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ABSTRACT
A natural consequence of the widespread adoption of XML
as standard for information representation and exchange is
the redundant storage of large amounts of persistent XML
documents. Compared to relational data tables, data repre-
sented in XML format can potentially be even more sensi-
tive to data quality issues because structure, besides textual
information, may cause variations in XML documents repre-
senting the same information entity. Therefore, correlating
XML documents, which are similar in content an structure,
is a fundamental operation. In this paper, we present an ef-
fective, flexible, and high-performance XML-based similar-
ity join framework. We exploit structural summaries and
clustering concepts to produce compact and high-quality
XML document representations: our approach outperforms
previous work both in terms of performance and accuracy.
In this context, we explore different ways to weigh and com-
bine evidence from textual and structural XML representa-
tions. Furthermore, we address user interaction, when the
similarity framework is configured for a specific domain, and
updatability of clustering information, when new documents
enter datasets under consideration. We present a thorough
experimental evaluation to validate our techniques in the
context of a native XML DBMS.

Categories and Subject Descriptors
H.2m [Database Management]: Miscellaneous—Entity
Resolution; I.5 [Pattern Recognition]: Clustering—Sim-
ilarity measures

General Terms
Design, Experimentation
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1. INTRODUCTION
The quality of data stored in databases inevitably de-

grades over time. Common reasons for this behavior include
data entry errors, such as typographical errors and mis-
spellings, incomplete information, and varying conventions
during integration of multiple data sources storing overlap-
ping information. A common consequence of poor data qual-
ity is the appearance of the so-called fuzzy duplicates, i.e.,
multiple and non-identical representations of a real-world
entity. Complications caused by such redundant informa-
tion abound in common business practices, e.g., misleading
downstream analysis due to erroneously inflated statistics,
inability of correlating information related to the same cus-
tomer, and repeated mailing operations. The problem of
identifying fuzzy duplicates is commonly referred to as the
entity resolution (ER) problem (also known as record link-
age or near-duplicate identification).

As natural consequence of the widespread adoption of
XML as standard for information representation and ex-
change, large amounts of persistent XML documents are
redundantly stored in various places. Therefore, data rep-
resented in XML format potentially influences and jeopar-
dizes the data quality delivered to applications even more
compared to the relational world, because structure, besides
textual information, may cause variations in XML docu-
ments representing the same information entity. Due to
the much greater modeling flexibility of the XML model,
even documents containing the same information and follow-
ing the same schematic rule (i.e., a DTD or XML Schema)
may be arranged in quite different structures. Moreover, be-
cause mapping flexibility and support of schema evolution
are prime motivations for using XML, structural changes are
likely to happen very often in many application domains.

Example 1. Consider the illustration in Figure 1, which
shows an XML tree containing patient demographic informa-
tion from a hospital. Although subtrees a) and b) refer to the
same patient, it would be extremely difficult for an ER ap-
plication to correctly identify them as fuzzy duplicates. The
data in subtree a) is arranged by patient, while the data of
subtree b) is arranged by study. Further, there is the ex-
tra element relatives in subtree a). Moreover, there are
typos and use of different abbreviation conventions between
the content of the two subtrees.
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Figure 1: Heterogeneous XML data collection

Similarity join is a fundamental operation to support ER
applications. This particular kind of join operation employs
a predicate of type sim (r, s) ≥ γ, where r and s are operand
objects to be matched, sim is a similarity function, and γ is a
constant threshold. In typical ER processes, pairs satisfying
a similarity join can be classified as potential duplicates and
selected for later analysis.

1.1 Specific XML-related Requirements
To perform similarity joins on XML datasets, the similar-

ity predicate should address the hierarchical structure of the
documents. For such kinds of similarity matching in XML
tree structures, a large body of work is already available [3,
2, 6, 12, 17, 25, 33]. However, as far as identification of fuzzy
duplicates is concerned, all previous work suffers from some
combination of the following problems:

• Limited support for textual similarity : Many approaches
focus on the structural similarity only; text nodes are
either stripped away, before the matching process is
initiated, or only simple equality operations on text
values are considered. While structural information
certainly conveys useful semantic information, most of
the discriminating power of real-life XML data, i.e.,
the items of identifying information, which allow to
distinguish documents in a collection from each an-
other (e.g., keys), is assumed to be represented by text
nodes. As a result, the resulting similarity notion is
often too “loose” for ER applications or ineffective for
datasets having poor textual quality.

• Common Schema Assumption: Some methods require
that the documents to be matched follow the same
schema, e.g., to locate the textual description informa-
tion of objects. However, large parts of today’s XML
datasets are non-schematic or with multiple or evolv-
ing schemas. In these common scenarios, the effort of
a unifying pre-step for structure alignment, when het-
erogeneous and ad-hoc XML documents are present,
is prohibitively time-consuming.

• Scalability : Several similarity functions proposed have
an expensive runtime complexity or, even worse, do
not easily lend themselves to effective optimizations
such as derivation of bounds or minimization of pair-
wise comparisons (candidate pruning). This limitation
excludes such functions from being used in operations
on large datasets.

An alternative way to overcome the first drawback is to
decouple textual and structural information by considering
them as distinct document representations. Such a separa-
tion is also important, because text and structure may have

different requirements regarding their units of representa-
tion, i.e., their tokens, including aspects of feature identifi-
cation and of weighting their relative importance. The use
of multiple document representations brings up the issue of
combining similarity evaluation results, which is commonly
referred to as the combination of evidence problem.

The conceptual separation of text and structure for XML
document representation does not exclude, however, the ex-
ploitation of structure to further improve the quality of tex-
tual similarity results. To this end, a common approach in
XML retrieval is to qualify each textual unit by the XPath
context, i.e., the root-to-leaf navigational path, in which it
appears [7]. For ER applications, such context segmentation
is crucial for the following reasons: first, to prevent token
comparison among unrelated concepts and, second, to re-
strict the comparison of fields to those which are important
for the resolution process, for example, while author and
title are very significant in an XML database about pub-
lications, year_of_publication is expected to be much less
informative. Moreover, it avoids distortion of feature statis-
tics, e.g., a feature can appear in several fields but with
different frequencies.

The ability of approximately matching navigational paths
is very important for dealing with structural heterogeneity.
In this context, the similarity evaluation should account not
only for tokens appearing under identical paths, but also
for the case when these paths are similar according to some
similarity notion. A commonly used heuristic for the com-
parison of hierarchically structured data is to exploit the
nesting level and to assign higher scores for elements match-
ing at lower nesting depths. Finally, performance optimiza-
tions need to address two aspects to deal with large datasets.
First, repeated path similarity evaluations should be avoided
for tree patterns appearing several times in documents. Sec-
ond, the set of tokens derived from XML trees can be po-
tentially large requiring substantial overhead for pairwise
comparisons.

