor
types. Therefore, we configure the query processor to produce the following four
scenarios:

T1) As before, the element index is scanned.

T2) As before, the element index is scanned, but all information not provided by that
index is retrieved by jumping cursors.

T3) A shared document scan serves the input.

T4) Jumping cursors are used exclusively (preferring jumps on the element index
rather than the document index if possible).

The result is shown in Figure 9.11. T1 and T2 are equal, when all input cursors can
be served by the element index. Otherwise, T2 (using a jumping cursor) is the better
strategy over T1 (using a document scan). Scenario T3 (shared document scan)
produces relatively constant result timings (as before) but is always worse than T1
and T2. T4 (purely jumping) is almost always worse than T1 and T2. Therefore,
generally relying on a jumping input cursor, as suggested in the original TwigOpt
paper by [Fontoura 05], is not a good idea.

Jumping HTJ Cursors Reloaded

To show that jumping cursors can have a positive effect on query performance, we
generated a set of documents using the MemBeR benchmark generator. The gener-
ator configuration file in shown in Appendix B (“MemBeR File 2”). The resulting
document has a structure as depicted in Figure 9.12. The root node is named x and
has a fan-out of 100000 nodes. At the second level, nodes a and h can occur. We
vary the frequency of a nodes from 0.1% in document member01 to 50% in docu-
ment member50. The corresponding frequency for h nodes is set such that the sum
of both frequencies is 100% (as required by the MemBeR data generator). The nodes
(b and c) at the third level have a fan-out of 1 (i. e., exactly on child) and are evenly
distributed. The fourth level is self-describing.

On these documents, we issued one and the same query: //a[b/d]/c[e] and
compared scenario T1 (index scan) with T4 (purely jumping). The result is shown
in Figure 9.13. On the highly selective documents (only few a nodes), the jumping
twig implementation is the clear winner. The ratio flips at approximately 1%. Then,
the scan-based implementation is faster. Clearly, the cursor configuration to choose
for a given twig query and a document requires a cost-based decision.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.3 Path Processing Operators and Query Plans 295

Figure 9.11 HTJ vs. HTJ on XMark

Figure 9.12 Structure of the MemBeR documents

Figure 9.13 HTJ vs. HTJ on the MemBeR documents

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

296 Chapter 9: Experimental Results

Figure 9.14 Path queries on path indexes

9.3.3 Index-Based PPOs

At this point, we finish the discussion on operators that work on plain indexes (i. e.,
on the document and the element index). In the next experiments, we added content
indexes, path indexes, and CAS indexes as further access structures.

Simple Index Mapping vs. Complex Index Mapping

Let us first consider how we can speed up path queries without content predicates.
To do so, we restrict the query set shown in Figure 9.1 by removing the content-
based queries q15 , q16 , q19 , and q20 . Furthermore, we parameterize the plan
generator such that plans of the following shape are produced:

P1) Simple index mapping: Path indexes are employed to deliver the input of se-
quence access operators. However, they are not integrated (i. e., inner elements
are not produced; see Section 8.5.1). Inner elements are read from the element
index.

P2) Complex index mapping: Path indexes are integrated into the twig, as described
in 8.5.2.

As a baseline, we regard setting T2 from the previous section (i. e., a TwigOpt op-
erator over the element index, which jumps when necessary). We create one index
for each name drawn from the “ending node test” of all paths in the query set. For
example, query q1 ends on name, q2 ends on name, age, and income, etc. Therefore,
the indexes I(//name), I(//age), I(//income), ... are created.

The result of the benchmark is shown in Figure 9.14. Figure 9.14a presents the ab-
solute query timings. Let us consider T2 (evaluation on the element index) vs. P1
(simple path index mapping) first: As you can see, on almost all queries, the path

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.3 Path Processing Operators and Query Plans 297

index reduces the query times. However, some gaps are larger than others. The
reason behind this behavior is the way how we defined the path indexes and how
the queries make use of them. For example, consider query q6 . For this query,
the element index returns all keyword elements for the bottom-most sequence ac-
cess operator. In contrast, path index I(//keyword) returns only those keyword nodes
that reside on the specified path, thus, effectively pruning the number of nodes pro-
cessed. In other words: the keyword element occurs under 96 different paths (PCRs)
in the document, of which only those elements are chosen and delivered by the path
index that reside on exactly one path (PCR). In contrast, the element index returns
all keyword elements.

However, this pruning technique does not always work. Consider, for example,
path index I(//age). Because age elements occur on only one path in the document,
the path index is as good as the element index, i. e., it returns the same number of
nodes on queries involving an age step. In this case, the path index can even per-
form worse than a simple element index scan, because the number of bytes read by
the path index is larger than of using the element index (in contrast to the element
index, the path index also contains PCR information). As a result, the overall query
performance might be even worse. This situation occurs in query q17 . This con-
sideration has to be taken into account during the creation of a set of indexes for a
given query workload.

Next, let us compare P1 (simple path mapping) with P2 (complex/integrated path
mapping). The speed-up gained by embedding path indexes into the TwigOpt op-
erator is shown in Figure 9.14b. Again, the reduction of the number of XML nodes
read for query evaluation is significant for the evaluation time. The more nodes can
be saved, the lower the time. Because in P2, inner elements are reconstructed, we do
not need to query the element index to return them. Of course, the effect on queries
with long paths is most significant, e. g., q2 , q6 , q9 , and q21 . On short paths, the
effect is, however, hardly significant, e. g., q7 . Furthermore, when inner nodes on
the queried path do not occur frequently, the effect is also not significant. Query
q8 is an example. Elements site and closed_auctions appear only once in the whole
document. Their computation using a path index does not deliver any significant
improvement over an access to the element index.

Query q14 seems to be an outlier. Here, both alternatives (P1 and P2) read the same
number of XML nodes from path indexes. Therefore, no performance gain from
embedding the indexes can be expected. Alternative P2 performs worse because of
the integration cost into the TwigOpt operator (via the ancestor tuple builder).

In summary, for most of the queries shown, the use of a path index (and its em-
bedding into the TwigOpt operator) results in a performance gain. However, as we
have seen, a path index on all XML nodes with the same name does not guarantee
any advantage over the element index per se. Only when the number of processed
nodes can be restricted by the path index, an effect can be expected.

Content Index vs. CAS Index

In our next experiment, we considered queries with content predicates. The setting
was slightly different than before: We did not alter the compiler configuration, but
the physical database layout. Essentially, we modified the set of indexes available
and chose the P2 option as compiler configuration. We generated the following
physical database layouts (note, an element index existed in all configurations):

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

298 Chapter 9: Experimental Results

C1) Only the element index is available. This is our baseline for the experiment.
CAS queries are evaluated by matching the structure first. On the matched XML
nodes, the content is then checked via node-at-a-time look-ups in the document.

C2) An additional content index for element and attribute content exists. Queries
are evaluated by matching the content predicate first. From the resulting content
nodes, the parent element is checked by a node-at-a-time lookup in the docu-
ment.

C3) A set of path indexes exists. The path indexes are constructed as before, i. e.,
by deriving the index definition from the last node tests in the query set (intro-
duced below). As in C1, the structural part is evaluated first. However, here, the
matching is boosted by path indexes. The content part has to be evaluated by
node-at-a-time lookups in the document.

C4) A generic CAS index exists, i. e., I(//* ∨ //@*). The CAS index can match both
content and structure. The compiler configuration embeds the index into the
TwigOpt algorithm.

C5) A heterogeneous CAS index exists. The indexed paths are derived from the “end
steps” of the query as before. The index has the form I(//name ∨ //age ∨ . . .).
Again, the index is embedded.

C6) A set of homogeneous CAS indexes exists, i. e., for each “end step” a separate
CAS index is created. Also here, indexes are embedded into the TwigOpt opera-
tor.

In compiler configuration P2, a precedence on the indexes to be used exists with
the following priorities from highest to lowest: CAS, path, content, element index,
document. This means, when a CAS index and an element index are available, P2
chooses the CAS index for the evaluation.

The query set for the experiment re-uses some content-based queries from previous
experiments and also introduces new ones. The new queries are:

c1: count(doc("auction.xml")//item[location="United States"])
c2: count(doc("auction.xml")//item[location[. > "C" and . < "F"]])
c3: doc("auction.xml")//item[description//keyword[. > "e" and . < "l"]]
c4: doc("auction.xml")//item//mail

[from="Arunabha Leitman mailto:Leitman@verity.com" and
to="Tanya Plattner mailto:Plattner@njit.edu"]/date

c5: count(doc("auction.xml")//item[quantity=1][.//keyword[. < "m" and . > "a"]])

From the previous queries, we reused path query q15 and the XMark queries xm1,
xm4, xm5, and xm20. With the benchmark setting, we want to explore two issues:
1. differences between indexes approaches, and 2. differences between generic and
collective CAS indexes. The result of the benchmark is shown in Figure 9.15. First,
we can observe that the evaluation time resulting from CAS index usage (C4 – C6)
is in almost all queries lower than the other indexing approaches (C1 – C3). The
only exception is setting C4 (a generic CAS index) on queries xm5 and xm20. Com-
paring CAS indexes (C4 – C6), we can see that either all indexes deliver a similar
performance (e. g., on c1 or c4), or that the performance increases from the generic
index (C4) over the heterogeneous collective index (C5) to the homogeneous collec-
tive indexes (C6) (e. g., c2 , c3 , or xm5). Again, the performance speed-up directly
depends on the number of XML nodes read. For example, in query c2 , the generic
CAS index contains more nodes between “C” and “F” than the heterogeneous col-
lective index, and, in turn, the heterogeneous index contains more nodes than the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.3 Path Processing Operators and Query Plans 299

Figure 9.15 CAS queries on indexed document

homogeneous index. The higher the selectivity of the index, the better for query
performance. For some queries and indexes, no effect can be achieved, because the
same amount of nodes has to be read from the index (e. g., c1).