1.2 Our Contribution
This paper makes the following contributions. We present

an effective, flexible, and high-performance XML-based sim-
ilarity join framework addressing all the issues above. We
start by defining a set-overlap-based similarity function for
XML paths. By using the nesting level of path elements in a
monotonically decreasing way, we are able to obtain mean-
ingful results for frequent types of path variations. We then
apply this function for clustering the structural summary of
all paths in a target collection of XML documents. The re-
sulting set of path clusters is used to equip the original struc-
tural summary with the so-called Path Cluster Identifiers
(PCIs), which identify all the paths belonging to the same
cluster. Using PCIs, we are able to easily generate textual
and structural representations of a document while keep-
ing fine-granular feature statistics constrained at the clus-
ter level. In this context, we explore approaches to weight
structural tokens and to combine different representations of
a document, namely techniques for combination of evidence
at the feature and score levels. We also devise a cluster pro-
totype for each path cluster, i.e., a structure subsuming all
paths contained in a cluster. This structure is then used
to match (partial) paths against its cluster prototype. The
benefit of cluster prototypes is two-fold: users can specify
which part of the documents will constitute their textual



representation with vague knowledge about the underlying
structure and existing clusters can be updated, as opera-
tions such as insertion of a new document add a new path
to the structural summary. We quantify the accuracy and
runtime performance of our approaches in the context of a
native XML database management system.

The rest of this paper is organized as follows. After having
outlined in Section 2 the related work, Section 3 gives the
preliminaries. In Section 4, we introduce our approach to
XML path clustering used to derive token-based representa-
tions from documents, whereas we present the corresponding
similarity functions in Section 5. Aspects of the decompo-
sition of a document into structural and textual representa-
tions are covered in Section 6. Performance and accuracy
results for this novel approach are described in Section 7,
before we wrap up with the conclusions in Section 8.

2. RELATED WORK
Entity resolution is normally conducted in a very com-

plex process involving several stages, including data prepa-
ration, candidate generation, data matching, and merging of
results [36]. Similarity joins can play different roles in this
process [21]. Besides proving direct input to some classifi-
cation model, similarity joins can, for example, be used to
reduce the number of candidate pairs considered by other,
usually much more expensive similarity measures—an op-
eration known as blocking. As another example, similarity
joins can be used to support training-set construction for
machine learning approaches [5].

Weis and Naumann [35] address ER in the context of XML
datasets. Relevant content of each target object—either pre-
defined or heuristically identified—is extracted from XML
data and stored in a relation (object description), and string
similarity is applied to identify duplicates. This approach as-
sumes all XML documents complying to the same schema;
thus, its usage in ad-hoc or “schema-later” settings is im-
practical.

A very large body of work deals with XML structural
similarity [12, 17, 25]. Most of these contributions address
the problem of identifying documents valid for a similar
DTD and have some of the drawbacks mentioned in Sec-
tion 1.1. The tree edit distance [33]—and its many variants,
e.g. [25]— is a popular measure for comparing trees. While
there are algorithms that compute the edit distance between
ordered trees in polynomial time, those for unordered trees
are known to be NP-complete [37]. In data-centric XML,
however, sibling order is unimportant and therefore such
documents are better modeled as unordered trees. Tackling
this problem, Augsten et al. [2] present the concept of win-
dowed pq-grams. Informally, the pq-grams of a tree are its
subtrees having a specific shape [3]. Windowed pq-grams
extend pq-grams to deal with unordered trees. Another al-
ternative is based on the concept of path shingles [6]. The
path-shingles approach generates tokens by prepending each
element node in a tree with the full path from the root to
this node. Both techniques convert a tree into a set of to-
kens and could be used in our similarity join framework. We
compare our method with these approaches in Section 7.3.

Guha et al. [13] presented a framework for XML similarity
joins based on tree edit distance. To improve scalability,
the authors optimize and limit distance computations by
using lower and upper bounds for the tree edit distance as
filters and a pivot-based approach for the partitioning of the

metric space. However, these computations are still in O(n2)
and the reduction of pairwise distance calculations heavily
depends on a good choice of document “pivots” (reference
set, in their nomenclature).

Here, we assume that element tag labels are drawn from
a common vocabulary. This assumption is often reasonable
for real-world heterogeneous XML stores, where structure
can be arbitrarily arranged, but there is some understanding
of a set of interesting tags [23]. When not the case, the
underlying vocabularies have to be standardized before our
similarity join algorithm takes place. But, vocabulary or
ontology integration is beyond the scope of this paper.

Exploitation of structure has been extensively investigated
in XML search [20]. In this context, the user may have
only limited knowledge about the underlying structure of
an XML collection. Therefore, similarly to our context, text
nodes have to be located approximately, i.e., the path to the
specific node does not need to match exactly the structural
constraints expressed in the query. In [7], fuzzy and partial
match of term contexts (root-to-leaf paths) is supported. A
shortcoming of this approach is that path similarity has to be
computed every time a query is evaluated. In our approach,
path similarity is computed only once in a pre-processing
step as described in Section 4.2.

Clustering of tree-structured data is another active re-
search topic [22, 19, 1, 11]. Common approaches compute
the similarity within a cluster by exploiting additional knowl-
edge sources (e.g., a thesaurus) and context information [22]
or frequent structural patterns in a data collection [1]. Our
work is similar in spirit to the bag-of-tree-paths model pro-
posed in [19], which represent tree structures by a set of
paths. Moreover, approaches combining structure and con-
tent to achieve a specific clustering of XML documents have
been proposed [11]. Here, we do not cluster XML documents
directly; rather, we cluster (much smaller) structural sum-
maries to derive compact document representations. Fur-
thermore, because we aim at supporting ER processes, we
have to support approximate matching on strings to account
for textual deviations.

3. BACKGROUND
Before we introduce our approach, we make the under-

lying assumptions explicit and review the most important
definitions of the subject area.

3.1 XML Data Model
XML documents are modeled as unordered labeled trees.

We distinguish between element nodes and text nodes, but
not between element nodes and attribute nodes; each at-
tribute is child of its owning element. Disregarding other
node types such as Comment, we consider only data of string
type. Given a node n, δ (n) corresponds to the label of n,
if n is an element node, or to n’s value, if n is a text node.
Henceforth, when no confusion arises, we use n to represent
an (text) element node as well its (value) label.

3.2 Textual XML Representation
A common approach in IR is to characterize a document

by a profile, i.e., a compact representation of its content.
This process is known as indexing and we refer to the units
of representation as tokens. In this paper, our representation
of XML documents comprises textual and structural infor-
mation. In the following, we define textual units in isolation



(ignoring context) and defer the definition of structural units
and context-aware textual representation to Section 5.1 and
Section 5.2, respectively.