Considering settings C1 – C3, we can observe that the pure content index (C2) often
suffers a substantial performance penalty. The reason behind this problem is that in
range queries, many possible content nodes can contribute to the final result. For
each content node, its parent is resolved by a look-up in the document, which im-
plies random I/O and is obviously expensive. However, when the number of nodes
to be checked against the document is small, the content index can also deliver good
performance (e. g., in query c1). Using path indexes to speed-up CAS queries (C3)
does not always provide a better performance than just the plain element index
(C1). Only for queries xm1 and xm4, a substantial speed-up can be detected.

In summary, the experiment affirmed the rationale behind our CAS indexes. They
beat the plain content and element index as well as purely structural path indexes.
Furthermore, adjusting index selectivity influences the query performance.

DeweyID Clustering vs. PCR Clustering

In our next experiment, we compare the two clustering strategies for path and CAS
indexes, namely DeweyID clustering and PCR clustering. Therefore, we created
a path index I1(//keyword) with DeweyID clustering and with PCR clustering on a
100MB XMark document. In total, the index contains keyword elements with 99 dif-
fering PCRs. For DeweyID clustering, the key-value pairs of the index are ordered
by the DeweyIDs. Thus, to retrieve all keyword elements with PCR 7 and 13 (for
example), the index is scanned and all keywords not having PCR 7 or 13 are skipped.
In PCR clustering, the pairs are ordered by PCR. Thus, to retrieve keyword elements
with PCR 7 or 13, the index access operator retrieves all keyword elements with PCR
7, then it retrieves all elements with PCR 13, and, finally, the partitions are merged
(to produce a result in document order).

To test for varying selectivities, the following query set has been designed:

sp1 (1 PCR):
count(doc("auction.xml")//categories/category/description/te xt/emph/keyword)
sp2 (2 PCRs):
count(doc("auction.xml")//annotation/description/parlist/lis titem/text/emph/keyword)
sp3 (9 PCRs):

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

300 Chapter 9: Experimental Results

Figure 9.16 DeweyID clustering vs. PCR clustering

count(doc("auction.xml")//description//parlist//parlist//tex t/emph/keyword)
sp4 (18 PCRs):
count(doc("auction.xml")//description//parlist//text/emph/ke yword)
sp5 (27 PCRs):
count(doc("auction.xml")//description//text/emph/keyword)
sp6 (33 PCRs):
count(doc("auction.xml")//text/bold/keyword)
sp7 (81 PCRs):
count(doc("auction.xml")//description//keyword)
sp8 (99 PCRs):
count(doc("auction.xml")//keyword)

Each query has a different selectivity (starting with the highest). Query sp1 only
returns keyword elements of a single path class. Query sp2 accesses two path classes,
sp3 nine, and so on. Finally, sp8 accesses all path classes.

The result of the benchmark is shown in Figure 9.16. When the selectivity is lower
than 10% (i. e., queries sp1 to sp3), PCR clustering has an advantage. On query sp4
the ratio is balanced. For the remaining queries, DeweyID clustering wins. Here,
it is obviously cheaper to simply scan the path index than to retrieve and merge
multiple partitions. These characteristics have to be considered, when indexes are
defined for query sets.

Indexing the XMark Query Set

In our last index-related experiment, we try to optimize the performance of all
XMark queries by defining appropriate indexes. Therefore, we analyzed the XMark
query set and created the indexes in Appendix B (“XMark Indexes”) with DeweyID
clustering on a 10MB XMark document. We configured the compiler with the fol-
lowing four scenarios:

X1) The plan generator does not discover twigs and uses structural joins on the ele-
ment index and on the document for query evaluation.

X2) Holistic twig joins are generated but, as in X1, only the element index and the
document are accessed. Jumping cursors are generated for all input operators
that cannot be implemented via the element index.

X3) Holistic twig joins are generated and path indexed are exploited. However, they
are not embedded into the TwigOpt operator (simple index mapping).

X4) Holistic twig joins are generated and path indexes are embedded (complex index
mapping).

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.4 Other Processing Stages 301

Figure 9.17 Indexing the XMark query set

The result in Figure 9.17 is a little surprising. Only seven queries (xm1, xm4, xm5,
xm12, xm13, xm15, and xm20) show a substantial performance speed-up. Most
of these queries have a content predicate and make use of a CAS index. The cor-
responding STJ and HTJ alternatives (X1 and X2) do not have any content index
and, therefore, have to access the document. On the other queries, either all HTJ
implementations (X2 – X4) show a similar performance (e. g., xm18) or all imple-
mentations reside in similar regions (e. g., xm14). The rationale behind these char-
acteristics is threefold:
1. Many path indexes we have created contain the same information as the element

index, which is used as a fallback solution in X1 and X2. For example, because
the age element only occurs in one path class, index I(//profile/age) contains as
many elements as the corresponding element index for the name age. Therefore,
no substantial performance speed-up can be gained by the path index. Even the
contrary is true: the index contains DeweyIDs and PCRs and is, therefore, larger
than the corresponding element index, which only contains the DeweyID (and
no PCR information).

2. Some queries (e. g., the join-based queries xm8 to xm12) have to access the docu-
ment to evaluate the data function. Compared to an index access, this operation
is expensive and overshadows the performance gain resulting from path index
usage.

3. As we have seen earlier, embedding indexes only works well on longer paths
(because then, the access to inner elements can be avoided). Many of the XMark
queries have, however, short paths.

9.4 Other Processing Stages

In the previous experiments on query evaluation, we have always only recorded
the evaluation time (without translation, optimization, materialization, etc.). How-
ever, because the complete response time of query evaluation does also depend on
these other stages, we measure them here. In the current implementation, the two
most time-consuming operations are the evaluation (shown before) and the mate-
rialization step. Because no matter how a particular query is evaluated, the result
delivered by all alternatives is always the same. This means that the materializa-
tion time is always the same, too. Therefore, we did not include this measure in the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

302 Chapter 9: Experimental Results

Figure 9.18 Ratio of the various query processing stages

previous experiments.

To assess the various stages, we have measured their run time during the previ-
ous experiment in configuration X4. We chose X4, because in this setting, many
rewriting rules are fired and many indexes are taken into account during process-
ing. In the overview, parsing, normalization, static typing, and simplification have
been added up and represented as transformation. The XQGM transformation, query
rewriting, twig discovery, and plan generation timings are contained in the rewriting
figure. Execution and materialization are shown separately.

In all queries, the fraction of the translation time is below 5% and, therefore, quite
negligible. Except for query xm13, the same holds for materialization. For large re-
sults, the materialization time can be a substantial fraction of the overall processing
time. However, because the 20 XMark queries do not generate large results, mate-
rialization plays a minor role here. Finally, for longer running queries (e. g., xm8 to
xm12), the evaluation time is predominating. For short running queries (e. g.xm1),
also the restructuring time plays a role.

9.5 Summary

In this chapter, we have empirically assessed the storage, indexing, and query pro-
cessing techniques developed in this thesis. We first analyzed node-oriented (NO)
and path-oriented (PO) storage. Both formats allowed to substantially reduce the
space consumption for a document compared to the external (text) format. The
space savings ranged from around 15% to 65%. Note, these storage savings were
achieved without compressing the actual content (text) of the document. With text
comression, further space reductions can be achieved [Schmidt 07]. Furthermore,

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

9.5 Summary 303

note that NO has higher information content than the external format and that PO
has higher information content than NO: NO contains all XML nodes (as the ex-
ternal format) and, additionally, node IDs (i. e., DeweyIDs). PO, in turn, contains
all information NO contains and, additionally, provides path information. In our
experiments, we have seen that PO also has advantages over NO w. r. t. space con-
sumption, storage time, scan access, and navigational access.

To assess query processing, we generated various compiler configurations and
database layouts. At the beginning, we only allowed access to the document store
and the element index. This setting is similar to what Natix and Timber provide
as index structures (note, Galax operates in main memory). In this setting, we have
tested path queries and the more complex XMark queries under navigational access
(single-node navigations vs. NavTree) and under scan-based access (i. e., StackTree).
For both query sets, we could not detect a substantial difference between the single-
node navigational approach (i. e., XQuery Formal Semantics) and the multi-node
navigational approach (i. e., NavTree). To show that the NavTree operator actually
can result in a better performance, we had to construct a special experiment. In the
end, the bulk-oriented StackTree operator on the element index was superior to the
node-at-a-time approaches (although the difference on the XMark set was not as
high as on the path set).

In the next experiment, we compared structural joins (StackTree) versus holistic
twig joins (TwigOpt) on an extended set of path queries and on the 20 XMark
queries. As database layout, we still only allowed the document store and the ele-
ment index. The TwigOpt algorithm, therefore, had to use jumping cursors, when
the element index could not provide the TwigOpt input. In the experiment, we
hoped to be able to declare a clear winner. However, this was not possible. For
many queries, the TwigOpt algorithm only showed a slight performance advan-
tage (around 10 – 20%). For some queries, the structural join was even the better
alternative and for other queries, it was the other way around. Especially, when
the TwigOpt operator had to use a jumping cursor, the structural join alternative
was better. Based on the experiments, we could infer the simple heuristics that the
TwigOpt algorithm should always be preferred, except when it has to use a jumping
cursor. In this case, an STJ-based plan should be generated. All in all, we think that
the question STJ vs. HTJ is not the central problem. Restricting I/O is much more
critical than main-memory processing.

In another experiment, we implemented the cursors of the TwigOpt algorithm in
various ways (still on the document store and the element index). The results for the
path queries and the XMark queries revealed that document scans can provide rela-
tively stable results (independent of the query complexity). Furthermore, it showed
that the original idea of the TwigOpt algorithm, to exclusively use jumping cursors,
results in a quite slow execution time (sometimes even slower than the document
scan). Here, again, we had to construct a special experiment to verify that jumping
can have a positive effect. The best TwigOpt result was delivered by the implemen-
tation that combined the element index scan with jumping.