In IR, tokens are typically identified by words. For ER
systems, however, similarity matching has to be applied to
deal with text deviations and, therefore, more fine-granular
representation units are necessary. The concept of q-gram is
widely used in this context. Informally, a q-gram of a string
s is a substring of s of size q. The q-gram profile, denoted
by I q (s), is the set of q-grams obtained from a string s.
The common procedure used to produce a q-gram profile
consists on “sliding” a window of size q step by step over
the characters of s. It is useful to (conceptually) extend
each string s by prefixing and suffixing it with q − 1 null
characters (a null character is a special symbol not present in
any string). Thus, each character contained in s participates
in exactly q (of a total of size (s) + q − 1) q-grams.

3.3 Indexing and Weighting
Many experiments consistently revealed that not all to-

kens are equally important for similarity evaluation [30, 8].
The process of quantifying this importance is referred to as
weighting. Particularly, tokens that appear very frequently
in a collection of documents contribute to the discrimination
of them to a lesser degree, whereas rare tokens carry more
content information and, thus, are more discriminative. For
this reason, the inverse document frequency (idf ) is normally
used as token weight. The idf of a token t is inversely pro-
portional to the total number of documents ft, in which t
appears in a collection of N documents. A typical idf weight
is given by idf (t) = ln (1 + N/ft). The term frequency (tf ),
i.e., the frequency of a token in a document, is also used for
weighting. Given a token t appearing fd,t times in a docu-
ment, its tf weight can be computed as tf (t) = 1+ ln (fd,t).
The product of both term statistics constitutes the well-
known tf-idf weighting scheme.

The utility of the tf weight for string-to-string similar-
ity comparison has been questioned [14]. In IR, an user-
formulated query is compared to normally much larger doc-
uments and it is reasonable to consider the frequency of a
query token in a document as an indication that the docu-
ment is relevant to the query. However for string-to-string
comparison, the intuition is just the opposite: frequency
discrepancy of the same token present in two strings should
decrease their similarity. Moreover, ER systems usually per-
form comparisons on much shorter strings, e.g., author name
fields. A simple solution consists of converting a profile I,
composed by a bag of tokens, into a profile Ia, composed
by a set of annotated tokens, by appending an ordinal num-
ber to each occurrence of a token. For example, the pro-
file I = {a, b, b} is converted to Ia = {(a, 1) , (b, 1) , (b, 2)}.
Annotated tokens have fd,t = 1 and their weights are de-
termined by the idf weight only. Furthermore, divergence
in term frequencies of a token will penalize the similarity of
the related strings by a stronger degree, because subsequent
occurrences of the referenced token have decreased the doc-
ument frequency in a collection (and, therefore, increased
idf weight).

3.4 Set-Overlap-Based Similarity Functions
Set-overlap-based similarity functions evaluate the simi-

larity of two objects based on the number of tokens they
have in common. It is well-known that similarity func-

tions are highly domain-dependent, where even functions
performing well on average may poorly perform on some
datasets. Therefore, an important property of this class
of functions is versatility: it is possible to obtain diverse
notions of similarity by measuring the overlap differently
[31]. Next, we formally define the weighted version of the
well-known Jaccard similarity, which will be used as build-
ing block for other similarity functions defined further in
this paper; the weighted Jaccard has been shown to provide
competitive effectiveness against several other popular (and
often more computationally expensive) measures [8].

Definition 1. Let R be a set of tokens; wR (t) be the weight
of token t relative to R according to some weighting scheme.
Let the weight of R be given by wt (R) =

P
t∈R wR (t). Sim-

ilarly, consider a set S. The weighted Jaccard similarity
(WJS) of R and S is defined as follows:

WJS (R, S) =
wt (R ∩ S)

wt (R) + wt (S)− wt (R ∩ S)
(1)

where the set overlap of R and S is given by:

wt (R ∩ S) =
X

t∈R∩S

min (wR (t) ,wS (t)) .

3.5 Set Similarity Joins
In the database community, there are two main processing

models for efficient evaluation of joins employing set-overlap-
based similarity functions. The first uses an unnested rep-
resentation of sets in which each set element is represented
together with the corresponding object identifier. Query
processing commonly relies on relational database machin-
ery: equi-joins supported by clustered indexes are used to
identify all pairs sharing tokens, or elements of set surro-
gates, the so-called signature schemes [9], whereas grouping
and aggregation operators together with UDFs are used for
the final evaluation [9]. In the second model, an index is
built for mapping tokens to the list of objects containing
that token [31, 4]—for self-joins, such index can be dynam-
ically performed as the query is processed. The index is
then probed for each object to generate the set of candidates
which will be later evaluated against the overlap constraint.
Previous work has shown that approaches based on indexes
consistently outperform relational-based approaches [4] (see
also [14] for selection queries). As primary reason, a query
processing model based on indexes provides superior opti-
mization opportunities. A major method for that is to use
index reduction techniques [4]; such techniques significantly
minimizes the number of tokens to be indexed as well as the
number of tokens that need to remain indexed as the set
similarity join is processed [29].

3.6 Combination of Evidence
In the ER context, similarity matching results obtained

from different combinations of factors such as document rep-
resentation, similarity function, and weighting schemes can
be viewed as multiple evidence that two objects are dupli-
cates or not. Such pieces of evidence have to be merged in a
meaningful manner before being used as input to some classi-
fication model. This is also a concern for document retrieval
systems, which very commonly employ more than one re-
trieval and representation model for improving effectiveness
or have to combine results from several search engines—the



latter is known as the meta-search problem. In general, so-
lutions proposed for the ER context are applicable to the
IR context, and vice-versa. Common approaches consist of
training classifiers—based on methods such as decision trees,
Support Vector Machines (SVMs), and logistic regression—
to learn a combination model [5, 10] or applying simpler
functions such as the simple average on the (normalized)
similarity values or on induced ranking to obtain a concili-
ated result [10]. When using a single similarity function and
weighting scheme, it is possible to combine different docu-
ment representations at the token level. Using a single col-
lection statistics from all document representations, a linear
combination weighted by the corresponding representations
can be employed to form token weights [26]. Alternatively,
token weights can be directly obtained from token collec-
tion statistics relative to each document representation in
isolation [7]. Finally, multiple sources of evidence can be
combined at token generation time. For example, one can
produce tokens that jointly capture structural and textual
properties of an XML tree [28].

4. XML PATH CLUSTERING
In this section, we first define a similarity function for

navigational XML paths which is used in a cluster method
to group paths of a structural summary. We then employ
these clusters to derive representations of XML documents.