In the remaining experiments, we explored the effects of various indexing tech-
niques on query performance. For the set of path queries, we first tested the effects
of embedding path indexes into the TwigOpt operator vs. join-based evaluation
and non-embedded path indexes. We have seen that embedding works well when
the index used is more selective than the element index and when the paths are

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

304 Chapter 9: Experimental Results

not too short. Then we assessed queries with content predicates and content/ CAS
indexes. We showed that plain content indexes carry the burden of an expensive
post-processing phase to match the structural part of a query. Plain content indexes
were always slower than CAS indexes. Furthermore, we have seen that the query
selectivity plays a major role in influencing the evaluation time. Testing PCR clus-
tering vs. DeweyID clustering, we revealed that explorative queries with descen-
dant steps are better supported by DeweyID-clustered indexes, while more focuses
queries (with only a few path classes) are better supported by PCR-clustered in-
dexes.

Finally, we indexed the XMark document w. r. t. the XMark queries and tested STJ-
based vs. HTJ-based evaluation (with and without embedded indexes). The HTJ
alternative with embedded indexes was the winner in most queries. However, often
enough, the non-embedded alternative showed a similar performance.

In a last test, we revealed the relative time consumption of all query processing
stages. We have seen that the translation into the XQGM representation and the
materialization took only a small fraction of the overall response time. As expected,
the evaluation time required the largest fraction.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Chapter 10 Conclusion and Future
Research

The best thing about the future is that it
comes only one day at a time.

Abraham Lincoln

10.1 Conclusion

This work presented XML storage, indexing, and query processing techniques. The
central contributions can be summarized as follows:

1) the adaption of the relational query processing pipeline for XML queries;

2) the extension of the query graph model to serve as an internal representation for
XML queries (i. e., the XQGM);

3) the specification of the transformation process from an external XQuery expres-
sion to XQGM;

4) the algebraic optimization of XQGM instances (mainly query unnesting and twig
discovery);

5) path-oriented document storage, path indexes, and their interplay;

6) the implementation of a physical XML algebra containing a rich set of alternative
evaluation algorithms; and

7) the development of a plan generator that is able to fully exploit the physical al-
gebra and, therewith, all available access path structures.

Our approach has shown that it is possible to reuse and extend relational techniques
for XML processing. For example, we reused the query processing pipeline, the
concept of a tuple algebra, and the internal query representation. However, as it
turned out, due to the richer XML data model and due to the more complex XQuery
language, substantial extensions and inventions were necessary. For example, at the
logical level, twig discovery became necessary to address the frequent occurrence
of twig patterns in queries. At the physical level, the more complex holistic twig
join operator had to be integrated. Furthermore, path indexes provide much more
information than simple relational indexes. Their integration into query evaluation
plans is, therefore, more complex, too.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

306 Chapter 10: Conclusion and Future Research

However, in the end, all techniques could be implemented in XTC—a native XML
database management system. Using XTC as a testbed, we could compare the var-
ious approaches and reveal their strengths and weaknesses. The query processor
was also demonstrated at the VLDB conference 2008 [Mathis 08]. The demo and the
XTC system will/are also be publicly available at the XTC project site (http://
www.xtc-project.de).

10.2 Future Work

Already in the first chapter, the limitations of this work have been pointed out.
What is still missing for a full-fledged query processor is a statistics component and
a cost model. The statistics component has to deliver information about the internal
structure of the document and about the distribution of content values. The cost
model has to provide information about the resource consumption characteristics
of all algorithms in the physical algebra. Even with a long research history in the
relational context, for XML, these two problems are quite hard to solve. Collecting
statistics is complicated due to the rich structure of the XML data model. Devel-
oping a cost model is complicated due to the expressiveness of the operators in the
physical algebra and the very differing shapes of query plans (nested vs. unnested).

However, we think that, with this work, the foundations for a full-fledged XML
query processor have been laid. The integration of a cost model could be achieved
in a graceful manner: first by considering more fundamental metrics, such as the
number of records in an index, the number of page access operations for certain op-
erators, etc., and, then, by integrating statistics about path and content selectivities.
As a first approach, we could also try to “predict” the number of tuples generated
by the plan operators and use this number as a coarse measure for the evaluation
cost of a subquery. To assess the quality of our predictions, we could simply count
the actual number of returned elements during query evaluation and compare them
with our prediction.

For the development of a cost model, our first experiments presented in the previ-
ous chapter can be used as a starting point. Essentially, we have to “learn” the char-
acteristics of the operators in the physical algebra over a certain statistical distribu-
tion of the input data. To achieve this goal, a data generator would be beneficial that
can be parameterized to produce documents with different statistical distributions
of the XML nodes contained. Then, we could measure the resource consumption
during run time and directly link it with the statistical information of the input.

As we have seen, the operators of the physical algebra build upon basic access prim-
itives, such as scan and navigations. Whenever possible, the cost model should be
designed such that cost (i. e., the resource consumption) of these primitives could be
parameterized, e. g., “fetching 10 nodes in a row from the document store has a cost
of X”. This facilitates the generalization of the cost model and its integration with
other XML database systems and the adaption of new hardware (e. g., flash drives).

Another restriction of this work is the extent where XQuery is supported. Some
missing artifacts of this language could be integrated quite easily, such as type ex-
pressions, more functions, or updates. Other concepts are probably not possible,
i. e., user-defined recursive functions and XQuery scripting [Chamberlin 06]. To en-
able these concepts, the “programming language part” had to be separated from the

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

http://www.xtc-project.de
http://www.xtc-project.de

10.2 Future Work 307

“query processing part” of the language. The first part could then be implemented
as an XQuery interpreter, which calls the query processor whenever a supported
XQuery expression has to be evaluated. However, separating these parts is not triv-
ial, due to the expressiveness of the XQuery language. Finally, it would be nice
to see a large and complex practical application being implemented over the XTC
system and its query processor to further approve the value of our proposed tech-
niques.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

308 Chapter 10: Conclusion and Future Research

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Part V

Appendix

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Bibliography

[Afanasiev 05] L. Afanasiev, I. Manolescu & Ph. Michiels. MemBeR: A Micro-benchmark
Repository for XQuery. In Proc. XSym, pages 144–161, 2005.

[Al-khalifa 02] Shurug Al-khalifa, Jignesh M. Patel, H. V. Jagadish, Divesh Srivastava,
Nick Koudas & Yuqing Wu. Structural joins: A Primitive for Efficient XML
Query Pattern Matching. In Proc. ICDE, pages 141–152, 2002.

[Amer-Yahia 04] Sihem Amer-Yahia, Fang Du & Juliana Freire. A Comprehensive Solution to
the XML-to-Relational Mapping Problem. In Proc. WIDM, pages 31–38, 2004.

[Arion 08] Andrei Arion, Angela Bonifati, Ioana Manolescu & Andrea Pugliese. Path
Summaries and Path Partitioning in Modern XML Databases. World Wide Web,
vol. 11, no. 1, pages 117–151, 2008.

[Balmin 04] Andrey Balmin, Fatma Özcan, Kevin S. Beyer, Roberta J. Cochrane &
Hamid Pirahesh. A Framework for Using Materialized XPath Views in XML
Query Processing. In Proc. VLDB, pages 60–71, 2004.

[Balmin 06] A. Balmin, T. Eliaz, J. Hornibrook, L. Lim, G. M. Lohman, D. Simmen,
M. Wang & C. Zhang. Cost-based Optimization in DB2 XML. IBM Systems
Journal, vol. 45, no. 2, pages 299–319, 2006.

[Banerjee 00] Sandeepan Banerjee, Vishu Krishnamurty, Muralidhar Krishnaprasad &
Ravi Murthy. Oracle8i: The XML Enabled Data Management System. In Proc.
ICDE, pages 561–571, Washington, DC, USA, 2000. IEEE Computer Society.

[Bayer 72] R. Bayer & E. M. McCreight. Organization and Maintenance of large Ordered
Indexes. Acta Informatica, vol. 1, no. 3, pages 173–189, 1972.

[Bayer 77] Rudolf Bayer & Karl Unterauer. Prefix B-Trees. ACM Transactions on
Database Systems, vol. 2, no. 1, pages 11–26, 1977.

[Beeri 99] Catriel Beeri & Yariv Tzaban. SAL: An algebra for Semistructured Data and
XML. In Informal Proc. of Workshop on The Web and Databases, ACM
SIGMOD, pages 37–42, 1999.

[Berglund 04] Andreas Berglund, Scott Boag, Don Chamberlin, Mary Fernández, Michael
Kay, Jonathan Robie & Jérôme Siméon. XML Path Language (XPath) 2.0.
W3C Recommendation, 2004. http://www.w3.org/TR/xpath20/ .

[Beyer 05] Kevin Beyer, Roberta J. Cochrane, Vanja Josifovski, Jim Kleewein, George
Lapis, Guy Lohman, Bob Lyle, Fatma Özcan, Hamid Pirahesh, Normen
Seemann, Tuong Truong, Bert Van der Linden, Brian Vickery & Chun
Zhang. System RX: One Part relational, One Part XML. In Proc. SIGMOD,
pages 347–358, 2005.

[Beyer 06] K. Beyer, R. Cochrane, M. Hvizdos, V. Josifovski, J. Kleewein, G. Lapis,
G. Lohman, R. Lyle, M. Nicola, F. Özcan, H. Pirahesh, N. Seemann,
A. Singh, T. Truong, R. C. Van der Linden, B. Vickery, C. Zhang & G. Zhang.
DB2 Goes Hybrid: Integrating Native XML and XQuery with Relational Data
and SQL. IBM Systems Journal, vol. 45, no. 2, pages 271–298, 2006.

[Boag 04] Scott Boag, Donald Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie & Jérome Siméon. XQuery 1.0: An XML Query Language.
W3C Recommendation, 2004. http://www.w3.org/TR/xquery/ .

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/

312 Bibliography

[Bohannon 02] Philip Bohannon, Juliana Freire, Prasan Roy, & Jérôme Siméon. From XML
Schema to Relations: A Cost-Based Approach to XML Storage. In Proc. ICDE,
pages 64–73, 2002.

[Boncz 99] Peter A. Boncz & Martin L. Kersten. MIL Primitives for Querying a Frag-
mented World. The VLDB Journal, vol. 8, no. 2, pages 101–119, 1999.

[Boncz 05a] Peter Boncz, Stefan Manegold & Jan Rittinger. Updating the Pre/Post Plan
in MonetDB/XQuery. In Informal Proceedings XIME-P Workshop, pages
1190–1193, 2005.