4.1 Path Similarity Function
We consider paths formed by element nodes. Token sets

can be derived from paths by converting each element node
in a given path into an annotated token. The motivation
of using annotated tokens is different from that discussed in
Section 3.3. Here, token annotation serves to deal with paths
containing element recursion, e.g., paths containing multiple
occurrences of the same node. For example, consider two
paths p1 = /a/b/a and p2 = /a/b and their corresponding
profile of annotated tokens Ia (p1) = {(a, 1) , (b, 1) , (a, 2)}
and Ia (p2) = {(a, 1) , (b, 1)}. Therefore, we have Ia (p1) ∩
Ia (p2) = {(a, 1) , (b, 1)}. Note that in this way, the matching
of tokens derived from recursive labels is done from low to
high nesting levels.

Further, a weighting scheme can be applied to express
the relative node significance in a path. In hierarchically
structured data, more general concepts in the corresponding
domain are normally placed at lower nesting depths. Mis-
matches between two paths on such low-level concepts may
suggest that the information contained in them are semanti-
cally more “distant”. Therefore, an intuitive heuristics is to
assign higher importance to nodes at lower nesting depths.
Finally, given two paths represented as weighted sets, their
similarity can be assessed using a set-overlap-based similar-
ity function as defined in 3.4. Next, we formally define these
concepts.

Definition 2. Let p = (n0, . . . , nn) be a path of element
nodes, where node ni is at nesting level i. The level-based
weighting scheme assigns a weight to each path element, i.e.,
LWS(p) = (n0, w0; . . . ; nn, wn) where:

wi = eβi (2)

and β ≤ 0 is a decay rate constant.

Definition 3. Let p1 and p2 be two paths. The weighted
path similarity (WPS) between p1 and p2 is given by:

WPS (p1, p2) = WJS (LWS (p1) ,LWS (p2)) (3)

using the weighted Jaccard defined in Equation 1.

Example 2. Consider p1 = patient/relatives/mother

and p2 = study/patient/mother, two (partial) paths ap-
pearing in the document shown in Figure 1. Applying LWS
with decay rated β = −0.1, we obtain the following weighted
sets: LWS (p1) = {(p, 1) , (r, 0.904) , (m, 0.818)} from p1,
and LWS (p2) = {(s, 1) , (p, 0.904) , (r, 0.818)} from p2. The
two sets share the tokens patient and mother; the weight
value of 0.904 for the token patient is returned by the min-
imum function. Thus, the weighted overlap is 1.723. The
weighted norm of LWS (P1) and LWS (P2) is 2.723. Thus,
WPS (p1, p2) = 1.723/ (2.723 + 2.723− 1.723) = 0.462.

We observe that, owing to the strictly decreasing weight-
ing rule of LWS, WPS may yield non-intuitive results, when
applied to long paths. For example, depending on the value
of decay rate β, two long paths sharing a smaller portion of
element nodes at higher nesting levels, but having a larger
part of unrelated nodes at lower levels, will have higher
similarity according to WPS. One solution consists of mak-
ing the weights constant from some level on. Therefore,
the weighted norms in the denominator are kept sufficiently
large to decrease the final result. On the other hand, empir-
ical studies provide evidence that the vast majority of XML
data worldwide has less than 8 levels [10] and, therefore, the
above effect is hardly an issue in practice.

4.2 XML Representation based on Path Clus-
ter Identifiers

We now exploit WPS to cluster path classes, i.e., paths
that occur at least once in at least one document in a col-
lection. All path classes in an XML dataset are typically
maintained by index structures called structural summaries
(also known as 1-Index [24] or path synopsis [15]; see [24] for
a formal definition). For example, the structural summary of
the document shown in Figure 1 is depicted in Figure 2 (dis-
regard the node identifiers and the accompanying table for
the moment). Path summaries are instrumental for efficient
XPath query evaluation;1 therefore they are pervasively sup-
ported by XML DBMSs. Here, our goal is to exploit path
summaries to derive compact structural surrogates of XML
trees: we use a cluster method to group similar path classes
and then the resulting cluster information to generate the
representation of documents.

In the following, we describe the path clustering process
in detail. Given a structural summary of a document col-
lection, we start by specifying a target label tg (l), corre-
sponding to the entity to be matched (e.g., entry in Figure

1). Let P tg(l) be the set of all path classes relative to tg (l),
i.e., paths in the structural summary having tg (l) as root
label. In case of nested occurrences of tg (l), we consider
only the paths rooted by the topmost occurrence. We then
use WPS to generate a proximity matrix containing all pair-
wise similarity values of P tg(l). This similarity matrix is the
input for a cluster method to generate a set of path clusters
(partitions) on P tg(l). In this paper, we use the UPGMA

1In reference [15], path summaries are exploited for design-
ing space-economic storage models.
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Agglomerative Hierarchical Clustering method with a user-
specified threshold as cutting point in the dendrogram [18].2

We denote the set of path clusters generated from P tg(l) at

cutting threshold θ with PC
tg(l)
θ . A Path Cluster Identifier

(PCI) is used to distinguish the path clusters in PC
tg(l)
θ . Fi-

nally, we identify all path classes p ∈ PC in a structural
summary by assigning to them the corresponding PCI. For
ease of notation, let the i be the corresponding PCI of a path

cluster pci ∈ PC
tg(l)
θ . Figure 2 illustrates for tg (l) = entry,

θ = 0.6, and decay rate of β = −0.1 for LWS . The values
in the box on the left are the similarity values at which the
clusters were formed.

After having equipped a structural summary with PCIs,
we are able to automatically derive a token-based structural
representation of XML documents. For this purpose, we
decompose a document into a set of paths and, for each
path p, the corresponding PCI is used as a structural token,
i.e., i such that p ∈ pci. As a consequence, the structure
of the document is represented as a set of PCIs, each token
denoting an appearance of a path cluster element in the
document. In Figure 2, note that subtrees, a) and b) are
represented by the same PCI token set {1, 2, 3, 4}; as result,
they would have maximum similarity according to any set-
overlap-based similarity function, even though they have no
path in common. This latter observation highlights a salient
feature of our PCI-based representation: equality matching
of single tokens incorporates similarity matching of whole
paths for free. The actual path comparison is done only
once during the clustering process thereby avoiding repeated
path similarity computations when evaluating the similarity
join operation. Next, we describe our PCI-based similarity
functions in detail.

5. XML TREE SIMILARITY
In this section, we first define the subsets of PC

tg(l)
θ that

are used to produce token sets for structure and content;
then we describe the corresponding similarity functions. These
functions are combined to define similarity functions for
XML trees. (In the following, we omit the target label and
the threshold cutting point in the notation for a set of path

clusters to avoid clutter, i.e., PC
tg(l)
θ = PC .)