[Boncz 05b] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan
Rittinger & Jens Teubner. Pathfinder: XQuery-The Relational Way. In Proc.
VDLB, pages 1322–1325, 2005. (Demo Paper).

[Boncz 06a] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rit-
tinger & Jens Teubner. MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine. In Proc. SIGMOD, pages 479–490, 2006.

[Boncz 06b] Peter A. Boncz, Jan Flokstra, Torsten Grust, Maurice van Keulen, Ste-
fan Manegold, K. Sjoerd Mullender, Jan Rittinger & Jens Teubner.
MonetDB/XQuery-Consistent and Efficient Updates on the Pre/Post Plane. In
Proc. EDBT, pages 1190–1193, 2006.

[Brantner 05] Matthias Brantner, Carl-Christian Kanne, Sven Helmer & Guido Mo-
erkotte. Full-fledged Algebraic XPath Processing in Natix. In Proc. 21. ICDE
Conference, Tokyo, Japan, pages 705–716, 2005.

[Brantner 06a] Matthias Brantner, Sven Helmer, Carl-Christian Kanne & Guide Moerkotte.
Kappa-Join: Efficient Execution of Existential Quantification in XML Query Lan-
guages. Rapport technique, University of Mannheim, 2006.

[Brantner 06b] Matthias Brantner, Carl-Christian Kanne, Guido Moerkotte & Sven Helmer.
Algebraic Optimization of Nested XPath Expressions. In Proc. ICDE, pages 128–
130, 2006. Poster.

[Bray 06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler & François
Yergeau. Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C Rec-
ommendataon, August 2006. http://www.w3.org/TR/xml/ .

[Bruno 02] Nicolas Bruno, Nick Koudas & Divesh Srivastava. Holistic Twig Joins: Opti-
mal XML Pattern Matching. In Proc. SIGMOD, pages 310–321, 2002.

[Carey 94] Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall,
Mark L. McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H.
Solomon, C. K. Tan, Odysseas G. Tsatalos, Seth J. White & Michael J. Zwill-
ing. Shoring up Persistent Applications. SIGMOD Record, vol. 23, no. 2, pages
383–394, 1994.

[Chamberlin 06] Don Chamberlin, Michael Carey, Daniela Florescu, Donald Kossmann &
Jonathan Robie. XQueryP: Programming with XQuery. In Proc. XIME-P,
pages 801–808, 2006.

[Chamberlin 07a] Don Chamberlin, Daniela Florescu, Jim Melton, Jonathan Robie & Jérôme
Siméon. XQuery Update Facility 1.0. W3C Working Draft, 2007. http://
www.w3.org/TR/xquery-update-10/ .

[Chamberlin 07b] Don Chamberlin, Peter Frankhauser, Daniela Florescu, Massimo Marchiori
& Jonathan Robie. XML Query Use Cases, March 2007. http://www.w3.
org/TR/xquery-use-cases/ .

[Chebotko 07] Artem Chebotko, Mustafa Atay, Shiyong Lu & Farshad Fotouhi. XML
Subtree Reconstruction from Relational Storage of XML Documents. Data and
Knowledge Engineering, vol. 62, no. 2, pages 199–218, 2007.

[Chen 03a] Qun Chen, Andrew Lim & Kian Win Ong. D(k)-Index: An Adaptive Struc-
tural Summary for Graph-Structured Data. In Proc. SIGMOD, pages 134–144,
2003.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/

Bibliography 313

[Chen 03b] Yi Chen, Susan Davidson, Carmem Hara & Yifeng Zheng. RRXS: Redun-
dancy Reducing XML Storage in Relations. In Proc. VLDB, pages 189–200,
2003.

[Chen 03c] Zhimin Chen, H. V. Jagadish, Laks V. S. Lakshmanan & Stelios Papari-
zos. From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation
of XQuery. In Proc. VLDB, pages 237–248, 2003.

[Chen 05] Ting Chen, Jiaheng Lu & Tok Wang Ling. On Boosting Holism in XML Twig
Pattern Matching Using Structural Indexing Techniques. In Proc. SIGMOD,
pages 455–466, 2005.

[Chen 06] Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pin Hsiung, Di-
vyakant Agrawal & K. Selçuk Candan. Twig2Stack: Bottom-Up Processing of
Generalized-Tree-Pattern Queries over XML Documents. In Proc. VLDB, pages
283–294, 2006.

[Chien 02] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras &
Carlo Zaniolo. Efficient Structural Joins on Indexed XML Documents. In Proc.
VLDB, pages 263–274, 2002.

[Choi 07] B. Choi, M. Fernández & J. Siméon. The XQuery Formal Semantics: A Foun-
dation for Implementation and Optimization. W3C Recommendation, January
2007. http://www.w3.org/TR/xquery-semantics/ .

[Clark 99] James Clark & Steve DeRose. XML Path Language (XPath) Version 1.0. W3C
Recommendation, November 1999. http://www.w3.org/TR/xpath .

[Cokus 05] Mike Cokus & Santiago Pericas-Geertsen. XML Binary Characterization
Properties. W3C Working Group Note, March 2005. http://www.w3.
org/TR/xbc-properties .

[Comer 79] Douglas Comer. The Ubiquitous B-Tree. ACM Computing Surveys, vol. 11,
no. 2, pages 121–137, 1979.

[Cooper 01] Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason & Moshe
Shadmon. A Fast Index for Semistructured Data. In Proc. VLDB, pages 341–
350, 2001.

[Cover 05] Robin Cover. XML Applications (XML Coverpages), June 2005. http://
xml.coverpages.org/xmlApplications.html .

[Cowan 04] John Cowan & Richard Tobin. XML Information Set (Second Edition).
W3C Recommendation, February 2004. http://www.w3.org/TR/
xml-infoset/ .

[DeHaan 03] David DeHaan, David Toman, Mariano P. Consens, & M. Tamer Özsu. A
Comprehensive XQuery to SQL Translation using Dynamic Interval Encoding.
In Proc. SIGMOD, pages 623–634, 2003.

[DOM 04] DOM. Document Object Model. W3C Recommendation, April 2004.

[Effelsberg 84] Wolfgang Effelsberg & Theo Härder. Principles of Database Buffer Manage-
ment. ACM Transactions on Database Systems (TODS), vol. 9, no. 4, pages
560–595, 1984.

[Fernández 00] Mary F. Fernández, Jérôme Siméon & Philip Wadler. An Algebra for XML
Query. In Proc. FSTTCS, pages 11–45, 2000.

[Fernández 03] Mary Fernández, Jérôme Siméon, Byron Choi, Amélie Marian & Gargi Sur.
Implementing XQuery 1.0: The Galax Experience. In Proc. VLDB, pages 1077–
1080, 2003.

[Fernández 04] M. Fernández, A. Malhotra, J. March, M. Nagy & N. Walsh. XQuery 1.0 and
XPath 2.0 Data Model. W3C Recommendation, 2004. http://www.w3.
org/TR/xpath-datamodel/ .

[Fernández 05] M. Fernández, J. Hidders, Philippe Michiels, Jérôme Siméon & Roel Ver-
cammen. Optimizing Sorting and Duplicate Elimination. In Proc. DEXA,
pages 554–563, 2005.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xbc-properties
http://www.w3.org/TR/xbc-properties
http://xml.coverpages.org/xmlApplications.html
http://xml.coverpages.org/xmlApplications.html
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/

314 Bibliography

[Fiebig 02] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Ju-
lia Neumann, Robert Schiele & Till Westmann. Anatomy of a Native XML
Base Management Systemor. VLDB Journal, vol. 11, no. 4, pages 292–314,
2002.

[Florescu 99] Daniela Florescu & Donald Kossmann. Storing and Querying XML Data
using an RDBMS. Bulletin of the Technical Committee on Data Engineering,
vol. 22, no. 3, pages 27–34, 1999.

[Fontoura 05] Marcus Fontoura, Vanja Josifovski, Eugene J. Shekita & Beverly Yang. Op-
timizing Cursor Movement in Holistic Twig Joins. In Proc. CIKM, pages 784–
791, 2005.

[Franceschet 05] Massimo Franceschet. XPathMark: An XPath Benchmark for the XMark Gen-
erated Data. In XSym, pages 129–143, 2005.

[Georgiadis 07] Haris Georgiadis & Vasilis Vassalos. XPath on Steroids: Exploiting Relational
Engines for XPath Performance. In Proc. SIGMOD, pages 317–328, 2007.

[Goldman 97] Roy Goldman & Jennifer Widom. DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. In Proc. VLDB, pages 436–445,
1997.

[Gottlob 05] Georg Gottlob, Christoph Koch & Reinhard Pichler. Efficient Algorithms for
Processing XPath Queries. ACM Transactions on Database Systems, vol. 30,
no. 2, pages 444–491, 2005.

[Graefe 87] Goetz Graefe & David J. DeWitt. The EXODUS Optimizer Generator. In Proc.
ACM SIGMOD International Conference on Management of Data, pages
160–172, 1987.

[Graefe 93] Goetz Graefe & William J. McKenna. The Volcano Optimizer Generator: Ex-
tensibility and Efficient Search. In Proc. ICDE, pages 209–218, 1993.

[Graefe 94] Goetz Graefe. Volcano—An Extensible and Parallel Query Evaluation System.
IEEE Transactions on Knowledge and Data Engineering, vol. 6, no. 1, pages
120–135, 1994.

[Graefe 07] Goetz Graefe. Algorithms for Merged Indexes. In Proc. BTW, pages 112–131,
2007.

[Grinev 06] Maxim Grinev, Andrey Fomichev & Sergey Kuznetsov. Sedna: A Native
XML DBMS. In Proc. SOFSEM, pages 272–281, 2006.

[Grust 03a] Torsten Grust & Maurice van Keulen. Tree Awareness for Relational DBMS
Kernels: Staircase Join. In Intelligent Search on XML Data, pages 231–245,
2003.

[Grust 03b] Torsten Grust, Maurice van Keulen & Jens Teubner. Staircase Join: Teach a
Relational DBMS to Watch Its (Axis) Steps. In Proc. VLDB, pages 524–535,
2003.

[Grust 04] Torsten Grust & Jens Teubner. Relational Algebra: Mother Tongue - XQuery:
Fluent. In Proc. TDM, pages 9–16, 2004.

[Grust 07] Torsten Grust, Jan Rittinger & Jens Teubner. WhyOFff-The-Shelf RDBMSs
are Better at XPath Than You Might Expect. In Proc. SIGMOD, pages 949–958,
2007.

[Haas 89] Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman & Hamid Pi-
rahesh. Extensible Query Processing in Starburst. In Proc. SIGMOD, pages
377–388, 1989.

[Halverson 04] Alan Halverson, Vanja Josifovski, Guy Lohman, Hamid Pirahesh & Math-
ias Mörschel. ROX: Relational over XML. In Proc. VLDB, pages 264–275,
2004.

[Hammerschmidt 04] Beda Christoph Hammerschmidt, Martin Kempa & Volker Linnenmann. A
Selective Key-Oriented XML Index for the Index Selection Problem in XDBMS.
In Proc. DEXA, pages 273–284, 2004.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Bibliography 315

[Hammerschmidt 05] Beda Christoph Hammerschmidt, Martin Kempa & Volker Linnemann. On
the Intersection of XPath Expressions. In Proc. IDEAS, pages 49–57, 2005.

[Härder 83] Theo Härder & Andreas Reuter. Concepts for Implementing a Centralized
Database Management System. In Symposium on Application Systems De-
velopment, pages 28–60, 1983.

[Härder 01] Theo Härder & Erhard Rahm. Datenbanksysteme (Konzepte und Tech-
niken der Implementierung). Springer, 2001. German only.

[Härder 05a] Theo Härder. DBMS Architecture—Still an Open Problem. In Proc. BTW,
pages 2–28, March 2005.

[Härder 05b] Theo Härder, Michael P. Haustein, Christian Mathis & Markus Wagner.
Node Labeling Schemes for Dynamic XML Documents Reconsidered. Data and
Knowledge Engineering, vol. 60, no. 1, pages 126–149, 2005.

[Härder 07] Theo Härder, Christian Mathis & Karsten Schmidt. Comparison of Complete
and Elementless Native Storage of XML Documents. In Proc. IDEAS, pages
102–113, 2007.

[Haustein 03] Michael P. Haustein & Theo Härder. taDOM: A Tailored Synchronization
Concept with Tunable Lock Granularity for the DOM API. In Proc. ADBIS,
pages 88–102, 2003.

[Haustein 05a] Michael P. Haustein. Verhinderung von Phantomen in XML-
Datenbanksystemen mit wertbasierten Achsensperren. In Berliner XML
Tage, pages 79–92, 2005.

[Haustein 05b] Michael P. Haustein, Theo Härder, Christian Mathis & Markus Wagner.
DeweyIDs—The Key to Fine-Grained Management of XML Documents. In Proc.
SBBD, pages 85–99, 2005.

[Haustein 06a] Michael P. Haustein. Feingranulare Transaktionsisolation in nativen XML-
Datenbanksystemen. PhD thesis, University of Kaiserslautern, 2006.

[Haustein 06b] Michael P. Haustein, Theo Härder & Konstantin Luttenberger. Contest of
XML Lock Protocols. In Proc. VLDB, pages 1069–1080, 2006.

[He 04] Hao He & Jun Yang. Multiresolution Indexing of XML for Frequent Queries. In
Proc. ICDE, pages 683–692, 2004.

[Helmer 02] Sven Helmer, Carl-Christian Kanne & Guido Moerkotte. Optimized Transla-
tion of XPath into Algebraic Expressions Parameterized by Programs Containing
Navigational Primitives. In Proc. WISE, pages 215–224, 2002.

[Helmer 07] Sven Helmer. Measuring the Structural Similarity of Semi-Structured Docu-
ments using Entropy. In Proc. VLDB, pages 1022–1032, 2007.

[Hidders 04] Jan Hidders & Philippe Michiels. Efficient XPath Axis Evaluation for DOM
Data Structures. In Proc. PLAN-X, 2004.

[Hidders 07] J. Hidders, P. Michiels, J. Siméon & R. Vercammen. How To Recognize Differ-
ent Kinds of Tree Patterns from Quite a Long Way Away. In Proc. Plan-X, pages
14–24, 2007.

[IBM 09] IBM. IBM DB2 pureXML. Web Site, 2009. http://www.ibm.com/db2/
xml .

[ISO/IEC 03] ISO/IEC. XML-Related Specifications (SQL/XML). ISO/IEC 9075-14:2003
(Standard), 2003.

[Jagadish 02a] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nier-
man, S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu &
C. Yu. TIMBER: A Mative XML Database. VLDB Journal, vol. 11, no. 4,
pages 274–291, 2002.

[Jagadish 02b] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava & KeithŢhomp-
son. TAX: A Tree Algebra for XML. In Proc. DBPL, pages 149–164, 2002.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

http://www.ibm.com/db2/xml
http://www.ibm.com/db2/xml

316 Bibliography

[Jiang 02] Haifeng Jiang, Hongjun Lu, Wei Wang & Jeffrey Xu Yu. Path Materialization
Revisited: An Efficient Storage Model for XML Data. Australian Computer
Science Communications, vol. 24, no. 2, pages 85–94, 2002.

[Jiang 03a] Haifeng Jiang, Hongjun Lu, Wei Wang & Beng Chin Ooi. XR-Tree: Indexing
XML Data for Efficient Structural Joins. In Proc. ICDE, pages 253–264, 2003.

[Jiang 03b] Haifeng Jiang, Wei Wang, Hongjun Lu & Jeffrey Xu Yu. Holistic Twig Joins
on Indexed XML Documents. In Proc. VLDB, pages 273–284, 2003.

[Jiao 05] Enhua Jiao, Tok Wang Ling & Chee Yong Chan. PathStack¬: A Holistic
Path Join Algorithm for Path Query with Not-Predicates on XML Data. In Proc.
DASFAA, pages 113–124, 2005.

[Kabra 99] Navin Kabra & David J. DeWitt. OPT++: An Object-Oriented Implementation
for Extensible Database Query Optimization. VLDB Journal, vol. 8, no. 1, pages
55–78, 1999.

[Kaushik 02a] Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton & Henry F Korth.
Covering Indexes for Branching Path Queries. In Proc. SIGMOD, pages 133–
144, 2002.

[Kaushik 02b] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon & Ehud Gudes. Ex-
ploiting Local Similarity for Indexing Paths in Graph-Structured Data. In Proc.
ICDE, pages 129–138, 2002.

[Kaushik 04] Raghav Kaushik, Rajasekar Krishnamurthy, Jeffrey F. Naughton & Raghu
Ramakrishnan. On the Integration of Structure Indexes and Inverted Lists. In
Proc. SIGMOD, pages 779–790, 2004.

[Kay 09] Michael Kay. Saxon. Website, 2009. http://saxon.sourceforge.
net/ .

[Kepser 04] S. Kepser. A Simple Proof for the Turing-Completeness of XSLT and XQuery. In
Proc. Extreme Markup Languages, 2004.

[Kwon 05] Joonho Kwon, Praveen Rao, Bongki Moon & Sukho Lee. FiST: Scalable XML
Document Filtering by Sequencing Twig Patterns. In Proc. VLDB, pages 217–
228, 2005.

[Lee 00] Dongwon Lee & Wesley W. Chu. Constraints-Preserving Transformation from
XML Document Type Definition to Relational Schema. In Proc. Conceptual
Modeling – ER, pages 641–654, 2000.

[Leroy 08] Xavier Leroy. The Objective Caml System Release 3.11. Manual, November
2008. http://caml.inria.fr/pub/docs/manual-ocaml/ .

[Li 01] Quanzhong Li & Bongki Moon. Indexing and Querying XML Data for Regular
Path Expressions. In Proc. VLDB, pages 361–370, 2001.

[Li 03] Quanzhong Li & Bongki Moon. Partition-Based Path Join Algorithms for XML
Data. In Proc. DEXA, pages 160–170, 2003.

[Li 06] Hua-Gang Li, S. Alireza Aghili, Divyakant Agrawal & Amr El Abbadi.
FLUX: Content and Structure Matching of XPath Queries with Range Predicates.
In Proc. XSym, pages 61–76, 2006.

[Liu 08] Zhen Hua Liu, Thomas Baby, Sivasankaran Chandrasekar & Hui Chang.
Towards a Physical XML Independent XQuery/SQL/XML Engine. In Proc.
VLDB, pages 1356–1367, 2008.

[Lu 04] Jiaheng Lu, Ting Chen & Tok Wang Ling. Efficient Processing of XML Twig
Patterns with Parent Child Edges: a Look-Ahead Approach. In Proc. CIKM,
pages 533–542, 2004.

[Lu 05] Jiaheng Lu, Ting Chen & Tok Wang Ling. TJFast: Effective Processing of XML
Twig Pattern Matching. In Proc. WWW, pages 1118–1119, 2005.

[Mang 03] Xiaofeng Mang, Yu Wang, Daofeng Luo, Shichao Lu, Jing An, Yan Chen,
Jianbo Ou & Yu Jiang. OrientX: A Schema-based Native XML Database System.
In Proc. VDLB, pages 1057–1060, 2003.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://caml.inria.fr/pub/docs/manual-ocaml/

Bibliography 317

[Marian 03] Amélie Marian & Jérôme Siméon. Projecting XML Documents. In Proc.
VLDB, pages 213–224, 2003.

[Mathis 06a] Christian Mathis & Theo Härder. Hash-Based Structural Join Algorithms. In
Proc. EDBT Workshops, pages 136–149, 2006.

[Mathis 06b] Christian Mathis, Theo Härder & Michael Haustein. Locking-Aware Struc-
tural Join Operators for XML Query Processing. In Proc. SIGMOD, pages 467–
478, 2006.

[Mathis 07a] Christian Mathis. Extending a Tuple-Based XPath Algebra to Enhance Evalu-
ation Flexibility. Computer Science – Research and Development, vol. 21,
no. 3, pages 147–164, 2007.