Definition 4. Let C be a collection of XML documents;
PC is a cluster set generated from the structural summary
of C. We decompose PC into two disjoint sets, PCs and
PCt , such that PCs ∪ PCt = PC;3 PCt and PCs do not
form a partition, however, because one or the other set can
be empty. We call PCs the set of structural path clusters
and PCt the set of textual path clusters.

2Note that the specific clustering method is orthogonal to all
the methods used in this paper. Of course, other techniques
such as K -means and DBSCAN are applicable.
3Details of this decomposition are given in Section 6.

5.1 Structural Similarity
Given an XML document d from C, let P s

d be the set of
paths of d where each path is member of some path cluster
in PCs, i.e., P s

d = {p : p ∈ pc and pc ∈ PCs}. Given P s
d ,

we use the corresponding set of PCIs to obtain the profile of
annotated tokens Is

a(D) of D. PCI tokens are generated as
described in Section 4.2.

Definition 5. Let d1 and d2 be two XML documents and
let Is

a(d1) and Is
a(d2) be their respective structural profile.

The structural similarity function (PCI-S) is given by:

PCI -S (d1 , d2 ) = WJS (I s
a (d1 ), I s

a (d2 )) (4)

We now discuss the weighting scheme used for structural
tokens. In the definition of PCI-S, we use annotated tokens,
which rules out tf -based weighting schemes. However, it is
possible to make a different rationale for structural tokens
than that for textual tokens (Section 3.3). For example,
because data collections associated with an XML schema
may carry loose constraints on the data, e.g., allowing re-
peating and optional elements, node frequency discrepan-
cies can naturally emerge among documents. In this sense,
the tf weighting component, as defined in Section 3.3, or
any other weighting formula that dampens the effect of to-
ken frequency in a document provides a good compromise.
However, while this particular notion of similarity is reason-
able when dealing with the identification of XML documents
valid for a similar DTD [12, 17, 25], it is not clear whether
or not a similarity evaluation based on such an approach
would produce meaningful results in the ER context. We
empirically evaluate different weighting schemes for struc-
tural tokens in Section 7.3.

5.2 Textual Similarity
Given a document d from C, let ti be a text node of d

appearing in a path cluster pci ∈ PCt (or more precisely,
in a path p ∈ pci). Let I q

a

`
ti

´
be the annotated set of q-

grams of ti as defined in Section 3.2. We convert I q
a

`
ti

´
to

PCI q
`
I q
a

`
ti

´
, i

´
, the set of the so-called pci-grams of ti, by

appending i, the PCI value of the path cluster pci, to each
q-gram q ∈ I q

a

`
ti

´
. Further, let T t

d be the set of text nodes ti

of d appearing in some path cluster pci ∈ PCt. The profile
of annotated pci-grams of d, denoted as PCIq

d , is given by
PCI q

d = ∪ti∈T t
d
PCI q

`
I q
a

`
ti

´
, i

´
.

Definition 6. Let d1 and d2 be two XML documents, and
let PCI q

d1 and PCI q
d2 be their respective textual profile. The

textual similarity function, denoted as PCI-T , is given by:

PCI -T (d1 , d2 ) = WJS (PCI q
d1,PCI q

d2) (5)

Note that, besides being used to compose the textual rep-
resentation of a document, PCI also serves to approximately
locate text nodes. For example, in Figure 1, we are able
to compare the text value of mother in subtrees a) and
b) because their respective paths have associated the same
PCI = 4 (see Figure 2). Further, we consider only the idf
weighting scheme for textual tokens. The collection statis-
tics of a token ti is constrained at the cluster path pci, i.e.,
fti corresponds to the number of documents where token t
appears in pci.



5.3 Similarity Combination
We now consider ways to combine textual and structural

similarity. In this paper, we examine two approaches: score-
level combination (SLC ) and token-level combination (TLC ).
The first is the linear combination of the resulting scores
of PCI-S and PCI-T . In this approach, the similarity
functions are evaluated independently, possibly using dif-
ferent weighting schemes, and their result is combined using
weights that can be either hand-tuned or obtained from some
learning model. The second approach performs the union of
the structural and textual profile of a document thereby ob-
taining a unified representation. In this approach, we use the
same (idf ) weighting scheme for both textual and structural
tokens and a single similarity function. Note that textual
tokens would have lower frequencies than structural tokens
(and therefore greater idf weights). Next, we formally define
both strategies.

Definition 7. Let d1 and d2 be two XML documents. Let
λt and λs be weights such that λt + λs = 1. The score-level
similarity combination (SLC) between d1 and d2 is given by:

SLC (d1, d2) = λs × PCI -S (d1 , d2 ) + λt × PCI -T (d2 , d2 )
(6)

Definition 8. Let d1 be an XML document. The combined
representation of d1, denoted as Cd1

a , is given by Cd1
a =

T s
a (d1 ) ∪ PCI q

d1. Similarly, consider a document d2. The
token-level similarity combination (TLC) between d1 and d2

is given by:

TLC (d1, d2) = WJS
“
Cd1

a , Cd2
a

”
(7)

6. DECOMPOSITION OF TEXTUAL AND
STRUCTURAL REPRESENTATIONS

So far, we have described how we accomplish XML path
clustering and how we compute textual and structural sim-
ilarity. We are now ready to discuss the process of deter-
mining the sets PCt and PCs. Because this decomposi-
tion of the original set of clusters defines which parts of an
XML document will deliver textual or structural tokens, it
is a key design decision. As previously mentioned, textual
information has more discriminating power than structural
information in XML documents, in general. However, sim-
ply using all textual information available will hardly be
effective. Issues such as lack of independence are known to
negatively affect the quality of duplicate detection results
when more fields than needed are used [36]. Moreover, tex-
tual tokens such as q-grams significantly increase the space
overhead, thereby directly having negative impact on perfor-
mance. Therefore, the ability to select specific parts of the
textual information from XML documents is a fundamental
requirement in our similarity join framework.

The above considerations about restrictions on the use of
textual information bring similar concerns about structural
information. The first question is whether to use it at all.
The role of structure has been intensively explored in the
context of XML retrieval. There exists empirical evidence
that using structure in queries improves precision at low re-
call levels, but hurts performance at high recall levels [20]. In
the ER context, the number of relevant answers is expected
to be substantially smaller in comparison to XML retrieval.4

4A common approach to evaluate the effectiveness of ER

In fact, because common real-world datasets contain small
amounts of fuzzy duplicates, most XML trees have either
no duplicates or only a small number of them. Therefore,
the fraction of relevant elements for which the use of struc-
ture has been shown to enhance precision in XML retrieval
(first retrieved elements), matches the typical recall range in
the ER context. Furthermore, from a semantic viewpoint,
structure has special importance regardless of its discrimi-
native power. For example, two XML documents having a
completely different structure would certainly be classified
as non-duplicates. Finally, by representing the structure by
a set of PCIs, we are able to derive very small token sets
causing only a little performance penalty.