[Mathis 07b] Christian Mathis. Integrating Structural Joins into a Tuple-Based XPath Alge-
bra. In Proc. BTW, pages 242–261, 2007.

[Mathis 08] Christian Mathis, Andreas Weiner, Theo Härder & Caesar Ralf Franz Hop-
pen. XTCcmp: XQuery Compilation on XTC. In Proc. VLDB, pages 1400–
1403, 2008.

[Mathis 09] Christian Mathis. Query Plans Generated by the XTC Query Processor. Online,
April 2009. http://wwwlgis.informatik.uni-kl.de/cms/dbis/
staff/mathis/ .

[Mavis K. Lee 88] Guy M. Lohman Mavis K. Lee Johann Christoph Freytag. Implementing an
Interpreter for Functional Rules in a Query Optimizer. In Proc. VLDB, pages
18–229, 1988.

[May 04] Norman May, Sven Helmer & Guido Moerkotte. Nested Queries and Quan-
tifiers in an Ordered Context. In Proc. ICDE, pages 239–248, 2004.

[May 05] Norman May & Guido Moerkotte. Main Memory Implementations for Binary
Grouping. In Proc. XSym, pages 162–176, 2005.

[May 06a] Norman May, Matthias Brantner, Alexander Böhm 0002, Carl-Christian
Kanne & Guido Moerkotte. Index vs. Navigation in XPath Evaluation. In
Proc. XSym, pages 16–30, 2006.

[May 06b] Norman May, Sven Helmer & Guido Moerkotte. Strategies for Query
Unnesting in XML Databases. ACM TODS, vol. 31, no. 3, pages 968–1013,
2006.

[Mchugh 97] Jason Mchugh & Serge Abiteboul. Lore: A Database Management System for
Semistructured Data. SIGMOD Record, vol. 26, pages 54–66, 1997.

[McHugh 98] Jason McHugh, Jennifer Widom, Serge Abiteboul, Qingshan Luo & Anand
Rajaraman. Indexing Semistructured Data. Rapport technique, Stanford Uni-
versity, 1998.

[Meier 02] Wolfgang Meier. eXist: An Open Source Native XML Database. LNCS,
no. 2593, pages 169–183, 2002.

[Michiels 07] Philippe Michiels, George A. Mihaila & Jerome Simeon. Put a Tree Pattern
in your Algebra. In Proc. ICDE, pages 246–255, 2007.

[Miklau 04] Gerome Miklau & Dan Suciu. Containment and Equivalence for a Fragment of
XPath. Journal of the ACM, vol. 51, no. 1, pages 2–45, 2004.

[Miklau 09] Gerome Miklau. XML Data Repository. Website, Feburary 2009. http://
www.cs.washington.edu/research/xmldatasets/ .

[Milo 99] Tova Milo & Dan Suciu. Index Structures for Path Expressions. In Proc. ICDT,
pages 277–295, 1999.

[Mitra 07] Nilo Mitra & Yves Lafon. SOAP Version 1.2 Part 0: Primer (Second Edi-
tion). W3C Recommendation, April 2007. http://www.w3.org/TR/
soap12-part0/ .

[Mitschang 95] Berhnhard Mitschang. Anfrageverarbeitung in Datenbanksystemen
(Entwurfs- und Implementierungskonzepte). Vieweg, 1995. German only.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

http://wwwlgis.informatik.uni-kl.de/cms/dbis/staff/mathis/
http://wwwlgis.informatik.uni-kl.de/cms/dbis/staff/mathis/
http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/

318 Bibliography

[Moerkotte 09] Guido Moerkotte. Natix: Ein natives Datenbanksystem für XML. Website,
2009. http://pi3.informatik.uni-mannheim.de/~moer/natix.
html .

[Naughton 01] Jeffrey Naughton, David DeWitt, David Maier, Ashraf Aboulnaga, Jianjun
Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy, Qiong
Luo, Naveen Prakash, Ravishankar Ramamurthy, Jayavel Shanmugasun-
daram, Feng Tian, Kristin Tufte, Stratis Viglas, Yuan Wang, Chun Zhang,
Bruce Jackson, Anurag Gupta & Rushan Chen. The Niagara Internet Query
System. IEEE Data Engineering Bulletin, vol. 24, no. 2, pages 27–33, 2001.

[O’Neil 04] Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller
& Nigel Westbury. ORDPATHs: Insert-Friendly XML Node Labels. In Proc.
SIGMOD, pages 903–908, 2004.

[Özcan 08] Fatma Özcan, Norman Seemann & Ling Wang. XQuery Rewrite Optimiza-
tion in IBM DB2 pureXML. IEEE Data Engineering Bulletin, vol. 31, no. 4,
pages 25–32, 2008.

[Papakonstantinou 95] Yannis Papakonstantinou, Hector Garcia-Molina & Jeniffer Widom. Ob-
ject Exchange Across Heterogeneous Information Sources. In Proc. ICDE, pages
251–260, 1995.

[Paparizos 02] Stelios Paparizos, Shurug Al-Khalifa, H.V. Jagadish, Andrew Nierman &
Yuqing Wu. A Physical Algebra for XML. Rapport technique, University of
Michigan, 2002.

[Paparizos 04] Stelios Paparizos, Yuqing Wu, Laks V. S. Lakshmanan & H. V. Jagadish. Tree
Logical Classes for Efficient Evaluation of XQuery. In Proc. SIGMOD, pages
71–82, 2004.

[Parr 07] Terence Parr. The Definite ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Programmers, 2007.

[Päßler 06] Manfred Päßler & Matthias Nicola. Native XML-Unterstützung in DB2 Viper.
Datenbank-Spektrum, vol. 17, pages 42–47, 2006.

[Pirahesh 92] Hamid Pirahesh, Joseph M. Hellerstein & Waqar Hasan. Extensible/Rule
Based Query Rewrite Optimization in Starburst. SIGMOD Record, vol. 21,
no. 2, pages 39–48, 1992.

[Prakash 06] Sandeep Prakash, Sourav S. Bhowmick & Sanjay Madria. Efficient Recursive
XML Query Processing Using Relational Database Systems. Data and Knowl-
edge Engineering, vol. 58, no. 3, pages 207–242, 2006.

[Prasad 05] K. Hima Prasad & P. Sreenivasa Kumar. Efficient Indexing and Querying of
XML Data Using Modified Prüfer Sequences. In Proc. CIKM, pages 397–404,
2005.

[Qin 07] Lu Qin, Jeffrey Xu Yu & Bolin Ding. TwigList: Make Twig Pattern Matching
Fast. In Proc. DASFAA, pages 850–862, 2007.

[Rao 04] Praveen Rao & Bongki Moon. PRIX: Indexing And Querying XML Using
Prüfer Sequences. In Proc. ICDE, pages 288–297, 2004.

[Ré 06] Christopher Ré, Jérôme Siméon & Mary F. Fernández. A Complete and Effi-
cient Algebraic Compiler for XQuery. In Proc. ICDE, pages 14–23, 2006.

[Rys 05] Michael Rys. XML and Relational Database Management Systems: Inside
Microsoft R©SQL ServerTM2005. In Proc. SIGMOD, pages 958–962, 2005.

[Schmidt 02] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana
Manolescu & Ralph Busse. XMark: A Benchmark for XML Data Management.
In Proc. VLDB, pages 974–985, 2002.

[Schmidt 07] Karsten Schmidt & Theo Härder. Tailor-Made Native XML Storage Structures.
In Proc. ADBIS, pages 96–106, 2007.

[Schöning 00] Harald Schöning & Jürgen Wäsch. Tamino - An Internet Database System. In
Proc. EDBT, pages 383–387, 2000.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

http://pi3.informatik.uni-mannheim.de/~moer/natix.html
http://pi3.informatik.uni-mannheim.de/~moer/natix.html

Bibliography 319

[Shanmugasundaram 99] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt &
J. Naughton. Relational Databases for Querying XML Documents: Limitations
and Opportunities. In Proc. VLDB, pages 302–314, 1999.

[Siméon 04] Jérôme Siméon & Mary F. Fernández. Build Your Own XQuery Processor.
Presentation, September 2004. http://edbtss04.dia.uniroma3.it/ .

[Srinivasan 92] V. Srinivasan & Michael J. Carey. Performance of On-Line Index Construction
Algorithms. In Proc. EDBT, pages 293–309, 1992.

[Tatarinov 02] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasundaram,
Eugene Shekita & Chun Zhang. Storing and Querying Ordered XML Using a
Relational Database System. In Proc SIGMOD, pages 204–215, 2002.

[UniProt 08] UniProt. Protein Knowledgebase, Feburary 2008. http://beta.uniprot.
org/help/ .

[Vagena 04] Zografoula Vagena, Mirella M. Moro & Vassilis J. Tsotras. Efficient Pro-
cessing of XML Containment Queries Using Partition-Based Schemes. In Proc.
IDEAS, pages 161–170, 2004.

[Vagena 05] Zografoula Vagena, Nick Koudas, Divesh Srivastava & Vassilis J. Tsotras.
Efficient Handling of Positional Predicates Within XML Query Processing. In
XSym, pages 68–83, 2005.

[Wagner 73] R. E. Wagner. Indexing Design Considerations. IBM Systems Journal, vol. 12,
no. 4, pages 351–367, 1973.

[Wang 03] Haixun Wang, Sanghyun Park, Wei Fan & Philip S. Yu. ViST: A Dynamic
Index Method for Querying XML Data by Tree Structures. In Proc. SIGMOD,
pages 110–121, 2003.

[Wang 05] Wei Wang, Haifeng Jiang, Hongzhi Wang, Xuemin Lin, Hongjun Lu &
Jianzhong Li. Efficient processing of XML Path Queries Using the Disk-Based
F&B Index. In Proc. VLDB, pages 145–156, 2005.

[Wedekind 74] H. Wedekind. On the Selection of Access Paths in a Data Base System. Data
Base Management, pages 385–397, 1974. J. W. Klimbie and K. L. Koffemann
(eds.).

[Wu 03] Yuqing Wu, Jignesh M. Patel & H. V. Jagadish. Structural Join Order Selection
for XML Query Optimization. In Proc. ICDE, pages 443–454, 2003.

[XQuery 09] XQuery. The W3C XML Query Site. Website, 2009. http://www.w3.org/
XML/Query/ .

[Yoshikawa 01] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura & Shunsuke
Uemura. XRel: A Path-Based Approach to Storage and Retrieval of XML Docu-
ments Using Relational Databases. ACM Transactions on Internet Technology
(TOIT), vol. 1, no. 1, pages 110–141, 2001.

[Yu 06] Tian Yu, Tok Wang Ling & Jiaheng Lu. TwigStackList¬: A Holistic Twig
Join Algorithm for Twig Query with Not-Predicates on XML Data. In Proc.
DASFAA, pages 249–263, 2006.

[Zhang 04] Ning Zhang, Varun Kacholia & M. Tamer Özsu. A Succinct Physical Storage
Scheme for Efficient Evaluation of Path Queries in XML. In Proc. ICDE, pages
54–63, 2004.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

http://edbtss04.dia.uniroma3.it/
http://beta.uniprot.org/help/
http://beta.uniprot.org/help/
http://www.w3.org/XML/Query/
http://www.w3.org/XML/Query/

320 Bibliography

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

The Sample Document

<?xml version="1.0" encoding="utf-8"?>
<recordStore>

<cd id="cd_100">
<title> The Soul Cages </title>
<artist> Sting </artist>
<year> 1998 </year>
<genre> Pop </genre>
<price> 19.99 </price>
<tracks>

<track no="1" length="401">
<title> Island of Souls </title>

</track>
<track no="2" length="294">

<title> All This Time </title>
</track>
<track no="3" length="233">

<title> Mad About You </title>
</track>
<!-- ... -->
<track no="7" length="402">

<title> The Wild Wild Sea </title>
</track>
<track no="8" length="352">

<title> The Soul Cages </title>
</track>
<track no="9" length="468">

<title> When the Angels Fall </title>
</track>

</tracks>
</cd>
<vinyl id="lp_399">

<title> Kind of Blue </title>
<artist> Miles Davis </artist>
<year> 1959 </year>
<genre> Jazz </genre>
<format> Long Play </format>
<speed> 33 1/3 </speed>
<price> 12.89 </price>
<aSide>

<tracks>
<track no="1" length="562">

<title> So What </title>
</track>
<track no="2" length="586">

<title> Freddie Freeloader </title>
</track>
<track no="3" length="337">

<title> Blue in Green </title>
</track>

<tracks>
</aSide>
<bSide>

<tracks>
<track no="4" length="693">

<title> All Blues </title>
</track>

<track no="5" length="566">
<title>

Flamenco Sketches (take 2)
</title>

</track>
</tracks>

<bSide>
</vinyl>
<cd id="cd_220>

<title> By the Way </title>
<band> Red Hot Chili Peppers </band>
<year> 2002 </year>
<genre> Rock </genre>
<price> 7.99 </price>
<tracks>

<track no="1" length="217">
<title> By the Way </title>

</track>
<track no="2" length="259">

<title> Universally Speaking </title>
</track>
<track no="3" length="257">

<title> This Is the Place </title>
</track>
<track no="4" length="312">

<title> Dosed </title>
</track>
<track no="5" length="277">

<title> Don’t Forget Me </title>
</track>
<!-- ... -->
<track no="11" length="208">

<title> Cabron </title>
</track>
<track no="12" length="317">

<title> Tear </title>
</track>
<track no="13" length="208">

<title> On Mercury </title>
</track>
<track no="14" length="217">

<title> Minor Thing </title>
</track>
<track no="15" length="256">

<title> Warm Tape </title>
</track>
<track no="16" length="367">

<title> Venice Queen </title>
</track>

</tracks>
</cd>
<!-- ... -->

</recordStore>

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

322 The Sample Document

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Queries and Settings

XMark

xm1:
let $auction := doc("auction.xml") return
for $b in $auction/site/people/person[@id = "person0"]
return $b/name/text()

xm2:
let $auction := doc("auction.xml") return
for $b in $auction/site/open_auctions/open_auction
return <increase>{$b/bidder[1]/increase/text()}</increase>

xm3:
let $auction := doc("auction.xml") return
for $b in $auction/site/open_auctions/open_auction
where zero- or-one($b/bidder[1]/increase/text()) * 2

<=
$b/bidder[last()]/increase/text()

return
<increase
first="{$b/bidder[1]/increase/text()}"
last="{$b/bidder[last()]/increase/text()}"/>

xm4:
let $auction := doc("auction.xml") return
for $b in $auction/site/open_auctions/open_auction
where

some $pr1 in $b/bidder/personref[@person = "person20"],
$pr2 in $b/bidder/personref[@person = "person51"]

satisfies $pr1 << $pr2
return <history>{$b/reserve/text()}</history>

xm5:
let $auction := doc("auction.xml") return
count(

for $i in $auction/site/closed_auctions/closed_auction
where $i/price/text() >= 40
return $i/price

)

xm6:
let $auction := doc("auction.xml") return
for $b in $auction//site/regions return count($b//item)

xm7:
let $auction := doc("auction.xml") return
for $p in $auction/site
return

count($p//description) + count($p//annotation) + count($p//emailaddress)

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

324 Queries and Settings

xm8:
let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $a :=

for $t in $auction/site/closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t

return <item person="{$p/name/text()}">{ count($a)}</item>

xm9:
let $auction := doc("auction.xml") return
let $ca := $auction/site/closed_auctions/closed_auction return
let

$ei := $auction/site/regions/europe/item
for $p in $auction/site/people/person
let $a :=

for $t in $ca
where $p/@id = $t/buyer/@person
return

let $n := for $t2 in $ei where $t/itemref/@item = $t2/@id return $t2
return <item>{$n/name/text()}</item>

return <person name="{$p/name/text()}">{$a}</person>

xm10:
let $auction := doc("auction.xml") return
for $i in

distinct-values($auction/site/people/person/profile /interest/@category)
let $p :=

for $t in $auction/site/people/person
where $t/profile/interest/@category = $i
return

<personne>
<statistiques>

<sexe>{$t/profile/gender/text()}</sexe>
<age>{$t/profile/age/text()}</age>
<education>{$t/profile/education/text()}</education >
<revenu>{fn:data($t/profile/@income)}</revenu>

</statistiques>
<coordonnees>

<nom>{$t/name/text()}</nom>
<rue>{$t/address/street/text()}</rue>
<ville>{$t/address/city/text()}</ville>
<pays>{$t/address/country/text()}</pays>
<reseau>

<courrier>{$t/emailaddress/text()}</courrier>
<pagePerso>{$t/homepage/text()}</pagePerso>

</reseau>
</coordonnees>
<cartePaiement>{$t/creditcard/text()}</cartePaiemen t>

</personne>
return <categorie>{<id>{$i}</id>, $p}</categorie>

xm11:
let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $l :=

for $i in $auction/site/open_auctions/open_auction/initial
where $p/profile/@income > 5000 * exactly-one($i/text())
return $i

return <items name="{$p/name/text()}">{ count($l)}</items>

xm12:
let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $l :=

for $i in $auction/site/open_auctions/open_auction/initial
where $p/profile/@income > 5000 * exactly-one($i/text())
return $i

where $p/profile/@income > 50000
return <items person="{$p/profile/@income}">{ count($l)}</items>

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Queries and Settings 325

xm13:
let $auction := doc("auction.xml") return
for $i in $auction/site/regions/australia/item
return <item name="{$i/name/text()}">{$i/description}</item >

xm14:
let $auction := doc("auction.xml") return
for $i in $auction/site//item
where contains(string(exactly-one($i/description)), "gold")
return $i/name/text()

xm15:
let $auction := doc("auction.xml") return
for $a in

$auction/site/closed_auctions/closed_auction/annota tion/description/parlist/
listitem/
parlist/
listitem/
text/
emph/
keyword/
text()

return <text>{$a}</text>

xm16:
let $auction := doc("auction.xml") return
for $a in $auction/site/closed_auctions/closed_auction
where

not(
empty(

$a/annotation/description/parlist/listitem/parlist/ listitem/text/emph/
keyword/
text()

)
)

return <person id="{$a/seller/@person}"/>

xm20 (note, the sequence of the following queries has been altered):
let $auction := doc("auction.xml") return
<result>

<preferred>
{ count($auction/site/people/person/profile[@income >= 10000 0])}

</preferred>
<standard>

{
count(

$auction/site/people/person/
profile[@income < 100000 and @income >= 30000]

)
}

</standard>
<challenge>

{ count($auction/site/people/person/profile[@income < 30000])}
</challenge>
<na>

{
count(

for $p in $auction/site/people/person
where empty($p/profile/@income)
return $p

)
}

</na>
</result>

xm17:
let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
where empty($p/homepage/text())
return <person name="{$p/name/text()}"/>

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

326 Queries and Settings

xm18 (note, we do not support user defined functions):
let $auction := doc("auction.xml") return
for $i in $auction/site/open_auctions/open_auction
return (zero- or-one($i/reserve) * 2.20371)

xm19:
let $auction := doc("auction.xml") return
for $b in $auction/site/regions//item
let $k := $b/name/text()
order by zero- or-one($b/location) ascending
return <item name="{$k}">{$b/location/text()}</item>

Note, we had to alter query xml18 because in the current version of XTC, we do
not support user-defined functions. Therefore, the calculation expressed by such
a function in the original query set [Schmidt 02] was “inlined” here. Furthermore,
note that we altered the order of queries xm17 to xm20 for formatting reasons. In
the benchmark results, these queries are displayed in the correct order.