The definition of the best decomposition configuration is
critically dependent on the application domain. Hence, we
let users specify the PCt set by issuing the so-called PCt

selection queries. This query consists of one or more simple
path expressions that are approximately matched against
the set of clusters. The top-k answers, i.e., the k cluster
sets with highest similarity scores, are selected to constitute
PCt; the remaining cluster sets form PCs. Because users
are likely to have only vague knowledge about the underly-
ing structure of the data collection, we support exploratory
queries for cluster decomposition, before the actual similar-
ity join evaluation takes place. Currently, we return several
pieces of statistical information about the top-k results, such
as cluster frequency in the collection and mean text value
length of text nodes appearing in the cluster set. The user
can therefore reformulate the query if, for example, the re-
turned cluster set appears only in a few subtrees or is related
to a part of the document with predominance of lengthy free
text. We plan to enhance user guidance on text-cluster set
selection with information-theoretic techniques [32].

To avoid the burden of comparing path queries with all
path classes of a cluster, we employ a path cluster prototype,
a structure subsuming all elements of a cluster. Path queries
are then matched with cluster prototypes rather than with
each path class. To this end, we adopt a simple but effective
level-based structure in which all labels appearing at the
same level are kept together. Figure 3a shows the prototype
of the path cluster with PCI 4 in our running example. The
comparison between a PCt selection query and a prototype
is done using the WPS function, similarly to that of reg-
ular paths. The main difference is that only a single label
match is allowed per level. For example, in the PCt selection
query shown in Figure 3a, the study component cannot be
matched with the cluster prototype because of the previous
match of patient at level 1.

We design a specialized inverted list index to represent
the set of cluster prototypes and efficiently match PCt se-
lection queries against them. An inverted list is constructed
for each annotated label appearing in a cluster prototype.
Figure 3b shows the inverted lists of the annotated labels
appearing in the example of Figure 3a. The space require-
ment of the index is O (L× P ×D), where L is the num-
ber of distinct annotated labels in the dataset—L can be
greater than the number of distinct labels due to recursion,
P is the number of distinct paths, and D is the maximum

algorithms consists in considering a document from the
dataset as a query and the number of true duplicates of
this document as the set of relevant answers. Therefore, the
use of standard IR evaluation measures is straightforward.
We use this approach in this paper (see Section 7.2).
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Figure 3: Path cluster prototype matching

path length among all documents. Clearly, this analytical
bound is “loose” and, in practice, the space consumption is
expected to be much smaller. Moreover, the vast majority
of XML datasets present fairly moderate values for L, P ,
and D, e.g., less than 200 path classes and maximum depth
of 8 [15]. Therefore, for such datasets, the dictionary as well
as the inverted list can be kept memory-resident.

Furthermore, we can ensure truly interactive responses
even under concurrent requests by employing well-known IR
optimizations such as the max-score strategy [34]. The order
of evaluation of the inverted lists follows the order of a PCt

selection query components. This means that the upper
bound for the weight of matching labels decreases mono-
tonically as the query is evaluated (recall that we use the
minimum as aggregation function in Equation 1) and there-
fore it is easy to compute the highest score that a cluster
prototype containing all remaining components of the PCt

selection queries can achieve. Thus, we can promptly stop
the query evaluation and return the current top-k candidate
as soon as there is no other candidate in the intermediate
result whose highest possible score is higher than the score
of the kth candidate. In practice, only the inverted lists as-
sociated with the first query label components will need to
be evaluated. Note that we are interested only in the top-k
results; their complete score is unimportant.

Besides PCt selection queries matching for cluster set de-
composition, our inverted list representation of cluster pro-
totypes is also important for (PCI-equipped) path summary
maintenance in the presence of incremental path class up-
dates. New path classes are matched against the index to
automatically select the most similar path cluster. There-
fore, the need of complete re-clustering is avoided after a
new document is stored, or it can be postponed to be done
off-line. A pre-defined threshold θ′ is used to define a mini-
mum value of closeness between a new path class and cluster
prototypes. If no cluster prototype is returned with similar-
ity to the new path class not less than θ′, a new cluster is
created and the path class is assigned to it. Typically, θ′ is
defined with the same value of the cutting threshold θ that
was used to generated the initial set of path clusters (see
Section 4.2).

7. EXPERIMENTS
After having presented our cluster-based approach to sim-

ilarity joins, we are ready to show our experimental re-
sults. Our goals are: a) to evaluate the effectiveness of our
PCI-based similarity functions for tree-structured data and
compare it with other state-of-the-art token-based similar-
ity functions; b) to investigate different weighting schemes
for structural tokens; c) to evaluate different approaches for
the combination of structural and textual similarities; d) to
measure the performance of our similarity join framework
on large datasets.

7.1 Datasets and Setup
For our empirical study, we used three real-world XML

datasets: Nasa5 containing astronomical data and two pro-
tein sequence databases, SwissProt6, and PIR-PSD7 (PSD
for short). For all of them, we obtained sets of XML docu-
ments by deleting the root node of each XML dataset. The
resulting documents are structurally heterogeneous. Nasa
is irregular, has large trees, deep nesting levels, and is more
document-centric (larger textual content per subtree). Swis-
sProt and PSD are both more regular than Nasa, but the
trees of SwissProt are larger and more shallow than those
of PSD ; in addition, SwissProt has the largest number of
distinct tags. Detailed statistics describing the datasets are
given in Table 1.

For all experiments, we produced “fuzzy” copies of these
datasets by performing random transformations on content
and structure. Injected errors on text nodes consist of word
swappings and character-level modifications (insertions, dele-
tions, and substitutions). In all experiments, we applied
1–5 such modifications for each dirty copy. These textual
modifications simulated typical data quality issues, such as
data entry errors. The structural modifications consist of
node insertions and deletions, node inversions, and relabel-
ing of nodes. Insertion and deletion operations follow the se-
mantics of the tree edit distance [33], while node inversions
switch the position between a node and its parent. Relabel-
ing only changes the node’s name (with a DTD-valid sub-
stitute). Additionally, we also applied modifications at the
subtree level (deletions of entire subtrees) and at the path
level (path deletions). We define error extent as the per-
centage of nodes from a subtree which were affected by the
set of structural modifications. We considered as affected
the node which received the modification (e.g., a rename)
as well as all its descendants. With these modifications, we
aimed at simulating kinds of structural heterogeneity which
commonly arises in the context of semi-structured data man-
agement, such as heterogeneity owing to optional elements,
schema evolution, and data integration. Finally, we clas-
sify the fuzzy copies generated from each data set according
to the error extent used, i.e., we have low (10%), moderate
(30%), and dirty (50%) error datasets.