Path Queries on the DBLP Document

d1: count(//inproceedings//title[.//i]//sup)

d2: count(//article[.//sup]//title/sub)

d3: count(//dblp/inproceedings[title]/author)

d4: count(//dblp/article[author][.//title]//year)

d5: count(//dblp/inproceedings[.//cite/label][title]/author)

d6: count(//dblp/article[author][.//title][.//url][.//ee]//y ear)

d7: count(//article[.//mdate][.//volume][.//cite//label]//jo urnal)

Path Queries on the Treebank Document

t1: count(//S//ADJ[.//MD])

t2: count(//S[.//JJ]/NP)

t3: count(//S/VP/PP[NP/VBN]/IN)

t4: count(//S//NP[.//PP/TO][VP/_NONE_]/JJ)

t5: count(//S/VP/PP[IN]/NP/VBN)

t6: count(//S[DT]//PRP_DOLLAR_)

t7: count(//S[.//VP/IN]//NP)

t8: count(//VP[DT]//PRP_DOLLAR_)

t9: count(//NP[NN]/PP)

t10: count(//S/VP/PP[.//IN][.//NP[.//CD]/VBN]/IN)

t11: count(//S[.//VP][.//NP]/VP/PP[IN]/NP/VBN)

t12: count(//EMPTY[.//VP/PP//NNP][.//S[.//PP//JJ]//VBN]//PP/N P//_NONE_)

Additional Path Queries on the XMark Document

q22: count(//site/people/person/name)

q23: count(//site//people//person[.//name and .//age]//income)

q24: count(//text[bold]/emph/keyword)

q25: count(//listitem[.//bold]/text//emph)

q26: count(//listitem[.//bold]/text[.//emph]/keyword)

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Queries and Settings 327

q27: count(//text[.//bold]//keyword)

q28: count(//description[.//text]//parlist)

q29: count(//text[bold][.//keyword][.//emph])

q30: count(//item[location]/description//keyword)

q32: count(/site/closed_auctions/closed_auction/price)

q32: count(/site/regions//item/location)

q33: count(/site/people/person/gender)

q34: count(/site/open_auctions/open_auction/reserve)

q35: count(//people/person[.//address/zipcode]/profile/educat ion)

q36: count(//item[location][.//mailbox/mail//emph]/descriptio n//keyword)

q37: count(//people//person[.//address/zipcode][id]/profile[. //age]/education)

q38: count(//open_auction[.//annotation[.//person]//parlist]/ /bidder//increase)

MemBeR File 1

<?xml v e r s i o n ="1.0"?>

<Tree

xmlns="http: // microbenchmarks.org/treegen "

xmlns:xsi ="http: //www.w3.org /2001/ XMLSchema−instance "

xsi:schemaLocation="http: // microbenchmarks.org/treegen TreeGen .xsd"

fanout ="6" size="50000 " distribution="normal " tags="50"/>

With this input, the MemBeR generator produces an XML document of 11 MB size.

MemBeR File 2

<?xml v e r s i o n ="1.0"?>

<Tree

xmlns="http: // microbenchmarks.org/treegen "

xmlns:xsi ="http: //www.w3.org /2001/ XMLSchema−instance "

xsi:schemaLocation="http: // microbenchmarks.org/treegen TreeGen .xsd"

depth="4" fanout ="3" size="5000000 " distribution="normal ">

<Tag name="x" levels ="1" frequency ="1" fanout ="100000 "/>

<Tag name="a" levels ="2" frequency ="$y" fanout ="2"/>

<Tag name="h" levels ="2" frequency ="$x" fanout ="2"/>

<Tag name="b" levels ="3" frequency ="0.5" fanout ="1"/>

<Tag name="c" levels ="3" frequency ="0.5" fanout ="1"/>

<Tag name="d" levels ="4" frequency ="0.5" fanout ="0"/>

<Tag name="e" levels ="4" frequency ="0.5" fanout ="0"/>

</Tree>

This is an input file for the MemBer data generator [Afanasiev 05]. For member10,
$x is set to 0.9 and $y is set to 0.1 . Thus, 10% a nodes are generated. Other files
are generated analogous.

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

328 Queries and Settings

XMark Indexes

create element index

create cas index paths // people /person /@id

create cas index paths // bidder /personref /@person

create cas index paths // closed_auction/price

create cas index paths // person /profile /@income

create path index paths // people /person /@id

create path index paths // people /person /name

create path index paths // open_auction/bidder /increase

create path index paths // open_auction/bidder

create path index paths // open_auction/reserve

create path index paths // closed_auction/price

create path index paths // regions // item

create path index paths // closed_auction/buyer /@person

create path index paths // itemref /@item

create path index paths // item/@id

create path index paths // profile /interest /@category

create path index paths // profile /gender

create path index paths // profile /age

create path index paths // profile /education

create path index paths // profile /@income

create path index paths // person /address /street

create path index paths // person /address /city

create path index paths // person /address /country

create path index paths // person /emailaddress

create path index paths // person /homepage

create path index paths // person /creditcard

create path index paths // open_auction/initial

create path index paths // australia /item

create path index paths // australia /item/name

create path index paths // australia /item/description

create path index paths // item/description

create path index paths // closed_auction/seller /@person

create path index paths // item/name

create path index paths // item/location

create path index paths // closed_auction/annotation / description /parlist

/listitem /parlist /listitem /text/emph/keyword

create path index paths // annotation /description /parlist /listitem /parlist

/listitem /text/emph/keyword

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

Curriculum Vitae

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

330 Curriculum Vitae

Storing, Indexing, and Querying XML Documents in Native XML Database Management Systems

	Abstract
	Zusammenfassung
	Contents
	Figures
	Listings
	I Introduction
	Motivation
	Objectives
	Outline
	Conventions

	XML Query Processing on XTC---An Overview
	The Query Evaluation Process
	Logical and Physical Abstraction
	Parsing and Translation
	Optimization
	Execution and Materialization

	Query Processing by Example
	Syntactic Analysis
	Normalization
	Static Typing
	Simplification
	XQGM Transformation
	Algebraic Rewriting
	Plan Generation
	Execution and Materialization

	Related Work
	Galax
	IBM DB2 Pure XML
	Timber
	Natix
	MonetDB/XQuery
	Other Systems

	Summary

	The XML Transaction Coordinator
	The taDOM Data Model
	The taDOM Tree
	Operations on the taDOM Tree
	DeweyIDs for Node Identification

	The taDOM Lock Protocol
	XTC's Architecture
	File Services and Propagation
	Access Services
	Node Services and XML Services
	Transaction Services
	Interface Services

	Summary

	II Logical Aspects of XML Query Processing
	The XML Query Graph Model
	The XQGM Syntax
	XQGM Components
	Identifying Components

	The XQGM Semantics
	The Data Model
	Map, Set, Eval and the Logical Algebra
	The Dynamic Evaluation Environment
	XQGM Select
	XQGM Access
	XQGM Set Operators
	Tuple Variable References
	The XQGM Root Operator
	Final Remarks on the XQGM Semantics

	Query Translation
	Normalization and Static Typing
	Simplification
	XQGM Transformation

	Related Work
	Summary

	Query Unnesting and Twig Discovery
	Rewriting Methodology
	External Tuple Variable Reference Removal
	Removal of descendant-or-self
	Range Query Detection
	Select Fusion
	Predicate Push-Down
	Query Unnesting
	Boolean Split
	Multiple Correlated Expression pull-out
	The Unnesting Rule

	Twig Query Detection
	The XQGM Twig Join Operator
	The HTJ Discovery Rule Pattern
	The HTJ Discovery Transformation Instruction
	Summary

	Related Work
	Galax
	IBM DB2 Pure XML
	Timber
	Natix
	MonetDB/XQuery

	Summary

	III Physical Aspects of XML Query Processing
	Document Storage
	Desiderata
	Node-Oriented Storage Reconsidered
	Storage and Reconstruction
	Navigational Operations
	Scan/Reconstruction, Modifications, and the Round-Trip Property
	Document and Collection Support
	Succinctness
	Indexing Support
	Summary

	Path-Oriented Document Storage
	The Path Synopsis
	The Store
	Storage and (Subtree) Reconstruction/Scan
	Navigational Operations
	Modifications
	Round-Trip Property and Collection Support
	Succinctness
	Indexing Support

	Related Work
	Native XML Storage
	Shredding

	Summary

	XML Indexing
	Desiderata
	XTC's Indexing Scheme Reconsidered
	The ID-Attribute Index
	The Element Index
	Assessment of XTC's Indexing Scheme

	Path Indexing
	Query Types Considered
	Defining CAS Indexes
	Creating CAS Indexes
	Unique, Collective, and Generic CAS Indexes
	CAS Index Maintenance
	Answering Point and Range Queries over CAS Indexes
	CAS Index Applicability
	Plain Path Indexes and Plain Content Indexes
	Dewey-ID Clustering and PCR Clustering

	Related Work
	Structural Join Indexes and Content Indexes
	Path Indexes
	Content-and-Structure Indexes
	Twig Indexes
	Indexing in Related Query Processors

	Summary

	The Physical Algebra
	An Introduction to the Physical Algebra
	Navigational PPOs
	A Single-Node Navigational PPO
	A Multi-Node Navigational PPO: NavTree

	The Structural Join Operator: Extended StackTree
	The Holistic Twig Join Operator: Extended TwigOpt
	Extended TwigOpt by Example
	Twig Mapping
	TwigOpt Cursors
	TwigOpt Matching
	TwigOpt Output Generation

	Index-Based PPOs
	Simple Index Mapping
	Complex Index Mapping
	Index Embedding Considerations

	LAL Operators as PAL Operators
	Lazy Tuple Generation
	The Merge Operator
	Value-Based Joins in XQuery
	The Remaining Operators

	Related Work
	Navigational Primitives
	Structural Joins
	Holistic Twig Joins
	A Glimpse on Physical Algebras in Other XML Query Processors

	Summary

	IV Experimental Evaluation and Future Research
	Experimental Results
	Experimental Setup
	Document Processing
	Space Consumption
	Storage and Reconstruction
	Navigation Performance

	Path Processing Operators and Query Plans
	Navigational PPOs
	Join-Based PPOs
	Index-Based PPOs

	Other Processing Stages
	Summary

	Conclusion and Future Research
	Conclusion
	Future Work

	V Appendix
	References
	The Sample Document
	Queries and Settings
	XMark
	Path Queries on the DBLP Document
	Path Queries on the Treebank Document
	Additional Path Queries on the XMark Document
	MemBeR File 1
	MemBeR File 2
	XMark Indexes

	Curriculum Vitae