We conducted all experiments and performance measure-
ments using our prototype XML database system called
XTC (XML Transactional Coordinator) [16]. All tests were
run on an Intel Xeon Quad Core 3350 2.66-GHz Intel Pen-
tium IV computer (two 3.2-GHz CPUs, about 2.5-GB main
memory, Java Sun JDK 1.6.0) as the XDBMS server ma-

5http://www.cs.washington.edu/research/xmldatasets/
6http://us.expasy.org/sprot/
7http://pir.georgetown.edu/



Table 1: Dataset statistics

dataset #subtrees
avg #nodes
per subtree

# distinct
tags/paths

avg/max
path length

structure/
content ratio

avg/max node
string size

avg/max tree
string size

Nasa 2435 371 69/73 6,76/7 1,43 30,45/12668 4646,68/153588
SwissProt 50000 187 98/191 3,82/4 1,22 10,06/325 845,72/24029

PSD 262525 149 66/72 5,99/6 1,31 17,13/15535 1109,74/19074

chine where we configured XTC with a DB buffer of 250
8-KB-sized pages.

7.2 Evaluation Metrics
To evaluate the accuracy of similarity functions, we used

our join algorithms as selection queries, i.e., as the special
case where one of the join partners has only one entry. We
proceeded as follows. Each dataset was generated by first
randomly selecting 500 subtrees from the original dataset
and then generating 4500 duplicates from them (i.e., 9 fuzzy
copies per subtree), all together totaling 5000 subtrees. As
the query workload, we randomly selected 100 subtrees from
the generated dataset. For each queried input subtree T ,
the trees TR in the result returned by our similarity join
are ranked according to their calculated similarity with T .
In this experiment, we did not use any threshold parameter
and, therefore, the rank returned is complete. Finally, during
data generation, we kept track of all duplicates generated
from each subtree; those duplicates form a partition and
carry the same identifier called duplicate ID. For each tree
T , the set of corresponding relevant trees are those having
the same duplicate ID. Here, we report the non-interpolated
Average Precision (AP), which is given by:

AP =
1

#relevanttrees
×

nX
r=1

[P (r)× rel (r)] (8)

where r is the rank, n the number of subtrees returned. P (r)
is the number of relevant subtrees ranked before r, divided
by the total number of subtrees ranked before r, and rel (r)
is 1, if the subtree at rank r is relevant and 0 otherwise. This
measure emphasizes the situation where more relevant doc-
ument fragments are returned earlier. The mean of the AP
over the query workload is reported (abbreviated to MAP
in our experimental charts). We also experimented with
several other evaluation metrics such as the 11-point inter-
polated average precision and the F1 measure and obtained
consistent results.

For performance experiments, we evaluated the algorithms
according to their overall execution time (recorded as the
average over 5 runs) and according to the token set size pro-
duced, which has a direct impact on the execution time.

7.3 Structural Similarity Results
In this first experiment, our objective was two-fold: 1)

evaluating the effectiveness of our structural similarity mea-
sure in identifying fuzzy duplicates and comparing it to
competing approaches; and 2) comparing different weighting
strategies for structural tokens. To evaluate the contribution
of the structural similarity measure in isolation, we ignored
all text nodes in this experiment, i.e., we made PCt = ∅.

We compared our PCI-based similarity function (PCI-S)
against two other token-based approaches: windowed pq-
grams (WPQ) and path-shingles (PS). For the two compet-

ing approaches, we used the parameters as recommended by
the authors, i.e., p = q = 2 and w = 3 for WPQ and a
window of size 1 for PS. In this and all subsequent experi-
ments, we used a decay rate of 0.1 for LWS and a threshold
of 0.4 as cutting point for the dendogram. We observed the
best results with this configuration. Finally, we also consid-
ered an additional similarity function (PATH ), which simply
used the weighted Jaccard formulation (WJS)—as defined
in Section 3.4—between the sets of root-to-leaf paths of two
trees. Thus, we could observe the specific effects of our path
similarity approach to the result quality.

Further, we present results for four different weighting
schemes: unweighted (UNWEI ), inverse document frequency
(IDF ), term frequency (TF ), and tf-idf (TF-IDF). For UN-
WEI and IDF, we used WJS. On the other hand, TF and
TF-IDF are based on local statistics (term frequency). As
a result, token weights can vary among different sets. Us-
ing minimum as aggregation function ensures that similar-
ity results are in the interval [0, 1]. However, we experienced
unstable results with this formulation. Hence, we refrained
from using Jaccard and, instead, employed the well-known
cosine similarity with TF and TF-IDF weighting schemes
[30]. We also tested the cosine version of IDF ; however, we
consistently observed superior results with Jaccard.

Figure 4 shows the results. In all the settings, PCI-S is
the most effective. Moreover, PCI-S is the most resistant,
when the error extent increases, and shows only slight accu-
racy degradation as the error extent increases from 10% to
50% (low to dirty dataset). On the other hand, the accu-
racy of the other three similarity measures, WPQ, PS, and
PATH, drops significantly as the error extent increases; it
practically decreases at the same rate. WPQ performs bet-
ter than PS and PATH, but it is close to PCI-S only on
low-error datasets.

To better understand the reasons for the superiority of
PCI-S over the other approaches, we conducted additional
experiments on datasets generated by only one kind of struc-
tural modification. We observed that the results favoring
PCI-S are, in general, more prominent on datasets generated
by node-level modifications, i.e., node insertion, rename, in-
version, and deletion. This observation is not a surprise,
because the other measures cannot capture modifications
that change the root-to-leaf path of an element.

All similarity functions show better results on Nasa. This
is expected because Nasa has the most irregular structure,
therefore providing a good structural “signature” to iden-
tify a subtree. Accordingly, the worst results are observed
for the PSD dataset, which has the most regular structure
and many subtrees have a very similar shape. Interestingly,
the accuracy gap between PCI-S and the other measures is
larger in this restricted feature domain.

The better results of PCI-S are even more impressive
when we observe the average token set size delivered by each
representation in Table 2 . For all datasets, PCI-S produces
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(b) Nasa, moderate-error dataset
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(c) Nasa, dirty-error dataset
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(d) SwissProt, low-error dataset
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(e) SwissProt, moderate-error dataset
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(f) SwissProt, dirty-error dataset
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(g) PSD, low-error dataset
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(h) PSD, moderate-error dataset
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Figure 4: MAP values for different structural similarity functions on different datasets

Table 2: Average structural token set size

Nasa SwissProt PSD
PCI-S 143 79 60

PS 360 181 145
WPQ 693 295 262

token sets about 5 times shorter than WPQ. To be resistant
to subtree permutations, WPQ has to produce an increased
number of pq-grams [2], while for PCI-S the number of to-
kens is always bounded by the number of paths. Moreover,
the use of Path Cluster Identifiers provides a very compact
representation for free, without the need of using any codi-
fication method such as a fingerprint hash function.

We now analyze the results of the comparison of weight-
ing schemes. The main observation is that UNWEI and IDF
perform consistently better than TF and TF-IDF. This re-
sult might be due to the use of Jaccard for UNWEI and
IDF. In general, unweighted and IDF -weighted versions of
Jaccard show very similar results for all similarity functions,
with a slight advantage for the former. It seems that the
distribution of structural tokens does not provide any sig-
nificant advantage for IDF -weighting schemes. We also note
that TF significantly outperforms TF-IDF in all token set
representations. Similar results have been observed in the
context of clustering web pages [27]. The common conjec-
ture is that TF-IDF over-emphasizes the rarest terms. In
our case, we believe that mismatches on such over-weighted
(structural) tokens penalize too much the similarity result.

7.4 Accuracy Results for Text and Structure
Combination

Here, we compare approaches to combine textual and struc-
tural similarity. We evaluate the methods presented in Sec-

tion 5.3: score-level combination (SLC ) and token-level com-
bination (TLC ). For SLC, we report the results using the
idf weighting scheme with Jaccard as similarity function (as
initially defined). We didn’t observe any accuracy gain by
using unweighted structural tokens. Also, normalizing the
score results provided no accuracy enhancing, so the results
reported were obtained without any normalization method.
In addition, we also compare the epq-grams (EPQ) approach
[28], an extension of pq-grams to capture textual informa-
tion. Note that pq-grams and, in turn, EPQ can only han-
dle ordered XML trees (in contrast to windowed pq-grams
or our PCI -based methods). However, as we didn’t apply
node-swapping operations when generating the datasets, our
comparison here is fair. The EPQ approach employs the so-
called path predicates, a different mechanism to support se-
lection of specific document parts used for textual represen-
tation. Path predicates support partial matching (e.g. //a ),
but not approximate matching as PCt selection queries. See
[28] for details. Finally, to better understand the effects of
combining structural and textual similarity, we also report
the results concerning the evaluation of PCI-S and PCI-T
in isolation.

The following PCt selection queries (path predicates) were
used for the PCI-based methods (epq-grams): /dataset/name,
(Nasa), /Entry/Ref/Author (SwissProt), and /ProteinEn-

try/sequence (PSD). We only report the results for moderate-
error datasets due to space constraints. We used q = 3 for
the PCI-based functions and p = 2 and q = 3 EPQ. In
the experimental charts, we indicate for SLC the structural
weight (λs) we used to achieve the best results. For exam-
ple for SwissProt, we obtained better performance with a
structural (textual) weight of 0.7 (0.3).

Figure 5 shows the results. TLC has the best results,
in general, and exhibits good performance in all datasets.
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Figure 5: Complete accuracy results on moderate-error datasets

Table 3: Average token set size for TLC and EPQ

SwissProt PSD
TLC 198 432
EPQ 417 903

Moreover TLC shows better accuracy than PCI-T and PCI-
S in isolation in all settings. Even when PCI-T (on Swis-
sProt) or PCI-S (on PSD) provided poor results, the over-
all accuracy of TLC never worsened. This result is similar
to the findings of [26], which observed that good document
representations tend to be robust when combined with other
poorly performing representations. SLC obtained good re-
sults except for SwissProt. For this dataset, PCI-T also
showed very poor results. A closer examination revealed
that the clustering method grouped some unrelated paths in
the same cluster. In this situation, TLC was able to lever-
age the results of PCI-S and didn’t suffer any significant
degradation w.r.t. accuracy. Finally, EPQ provided good
results on PSD and Nasa; it was even able to slightly out-
perform TLC on Nasa. Similarly to the PCI -based methods
on SwissProt, the path-predicate mechanism was not able to
correctly locate its text nodes.

7.5 Performance Results
This last experiment quantifies the runtime performance

of TLC, SLC, and EPQ for varying query thresholds. We
used fuzzy copies of the SwissProt and PSD datasets, each
copy generated with an error extent of 30% (moderate-error)
and containing 100k subtrees. We implemented the w-mpjoin
algorithm, a (self) set similarity join algorithm presented in
[29]. For SLC, we first evaluated PCI-T and afterwards
textitPCI-S; therefore this query was evaluated in conjunc-
tive mode, where only the subtrees returned by PCI-T were
considered by PCI-S. The input of w-mpjoin is a set collec-
tion sorted in increasing order of the set size; the elements
of each set are sorted in decreasing order of the document
frequency. We sorted the input in advance, so the input
sorting time is not contained in the results.

The results are shown in Figure 6. The runtime perfor-
mance of both TLC and SLC is practically identical. EPQ
is slower than TLC and SLC by a factor of up to 2.5. This
result reflects the average token-set size produced by each
approach, which is given in Table 3. EPQ delivers about the
double size of the PCI-based approaches on both datasets.
All algorithms are about 6 times faster on the SwissProt
dataset. The reason is that the token sets generated from
SwissProt are smaller and, more importantly, have a wider
set-size distribution, which is exploited by the w-mpjoin al-
gorithm to optimize join processing [29].

7.6 Experimental Summary
PCI-S is clearly the structural XML representation of

choice: it provides superior accuracy results, its performance
degrades only moderately as the dataset level of “ dirtyness”
increases, and it is able to correlate reasonably well trees
with restricted structural information. Moreover, PCI-S de-
livers much smaller token sets—bounded by the number of
paths in a tree, the tokens lend themselves to very compact
representations, and can be generated for free with support
of a PCI-equipped structural summary.

We found the Jaccard similarity being superior to Cosine.
Looking at evaluation of structural similarity in isolation, we
didn’t observe any significant gain using weighting schemes.

Regarding the combination of structural and textual sim-
ilarity, TLC is the winner. It is able to leverage very well
both kinds of similarity providing stable results even when
the textual or structural similarity performs poorly. More-
over, TLC runs faster in our similarity join framework.

8. CONCLUSION
In this paper, we presented an XML-based similarity join

framework, which is amenable to an integration into native
XML database systems. We exploited structural summaries
and clustering concepts to represent XML documents as to-
ken sets that capture common textual and structural devi-
ations occurring in real-world XML datasets. Remarkably,
our approach delivered substantially more compact token
sets than competing approaches, while providing more ac-
curate results. In this context, we explored different ways
to weigh and combine evidence from textual and structural
XML representations. Finally, we addressed user interac-
tion, when the similarity framework is configured for a spe-
cific domain, and updatability of clustering information, when
new documents enter datasets under consideration, by devis-
ing a cluster prototype structure represented as little memory-
resident inverted lists.
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